1
|
Iwańska O, Latoch P, Kovalenko M, Lichocka M, Hołówka J, Serwa R, Grzybowska A, Zakrzewska-Czerwińska J, Starosta AL. Ribosomes translocation into the spore of Bacillus subtilis is highly organised and requires peptidoglycan rearrangements. Nat Commun 2025; 16:354. [PMID: 39753535 PMCID: PMC11698733 DOI: 10.1038/s41467-024-55196-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 12/04/2024] [Indexed: 01/06/2025] Open
Abstract
In the spore-forming bacterium Bacillus subtilis transcription and translation are uncoupled and the translational machinery is located at the cell poles. During sporulation, the cell undergoes morphological changes including asymmetric division and chromosome translocation into the forespore. However, the fate of translational machinery during sporulation has not been described. Here, using microscopy and mass spectrometry, we show the localisation of ribosomes during sporulation in wild type and mutant Bacillus subtilis. We demonstrate that ribosomes are associated with the asymmetric septum, a functionally important organelle in the cell's developmental control, and that SpoIIDMP-driven peptidoglycan rearrangement is crucial for ribosomes packing into the forespore. We also show that the SpoIIIA-SpoIIQ 'feeding-tube' channel is not required for ribosome translocation. Our results demonstrate that translation and translational machinery are temporally and spatially organised in B. subtilis during sporulation and that the forespore 'inherits' ribosomes from the mother cell. We propose that the movement of ribosomes in the cell may be mediated by the bacterial homologs of cytoskeletal proteins and that the cues for asymmetric division localisation may be translation-dependent. We anticipate our findings to elicit more sophisticated structural and mechanistic studies of ribosome organisation during bacterial cell development.
Collapse
Affiliation(s)
- Olga Iwańska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Przemysław Latoch
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Mariia Kovalenko
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Małgorzata Lichocka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Joanna Hołówka
- Department of Molecular Microbiology, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Remigiusz Serwa
- International Institute of Molecular Mechanisms and Machines, Polish Academy of Sciences, Warsaw, Poland
| | - Agata Grzybowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | | - Agata L Starosta
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
2
|
Mulder OJ, Kostman MP, Almodaimegh A, Edge MD, Larkin JW. An Agent-Based Model of Metabolic Signaling Oscillations in Bacillus subtilis Biofilms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.20.629727. [PMID: 39763919 PMCID: PMC11702635 DOI: 10.1101/2024.12.20.629727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Microbes of nearly every species can form biofilms, communities of cells bound together by a self-produced matrix. It is not understood how variation at the cellular level impacts putatively beneficial, colony-level behaviors, such as cell-to-cell signaling. Here we investigate this problem with an agent-based computational model of metabolically driven electrochemical signaling in Bacillus subtilis biofilms. In this process, glutamate-starved interior cells release potassium, triggering a depolarizing wave that spreads to exterior cells and limits their glutamate uptake. More nutrients diffuse to the interior, temporarily reducing glutamate stress and leading to oscillations. In our model, each cell has a membrane potential coupled to metabolism. As a simulated biofilm grows, collective membrane potential oscillations arise spontaneously as cells deplete nutrients and trigger potassium release, reproducing experimental observations. We further validate our model by comparing spatial signaling patterns and cellular signaling rates with those observed experimentally. By oscillating external glutamate and potassium, we find that biofilms synchronize to external potassium more strongly than to glutamate, providing a potential mechanism for previously observed biofilm synchronization. By tracking cellular glutamate concentrations, we find that oscillations evenly distribute nutrients in space: non-oscillating biofilms have an external layer of well-fed cells surrounding a starved core, whereas oscillating biofilms exhibit a relatively uniform distribution of glutamate. Our work shows the potential of agent-based models to connect cellular properties to collective phenomena and facilitates studies of how inheritance of cellular traits can affect the evolution of group behaviors.
Collapse
Affiliation(s)
- Obadiah J. Mulder
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | | | | | - Michael D. Edge
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Joseph W. Larkin
- Departments of Biology and Physics, Boston University, Boston, MA, USA
| |
Collapse
|
3
|
Li R, Chu R, Ban R. The characteristics of autolysins associated with cell separation in Bacillus subtilis. J Bacteriol 2024; 206:e0013324. [PMID: 39012109 PMCID: PMC11340307 DOI: 10.1128/jb.00133-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/12/2024] [Indexed: 07/17/2024] Open
Abstract
The peptidoglycan hydrolases responsible for the cell separation of Bacillus subtilis cells are collectively referred to as autolysins. However, the role of each autolysin in the cell separation of B. subtilis is not fully understood. In this study, we constructed a series of cell separation-associated autolysin deficient strains and strains overexpressing the transcription factors SlrR and SinR, and the morphological changes of these strains in liquid culture were observed. The results showed that the absence of D,L-endopeptidases CwlS and LytF only increased the cell chain length in the early exponential phase. The absence of D,L-endopeptidase LytE or N-acetylmuramyl-L-alanine amidase LytC can cause cells to form chains throughout the growth of B. subtilis, although the cell chain length was significantly shortened during the stationary phase. However, the absence of peptidoglycan N-acetylglucosaminidase LytD only caused minor defect in cell separation. Therefore, we concluded that LytE and LytC were the major autolysins that ensure the timely separation of B. subtilis daughter cells, whereas CwlS, LytF, and LytD were the minor autolysins. In addition, overexpression of the transcription factors SinR and SlrR in the cwlS lytF lytC lytE mutant enabled B. subtilis cells to form ultra-long chains in the vegetative phase, and its biomass level was basically the same as that of the wild type. This led to the conclusion that besides inhibiting the expression of lytC and lytF, the SinR-SlrR complex also has other potential mechanisms to inhibit cell separation.IMPORTANCEIn this study, the effects of CwlS, LytC, LytD, LytF, LytE, and SinR-SlrR complex on the cell separation of Bacillus subtilis at different growth phases were studied, and an ultra-long-chained B. subtilis strain was constructed. In microbial fermentation, due to its large cell size, this ultra-long-chained B. subtilis strain may be more likely to be precipitated or intercepted during the removal of bacterial process with centrifugation and membrane filtration as the main methods, which is crucial to improve the purity of the product.
Collapse
Affiliation(s)
- Rui Li
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, People's Republic of China
| | - Ronghao Chu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, People's Republic of China
| | - Rui Ban
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, People's Republic of China
| |
Collapse
|
4
|
Iwańska O, Latoch P, Kopik N, Kovalenko M, Lichocka M, Serwa R, Starosta AL. Translation in Bacillus subtilis is spatially and temporally coordinated during sporulation. Nat Commun 2024; 15:7188. [PMID: 39169056 PMCID: PMC11339384 DOI: 10.1038/s41467-024-51654-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 08/13/2024] [Indexed: 08/23/2024] Open
Abstract
The transcriptional control of sporulation in Bacillus subtilis is reasonably well understood, but its translational control is underexplored. Here, we use RNA-seq, ribosome profiling and fluorescence microscopy to study the translational dynamics of B. subtilis sporulation. We identify two events of translation silencing and describe spatiotemporal changes in subcellular localization of ribosomes during sporulation. We investigate the potential regulatory role of ribosomes during sporulation using a strain lacking zinc-independent paralogs of three zinc-dependent ribosomal proteins (L31, L33 and S14). The mutant strain exhibits delayed sporulation, reduced germination efficiency, dysregulated translation of metabolic and sporulation-related genes, and disruptions in translation silencing, particularly in late sporulation.
Collapse
Affiliation(s)
- Olga Iwańska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, Warsaw, 02-106, Poland
| | - Przemysław Latoch
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, Warsaw, 02-106, Poland
| | - Natalia Kopik
- Maria Curie-Skłodowska University, Marii Curie-Skłodowskiej 5, Lublin, 20-031, Poland
| | - Mariia Kovalenko
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, Warsaw, 02-106, Poland
| | - Małgorzata Lichocka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, Warsaw, 02-106, Poland
| | - Remigiusz Serwa
- The International Institute of Molecular Mechanisms and Machines Polish Academy of Sciences, M. Flisa 6, Warsaw, 02-247, Poland
| | - Agata L Starosta
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, Warsaw, 02-106, Poland.
| |
Collapse
|
5
|
Ziklo N, Bibi M, Sinai L, Salama P. Niacinamide Antimicrobial Efficacy and Its Mode of Action via Microbial Cell Cycle Arrest. Microorganisms 2024; 12:1581. [PMID: 39203423 PMCID: PMC11356291 DOI: 10.3390/microorganisms12081581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/24/2024] [Accepted: 08/01/2024] [Indexed: 09/03/2024] Open
Abstract
Niacinamide is a versatile compound widely used in the personal care industry for its ample skin benefits. As a precursor to nicotinamide adenine dinucleotide (NAD+), essential for ATP production and a substrate for poly-ADP-ribose polymerase-1 (PARP-1), studies have highlighted its roles in DNA repair, cellular stress mechanisms, and anti-aging benefits. Niacinamide was also studied for its antimicrobial activity, particularly in the context of host-infection via host immune response, yet its direct antimicrobial activity and the mechanisms of action remain unclear. Its multifunctionality makes it an appealing bioactive molecule for skincare products as well as a potential preservative solution. This study explores niacinamide's antimicrobial mode of action against four common cosmetic pathogens. Our findings indicate that niacinamide is causing microbial cell cycle arrest; while cells were found to increase their volume and length under treatment to prepare for cell division, complete separation into two daughter cells was prevented. Fluorescence microscopy revealed expanded chromatin, alongside a decreased RNA expression of the DNA-binding protein gene, dps. Finally, niacinamide was found to directly interact with DNA, hindering successful amplification. These unprecedented findings allowed us to add a newly rationalized preservative facete to the wide range of niacinamide multi-functionality.
Collapse
Affiliation(s)
| | | | | | - Paul Salama
- Innovation Department, Sharon Personal Care Ltd., Eli Horovitz St. 4, Rehovot 7608810, Israel; (N.Z.); (M.B.); (L.S.)
| |
Collapse
|
6
|
Farookhi H, Xia X. Differential Selection for Translation Efficiency Shapes Translation Machineries in Bacterial Species. Microorganisms 2024; 12:768. [PMID: 38674712 PMCID: PMC11052298 DOI: 10.3390/microorganisms12040768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/01/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Different bacterial species have dramatically different generation times, from 20-30 min in Escherichia coli to about two weeks in Mycobacterium leprae. The translation machinery in a cell needs to synthesize all proteins for a new cell in each generation. The three subprocesses of translation, i.e., initiation, elongation, and termination, are expected to be under stronger selection pressure to optimize in short-generation bacteria (SGB) such as Vibrio natriegens than in the long-generation Mycobacterium leprae. The initiation efficiency depends on the start codon decoded by the initiation tRNA, the optimal Shine-Dalgarno (SD) decoded by the anti-SD (aSD) sequence on small subunit rRNA, and the secondary structure that may embed the initiation signals and prevent them from being decoded. The elongation efficiency depends on the tRNA pool and codon usage. The termination efficiency in bacteria depends mainly on the nature of the stop codon and the nucleotide immediately downstream of the stop codon. By contrasting SGB with long-generation bacteria (LGB), we predict (1) SGB to have more ribosome RNA operons to produce ribosomes, and more tRNA genes for carrying amino acids to ribosomes, (2) SGB to have a higher percentage of genes using AUG as the start codon and UAA as the stop codon than LGB, (3) SGB to exhibit better codon and anticodon adaptation than LGB, and (4) SGB to have a weaker secondary structure near the translation initiation signals than LGB. These differences between SGB and LGB should be more pronounced in highly expressed genes than the rest of the genes. We present empirical evidence in support of these predictions.
