1
|
Prasad SV, Fiedoruk K, Zakrzewska M, Savage PB, Bucki R. Glyoxylate Shunt and Pyruvate-to-Acetoin Shift Are Specific Stress Responses Induced by Colistin and Ceragenin CSA-13 in Enterobacter hormaechei ST89. Microbiol Spectr 2023; 11:e0121523. [PMID: 37338344 PMCID: PMC10434160 DOI: 10.1128/spectrum.01215-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/05/2023] [Indexed: 06/21/2023] Open
Abstract
Ceragenins, including CSA-13, are cationic antimicrobials that target the bacterial cell envelope differently than colistin. However, the molecular basis of their action is not fully understood. Here, we examined the genomic and transcriptome responses by Enterobacter hormaechei after prolonged exposure to either CSA-13 or colistin. Resistance of the E. hormaechei 4236 strain (sequence type 89 [ST89]) to colistin and CSA-13 was induced in vitro during serial passages with sublethal doses of tested agents. The genomic and metabolic profiles of the tested isolates were characterized using a combination of whole-genome sequencing (WGS) and transcriptome sequencing (RNA-seq), followed by metabolic mapping of differentially expressed genes using Pathway Tools software. The exposure of E. hormaechei to colistin resulted in the deletion of the mgrB gene, whereas CSA-13 disrupted the genes encoding an outer membrane protein C and transcriptional regulator SmvR. Both compounds upregulated several colistin-resistant genes, such as the arnABCDEF operon and pagE, including genes coding for DedA proteins. The latter proteins, along with beta-barrel protein YfaZ and VirK/YbjX family proteins, were the top overexpressed cell envelope proteins. Furthermore, the l-arginine biosynthesis pathway and putrescine-ornithine antiporter PotE were downregulated in both transcriptomes. In contrast, the expression of two pyruvate transporters (YhjX and YjiY) and genes involved in pyruvate metabolism, as well as genes involved in generating proton motive force (PMF), was antimicrobial specific. Despite the similarity of the cell envelope transcriptomes, distinctly remodeled carbon metabolism (i.e., toward fermentation of pyruvate to acetoin [colistin] and to the glyoxylate pathway [CSA-13]) distinguished both antimicrobials, which possibly reflects the intensity of the stress exerted by both agents. IMPORTANCE Colistin and ceragenins, like CSA-13, are cationic antimicrobials that disrupt the bacterial cell envelope through different mechanisms. Here, we examined the genomic and transcriptome changes in Enterobacter hormaechei ST89, an emerging hospital pathogen, after prolonged exposure to these agents to identify potential resistance mechanisms. Interestingly, we observed downregulation of genes associated with acid stress response as well as distinct dysregulation of genes involved in carbon metabolism, resulting in a switch from pyruvate fermentation to acetoin (colistin) and the glyoxylate pathway (CSA-13). Therefore, we hypothesize that repression of the acid stress response, which alkalinizes cytoplasmic pH and, in turn, suppresses resistance to cationic antimicrobials, could be interpreted as an adaptation that prevents alkalinization of cytoplasmic pH in emergencies induced by colistin and CSA-13. Consequently, this alteration critical for cell physiology must be compensated via remodeling carbon and/or amino acid metabolism to limit acidic by-product production.
Collapse
Affiliation(s)
- Suhanya V. Prasad
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, Bialystok, Poland
| | - Krzysztof Fiedoruk
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, Bialystok, Poland
| | - Magdalena Zakrzewska
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, Bialystok, Poland
| | - Paul B. Savage
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, USA
| | - Robert Bucki
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
2
|
Zaide G, Elia U, Cohen-Gihon I, Israeli M, Rotem S, Israeli O, Ehrlich S, Cohen H, Lazar S, Beth-Din A, Shafferman A, Zvi A, Cohen O, Chitlaru T. Comparative Analysis of the Global Transcriptomic Response to Oxidative Stress of Bacillus anthracis htrA-Disrupted and Parental Wild Type Strains. Microorganisms 2020; 8:microorganisms8121896. [PMID: 33265965 PMCID: PMC7760947 DOI: 10.3390/microorganisms8121896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 12/30/2022] Open
Abstract
We previously demonstrated that the HtrA (High Temperature Requirement A) protease/chaperone active in the quality control of protein synthesis, represents an important virulence determinant of Bacillus anthracis. Virulence attenuation of htrA-disrupted Bacillus anthracis strains was attributed to susceptibility of ΔhtrA strains to stress insults, as evidenced by affected growth under various stress conditions. Here, we report a comparative RNA-seq transcriptomic study generating a database of differentially expressed genes in the B. anthracishtrA-disrupted and wild type parental strains under oxidative stress. The study demonstrates that, apart from protease and chaperone activities, HtrA exerts a regulatory role influencing expression of more than 1000 genes under stress. Functional analysis of groups or individual genes exhibiting strain-specific modulation, evidenced (i) massive downregulation in the ΔhtrA and upregulation in the WT strains of various transcriptional regulators, (ii) downregulation of translation processes in the WT strain, and (iii) downregulation of metal ion binding functions and upregulation of sporulation-associated functions in the ΔhtrA strain. These modulated functions are extensively discussed. Fifteen genes uniquely upregulated in the wild type strain were further interrogated for their modulation in response to other stress regimens. Overexpression of one of these genes, encoding for MazG (a nucleoside triphosphate pyrophosphohydrolase involved in various stress responses in other bacteria), in the ΔhtrA strain resulted in partial alleviation of the H2O2-sensitive phenotype.