Collapse
Affiliation(s)
- Heba Farookhi
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada;
| | - Xuhua Xia
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada;
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
7
|
Pountain AW, Jiang P, Yao T, Homaee E, Guan Y, McDonald KJC, Podkowik M, Shopsin B, Torres VJ, Golding I, Yanai I. Transcription-replication interactions reveal bacterial genome regulation. Nature 2024; 626:661-669. [PMID: 38267581 PMCID: PMC10923101 DOI: 10.1038/s41586-023-06974-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 12/14/2023] [Indexed: 01/26/2024]
Abstract
Organisms determine the transcription rates of thousands of genes through a few modes of regulation that recur across the genome1. In bacteria, the relationship between the regulatory architecture of a gene and its expression is well understood for individual model gene circuits2,3. However, a broader perspective of these dynamics at the genome scale is lacking, in part because bacterial transcriptomics has hitherto captured only a static snapshot of expression averaged across millions of cells4. As a result, the full diversity of gene expression dynamics and their relation to regulatory architecture remains unknown. Here we present a novel genome-wide classification of regulatory modes based on the transcriptional response of each gene to its own replication, which we term the transcription-replication interaction profile (TRIP). Analysing single-bacterium RNA-sequencing data, we found that the response to the universal perturbation of chromosomal replication integrates biological regulatory factors with biophysical molecular events on the chromosome to reveal the local regulatory context of a gene. Whereas the TRIPs of many genes conform to a gene dosage-dependent pattern, others diverge in distinct ways, and this is shaped by factors such as intra-operon position and repression state. By revealing the underlying mechanistic drivers of gene expression heterogeneity, this work provides a quantitative, biophysical framework for modelling replication-dependent expression dynamics.
Collapse
Affiliation(s)
- Andrew W Pountain
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY, USA
| | - Peien Jiang
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY, USA
- Department of Biology, New York University, New York, NY, USA
| | - Tianyou Yao
- Department of Physics, University of Illinois at Urbana Champaign, Urbana, IL, USA
| | - Ehsan Homaee
- Department of Physics, University of Illinois at Urbana Champaign, Urbana, IL, USA
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Yichao Guan
- Department of Physics, University of Illinois at Urbana Champaign, Urbana, IL, USA
| | - Kevin J C McDonald
- Department of Physics, University of Illinois at Urbana Champaign, Urbana, IL, USA
| | - Magdalena Podkowik
- Department of Medicine, Division of Infectious Diseases, NYU Grossman School of Medicine, New York, NY, USA
| | - Bo Shopsin
- Department of Medicine, Division of Infectious Diseases, NYU Grossman School of Medicine, New York, NY, USA
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, USA
| | - Victor J Torres
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, USA
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ido Golding
- Department of Physics, University of Illinois at Urbana Champaign, Urbana, IL, USA
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Itai Yanai
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY, USA.
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
8
|
Soultanas P, Janniere L. The metabolic control of DNA replication: mechanism and function. Open Biol 2023; 13:230220. [PMID: 37582405 PMCID: PMC10427196 DOI: 10.1098/rsob.230220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 07/26/2023] [Indexed: 08/17/2023] Open
Abstract
Metabolism and DNA replication are the two most fundamental biological functions in life. The catabolic branch of metabolism breaks down nutrients to produce energy and precursors used by the anabolic branch of metabolism to synthesize macromolecules. DNA replication consumes energy and precursors for faithfully copying genomes, propagating the genetic material from generation to generation. We have exquisite understanding of the mechanisms that underpin and regulate these two biological functions. However, the molecular mechanism coordinating replication to metabolism and its biological function remains mostly unknown. Understanding how and why living organisms respond to fluctuating nutritional stimuli through cell-cycle dynamic changes and reproducibly and distinctly temporalize DNA synthesis in a wide-range of growth conditions is important, with wider implications across all domains of life. After summarizing the seminal studies that founded the concept of the metabolic control of replication, we review data linking metabolism to replication from bacteria to humans. Molecular insights underpinning these links are then presented to propose that the metabolic control of replication uses signalling systems gearing metabolome homeostasis to orchestrate replication temporalization. The remarkable replication phenotypes found in mutants of this control highlight its importance in replication regulation and potentially genetic stability and tumorigenesis.
Collapse
Affiliation(s)
- Panos Soultanas
- Biodiscovery Institute, School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Laurent Janniere
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, 91057 Evry, France
| |
Collapse
|
9
|
Holland A, Pitoulias M, Soultanas P, Janniere L. The Replicative DnaE Polymerase of Bacillus subtilis Recruits the Glycolytic Pyruvate Kinase (PykA) When Bound to Primed DNA Templates. Life (Basel) 2023; 13:life13040965. [PMID: 37109494 PMCID: PMC10143966 DOI: 10.3390/life13040965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/21/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
The glycolytic enzyme PykA has been reported to drive the metabolic control of replication through a mechanism involving PykA moonlighting functions on the essential DnaE polymerase, the DnaC helicase and regulatory determinants of PykA catalytic activity in Bacillus subtilis. The mutants of this control suffer from critical replication and cell cycle defects, showing that the metabolic control of replication plays important functions in the overall rate of replication. Using biochemical approaches, we demonstrate here that PykA interacts with DnaE for modulating its activity when the replication enzyme is bound to a primed DNA template. This interaction is mediated by the CAT domain of PykA and possibly allosterically regulated by its PEPut domain, which also operates as a potent regulator of PykA catalytic activity. Furthermore, using fluorescence microscopy we show that the CAT and PEPut domains are important for the spatial localization of origins and replication forks, independently of their function in PykA catalytic activity. Collectively, our data suggest that the metabolic control of replication depends on the recruitment of PykA by DnaE at sites of DNA synthesis. This recruitment is likely highly dynamic, as DnaE is frequently recruited to and released from replication machineries to extend the several thousand RNA primers generated from replication initiation to termination. This implies that PykA and DnaE continuously associate and dissociate at replication machineries for ensuring a highly dynamic coordination of the replication rate with metabolism.
Collapse
Affiliation(s)
- Alexandria Holland
- Biodiscovery Institute, School of Chemistry, University of Nottingham, Nottingham NG7 2RD, UK
| | - Matthaios Pitoulias
- Biodiscovery Institute, School of Chemistry, University of Nottingham, Nottingham NG7 2RD, UK
| | - Panos Soultanas
- Biodiscovery Institute, School of Chemistry, University of Nottingham, Nottingham NG7 2RD, UK
| | - Laurent Janniere
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, 91057 Evry, CEDEX, France
| |
Collapse
|
10
|
Sun Y, Hürlimann S, Garner E. Growth rate is modulated by monitoring cell wall precursors in Bacillus subtilis. Nat Microbiol 2023; 8:469-480. [PMID: 36797487 DOI: 10.1038/s41564-023-01329-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 01/13/2023] [Indexed: 02/18/2023]
Abstract
How bacteria link their growth rate to external nutrient conditions is unknown. To investigate how Bacillus subtilis cells alter the rate at which they expand their cell walls as they grow, we compared single-cell growth rates of cells grown under agar pads with the density of moving MreB filaments under a variety of growth conditions. MreB filament density increases proportionally with growth rate. We show that both MreB filament density and growth rate depend on the abundance of Lipid II and murAA, the first gene in the biosynthetic pathway creating the cell wall precursor Lipid II. Lipid II is sensed by the serine/threonine kinase PrkC, which phosphorylates RodZ and other proteins. We show that phosphorylated RodZ increases MreB filament density, which in turn increases cell growth rate. We also show that increasing the activity of this pathway in nutrient-poor media results in cells that elongate faster than wild-type cells, which means that B. subtilis contains spare 'growth capacity'. We conclude that PrkC functions as a cellular rheostat, enabling fine-tuning of cell growth rates in response to Lipid II in different nutrient conditions.
Collapse
Affiliation(s)
- Yingjie Sun
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Sylvia Hürlimann
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Ethan Garner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
11
|
Serbanescu D, Ojkic N, Banerjee S. Cellular resource allocation strategies for cell size and shape control in bacteria. FEBS J 2022; 289:7891-7906. [PMID: 34665933 PMCID: PMC9016100 DOI: 10.1111/febs.16234] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/21/2021] [Accepted: 10/18/2021] [Indexed: 01/14/2023]
Abstract
Bacteria are highly adaptive microorganisms that thrive in a wide range of growth conditions via changes in cell morphologies and macromolecular composition. How bacterial morphologies are regulated in diverse environmental conditions is a long-standing question. Regulation of cell size and shape implies control mechanisms that couple the growth and division of bacteria to their cellular environment and macromolecular composition. In the past decade, simple quantitative laws have emerged that connect cell growth to proteomic composition and the nutrient availability. However, the relationships between cell size, shape, and growth physiology remain challenging to disentangle and unifying models are lacking. In this review, we focus on regulatory models of cell size control that reveal the connections between bacterial cell morphology and growth physiology. In particular, we discuss how changes in nutrient conditions and translational perturbations regulate the cell size, growth rate, and proteome composition. Integrating quantitative models with experimental data, we identify the physiological principles of bacterial size regulation, and discuss the optimization strategies of cellular resource allocation for size control.
Collapse
Affiliation(s)
- Diana Serbanescu
- Department of Physics and Astronomy, University College London, UK
| | - Nikola Ojkic
- Department of Physics and Astronomy, University College London, UK
| | | |
Collapse
|
12
|
Roberts DM, Anchimiuk A, Kloosterman TG, Murray H, Wu LJ, Gruber S, Errington J. Chromosome remodelling by SMC/Condensin in B. subtilis is regulated by monomeric Soj/ParA during growth and sporulation. Proc Natl Acad Sci U S A 2022; 119:e2204042119. [PMID: 36206370 PMCID: PMC9564211 DOI: 10.1073/pnas.2204042119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 09/09/2022] [Indexed: 11/18/2022] Open
Abstract
SMC complexes, loaded at ParB-parS sites, are key mediators of chromosome organization in bacteria. ParA/Soj proteins interact with ParB/Spo0J in a pathway involving adenosine triphosphate (ATP)-dependent dimerization and DNA binding, facilitating chromosome segregation in bacteria. In Bacillus subtilis, ParA/Soj also regulates DNA replication initiation and along with ParB/Spo0J is involved in cell cycle changes during endospore formation. The first morphological stage in sporulation is the formation of an elongated chromosome structure called an axial filament. Here, we show that a major redistribution of SMC complexes drives axial filament formation in a process regulated by ParA/Soj. Furthermore, and unexpectedly, this regulation is dependent on monomeric forms of ParA/Soj that cannot bind DNA or hydrolyze ATP. These results reveal additional roles for ParA/Soj proteins in the regulation of SMC dynamics in bacteria and yet further complexity in the web of interactions involving chromosome replication, segregation and organization, controlled by ParAB and SMC.
Collapse
Affiliation(s)
- David M. Roberts
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4AX, United Kingdom
| | - Anna Anchimiuk
- Department of Fundamental Microbiology, University of Lausanne, Bâtiment Biophore, 015 Lausanne, Switzerland
| | - Tomas G. Kloosterman
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4AX, United Kingdom
| | - Heath Murray
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4AX, United Kingdom
| | - Ling Juan Wu
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4AX, United Kingdom
| | - Stephan Gruber
- Department of Fundamental Microbiology, University of Lausanne, Bâtiment Biophore, 015 Lausanne, Switzerland
| | - Jeff Errington
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4AX, United Kingdom
| |
Collapse
|
13
|
Engelhardt IC, Patko D, Liu Y, Mimault M, de Las Heras Martinez G, George TS, MacDonald M, Ptashnyk M, Sukhodub T, Stanley-Wall NR, Holden N, Daniell TJ, Dupuy LX. Novel form of collective movement by soil bacteria. THE ISME JOURNAL 2022; 16:2337-2347. [PMID: 35798939 PMCID: PMC9478162 DOI: 10.1038/s41396-022-01277-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 06/07/2022] [Accepted: 06/17/2022] [Indexed: 04/16/2023]
Abstract
Although migrations are essential for soil microorganisms to exploit scarce and heterogeneously distributed resources, bacterial mobility in soil remains poorly studied due to experimental limitations. In this study, time-lapse images collected using live microscopy techniques captured collective and coordinated groups of B. subtilis cells exhibiting "crowd movement". Groups of B. subtilis cells moved through transparent soil (nafion polymer with particle size resembling sand) toward plant roots and re-arranged dynamically around root tips in the form of elongating and retracting "flocks" resembling collective behaviour usually associated with higher organisms (e.g., bird flocks or fish schools). Genetic analysis reveals B. subtilis flocks are likely driven by the diffusion of extracellular signalling molecules (e.g., chemotaxis, quorum sensing) and may be impacted by the physical obstacles and hydrodynamics encountered in the soil like environment. Our findings advance understanding of bacterial migration through soil matrices and expand known behaviours for coordinated bacterial movement.
Collapse
Affiliation(s)
- I C Engelhardt
- Ecological Sciences, The James Hutton Institute, Dundee, UK
- Department of Conservation of Natural Resources, Neiker, Bilbao, Spain
| | - D Patko
- Ecological Sciences, The James Hutton Institute, Dundee, UK
- Department of Conservation of Natural Resources, Neiker, Bilbao, Spain
| | - Y Liu
- Ecological Sciences, The James Hutton Institute, Dundee, UK
- ICS, The James Hutton Institute, Dundee, UK
| | - M Mimault
- ICS, The James Hutton Institute, Dundee, UK
| | | | - T S George
- Ecological Sciences, The James Hutton Institute, Dundee, UK
| | - M MacDonald
- School of Science and Engineering, University of Dundee, Dundee, UK
| | - M Ptashnyk
- School of Mathematical & Computer Sciences, Heriot-Watt University, Edinburgh, UK
| | - T Sukhodub
- School of Life Sciences, University of Dundee, Dundee, UK
| | | | - N Holden
- Ecological Sciences, The James Hutton Institute, Dundee, UK
- North Faculty, Scotland's Rural College, Aberdeen, UK
| | - T J Daniell
- Plants, Photosynthesis and Soil, School of Biosciences, The University of Sheffield, Sheffield, UK
| | - L X Dupuy
- Ecological Sciences, The James Hutton Institute, Dundee, UK.
- Department of Conservation of Natural Resources, Neiker, Bilbao, Spain.
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
14
|
Kitahara Y, Oldewurtel ER, Wilson S, Sun Y, Altabe S, de Mendoza D, Garner EC, van Teeffelen S. The role of cell-envelope synthesis for envelope growth and cytoplasmic density in Bacillus subtilis. PNAS NEXUS 2022; 1:pgac134. [PMID: 36082236 PMCID: PMC9437589 DOI: 10.1093/pnasnexus/pgac134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 07/21/2022] [Indexed: 01/29/2023]
Abstract
All cells must increase their volumes in response to biomass growth to maintain intracellular mass density within physiologically permissive bounds. Here, we investigate the regulation of volume growth in the Gram-positive bacterium Bacillus subtilis. To increase volume, bacteria enzymatically expand their cell envelopes and insert new envelope material. First, we demonstrate that cell-volume growth is determined indirectly, by expanding their envelopes in proportion to mass growth, similarly to the Gram-negative Escherichia coli, despite their fundamentally different envelope structures. Next, we studied, which pathways might be responsible for robust surface-to-mass coupling: We found that both peptidoglycan synthesis and membrane synthesis are required for proper surface-to-mass coupling. However, surprisingly, neither pathway is solely rate-limiting, contrary to wide-spread belief, since envelope growth continues at a reduced rate upon complete inhibition of either process. To arrest cell-envelope growth completely, the simultaneous inhibition of both envelope-synthesis processes is required. Thus, we suggest that multiple envelope-synthesis pathways collectively confer an important aspect of volume regulation, the coordination between surface growth, and biomass growth.
Collapse
Affiliation(s)
- Yuki Kitahara
- Département de Microbiologie, Infectiologie, et Immunologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada,Université de Paris, Paris, France,Microbial Morphogenesis and Growth Lab, Institut Pasteur, Paris, France
| | - Enno R Oldewurtel
- Microbial Morphogenesis and Growth Lab, Institut Pasteur, Paris, France
| | - Sean Wilson
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, USA,Center for Systems Biology, Harvard University, Cambridge, MA, USA
| | - Yingjie Sun
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, USA,Center for Systems Biology, Harvard University, Cambridge, MA, USA
| | - Silvia Altabe
- Instituto de Biología Molecular y Celular de Rosario (IBR)-Conicet- and Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Diego de Mendoza
- Instituto de Biología Molecular y Celular de Rosario (IBR)-Conicet- and Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Ethan C Garner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, USA,Center for Systems Biology, Harvard University, Cambridge, MA, USA
| | | |
Collapse
|
15
|
Horemans S, Pitoulias M, Holland A, Pateau E, Lechaplais C, Ekaterina D, Perret A, Soultanas P, Janniere L. Pyruvate kinase, a metabolic sensor powering glycolysis, drives the metabolic control of DNA replication. BMC Biol 2022; 20:87. [PMID: 35418203 PMCID: PMC9009071 DOI: 10.1186/s12915-022-01278-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 03/11/2022] [Indexed: 12/04/2022] Open
Abstract
Background In all living organisms, DNA replication is exquisitely regulated in a wide range of growth conditions to achieve timely and accurate genome duplication prior to cell division. Failures in this regulation cause DNA damage with potentially disastrous consequences for cell viability and human health, including cancer. To cope with these threats, cells tightly control replication initiation using well-known mechanisms. They also couple DNA synthesis to nutrient richness and growth rate through a poorly understood process thought to involve central carbon metabolism. One such process may involve the cross-species conserved pyruvate kinase (PykA) which catalyzes the last reaction of glycolysis. Here we have investigated the role of PykA in regulating DNA replication in the model system Bacillus subtilis. Results On analysing mutants of the catalytic (Cat) and C-terminal (PEPut) domains of B. subtilis PykA we found replication phenotypes in conditions where PykA is dispensable for growth. These phenotypes are independent from the effect of mutations on PykA catalytic activity and are not associated with significant changes in the metabolome. PEPut operates as a nutrient-dependent inhibitor of initiation while Cat acts as a stimulator of replication fork speed. Disruption of either PEPut or Cat replication function dramatically impacted the cell cycle and replication timing even in cells fully proficient in known replication control functions. In vitro, PykA modulates activities of enzymes essential for replication initiation and elongation via functional interactions. Additional experiments showed that PEPut regulates PykA activity and that Cat and PEPut determinants important for PykA catalytic activity regulation are also important for PykA-driven replication functions. Conclusions We infer from our findings that PykA typifies a new family of cross-species replication control regulators that drive the metabolic control of replication through a mechanism involving regulatory determinants of PykA catalytic activity. As disruption of PykA replication functions causes dramatic replication defects, we suggest that dysfunctions in this new family of universal replication regulators may pave the path to genetic instability and carcinogenesis. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01278-3.
Collapse
Affiliation(s)
- Steff Horemans
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, 91057, Evry, France
| | - Matthaios Pitoulias
- Biodiscovery Institute, School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Alexandria Holland
- Biodiscovery Institute, School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Emilie Pateau
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, 91057, Evry, France
| | - Christophe Lechaplais
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, 91057, Evry, France
| | - Dariy Ekaterina
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, 91057, Evry, France
| | - Alain Perret
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, 91057, Evry, France
| | - Panos Soultanas
- Biodiscovery Institute, School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
| | - Laurent Janniere
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, 91057, Evry, France.
| |
Collapse
|
16
|
A High-Content Microscopy Screening Identifies New Genes Involved in Cell Width Control in Bacillus subtilis. mSystems 2021; 6:e0101721. [PMID: 34846166 PMCID: PMC8631317 DOI: 10.1128/msystems.01017-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
How cells control their shape and size is a fundamental question of biology. In most bacteria, cell shape is imposed by the peptidoglycan (PG) polymeric meshwork that surrounds the cell. Thus, bacterial cell morphogenesis results from the coordinated action of the proteins assembling and degrading the PG shell. Remarkably, during steady-state growth, most bacteria maintain a defined shape along generations, suggesting that error-proof mechanisms tightly control the process. In the rod-shaped model for the Gram-positive bacterium Bacillus subtilis, the average cell length varies as a function of the growth rate, but the cell diameter remains constant throughout the cell cycle and across growth conditions. Here, in an attempt to shed light on the cellular circuits controlling bacterial cell width, we developed a screen to identify genetic determinants of cell width in B. subtilis. Using high-content screening (HCS) fluorescence microscopy and semiautomated measurement of single-cell dimensions, we screened a library of ∼4,000 single knockout mutants. We identified 13 mutations significantly altering cell diameter, in genes that belong to several functional groups. In particular, our results indicate that metabolism plays a major role in cell width control in B. subtilis. IMPORTANCE Bacterial shape is primarily dictated by the external cell wall, a vital structure that, as such, is the target of countless antibiotics. Our understanding of how bacteria synthesize and maintain this structure is therefore a cardinal question for both basic and applied research. Bacteria usually multiply from generation to generation while maintaining their progenies with rigorously identical shapes. This implies that the bacterial cells constantly monitor and maintain a set of parameters to ensure this perpetuation. Here, our study uses a large-scale microscopy approach to identify at the whole-genome level, in a model bacterium, the genes involved in the control of one of the most tightly controlled cellular parameters, the cell width.