Collapse
|
3
|
Abstract
Different whole cell fiber optic based biosensors have been developed to detect the total effect of a wide range of environmental pollutants, providing results within a very short period. These biosensors are usually built from three major components, the biorecognition element (whole-cells) intimately attached to a transducer (optic fiber) using a variety of techniques (adsorption, covalent binding, polymer trapping, etc). Even with a great progress in the field of biosensors, there is still a serious lack of commercial applications, capable of competing with traditional analytical tools.
Collapse
|
4
|
Sunya S, Bideaux C, Molina-Jouve C, Gorret N. Short-term dynamic behavior of Escherichia coli in response to successive glucose pulses on glucose-limited chemostat cultures. J Biotechnol 2013; 164:531-42. [DOI: 10.1016/j.jbiotec.2013.01.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 12/22/2012] [Accepted: 01/14/2013] [Indexed: 01/20/2023]
|
5
|
Yoshimura H, Ikeuchi M, Ohomori M. Cell surface-associated proteins in the filamentous cyanobacterium Anabaena sp. strain PCC 7120. Microbes Environ 2012; 27:538-43. [PMID: 23059722 PMCID: PMC4103569 DOI: 10.1264/jsme2.me12091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The cell surface senses environmental changes first and transfers signals into the cell. To understand the response to environmental changes, it is necessary to analyze cell surface components, particularly cell surface-associated proteins. We therefore investigated cell surface-associated proteins from the filamentous cyanobacterium Anabaena sp. strain PCC 7120. The cell surface-associated proteins extracted by an acidic buffer were resolved by SDS-PAGE. Eighteen proteins were identified from resolved bands by amino-terminal sequencing. Analysis of cell surface-associated proteins indicated that several proteins among them were involved in nucleic acid binding, protein synthesis, proteolytic activity and electron transfer, and other proteins were involved in the stress response.
Collapse
Affiliation(s)
- Hidehisa Yoshimura
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3–8–1 Komaba, Meguro-ku, Tokyo 153–8902, Japan.
| | | | | |
Collapse
|
6
|
Barak Z, Chipman DM. Allosteric regulation in Acetohydroxyacid Synthases (AHASs) – Different structures and kinetic behavior in isozymes in the same organisms. Arch Biochem Biophys 2012; 519:167-74. [DOI: 10.1016/j.abb.2011.11.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 11/25/2011] [Accepted: 11/29/2011] [Indexed: 10/14/2022]
|
7
|
Sunya S, Delvigne F, Uribelarrea JL, Molina-Jouve C, Gorret N. Comparison of the transient responses of Escherichia coli to a glucose pulse of various intensities. Appl Microbiol Biotechnol 2012; 95:1021-34. [PMID: 22370947 DOI: 10.1007/s00253-012-3938-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 02/01/2012] [Accepted: 02/01/2012] [Indexed: 11/24/2022]
Abstract
Dynamic stimulus-responses of Escherichia coli DPD2085, yciG::LuxCDABE reporter strain, to glucose pulses of different intensities (0.08, 0.4 and 1 g L(-1)) were compared using glucose-limited chemostat cultures at dilution rate close to 0.15 h(-1). After at least five residence times, the steady-state cultures were disturbed by a pulse of glucose, engendering conditions of glucose excess with concomitant oxygen limitation. In all conditions, glucose consumption, acetate and formate accumulations followed a linear relationship with time. The resulting specific uptake and production rates as well as respiratory rates were rapidly increased within the first seconds, which revealed a high ability of E. coli strain to modulate its metabolism to a new environment. For transition from glucose-excess to glucose-limited conditions, the cells rapidly re-established its pseudo-steady state. The dynamics of transient responses at the macroscopic viewpoint were shown to be independent on the glucose pulse intensity in the tested range. On the contrary, the E. coli biosensor yciG::luxCDABE revealed a transcriptional induction of yciG gene promoter depending on the quantities of the glucose added, through in situ and online monitoring of the bioluminescence emitted by the cells. Despite many studies describing the dynamics of the transient response of E. coli to glucose perturbations, it is the first time that a direct comparison is reported, using the same experimental design (strain, medium and experimental set up), to study the impact of the glucose pulse intensity on the dynamics of microbial behaviour regarding growth, respiration and metabolite productions.