Collapse
|
17
|
Power AL, Barber DG, Groenhof SRM, Wagley S, Liu P, Parker DA, Love J. The Application of Imaging Flow Cytometry for Characterisation and Quantification of Bacterial Phenotypes. Front Cell Infect Microbiol 2021; 11:716592. [PMID: 34368019 PMCID: PMC8335544 DOI: 10.3389/fcimb.2021.716592] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/08/2021] [Indexed: 12/25/2022] Open
Abstract
Bacteria modify their morphology in response to various factors including growth stage, nutrient availability, predation, motility and long-term survival strategies. Morphological changes may also be associated with specific physiological phenotypes such as the formation of dormant or persister cells in a “viable but non-culturable” (VBNC) state which frequently display different shapes and size compared to their active counterparts. Such dormancy phenotypes can display various degrees of tolerance to antibiotics and therefore a detailed understanding of these phenotypes is crucial for combatting chronic infections and associated diseases. Cell shape and size are therefore more than simple phenotypic characteristics; they are important physiological properties for understanding bacterial life-strategies and pathologies. However, quantitative studies on the changes to cell morphologies during bacterial growth, persister cell formation and the VBNC state are few and severely constrained by current limitations in the most used investigative techniques of flow cytometry (FC) and light or electron microscopy. In this study, we applied high-throughput Imaging Flow Cytometry (IFC) to characterise and quantify, at single-cell level and over time, the phenotypic heterogeneity and morphological changes in cultured populations of four bacterial species, Bacillus subtilis, Lactiplantibacillus plantarum, Pediococcus acidilactici and Escherichia coli. Morphologies in relation to growth stage and stress responses, cell integrity and metabolic activity were analysed. Additionally, we were able to identify and morphologically classify dormant cell phenotypes such as VBNC cells and monitor the resuscitation of persister cells in Escherichia coli following antibiotic treatment. We therefore demonstrate that IFC, with its high-throughput data collection and image capture capabilities, provides a platform by which a detailed understanding of changes in bacterial phenotypes and their physiological implications may be accurately monitored and quantified, leading to a better understanding of the role of phenotypic heterogeneity in the dynamic microbiome.
Collapse
Affiliation(s)
- Ann L Power
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Daniel G Barber
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Sophie R M Groenhof
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Sariqa Wagley
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Ping Liu
- Shell International Exploration & Production Inc., Westhollow Technology Center, Houston, TX, United States
| | - David A Parker
- Shell International Exploration & Production Inc., Westhollow Technology Center, Houston, TX, United States
| | - John Love
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
18
|
Fischer S, Dinh M, Henry V, Robert P, Goelzer A, Fromion V. BiPSim: a flexible and generic stochastic simulator for polymerization processes. Sci Rep 2021; 11:14112. [PMID: 34238958 PMCID: PMC8266833 DOI: 10.1038/s41598-021-92833-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 06/07/2021] [Indexed: 11/30/2022] Open
Abstract
Detailed whole-cell modeling requires an integration of heterogeneous cell processes having different modeling formalisms, for which whole-cell simulation could remain tractable. Here, we introduce BiPSim, an open-source stochastic simulator of template-based polymerization processes, such as replication, transcription and translation. BiPSim combines an efficient abstract representation of reactions and a constant-time implementation of the Gillespie’s Stochastic Simulation Algorithm (SSA) with respect to reactions, which makes it highly efficient to simulate large-scale polymerization processes stochastically. Moreover, multi-level descriptions of polymerization processes can be handled simultaneously, allowing the user to tune a trade-off between simulation speed and model granularity. We evaluated the performance of BiPSim by simulating genome-wide gene expression in bacteria for multiple levels of granularity. Finally, since no cell-type specific information is hard-coded in the simulator, models can easily be adapted to other organismal species. We expect that BiPSim should open new perspectives for the genome-wide simulation of stochastic phenomena in biology.
Collapse
Affiliation(s)
- Stephan Fischer
- INRAE, MaIAGE, Université Paris-Saclay, Jouy-en-Josas, France
| | - Marc Dinh
- INRAE, MaIAGE, Université Paris-Saclay, Jouy-en-Josas, France
| | - Vincent Henry
- INRAE, MaIAGE, Université Paris-Saclay, Jouy-en-Josas, France
| | | | - Anne Goelzer
- INRAE, MaIAGE, Université Paris-Saclay, Jouy-en-Josas, France
| | - Vincent Fromion
- INRAE, MaIAGE, Université Paris-Saclay, Jouy-en-Josas, France.
| |
Collapse
|
19
|
Xiang Y, Surovtsev IV, Chang Y, Govers SK, Parry BR, Liu J, Jacobs-Wagner C. Interconnecting solvent quality, transcription, and chromosome folding in Escherichia coli. Cell 2021; 184:3626-3642.e14. [PMID: 34186018 DOI: 10.1016/j.cell.2021.05.037] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 12/09/2020] [Accepted: 05/25/2021] [Indexed: 12/12/2022]
Abstract
All cells fold their genomes, including bacterial cells, where the chromosome is compacted into a domain-organized meshwork called the nucleoid. How compaction and domain organization arise is not fully understood. Here, we describe a method to estimate the average mesh size of the nucleoid in Escherichia coli. Using nucleoid mesh size and DNA concentration estimates, we find that the cytoplasm behaves as a poor solvent for the chromosome when the cell is considered as a simple semidilute polymer solution. Monte Carlo simulations suggest that a poor solvent leads to chromosome compaction and DNA density heterogeneity (i.e., domain formation) at physiological DNA concentration. Fluorescence microscopy reveals that the heterogeneous DNA density negatively correlates with ribosome density within the nucleoid, consistent with cryoelectron tomography data. Drug experiments, together with past observations, suggest the hypothesis that RNAs contribute to the poor solvent effects, connecting chromosome compaction and domain formation to transcription and intracellular organization.
Collapse
Affiliation(s)
- Yingjie Xiang
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, CT 06520, USA; Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA
| | - Ivan V Surovtsev
- Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA; Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Yale University, New Haven, CT 06520, USA
| | - Yunjie Chang
- Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA; Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT 06510, USA
| | - Sander K Govers
- Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA; Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Yale University, New Haven, CT 06520, USA; Department of Biology and Institute of Chemistry, Engineering and Medicine for Human Health, Stanford University, Palo Alto, CA 94305, USA
| | - Bradley R Parry
- Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA; Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Yale University, New Haven, CT 06520, USA
| | - Jun Liu
- Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA; Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT 06510, USA
| | - Christine Jacobs-Wagner
- Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA; Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Yale University, New Haven, CT 06520, USA; Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT 06510, USA; Department of Biology and Institute of Chemistry, Engineering and Medicine for Human Health, Stanford University, Palo Alto, CA 94305, USA.
| |
Collapse
|
20
|
Ojkic N, Banerjee S. Bacterial cell shape control by nutrient-dependent synthesis of cell division inhibitors. Biophys J 2021; 120:2079-2084. [PMID: 33838134 DOI: 10.1016/j.bpj.2021.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/25/2021] [Accepted: 04/02/2021] [Indexed: 01/17/2023] Open
Abstract
By analyzing cell size and shapes of the bacterium Bacillus subtilis under nutrient perturbations, protein depletion, and antibiotic treatments, we find that cell geometry is extremely robust, reflected in a well-conserved scaling relation between surface area (S) and volume (V), S∼Vγ, with γ=0.85. We develop a molecular model supported by single-cell simulations to predict that the surface-to-volume scaling exponent γ is regulated by nutrient-dependent production of metabolic enzymes that act as cell division inhibitors in bacteria. Using theory that is supported by experimental data, we predict the modes of cell shape transformations in different bacterial species and propose a mechanism of cell shape adaptation to different nutrient perturbations. For organisms with high surface-to-volume scaling exponent γ, such as B. subtilis, cell width is not sensitive to growth-rate changes, whereas organisms with low γ, such as Acinetobacter baumannii, cell shape adapts readily to growth-rate changes.
Collapse
Affiliation(s)
- Nikola Ojkic
- Department of Physics and Astronomy, University College London, London, United Kingdom
| | - Shiladitya Banerjee
- Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania.
| |
Collapse
|
21
|
Chmykhalo V, Belanova A, Belousova M, Butova V, Makarenko Y, Khrenkova V, Soldatov A, Zolotukhin P. Microbial-based magnetic nanoparticles production: a mini-review. Integr Biol (Camb) 2021; 13:98-107. [PMID: 33829272 DOI: 10.1093/intbio/zyab005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 11/14/2022]
Abstract
The ever-increasing biomedical application of magnetic nanoparticles (MNPs) implies increasing demand in their scalable and high-throughput production, with finely tuned and well-controlled characteristics. One of the options to meet the demand is microbial production by nanoparticles-synthesizing bacteria. This approach has several benefits over the standard chemical synthesis methods, including improved homogeneity of synthesis, cost-effectiveness, safety and eco-friendliness. There are, however, specific challenges emanating from the nature of the approach that are to be accounted and resolved in each manufacturing instance. Most of the challenges can be resolved by proper selection of the producing organism and optimizing cell culture and nanoparticles extraction conditions. Other issues require development of proper continuous production equipment, medium usage optimization and precursor ions recycling. This mini-review focuses on the related topics in microbial synthesis of MNPs: producing organisms, culturing methods, nanoparticles characteristics tuning, nanoparticles yield and synthesis timeframe considerations, nanoparticles isolation as well as on the respective challenges and possible solutions.
Collapse
Affiliation(s)
- Victor Chmykhalo
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Anna Belanova
- Smart Materials International Research Centre, Southern Federal University, Rostov-on-Don, Russia
| | - Mariya Belousova
- English Language Department for Natural Sciences Faculties, Southern Federal University, Rostov-on-Don, Russia
| | - Vera Butova
- Smart Materials International Research Centre, Southern Federal University, Rostov-on-Don, Russia
| | | | - Vera Khrenkova
- Medical Consulting Department, Rostov-on-Don Pathological-Anatomical Bureau No. 1, Rostov-on-Don, Russia
| | - Alexander Soldatov
- Smart Materials International Research Centre, Southern Federal University, Rostov-on-Don, Russia
| | - Peter Zolotukhin
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| |
Collapse
|
22
|
Abstract
In bacteria, a condensed structure of FtsZ (Z-ring) recruits cell division machinery at the midcell, and Z-ring formation is discouraged over the chromosome by a poorly understood phenomenon called nucleoid occlusion. In B. subtilis, nucleoid occlusion has been reported to be mediated, at least in part, by the DNA-membrane bridging protein, Noc. Bacteria that divide by binary fission form FtsZ rings at the geometric midpoint of the cell between the bulk of the replicated nucleoids. In Bacillus subtilis, the DNA- and membrane-binding Noc protein is thought to participate in nucleoid occlusion by preventing FtsZ rings from forming over the chromosome. To explore the role of Noc, we used time-lapse fluorescence microscopy to monitor FtsZ and the nucleoid of cells growing in microfluidic channels. Our data show that Noc does not prevent de novo FtsZ ring formation over the chromosome nor does Noc control cell division site selection. Instead, Noc corrals FtsZ at the cytokinetic ring and reduces migration of protofilaments over the chromosome to the future site of cell division. Moreover, we show that FtsZ protofilaments travel due to a local reduction in ZapA association, and the diffuse FtsZ rings observed in the Noc mutant can be suppressed by ZapA overexpression. Thus, Noc sterically hinders FtsZ migration away from the Z-ring during cytokinesis and retains FtsZ at the postdivisional polar site for full disassembly by the Min system.