Collapse
Affiliation(s)
- Sirichai Sunya
- Université de Toulouse, 135 Avenue de Rangueil, Toulouse, France
| | | | | | | | | |
Collapse
|
8
|
Battesti A, Majdalani N, Gottesman S. The RpoS-mediated general stress response in Escherichia coli. Annu Rev Microbiol 2012; 65:189-213. [PMID: 21639793 DOI: 10.1146/annurev-micro-090110-102946] [Citation(s) in RCA: 657] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Under conditions of nutrient deprivation or stress, or as cells enter stationary phase, Escherichia coli and related bacteria increase the accumulation of RpoS, a specialized sigma factor. RpoS-dependent gene expression leads to general stress resistance of cells. During rapid growth, RpoS translation is inhibited and any RpoS protein that is synthesized is rapidly degraded. The complex transition from exponential growth to stationary phase has been partially dissected by analyzing the induction of RpoS after specific stress treatments. Different stress conditions lead to induction of specific sRNAs that stimulate RpoS translation or to induction of small-protein antiadaptors that stabilize the protein. Recent progress has led to a better, but still far from complete, understanding of how stresses lead to RpoS induction and what RpoS-dependent genes help the cell deal with the stress.
Collapse
Affiliation(s)
- Aurelia Battesti
- Laboratory of Molecular Biology, National Cancer Institute, Bethesda, Maryland 20892, USA.
| | | | | |
Collapse
|
9
|
Sunya S, Gorret N, Delvigne F, Uribelarrea JL, Molina-Jouve C. Real-time monitoring of metabolic shift and transcriptional induction of yciG::luxCDABE E. coli reporter strain to a glucose pulse of different concentrations. J Biotechnol 2011; 157:379-90. [PMID: 22209969 DOI: 10.1016/j.jbiotec.2011.12.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 11/20/2011] [Accepted: 12/12/2011] [Indexed: 10/14/2022]
Abstract
Ineffective mixing entailing heterogeneity issue within industrial bioreactors has been reported to affect microbial physiology and consequently bioprocess performances. Alteration of these performances results from microorganism ability to modulate their physiology at metabolic and/or transcriptional levels in order to survive in a given environment. Until now, dynamics of both metabolic and transcriptional microbial response to external stimuli have been investigated using mainly ex situ measurements with sampling and/or quenching constraints. This work showed an in situ bioluminescence approach for real-time monitoring of characteristic stress responses of Escherichia coli containing yciG::luxCDABE reporter to glucose pulses in well-controlled steady-state chemostat cultures. Reproducibility of in situ bioluminescence profiles was assessed. A dramatic transient increase in the bioluminescence intensity (sharp peak) was observed for a complete depletion of sugars and for a sudden decrease in the dilution rate. This response was connected to a sudden change of the metabolic activity. On the contrary a bell curve of bioluminescence intensity, dose-dependent, was related to an induction of transcriptional activity. Real-time monitoring of the bioluminescence signal with time-span less than a second gave access to the characteristic times of the metabolic shift and transcriptional induction of the stress response.
Collapse
Affiliation(s)
- Sirichai Sunya
- Université de Toulouse, INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, F-31077 Toulouse, France
| | | | | | | | | |
Collapse
|
10
|
Benton MG, Glasser NR, Palecek SP. The utilization of a Saccharomyces cerevisiae HUG1P-GFP promoter-reporter construct for the selective detection of DNA damage. Mutat Res 2007; 633:21-34. [PMID: 17618162 DOI: 10.1016/j.mrgentox.2007.05.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2006] [Revised: 04/25/2007] [Accepted: 05/04/2007] [Indexed: 05/16/2023]
Abstract
In this study, we report the creation and characterization of a yeast-based promoter-reporter construct for the detection of genotoxic compounds within a cell's local environment. We have synthesized a fusion containing the HUG1 promoter and GFP and incorporated this cassette into the yeast genome creating a stable, sensitive genotoxicity indicator. To quantify biosensor performance, HUG1P-GFP cells were exposed to multiple doses of a wide variety of genotoxins, including alkylating agents, an oxidative agent, a ribonucleotide reductase inhibitor, a UV mimetic agent, an agent that causes double strand breaks, a topoisomerase I inhibitor, and ionizing radiation, all of which triggered a detectable and reproducible level of GFP production by the HUG1P-GFP strain. Furthermore, GFP was not induced by general cell stresses including starvation, heat shock, and acidic pH. These results suggest this system will be a valuable supplement to traditional genotoxicity assays.
Collapse
Affiliation(s)
- Michael G Benton
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53706, USA
| | | | | |
Collapse
|
11
|
Cheng B, Liu IF, Tse-Dinh YC. Compounds with antibacterial activity that enhance DNA cleavage by bacterial DNA topoisomerase I. J Antimicrob Chemother 2007; 59:640-5. [PMID: 17317696 DOI: 10.1093/jac/dkl556] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
OBJECTIVES DNA topoisomerases utilize a covalent complex formed after DNA cleavage as an intermediate in the interconversion of topological forms via DNA cleavage and religation. Many anticancer and antibacterial therapeutic agents are effective because they stabilize or increase the level of the covalent topoisomerase-DNA complex formed by type IIA or type IB topoisomerases. Our goal is to identify small molecules that can enhance DNA cleavage by type IA DNA topoisomerase. Compounds that act in this mechanism against type IA topoisomerase have not been identified previously and could be leads for development of a new class of antibacterial agents. METHODS High throughput screening was carried out to select small molecules that induce the SOS response of Escherichia coli, overexpressing recombinant Yersinia pestis topoisomerase I. The initial hit compounds were further tested for inhibition of bacterial growth and bacterial topoisomerase I activity. RESULTS Three compounds with antibacterial activity that enhance the cleavage activity of bacterial topoisomerase I were identified. CONCLUSIONS Small molecules that can enhance the DNA cleavage activity of type IA DNA topoisomerase can be identified and may provide leads for development of novel antibacterial compounds.
Collapse
Affiliation(s)
- Bokun Cheng
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA
| | | | | |
Collapse
|
12
|
Vijayakumar SRV, Kirchhof MG, Patten CL, Schellhorn HE. RpoS-regulated genes of Escherichia coli identified by random lacZ fusion mutagenesis. J Bacteriol 2005; 186:8499-507. [PMID: 15576800 PMCID: PMC532425 DOI: 10.1128/jb.186.24.8499-8507.2004] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
RpoS is a conserved alternative sigma factor that regulates the expression of many stress response genes in Escherichia coli. The RpoS regulon is large but has not yet been completely characterized. In this study, we report the identification of over 100 RpoS-dependent fusions in a genetic screen based on the differential expression of an operon-lacZ fusion bank in rpoS mutant and wild-type backgrounds. Forty-eight independent gene fusions were identified, including several in well-characterized RpoS-regulated genes, such as osmY, katE, and otsA. Many of the other fusions mapped to genes of unknown function or to genes that were not previously known to be under RpoS control. Based on the homology to other known bacterial genes, some of the RpoS-regulated genes of unknown functions are likely important in nutrient scavenging.