Collapse
|
23
|
Single-Molecule Dynamics at a Bacterial Replication Fork after Nutritional Downshift or Chemically Induced Block in Replication. mSphere 2021; 6:6/1/e00948-20. [PMID: 33504660 PMCID: PMC7885319 DOI: 10.1128/msphere.00948-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Replication forks must respond to changes in nutrient conditions, especially in bacterial cells. By investigating the single-molecule dynamics of replicative helicase DnaC, DNA primase DnaG, and lagging-strand polymerase DnaE in the model bacterium Bacillus subtilis, we show that proteins react differently to stress conditions in response to transient replication blocks due to DNA damage, to inhibition of the replicative polymerase, or to downshift of serine availability. DnaG appears to be recruited to the forks by a diffusion and capture mechanism, becomes more statically associated after the arrest of polymerase, but binds less frequently after fork blocks due to DNA damage or to nutritional downshift. These results indicate that binding of the alarmone (p)ppGpp due to stringent response prevents DnaG from binding to forks rather than blocking bound primase. Dissimilar behavior of DnaG and DnaE suggests that both proteins are recruited independently to the forks rather than jointly. Turnover of all three proteins was increased during replication block after nutritional downshift, different from the situation due to DNA damage or polymerase inhibition, showing high plasticity of forks in response to different stress conditions. Forks persisted during all stress conditions, apparently ensuring rapid return to replication extension.IMPORTANCE All cells need to adjust DNA replication, which is achieved by a well-orchestrated multiprotein complex, in response to changes in physiological and environmental conditions. For replication forks, it is extremely challenging to meet with conditions where amino acids are rapidly depleted from cells, called the stringent response, to deal with the inhibition of one of the centrally involved proteins or with DNA modifications that arrest the progression of forks. By tracking helicase (DnaC), primase (DnaG), and polymerase (DnaE), central proteins of Bacillus subtilis replication forks, at a single molecule level in real time, we found that interactions of the three proteins with replication forks change in different manners under different stress conditions, revealing an intriguing plasticity of replication forks in dealing with replication obstacles. We have devised a new tool to determine rates of exchange between static movement (binding to a much larger complex) and free diffusion, showing that during stringent response, all proteins have highly increased exchange rates, slowing down overall replication, while inactivation of polymerase or replication roadblocks leaves forks largely intact, allowing rapid restart once obstacles are removed.
Collapse
|
24
|
Zhang Q, Zhang Z, Shi H. Cell Size Is Coordinated with Cell Cycle by Regulating Initiator Protein DnaA in E. coli. Biophys J 2020; 119:2537-2557. [PMID: 33189684 DOI: 10.1016/j.bpj.2020.10.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/22/2020] [Accepted: 10/16/2020] [Indexed: 10/23/2022] Open
Abstract
Sixty years ago, bacterial cell size was found to be an exponential function of growth rate. Fifty years ago, a more general relationship was proposed, in which cell mass was equal to the initiation mass multiplied by 2 to the power of the ratio of the total time of C and D periods to the doubling time. This relationship has recently been experimentally confirmed by perturbing doubling time, C period, D period, or initiation mass. However, the underlying molecular mechanism remains unclear. Here, we developed a theoretical model for initiator protein DnaA mediating DNA replication initiation in Escherichia coli. We introduced an initiation probability function for competitive binding of DnaA-ATP and DnaA-ADP at oriC. We established a kinetic description of regulatory processes (e.g., expression regulation, titration, inactivation, and reactivation) of DnaA. Cell size as a spatial constraint also participates in the regulation of DnaA. By simulating DnaA kinetics, we obtained a regular DnaA oscillation coordinated with cell cycle and a converged cell size that matches replication initiation frequency to the growth rate. The relationship between the simulated cell size and growth rate, C period, D period, or initiation mass reproduces experimental results. The model also predicts how DnaA number and initiation mass vary with perturbation parameters, comparable with experimental data. The results suggest that 1) when growth rate, C period, or D period changes, the regulation of DnaA determines the invariance of initiation mass; 2) ppGpp inhibition of replication initiation may be important for the growth rate independence of initiation mass because three possible mechanisms therein produce different DnaA dynamics, which is experimentally verifiable; and 3) perturbation of some DnaA regulatory process causes a changing initiation mass or even an abnormal cell cycle. This study may provide clues for concerted control of cell size and cell cycle in synthetic biology.
Collapse
Affiliation(s)
- Qing Zhang
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, China.
| | - Zhichao Zhang
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, China
| | - Hualin Shi
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, China; School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
25
|
Chromosome segregation in B. subtilis is highly heterogeneous. BMC Res Notes 2020; 13:477. [PMID: 33036658 PMCID: PMC7547420 DOI: 10.1186/s13104-020-05322-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 09/30/2020] [Indexed: 01/19/2023] Open
Abstract
Objective The bacterial cell cycle comprises initiation of replication and ensuing elongation, concomitant chromosome segregation (in some organisms with a delay termed cohesion), and finally cell division. By quantifying the number of origin and terminus regions in exponentially growing Bacillus subtilis cells, and after induction of DNA damage, we aimed at determining cell cycle parameters at different growth rates at a single cell level. Results B. subtilis cells are mostly mero-oligoploid during fast growth and diploid during slow growth. However, we found that the number of replication origins and of termini is highly heterogeneous within the cell population at two different growth rates, and that even at slow growth, a majority of cells attempts to maintain more than a single chromosome at all times of the cell cycle. Heterogeneity of chromosome copy numbers may reflect different subpopulations having diverging growth rates even during exponential growth conditions. Cells continued to initiate replication and segregate chromosomes after induction of DNA damage, as judged by an increase in origin numbers per cell, showing that replication and segregation are relatively robust against cell cycle perturbation.
Collapse
|
26
|
Nishida H. Factors That Affect the Enlargement of Bacterial Protoplasts and Spheroplasts. Int J Mol Sci 2020; 21:E7131. [PMID: 32992574 PMCID: PMC7582836 DOI: 10.3390/ijms21197131] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 11/21/2022] Open
Abstract
Cell enlargement is essential for the microinjection of various substances into bacterial cells. The cell wall (peptidoglycan) inhibits cell enlargement. Thus, bacterial protoplasts/spheroplasts are used for enlargement because they lack cell wall. Though bacterial species that are capable of gene manipulation are limited, procedure for bacterial cell enlargement does not involve any gene manipulation technique. In order to prevent cell wall resynthesis during enlargement of protoplasts/spheroplasts, incubation media are supplemented with inhibitors of peptidoglycan biosynthesis such as penicillin. Moreover, metal ion composition in the incubation medium affects the properties of the plasma membrane. Therefore, in order to generate enlarged cells that are suitable for microinjection, metal ion composition in the medium should be considered. Experiment of bacterial protoplast or spheroplast enlargement is useful for studies on bacterial plasma membrane biosynthesis. In this paper, we have summarized the factors that influence bacterial cell enlargement.
Collapse
Affiliation(s)
- Hiromi Nishida
- Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| |
Collapse
|
27
|
Wu LJ, Lee S, Park S, Eland LE, Wipat A, Holden S, Errington J. Geometric principles underlying the proliferation of a model cell system. Nat Commun 2020; 11:4149. [PMID: 32811832 PMCID: PMC7434903 DOI: 10.1038/s41467-020-17988-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/24/2020] [Indexed: 02/07/2023] Open
Abstract
Many bacteria can form wall-deficient variants, or L-forms, that divide by a simple mechanism that does not require the FtsZ-based cell division machinery. Here, we use microfluidic systems to probe the growth, chromosome cycle and division mechanism of Bacillus subtilis L-forms. We find that forcing cells into a narrow linear configuration greatly improves the efficiency of cell growth and chromosome segregation. This reinforces the view that L-form division is driven by an excess accumulation of surface area over volume. Cell geometry also plays a dominant role in controlling the relative positions and movement of segregating chromosomes. Furthermore, the presence of the nucleoid appears to influence division both via a cell volume effect and by nucleoid occlusion, even in the absence of FtsZ. Our results emphasise the importance of geometric effects for a range of crucial cell functions, and are of relevance for efforts to develop artificial or minimal cell systems.
Collapse
Affiliation(s)
- Ling Juan Wu
- Centre for Bacterial Cell Biology, Biosciences Institute, Medical School, Newcastle University, Richardson Road, Newcastle upon Tyne, NE2 4AX, UK.
| | - Seoungjun Lee
- grid.1006.70000 0001 0462 7212Centre for Bacterial Cell Biology, Biosciences Institute, Medical School, Newcastle University, Richardson Road, Newcastle upon Tyne, NE2 4AX UK ,grid.13097.3c0000 0001 2322 6764Present Address: Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, SE5 9RX UK
| | - Sungshic Park
- grid.1006.70000 0001 0462 7212Centre for Bacterial Cell Biology, Biosciences Institute, Medical School, Newcastle University, Richardson Road, Newcastle upon Tyne, NE2 4AX UK ,grid.1006.70000 0001 0462 7212Interdisciplinary Computing and Complex BioSystems research group, School of Computing, Newcastle University, Newcastle upon Tyne, NE4 5TG UK
| | - Lucy E. Eland
- grid.1006.70000 0001 0462 7212Centre for Bacterial Cell Biology, Biosciences Institute, Medical School, Newcastle University, Richardson Road, Newcastle upon Tyne, NE2 4AX UK ,grid.1006.70000 0001 0462 7212Interdisciplinary Computing and Complex BioSystems research group, School of Computing, Newcastle University, Newcastle upon Tyne, NE4 5TG UK
| | - Anil Wipat
- grid.1006.70000 0001 0462 7212Centre for Bacterial Cell Biology, Biosciences Institute, Medical School, Newcastle University, Richardson Road, Newcastle upon Tyne, NE2 4AX UK ,grid.1006.70000 0001 0462 7212Interdisciplinary Computing and Complex BioSystems research group, School of Computing, Newcastle University, Newcastle upon Tyne, NE4 5TG UK
| | - Séamus Holden
- grid.1006.70000 0001 0462 7212Centre for Bacterial Cell Biology, Biosciences Institute, Medical School, Newcastle University, Richardson Road, Newcastle upon Tyne, NE2 4AX UK
| | - Jeff Errington
- Centre for Bacterial Cell Biology, Biosciences Institute, Medical School, Newcastle University, Richardson Road, Newcastle upon Tyne, NE2 4AX, UK.
| |
Collapse
|
28
|
The Min System Disassembles FtsZ Foci and Inhibits Polar Peptidoglycan Remodeling in Bacillus subtilis. mBio 2020; 11:mBio.03197-19. [PMID: 32184253 PMCID: PMC7078482 DOI: 10.1128/mbio.03197-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A microfluidic system coupled with fluorescence microscopy is a powerful approach for quantitative analysis of bacterial growth. Here, we measure parameters of growth and dynamic localization of the cell division initiation protein FtsZ in Bacillus subtilis Consistent with previous reports, we found that after division, FtsZ rings remain at the cell poles, and polar FtsZ ring disassembly coincides with rapid Z-ring accumulation at the midcell. In cells mutated for minD, however, the polar FtsZ rings persist indefinitely, suggesting that the primary function of the Min system is in Z-ring disassembly. The inability to recycle FtsZ monomers in the minD mutant results in the simultaneous maintenance of multiple Z-rings that are restricted by competition for newly synthesized FtsZ. Although the parameters of FtsZ dynamics change in the minD mutant, the overall cell division time remains the same, albeit with elongated cells necessary to accumulate a critical threshold amount of FtsZ for promoting medial division. Finally, the minD mutant characteristically produces minicells composed of polar peptidoglycan shown to be inert for remodeling in the wild type. Polar peptidoglycan, however, loses its inert character in the minD mutant, suggesting that the Min system not only is important for recycling FtsZ but also may have a secondary role in the spatiotemporal regulation of peptidoglycan remodeling.IMPORTANCE Many bacteria grow and divide by binary fission in which a mother cell divides into two identical daughter cells. To produce two equally sized daughters, the division machinery, guided by FtsZ, must dynamically localize to the midcell each cell cycle. Here, we quantitatively analyzed FtsZ dynamics during growth and found that the Min system of Bacillus subtilis is essential to disassemble FtsZ rings after division. Moreover, a failure to efficiently recycle FtsZ results in an increase in cell size. Finally, we show that the Min system has an additional role in inhibiting cell wall turnover and contributes to the "inert" property of cell walls at the poles.
Collapse
|
29
|
Planson AG, Sauveplane V, Dervyn E, Jules M. Bacterial growth physiology and RNA metabolism. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194502. [PMID: 32044462 DOI: 10.1016/j.bbagrm.2020.194502] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/17/2020] [Accepted: 02/06/2020] [Indexed: 12/31/2022]
Abstract
Bacteria are sophisticated systems with high capacity and flexibility to adapt to various environmental conditions. Each prokaryote however possesses a defined metabolic network, which sets its overall metabolic capacity, and therefore the maximal growth rate that can be reached. To achieve optimal growth, bacteria adopt various molecular strategies to optimally adjust gene expression and optimize resource allocation according to the nutrient availability. The resulting physiological changes are often accompanied by changes in the growth rate, and by global regulation of gene expression. The growth-rate-dependent variation of the abundances in the cellular machineries, together with condition-specific regulatory mechanisms, affect RNA metabolism and fate and pose a challenge for rational gene expression reengineering of synthetic circuits. This article is part of a Special Issue entitled: RNA and gene control in bacteria, edited by Dr. M. Guillier and F. Repoila.
Collapse
Affiliation(s)
- Anne-Gaëlle Planson
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France.
| | - Vincent Sauveplane
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France.
| | - Etienne Dervyn
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France.
| | - Matthieu Jules
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France.
| |
Collapse
|
30
|
Dessalles R, Fromion V, Robert P. Models of protein production along the cell cycle: An investigation of possible sources of noise. PLoS One 2020; 15:e0226016. [PMID: 31945071 PMCID: PMC6964835 DOI: 10.1371/journal.pone.0226016] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 11/18/2019] [Indexed: 01/20/2023] Open
Abstract
In this article, we quantitatively study, through stochastic models, the effects of several intracellular phenomena, such as cell volume growth, cell division, gene replication as well as fluctuations of available RNA polymerases and ribosomes. These phenomena are indeed rarely considered in classic models of protein production and no relative quantitative comparison among them has been performed. The parameters for a large and representative class of proteins are determined using experimental measures. The main important and surprising conclusion of our study is to show that despite the significant fluctuations of free RNA polymerases and free ribosomes, they bring little variability to protein production contrary to what has been previously proposed in the literature. After verifying the robustness of this quite counter-intuitive result, we discuss its possible origin from a theoretical view, and interpret it as the result of a mean-field effect.
Collapse
Affiliation(s)
- Renaud Dessalles
- Dept. of Biomathematics, UCLA, Los Angeles, CA, United States of America
| | - Vincent Fromion
- MaIAGE, INRA, Université Paris-Saclay, Jouy-en-Josas, France
- * E-mail:
| | | |
Collapse
|
31
|
Sauls JT, Cox SE, Do Q, Castillo V, Ghulam-Jelani Z, Jun S. Control of Bacillus subtilis Replication Initiation during Physiological Transitions and Perturbations. mBio 2019; 10:e02205-19. [PMID: 31848269 PMCID: PMC6918070 DOI: 10.1128/mbio.02205-19] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 11/05/2019] [Indexed: 12/13/2022] Open
Abstract
Bacillus subtilis and Escherichia coli are evolutionarily divergent model organisms whose analysis has enabled elucidation of fundamental differences between Gram-positive and Gram-negative bacteria, respectively. Despite their differences in cell cycle control at the molecular level, the two organisms follow the same phenomenological principle, known as the adder principle, for cell size homeostasis. We thus asked to what extent B. subtilis and E. coli share common physiological principles in coordinating growth and the cell cycle. We measured physiological parameters of B. subtilis under various steady-state growth conditions with and without translation inhibition at both the population and single-cell levels. These experiments revealed core physiological principles shared between B. subtilis and E. coli Specifically, both organisms maintain an invariant cell size per replication origin at initiation, under all steady-state conditions, and even during nutrient shifts at the single-cell level. Furthermore, the two organisms also inherit the same "hierarchy" of physiological parameters. On the basis of these findings, we suggest that the basic principles of coordination between growth and the cell cycle in bacteria may have been established early in evolutionary history.IMPORTANCE High-throughput, quantitative approaches have enabled the discovery of fundamental principles describing bacterial physiology. These principles provide a foundation for predicting the behavior of biological systems, a widely held aspiration. However, these approaches are often exclusively applied to the best-known model organism, E. coli In this report, we investigate to what extent quantitative principles discovered in Gram-negative E. coli are applicable to Gram-positive B. subtilis We found that these two extremely divergent bacterial species employ deeply similar strategies in order to coordinate growth, cell size, and the cell cycle. These similarities mean that the quantitative physiological principles described here can likely provide a beachhead for others who wish to understand additional, less-studied prokaryotes.
Collapse
Affiliation(s)
- John T Sauls
- Department of Physics, University of California, San Diego, La Jolla, California, USA
| | - Sarah E Cox
- Department of Physics, University of California, San Diego, La Jolla, California, USA
| | - Quynh Do
- Department of Physics, University of California, San Diego, La Jolla, California, USA
| | - Victoria Castillo
- Department of Physics, University of California, San Diego, La Jolla, California, USA
| | - Zulfar Ghulam-Jelani
- Department of Physics, University of California, San Diego, La Jolla, California, USA
| | - Suckjoon Jun
- Department of Physics, University of California, San Diego, La Jolla, California, USA
- Section of Molecular Biology, Division of Biology, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
32
|
Lee S, Wu LJ, Errington J. Microfluidic time-lapse analysis and reevaluation of the Bacillus subtilis cell cycle. Microbiologyopen 2019; 8:e876. [PMID: 31197963 PMCID: PMC6813450 DOI: 10.1002/mbo3.876] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/03/2019] [Accepted: 05/13/2019] [Indexed: 12/24/2022] Open
Abstract
Recent studies taking advantage of automated single-cell time-lapse analysis have reignited interest in the bacterial cell cycle. Several studies have highlighted alternative models, such as Sizer and Adder, which differ essentially in relation to whether cells can measure their present size or their amount of growth since birth. Most of the recent work has been done with Escherichia coli. We set out to study the well-characterized Gram-positive bacterium, Bacillus subtilis, at the single-cell level, using an accurate fluorescent marker for division as well as a marker for completion of chromosome replication. Our results are consistent with the Adder model in both fast and slow growth conditions tested, and with Sizer but only at the slower growth rate. We also find that cell size variation arises not only from the expected variation in size at division but also that division site offset from mid-cell contributes to a significant degree. Finally, although traditional cell cycle models imply a strong connection between the termination of a round of replication and subsequent division, we find that at the single-cell level these events are largely disconnected.
Collapse
Affiliation(s)
- Seoungjun Lee
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Medical SchoolNewcastle UniversityNewcastle‐upon‐TyneUK
- Present address:
Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and NeuroscienceKing’s College LondonLondonUK
| | - Ling Juan Wu
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Medical SchoolNewcastle UniversityNewcastle‐upon‐TyneUK
| | - Jeff Errington
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Medical SchoolNewcastle UniversityNewcastle‐upon‐TyneUK
| |
Collapse
|
33
|
Ojkic N, Serbanescu D, Banerjee S. Surface-to-volume scaling and aspect ratio preservation in rod-shaped bacteria. eLife 2019; 8:e47033. [PMID: 31456563 PMCID: PMC6742476 DOI: 10.7554/elife.47033] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 08/28/2019] [Indexed: 01/16/2023] Open
Abstract
Rod-shaped bacterial cells can readily adapt their lengths and widths in response to environmental changes. While many recent studies have focused on the mechanisms underlying bacterial cell size control, it remains largely unknown how the coupling between cell length and width results in robust control of rod-like bacterial shapes. In this study we uncover a conserved surface-to-volume scaling relation in Escherichia coli and other rod-shaped bacteria, resulting from the preservation of cell aspect ratio. To explain the mechanistic origin of aspect-ratio control, we propose a quantitative model for the coupling between bacterial cell elongation and the accumulation of an essential division protein, FtsZ. This model reveals a mechanism for why bacterial aspect ratio is independent of cell size and growth conditions, and predicts cell morphological changes in response to nutrient perturbations, antibiotics, MreB or FtsZ depletion, in quantitative agreement with experimental data.
Collapse
Affiliation(s)
- Nikola Ojkic
- Department of Physics and Astronomy, Institute for the Physics of Living SystemsUniversity College LondonLondonUnited Kingdom
| | - Diana Serbanescu
- Department of Physics and Astronomy, Institute for the Physics of Living SystemsUniversity College LondonLondonUnited Kingdom
| | - Shiladitya Banerjee
- Department of Physics and Astronomy, Institute for the Physics of Living SystemsUniversity College LondonLondonUnited Kingdom
| |
Collapse
|
34
|
|
35
|
Levin PA, Taheri-Araghi S. One is Nothing without the Other: Theoretical and Empirical Analysis of Cell Growth and Cell Cycle Progression. J Mol Biol 2019; 431:2061-2067. [PMID: 31026450 PMCID: PMC6800662 DOI: 10.1016/j.jmb.2019.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/25/2019] [Accepted: 04/02/2019] [Indexed: 11/19/2022]
Abstract
Small, fast-growing bacteria make ideal subjects for genetic and quantitative analysis alike. Long the darling of theoreticians, efforts to understand the relationship between cell growth and cell cycle progression in bacterial systems have been propelled by modelers and empiricist in equal measure. Taking a historical approach, here we break down early work in this area, the impact it had on how the bacterial cell cycle is understood and interrogated, and changes brought by the advent of high-throughput techniques for the analysis of individual bacterial cells in culture.
Collapse
Affiliation(s)
- Petra Anne Levin
- Department of Biology, Washington University in St. Louis, MO 63130, United States.
| | - Sattar Taheri-Araghi
- Department of Physics and Astronomy, California State University, Northridge, CA 91311, United States.
| |
Collapse
|
36
|
Bacillus subtilis cell diameter is determined by the opposing actions of two distinct cell wall synthetic systems. Nat Microbiol 2019; 4:1294-1305. [PMID: 31086310 PMCID: PMC6656618 DOI: 10.1038/s41564-019-0439-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 03/28/2019] [Indexed: 11/08/2022]
Abstract
Rod-shaped bacteria grow by adding material into their cell wall via the action of two spatially distinct enzymatic systems: the Rod complex moves around the cell circumference, whereas class A penicillin-binding proteins (aPBPs) do not. To understand how the combined action of these two systems defines bacterial dimensions, we examined how each affects the growth and width of Bacillus subtilis as well as the mechanical anisotropy and orientation of material within their sacculi. Rod width is not determined by MreB, rather it depends on the balance between the systems: the Rod complex reduces diameter, whereas aPBPs increase it. Increased Rod-complex activity correlates with an increased density of directional MreB filaments and a greater fraction of directional PBP2a enzymes. This increased circumferential synthesis increases the relative quantity of oriented material within the sacculi, making them more resistant to stretching across their width, thereby reinforcing rod shape. Together, these experiments explain how the combined action of the two main cell wall synthetic systems builds and maintains rods of different widths. Escherichia coli Rod mutants also show the same correlation between width and directional MreB filament density, suggesting this model may be generalizable to bacteria that elongate via the Rod complex.