Collapse
|
13
|
Zanzotto A, Boccazzi P, Gorret N, Van Dyk TK, Sinskey AJ, Jensen KF. In situ measurement of bioluminescence and fluorescence in an integrated microbioreactor. Biotechnol Bioeng 2005; 93:40-7. [PMID: 16187336 DOI: 10.1002/bit.20708] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Reporter strains of bacteria that emit light or a fluorescent marker in response to specific conditions in their environment are having a significant impact in many areas of biology, including toxicity assays for environmental pollutants, chemical detection, and gene expression profiling. We have demonstrated methods for in situ measurements of bioluminescence and fluorescence from bacterial cultures grown in 50 microL instrumented microbioreactors. Results from microbioreactors were compared to results obtained from conventional 500 mL batch bioreactors and shake flasks. Experiments were conducted with reporter strains of Escherichia coli in which luxCDABE or gfp was fused to a promoter that was either expressed constitutively, or that responded to oxygen limitation. With these reporter strains, we have demonstrated the ability to obtain information on growth conditions within the microbioreactor. We have also shown that the large aspect ratio of the microbioreactor provides a unique advantage over measurements in larger bioreactors by reducing the inner filter effect in on-line measurements and eliminating the need for error-prone off-line dilutions. In addition, continuous on-line monitoring of genes in real-time, when expanded to include entire reporter libraries, could potentially provide a true dynamic picture of cellular gene expression from which the kinetics of gene expression can be untangled and elucidated.
Collapse
Affiliation(s)
- Andrea Zanzotto
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, 02139, USA
| | | | | | | | | | | |
Collapse
|
14
|
Abstract
The delicate and dynamic balance of the physiological steady state and its maintenance is well characterized by studies of bacterial stress response. Through the use of genetic analysis, numerous stress regulons, their physiological regulators and their biochemical processes have been delineated. In particular, transcriptionally activated stress regulons are subjects of study and application. These regulons include those that respond to macromolecular damage and toxicity as well as to nutrient starvation. The convenience of reporter gene fusions has allowed the creation of biosensor strains, resulting from the fusion of stress-responsive promoters with a variety of reporter genes. Such cellular biosensors are being used for monitoring dynamic systems and can report the presence of environmental stressors in real time. They provide a greater range of sensitivity, e.g. to sub-lethal concentrations of toxicants, than the simple assessment of cell viability. The underlying physiological context of the reporter strains results in the detection of bioavailable concentrations of both toxicants and nutrients. Culture conditions and host strain genotypes can be customized so as to maximize the sensitivity of the strain for a particular application. Collections of specific strains that are grouped in panels are used to diagnose targets or mode of action for unknown toxicants. Further application in massive by parallel DNA and gene fusion arrays greatly extends the information available for diagnosis of modes of action and may lead to development of novel high-throughput screens. Future studies will include more panels, arrays, as well as single reporter cell detection for a better understanding of the population heterogeneity during stress response. New knowledge of physiology gained from further studies of novel systems, or using innovative methods of analysis, will undoubtedly yield still more useful and informative environmental biosensors.
Collapse
Affiliation(s)
- Amy Cheng Vollmer
- Department of Biology, Swarthmore College, 500 College Avenue, Swarthmore, PA 19081, USA.
| | | |
Collapse
|
15
|
Van Dyk TK, Templeton LJ, Cantera KA, Sharpe PL, Sariaslani FS. Characterization of the Escherichia coli AaeAB efflux pump: a metabolic relief valve? J Bacteriol 2004; 186:7196-204. [PMID: 15489430 PMCID: PMC523213 DOI: 10.1128/jb.186.21.7196-7204.2004] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Treatment of Escherichia coli with p-hydroxybenzoic acid (pHBA) resulted in upregulation of yhcP, encoding a protein of the putative efflux protein family. Also upregulated were the adjacent genes yhcQ, encoding a protein of the membrane fusion protein family, and yhcR, encoding a small protein without a known or suggested function. The function of the upstream, divergently transcribed gene yhcS, encoding a regulatory protein of the LysR family, in regulating expression of yhcRQP was shown. Furthermore, it was demonstrated that several aromatic carboxylic acid compounds serve as inducers of yhcRQP expression. The efflux function encoded by yhcP was proven by the hypersensitivity to pHBA of a yhcP mutant strain. A yhcS mutant strain was also hypersensitive to pHBA. Expression of yhcQ and yhcP was necessary and sufficient for suppression of the pHBA hypersensitivity of the yhcS mutant. Only a few aromatic carboxylic acids of hundreds of diverse compounds tested were defined as substrates of the YhcQP efflux pump. Thus, we propose renaming yhcS, yhcR, yhcQ, and yhcP, to reflect their role in aromatic carboxylic acid efflux, to aaeR, aaeX, aaeA, and aaeB, respectively. The role of pHBA in normal E. coli metabolism and the highly regulated expression of the AaeAB efflux system suggests that the physiological role may be as a "metabolic relief valve" to alleviate toxic effects of imbalanced metabolism.