Collapse
|
37
|
Nouri H, Monnier AF, Fossum-Raunehaug S, Maciag-Dorszynska M, Cabin-Flaman A, Képès F, Wegrzyn G, Szalewska-Palasz A, Norris V, Skarstad K, Janniere L. Multiple links connect central carbon metabolism to DNA replication initiation and elongation in Bacillus subtilis. DNA Res 2019; 25:641-653. [PMID: 30256918 PMCID: PMC6289782 DOI: 10.1093/dnares/dsy031] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 08/17/2018] [Indexed: 12/27/2022] Open
Abstract
DNA replication is coupled to growth by an unknown mechanism. Here, we investigated this coupling by analyzing growth and replication in 15 mutants of central carbon metabolism (CCM) cultivated in three rich media. In about one-fourth of the condition tested, defects in replication resulting from changes in initiation or elongation were detected. This uncovered 11 CCM genes important for replication and showed that some of these genes have an effect in one, two or three media. Additional results presented here and elsewhere (Jannière, L., Canceill, D., Suski, C., et al. (2007), PLoS One, 2, e447.) showed that, in the LB medium, the CCM genes important for DNA elongation (gapA and ackA) are genetically linked to the lagging strand polymerase DnaE while those important for initiation (pgk and pykA) are genetically linked to the replication enzymes DnaC (helicase), DnaG (primase) and DnaE. Our work thus shows that the coupling between growth and replication involves multiple, medium-dependent links between CCM and replication. They also suggest that changes in CCM may affect initiation by altering the functional recruitment of DnaC, DnaG and DnaE at the chromosomal origin, and may affect elongation by altering the activity of DnaE at the replication fork. The underlying mechanism is discussed.
Collapse
Affiliation(s)
- Hamid Nouri
- iSSB, Génopole, CNRS, UEVE, Université Paris-Saclay, Evry France.,MICALIS, INRA, Jouy en Josas, France
| | | | | | | | | | - François Képès
- iSSB, Génopole, CNRS, UEVE, Université Paris-Saclay, Evry France
| | - Grzegorz Wegrzyn
- Department of Molecular Biology, University of Gdansk, Gdansk, Poland
| | | | - Vic Norris
- Laboratoire MERCI, AMMIS, Faculté des Sciences, Mont-Saint-Aignan, France
| | - Kirsten Skarstad
- Department of Cell Biology, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Laurent Janniere
- iSSB, Génopole, CNRS, UEVE, Université Paris-Saclay, Evry France.,MICALIS, INRA, Jouy en Josas, France
| |
Collapse
|
38
|
Concepción García M, Turlakov G, Moggio I, Arias E, Valenzuela JH, Hernández M, Rodríguez G, Ziolo RF. Synthesis and photophysical properties of conjugated (dodecyl)benzoateethynylene macromolecules: staining ofBacillus subtilisandEscherichia colirhizobacteria. NEW J CHEM 2019. [DOI: 10.1039/c8nj05892j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The staining of agrobacteria was successfully demonstrated through a benzoateethynylene by fluorescence spectroscopy, laser confocal microscopy and microRaman.
Collapse
Affiliation(s)
- Ma. Concepción García
- Centro de Investigación en Química Aplicada
- Boulevard Enrique Reyna 140
- 25294 Saltillo
- Mexico
| | - Gleb Turlakov
- Centro de Investigación en Química Aplicada
- Boulevard Enrique Reyna 140
- 25294 Saltillo
- Mexico
| | - Ivana Moggio
- Centro de Investigación en Química Aplicada
- Boulevard Enrique Reyna 140
- 25294 Saltillo
- Mexico
| | - Eduardo Arias
- Centro de Investigación en Química Aplicada
- Boulevard Enrique Reyna 140
- 25294 Saltillo
- Mexico
| | - J. Humberto Valenzuela
- CONACYT-Centro de Investigación en Química Aplicada
- Boulevard Enrique Reyna 140
- 25294 Saltillo
- Mexico
| | - Mónica Hernández
- Centro de Investigación en Química Aplicada
- Boulevard Enrique Reyna 140
- 25294 Saltillo
- Mexico
| | - Geraldina Rodríguez
- Centro de Investigación en Química Aplicada
- Boulevard Enrique Reyna 140
- 25294 Saltillo
- Mexico
| | - Ronald F. Ziolo
- Centro de Investigación en Química Aplicada
- Boulevard Enrique Reyna 140
- 25294 Saltillo
- Mexico
| |
Collapse
|
39
|
Lunde TM, Roberts AP, Al-Haroni M. Determination of copy number and circularization ratio of Tn 916-Tn 1545 family of conjugative transposons in oral streptococci by droplet digital PCR. J Oral Microbiol 2018; 11:1552060. [PMID: 30598735 PMCID: PMC6292373 DOI: 10.1080/20002297.2018.1552060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 11/12/2018] [Accepted: 11/19/2018] [Indexed: 11/09/2022] Open
Abstract
Background: Tn916 and Tn1545 are paradigms of a large family of related, broad host range, conjugative transposons that are widely distributed in bacteria and contribute to the spread of antibiotic resistance genes (ARGs). Variation in the copy number (CN) of Tn916-Tn1545 elements and the circularization ratio (CR) may play an important role in propagation of ARGs carried by these elements. Objectives and Design: In this study, the CN and CR of Tn916-Tn1545 elements in oral streptococci were determined using droplet digital PCR (ddPCR). In addition, we investigated the influence of tetracycline on the CR of Tn916-Tn1545 elements. Results: The ddPCR assay designed in this study is a reliable way to rapidly determine CN and CR of Tn916-Tn1545 elements. Conclusions: Our data also suggest that Tn916-Tn1545 elements are generally stable without selective pressure in the clinical oral Streptococcus strains investigated in this study.
Collapse
Affiliation(s)
- Tracy Munthali Lunde
- Department of Clinical Dentistry, Faculty of Health Sciences, UiT the Arctic University of Norway, Tromsø, Norway
| | - Adam P Roberts
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, UK.,Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Mohammed Al-Haroni
- Department of Clinical Dentistry, Faculty of Health Sciences, UiT the Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
40
|
Jun S, Si F, Pugatch R, Scott M. Fundamental principles in bacterial physiology-history, recent progress, and the future with focus on cell size control: a review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2018; 81:056601. [PMID: 29313526 PMCID: PMC5897229 DOI: 10.1088/1361-6633/aaa628] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Bacterial physiology is a branch of biology that aims to understand overarching principles of cellular reproduction. Many important issues in bacterial physiology are inherently quantitative, and major contributors to the field have often brought together tools and ways of thinking from multiple disciplines. This article presents a comprehensive overview of major ideas and approaches developed since the early 20th century for anyone who is interested in the fundamental problems in bacterial physiology. This article is divided into two parts. In the first part (sections 1-3), we review the first 'golden era' of bacterial physiology from the 1940s to early 1970s and provide a complete list of major references from that period. In the second part (sections 4-7), we explain how the pioneering work from the first golden era has influenced various rediscoveries of general quantitative principles and significant further development in modern bacterial physiology. Specifically, section 4 presents the history and current progress of the 'adder' principle of cell size homeostasis. Section 5 discusses the implications of coarse-graining the cellular protein composition, and how the coarse-grained proteome 'sectors' re-balance under different growth conditions. Section 6 focuses on physiological invariants, and explains how they are the key to understanding the coordination between growth and the cell cycle underlying cell size control in steady-state growth. Section 7 overviews how the temporal organization of all the internal processes enables balanced growth. In the final section 8, we conclude by discussing the remaining challenges for the future in the field.
Collapse
Affiliation(s)
- Suckjoon Jun
- Department of Physics, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, United States of America. Section of Molecular Biology, Division of Biology, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, United States of America
| | | | | | | |
Collapse
|
41
|
Dockerty P, Edens JG, Tol MB, Morales Angeles D, Domenech A, Liu Y, Hirsch AKH, Veening JW, Scheffers DJ, Witte MD. Bicyclic enol cyclocarbamates inhibit penicillin-binding proteins. Org Biomol Chem 2018; 15:894-910. [PMID: 28045164 DOI: 10.1039/c6ob01664b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Natural products form attractive leads for the development of chemical probes and drugs. The antibacterial lipopeptide Brabantamide A contains an unusual enol cyclocarbamate and we used this scaffold as inspiration for the synthesis of a panel of enol cyclocarbamate containing compounds. By equipping the scaffold with different groups, we identified structural features that are essential for antibacterial activity. Some of the derivatives block incorporation of hydroxycoumarin carboxylic acid-amino d-alanine into the newly synthesized peptidoglycan. Activity-based protein-profiling experiments revealed that the enol carbamates inhibit a specific subset of penicillin-binding proteins in B. subtilis and S. pneumoniae.
Collapse
Affiliation(s)
- Paul Dockerty
- Chemical Biology, Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747AG Groningen, The Netherlands.
| | - Jerre G Edens
- Chemical Biology, Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747AG Groningen, The Netherlands.
| | - Menno B Tol
- Molecular Microbiology, Groningen Institute for Biomolecular Sciences and Biotechnology, University of Groningen, Nijenborgh 7, 9747AG Groningen, The Netherlands
| | - Danae Morales Angeles
- Molecular Microbiology, Groningen Institute for Biomolecular Sciences and Biotechnology, University of Groningen, Nijenborgh 7, 9747AG Groningen, The Netherlands
| | - Arnau Domenech
- Molecular Genetics, Groningen Institute for Biomolecular Sciences and Biotechnology, University of Groningen, Nijenborgh 7, 9747AG Groningen, The Netherlands
| | - Yun Liu
- Chemical Biology, Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747AG Groningen, The Netherlands.
| | - Anna K H Hirsch
- Chemical Biology, Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747AG Groningen, The Netherlands.
| | - Jan-Willem Veening
- Molecular Genetics, Groningen Institute for Biomolecular Sciences and Biotechnology, University of Groningen, Nijenborgh 7, 9747AG Groningen, The Netherlands
| | - Dirk-Jan Scheffers
- Molecular Microbiology, Groningen Institute for Biomolecular Sciences and Biotechnology, University of Groningen, Nijenborgh 7, 9747AG Groningen, The Netherlands
| | - Martin D Witte
- Chemical Biology, Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747AG Groningen, The Netherlands.
| |
Collapse
|
42
|
Böttinger B, Semmler F, Zerulla K, Ludt K, Soppa J. Regulated ploidy of Bacillus subtilis and three new isolates of Bacillus and Paenibacillus. FEMS Microbiol Lett 2018; 365:4791518. [PMID: 29315386 DOI: 10.1093/femsle/fnx282] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 01/03/2018] [Indexed: 11/12/2022] Open
Abstract
Bacteria were long assumed to be monoploid, maintaining one copy of a circular chromosome. In recent years it became obvious that the majority of species in several phylogenetic groups of prokaryotes are oligoploid or polyploid. The present study aimed at investigating the ploidy in Gram-positive aerobic endospore-forming bacteria. First, the numbers of origins and termini of the widely used laboratory strain Bacillus subtilis 168 were quantified. The strain was found to be mero-oligoploid in exponential phase (5.9 origins, 1.2 termini) and to down-regulate the number of origins in stationary phase. After inoculation of fresh medium with stationary-phase cells the onset of replication preceded the onset of mass increase. For the analysis of the ploidy in fresh isolates, three strains were isolated from soil, which were found to belong to the genera of Bacillus and Paenibacillus. All three strains were found to be mero-oligoploid in exponential phase and exhibit a growth phase-dependent down-regulation of the ploidy level in stationary phase. Taken together, these results indicate that mero-oligoploidy as well as growth phase-dependent copy number regulation might be widespread in and typical for Bacillus and related genera.