Collapse
Affiliation(s)
- Tina K Van Dyk
- DuPont Company CR&D, Rt. 141 and Powdermill Road, P.O. Box 80173, Wilmington, DE 19880-0173, USA.
| | | | | | | | | |
Collapse
|
16
|
Schneiders T, Barbosa TM, McMurry LM, Levy SB. The Escherichia coli Transcriptional Regulator MarA Directly Represses Transcription of purA and hdeA. J Biol Chem 2004; 279:9037-42. [PMID: 14701822 DOI: 10.1074/jbc.m313602200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Escherichia coli MarA protein mediates a response to multiple environmental stresses through the activation or repression in vivo of a large number of chromosomal genes. Transcriptional activation for a number of these genes has been shown to occur via direct interaction of MarA with a 20-bp degenerate asymmetric "marbox" sequence. It was not known whether repression by MarA was also direct. We found that purified MarA was sufficient in vitro to repress transcription of both purA and hdeA. Transcription and electrophoretic mobility shift experiments in vitro using mutant promoters suggested that the marbox involved in the repression overlapped the -35 promoter motif and was in the "backward" orientation. This organization contrasts with that of the class II promoters activated by MarA, in which the marbox also overlaps the -35 motif but is in the "forward" orientation. We conclude that MarA, a member of the AraC/XylS family, can act directly as a repressor or an activator, depending on the position and orientation of the marbox within a promoter.
Collapse
Affiliation(s)
- Thamarai Schneiders
- Center for Adaptation Genetics and Drug Resistance and the Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | | | |
Collapse
|
17
|
Schmitz G, Downs DM. Reduced transaminase B (IlvE) activity caused by the lack of yjgF is dependent on the status of threonine deaminase (IlvA) in Salmonella enterica serovar Typhimurium. J Bacteriol 2004; 186:803-10. [PMID: 14729707 PMCID: PMC321505 DOI: 10.1128/jb.186.3.803-810.2004] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The YjgF/YER057c/UK114 family is a highly conserved class of proteins that is represented in the three domains of life. Thus far, a biochemical function demonstrated for these proteins in vivo or in vitro has yet to be defined. In several organisms, strains lacking a YjgF homolog have a defect in branched-chain amino acid biosynthesis. This study probes the connection between yjgF and isoleucine biosynthesis in Salmonella enterica. In strains lacking yjgF the specific activity of transaminase B, catalyzing the last step in the synthesis of isoleucine, was reduced. In the absence of yjgF, transaminase B activity could be restored by inhibiting threonine deaminase, the first enzymatic step in isoleucine biosynthesis. Strains lacking yjgF showed an increased sensitivity to sulfometruron methyl, a potent inhibitor of acetolactate synthase. Based on work described here and structural reports in the literature, we suggest a working model in which YjgF has a role in protecting the cell from toxic effects of imbalanced ketoacid pools.
Collapse
Affiliation(s)
- George Schmitz
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
18
|
Nivens DE, McKnight TE, Moser SA, Osbourn SJ, Simpson ML, Sayler GS. Bioluminescent bioreporter integrated circuits: potentially small, rugged and inexpensive whole-cell biosensors for remote environmental monitoring. J Appl Microbiol 2004; 96:33-46. [PMID: 14678157 DOI: 10.1046/j.1365-2672.2003.02114.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- D E Nivens
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN 37996, USA
| | | | | | | | | | | |
Collapse
|
19
|
Sabina J, Dover N, Templeton LJ, Smulski DR, Söll D, LaRossa RA. Interfering with different steps of protein synthesis explored by transcriptional profiling of Escherichia coli K-12. J Bacteriol 2003; 185:6158-70. [PMID: 14526028 PMCID: PMC225041 DOI: 10.1128/jb.185.20.6158-6170.2003] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli responses to four inhibitors that interfere with translation were monitored at the transcriptional level. A DNA microarray method provided a comprehensive view of changes in mRNA levels after exposure to these agents. Real-time reverse transcriptase PCRanalysis served to verify observations made with microarrays, and a chromosomal grpE::lux operon fusion was employed to specifically monitor the heat shock response. 4-Azaleucine, a competitive inhibitor of leucyl-tRNA synthetase, surprisingly triggered the heat shock response. Administration of mupirocin, an inhibitor of isoleucyl-tRNA synthetase activity, resulted in changes reminiscent of the stringent response. Treatment with kasugamycin and puromycin (targeting ribosomal subunit association as well as its peptidyl-transferase activity) caused accumulation of mRNAs from ribosomal protein operons. Abundant biosynthetic transcripts were often significantly diminished after treatment with any of these agents. Exposure of a relA strain to mupirocin resulted in accumulation of ribosomal protein operon transcripts. However, the relA strain's response to the other inhibitors was quite similar to that of the wild-type strain.