Collapse
Affiliation(s)
- Benjamin Böttinger
- Institute for Molecular Biosciences, Biocentre, Goethe-University, Max-von-Laue-Strasse 9, D-60438, Frankfurt, Germany
| | - Florian Semmler
- Institute for Molecular Biosciences, Biocentre, Goethe-University, Max-von-Laue-Strasse 9, D-60438, Frankfurt, Germany
| | - Karolin Zerulla
- Institute for Molecular Biosciences, Biocentre, Goethe-University, Max-von-Laue-Strasse 9, D-60438, Frankfurt, Germany
| | - Katharina Ludt
- Institute for Molecular Biosciences, Biocentre, Goethe-University, Max-von-Laue-Strasse 9, D-60438, Frankfurt, Germany
| | - Jörg Soppa
- Institute for Molecular Biosciences, Biocentre, Goethe-University, Max-von-Laue-Strasse 9, D-60438, Frankfurt, Germany
| |
Collapse
|
43
|
De San Eustaquio-Campillo A, Cornilleau C, Guérin C, Carballido-López R, Chastanet A. PamR, a new MarR-like regulator affecting prophages and metabolic genes expression in Bacillus subtilis. PLoS One 2017; 12:e0189694. [PMID: 29240826 PMCID: PMC5730154 DOI: 10.1371/journal.pone.0189694] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 11/30/2017] [Indexed: 12/26/2022] Open
Abstract
B. subtilis adapts to changing environments by reprogramming its genetic expression through a variety of transcriptional regulators from the global transition state regulators that allow a complete resetting of the cell genetic expression, to stress specific regulators controlling only a limited number of key genes required for optimal adaptation. Among them, MarR-type transcriptional regulators are known to respond to a variety of stresses including antibiotics or oxidative stress, and to control catabolic or virulence gene expression. Here we report the characterization of the ydcFGH operon of B. subtilis, containing a putative MarR-type transcriptional regulator. Using a combination of molecular genetics and high-throughput approaches, we show that this regulator, renamed PamR, controls directly its own expression and influence the expression of large sets of prophage-related and metabolic genes. The extent of the regulon impacted by PamR suggests that this regulator reprograms the metabolic landscape of B. subtilis in response to a yet unknown signal.
Collapse
Affiliation(s)
| | - Charlène Cornilleau
- MICALIS, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Cyprien Guérin
- MaIAGE, INRA, Université Paris-Saclay, Jouy-en-Josas, France
| | | | - Arnaud Chastanet
- MICALIS, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
- * E-mail:
| |
Collapse
|
44
|
Yap LW, Endres RG. A model of cell-wall dynamics during sporulation in Bacillus subtilis. SOFT MATTER 2017; 13:8089-8095. [PMID: 29057401 DOI: 10.1039/c7sm00818j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
To survive starvation, Bacillus subtilis forms durable spores. After asymmetric cell division, the septum grows around the forespore in a process called engulfment, but the mechanism of force generation is unknown. Here, we derived a novel biophysical model for the dynamics of cell-wall remodeling during engulfment based on a balancing of dissipative, active, and mechanical forces. By plotting phase diagrams, we predict that sporulation is promoted by a line tension from the attachment of the septum to the outer cell wall, as well as by an imbalance in turgor pressures in the mother-cell and forespore compartments. We also predict that significant mother-cell growth hinders engulfment. Hence, relatively simple physical principles may guide this complex biological process.
Collapse
Affiliation(s)
- Li-Wei Yap
- Department of Life Sciences, Imperial College, London, UK.
| | | |
Collapse
|
45
|
|
46
|
Billaudeau C, Chastanet A, Yao Z, Cornilleau C, Mirouze N, Fromion V, Carballido-López R. Contrasting mechanisms of growth in two model rod-shaped bacteria. Nat Commun 2017; 8:15370. [PMID: 28589952 PMCID: PMC5467245 DOI: 10.1038/ncomms15370] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 03/23/2017] [Indexed: 12/24/2022] Open
Abstract
How cells control their shape and size is a long-standing question in cell biology. Many rod-shaped bacteria elongate their sidewalls by the action of cell wall synthesizing machineries that are associated to actin-like MreB cortical patches. However, little is known about how elongation is regulated to enable varied growth rates and sizes. Here we use total internal reflection fluorescence microscopy and single-particle tracking to visualize MreB isoforms, as a proxy for cell wall synthesis, in Bacillus subtilis and Escherichia coli cells growing in different media and during nutrient upshift. We find that these two model organisms appear to use orthogonal strategies to adapt to growth regime variations: B. subtilis regulates MreB patch speed, while E. coli may mainly regulate the production capacity of MreB-associated cell wall machineries. We present numerical models that link MreB-mediated sidewall synthesis and cell elongation, and argue that the distinct regulatory mechanism employed might reflect the different cell wall integrity constraints in Gram-positive and Gram-negative bacteria. Protein MreB participates in elongation of sidewalls during growth of most rod-shaped bacteria. Here, the authors use fluorescence microscopy and single-particle tracking to visualize MreB, showing that Bacillus subtilis and Escherichia coli appear to use different strategies to adapt to growth rate variations.
Collapse
Affiliation(s)
- Cyrille Billaudeau
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Arnaud Chastanet
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Zhizhong Yao
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Charlène Cornilleau
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Nicolas Mirouze
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Vincent Fromion
- MaIAGE, INRA, Université Paris-Saclay, Jouy-en-Josas F78350, France
| | - Rut Carballido-López
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| |
Collapse
|
47
|
Novel Chromosome Organization Pattern in Actinomycetales-Overlapping Replication Cycles Combined with Diploidy. mBio 2017; 8:mBio.00511-17. [PMID: 28588128 PMCID: PMC5461407 DOI: 10.1128/mbio.00511-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Bacteria regulate chromosome replication and segregation tightly with cell division to ensure faithful segregation of DNA to daughter generations. The underlying mechanisms have been addressed in several model species. It became apparent that bacteria have evolved quite different strategies to regulate DNA segregation and chromosomal organization. We have investigated here how the actinobacterium Corynebacterium glutamicum organizes chromosome segregation and DNA replication. Unexpectedly, we found that C. glutamicum cells are at least diploid under all of the conditions tested and that these organisms have overlapping C periods during replication, with both origins initiating replication simultaneously. On the basis of experimental data, we propose growth rate-dependent cell cycle models for C. glutamicum. Bacterial cell cycles are known for few model organisms and can vary significantly between species. Here, we studied the cell cycle of Corynebacterium glutamicum, an emerging cell biological model organism for mycolic acid-containing bacteria, including mycobacteria. Our data suggest that C. glutamicum carries two pole-attached chromosomes that replicate with overlapping C periods, thus initiating a new round of DNA replication before the previous one is terminated. The newly replicated origins segregate to midcell positions, where cell division occurs between the two new origins. Even after long starvation or under extremely slow-growth conditions, C. glutamicum cells are at least diploid, likely as an adaptation to environmental stress that may cause DNA damage. The cell cycle of C. glutamicum combines features of slow-growing organisms, such as polar origin localization, and fast-growing organisms, such as overlapping C periods.
Collapse
|
48
|
Abstract
Bacillus subtilis is the best described member of the Gram positive bacteria. It is a typical rod shaped bacterium and grows by elongation in its long axis, before dividing at mid cell to generate two similar daughter cells. B. subtilis is a particularly interesting model for cell cycle studies because it also carries out a modified, asymmetrical division during endospore formation, which can be simply induced by starvation. Cell growth occurs strictly by elongation of the rod, which maintains a constant diameter at all growth rates. This process involves expansion of the cell wall, requiring intercalation of new peptidoglycan and teichoic acid material, as well as controlled hydrolysis of existing wall material. Actin-like MreB proteins are the key spatial regulators that orchestrate the plethora of enzymes needed for cell elongation, many of which are thought to assemble into functional complexes called elongasomes. Cell division requires a switch in the orientation of cell wall synthesis and is organised by a tubulin-like protein FtsZ. FtsZ forms a ring-like structure at the site of impending division, which is specified by a range of mainly negative regulators. There it recruits a set of dedicated division proteins to form a structure called the divisome, which brings about the process of division. During sporulation, both the positioning and fine structure of the division septum are altered, and again, several dedicated proteins that contribute specifically to this process have been identified. This chapter summarises our current understanding of elongation and division in B. subtilis, with particular emphasis on the cytoskeletal proteins MreB and FtsZ, and highlights where the major gaps in our understanding remain.
Collapse
|
49
|
Abstract
More than 5 decades of work support the idea that cell envelope synthesis, including the inward growth of cell division, is tightly coordinated with DNA replication and protein synthesis through central metabolism. Remarkably, no unifying model exists to account for how these fundamentally disparate processes are functionally coupled. Recent studies demonstrate that proteins involved in carbohydrate and nitrogen metabolism can moonlight as direct regulators of cell division, coordinate cell division and DNA replication, and even suppress defects in DNA replication. In this minireview, we focus on studies illustrating the intimate link between metabolism and regulation of peptidoglycan (PG) synthesis during growth and division, and we identify the following three recurring themes. (i) Nutrient availability, not growth rate, is the primary determinant of cell size. (ii) The degree of gluconeogenic flux is likely to have a profound impact on the metabolites available for cell envelope synthesis, so growth medium selection is a critical consideration when designing and interpreting experiments related to morphogenesis. (iii) Perturbations in pathways relying on commonly shared and limiting metabolites, like undecaprenyl phosphate (Und-P), can lead to pleotropic phenotypes in unrelated pathways.
Collapse
|
50
|
Cendrowicz E, de Sousa Borges A, Kopacz M, Scheffers DJ. Metal-dependent SpoIIE oligomerization stabilizes FtsZ during asymmetric division in Bacillus subtilis. PLoS One 2017; 12:e0174713. [PMID: 28358838 PMCID: PMC5373596 DOI: 10.1371/journal.pone.0174713] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 03/14/2017] [Indexed: 11/26/2022] Open
Abstract
SpoIIE is a bifunctional protein involved in asymmetric septum formation and in activation of the forespore compartment-specific transcription factor σF through dephosphorylation of SpoIIAA-P. The phosphatase activity of SpoIIE requires Mn2+ as a metal cofactor. Here, we show that the presence of a metal cofactor also influences SpoIIE oligomerization and asymmetric septum formation. Absence of Mn2+ from sporulation medium results in a delay of the formation of polar FtsZ-rings, similar to a spoIIE null mutant. We purified the entire cytoplasmic part of the SpoIIE protein, and show that the protein copurifies with bound metals. Metal binding both stimulates SpoIIE oligomerization, and results in the formation of larger oligomeric structures. The presence of SpoIIE oligomers reduces FtsZ GTP hydrolysis activity and stabilizes FtsZ polymers in a light scattering assay. Combined, these results indicate that metal binding is not just required for SpoIIE phosphatase activity but also is important for SpoIIE's role in asymmetric septum formation.
Collapse
Affiliation(s)
- Ewa Cendrowicz
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Anabela de Sousa Borges
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Malgorzata Kopacz
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Dirk-Jan Scheffers
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
- * E-mail:
| |
Collapse
|