Collapse
Affiliation(s)
- Jeffrey Sabina
- Central Research and Development, DuPont Company, Wilmington, Delaware 19880-0173, USA
| | | | | | | | | | | |
Collapse
|
20
|
Setty Y, Mayo AE, Surette MG, Alon U. Detailed map of a cis-regulatory input function. Proc Natl Acad Sci U S A 2003; 100:7702-7. [PMID: 12805558 PMCID: PMC164651 DOI: 10.1073/pnas.1230759100] [Citation(s) in RCA: 266] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Most genes are regulated by multiple transcription factors that bind specific sites in DNA regulatory regions. These cis-regulatory regions perform a computation: the rate of transcription is a function of the active concentrations of each of the input transcription factors. Here, we used accurate gene expression measurements from living cell cultures, bearing GFP reporters, to map in detail the input function of the classic lacZYA operon of Escherichia coli, as a function of about a hundred combinations of its two inducers, cAMP and isopropyl beta-d-thiogalactoside (IPTG). We found an unexpectedly intricate function with four plateau levels and four thresholds. This result compares well with a mathematical model of the binding of the regulatory proteins cAMP receptor protein (CRP) and LacI to the lac regulatory region. The model is also used to demonstrate that with few mutations, the same region could encode much purer AND-like or even OR-like functions. This possibility means that the wild-type region is selected to perform an elaborate computation in setting the transcription rate. The present approach can be generally used to map the input functions of other genes.
Collapse
Affiliation(s)
- Y Setty
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | |
Collapse
|
21
|
Abstract
The availability of genome sequences is revolutionizing the field of microbiology. Genetic methods are being modified to facilitate rapid analysis at a genome-wide level and are blossoming for human pathogens that were previously considered intractable. This revolution coincided with a growing concern about the emergence of microbial drug resistance, compelling the pharmaceutical industry to search for new antimicrobial agents. The availability of the new technologies, combined with many genetic strategies, has changed the way that researchers approach antibacterial drug discovery.
Collapse
Affiliation(s)
- Lynn Miesel
- Department of Antimicrobial Therapy, Schering-Plough Research Institute, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033-0530, USA.
| | | | | |
Collapse
|
22
|
Cheng B, Rui S, Ji C, Gong VW, Van Dyk TK, Drolet M, Tse-Dinh YC. RNase H overproduction allows the expression of stress-induced genes in the absence of topoisomerase I. FEMS Microbiol Lett 2003; 221:237-42. [PMID: 12725933 DOI: 10.1016/s0378-1097(03)00209-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Induction of stress proteins in response to heat shock was found to be reduced significantly in Escherichia coli with DeltatopA mutation. RNase H overexpression in the DeltatopA mutant partially restored the sigma(32)-dependent induction of stress genes in response to high temperature and ethanol. The presence of overexpressed RNase H also improved the survival rate of the DeltatopA mutant after high temperature and oxidative challenges. Topoisomerase I is likely required during stress response for preventing accumulation of transcription-driven hypernegative supercoiling and R-loop formation at induced stress genes loci.
Collapse
Affiliation(s)
- Bokun Cheng
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Rhodius V, Van Dyk TK, Gross C, LaRossa RA. Impact of genomic technologies on studies of bacterial gene expression. Annu Rev Microbiol 2003; 56:599-624. [PMID: 12142487 DOI: 10.1146/annurev.micro.56.012302.160925] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The ability to simultaneously monitor expression of all genes in any bacterium whose genome has been sequenced has only recently become available. This requires not only careful experimentation but also that voluminous data be organized and interpreted. Here we review the emerging technologies that are impacting the study of bacterial global regulatory mechanisms with a view toward discussing both perceived best practices and the current state of the art. To do this, we concentrate upon examples using Escherichia coli and Bacillus subtilis because prior work in these organisms provides a sound basis for comparison.
Collapse
Affiliation(s)
- Virgil Rhodius
- Department of Stomatology, University of California, San Francisco, 94143, USA.
| | | | | | | |
Collapse
|
24
|
Prüss BM, Campbell JW, Van Dyk TK, Zhu C, Kogan Y, Matsumura P. FlhD/FlhC is a regulator of anaerobic respiration and the Entner-Doudoroff pathway through induction of the methyl-accepting chemotaxis protein Aer. J Bacteriol 2003; 185:534-43. [PMID: 12511500 PMCID: PMC145316 DOI: 10.1128/jb.185.2.534-543.2003] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The regulation by two transcriptional activators of flagellar expression (FlhD and FlhC) and the chemotaxis methyl-accepting protein Aer was studied with glass slide DNA microarrays. An flhD::Kan insertion and an aer deletion were independently introduced into two Escherichia coli K-12 strains, and the effects upon gene regulation were investigated. Altogether, the flhD::Kan insertion altered the expression of 29 operons of known function. Among them was Aer, which in turn regulated a subset of these operons, namely, the ones involved in anaerobic respiration and the Entner-Doudoroff pathway. In addition, FlhD/FlhC repressed enzymes involved in aerobic respiration and regulated many other metabolic enzymes and transporters in an Aer-independent manner. Expression of 12 genes of uncharacterized function was also affected. FlhD increased gltBD, gcvTHP, and ompT expression. The regulation of half of these genes was subsequently confirmed with reporter gene fusions, enzyme assays, and real-time PCR. Growth phenotypes of flhD and flhC mutants were determined with Phenotype MicroArrays and correlated with gene expression.
Collapse
Affiliation(s)
- Birgit M Prüss
- Department of Microbiology and Immunology, University of Illinois at Chicago, 60612-7344, USA.
| | | | | | | | | | | |
Collapse
|
25
|
Martin RG, Rosner JL. Genomics of the marA/soxS/rob regulon of Escherichia coli: identification of directly activated promoters by application of molecular genetics and informatics to microarray data. Mol Microbiol 2002; 44:1611-24. [PMID: 12067348 DOI: 10.1046/j.1365-2958.2002.02985.x] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Microarray analyses are providing a plethora of data concerning transcriptional responses to specific gene regulators and their inducers but do not distinguish between direct and indirect responses. Here, we identify directly activated promoters of the overlapping marA, soxS and rob regulon(s) of Escherichia coli by applying informatics, genomics and molecular genetics to microarray data obtained by others. Those studies found that overexpression of marA, or the treatment of cells with salicylate to derepress marA, or treatment with paraquat to induce soxS, resulted in elevated transcription of 153 genes. However, only 27 out of the promoters showed increased transcription under at least two of the aforementioned conditions and eight of those were previously known to be directly activated. A computer algorithm was used to identify potential activator binding sites located upstream of the remaining 19 promoters of this subset, and conventional genetic and biochemical approaches were applied to test whether these sites are critical for activation by the homologous MarA, SoxS and Rob transcriptional activators. Only seven out of the 19 promoters were found to be activated when fused to lacZ and tested as single lysogens. All seven contained an essential activator binding site. The remaining promoters were insensitive to stimulation by the inducers suggesting that the great majority of elevated microarray transcripts either were misidentified or resulted from indirect effects requiring sequences outside of the promoter region. We estimate that the total number of directly activated promoters in the regulon is less than 40.
Collapse
Affiliation(s)
- Robert G Martin
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases/NIH, Bethesda, MD 20892-0560, USA.
| | | |
Collapse
|
26
|
Rosner JL, Dangi B, Gronenborn AM, Martin RG. Posttranscriptional activation of the transcriptional activator Rob by dipyridyl in Escherichia coli. J Bacteriol 2002; 184:1407-16. [PMID: 11844771 PMCID: PMC134866 DOI: 10.1128/jb.184.5.1407-1416.2002] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The transcriptional activator Rob consists of an N-terminal domain (NTD) of 120 amino acids responsible for DNA binding and promoter activation and a C-terminal domain (CTD) of 169 amino acids of unknown function. Although several thousand molecules of Rob are normally present per Escherichia coli cell, they activate promoters of the rob regulon poorly. We report here that in cells treated with either 2,2"- or 4,4"-dipyridyl (the latter is not a metal chelator), Rob-mediated transcription of various rob regulon promoters was increased substantially. A small, growth-phase-dependent effect of dipyridyl on the rob promoter was observed. However, dipyridyl enhanced Rob's activity even when rob was regulated by a heterologous (lac) promoter showing that the action of dipyridyl is mainly posttranscriptional. Mutants lacking from 30 to 166 of the C-terminal amino acids of Rob had basal levels of activity similar to that of wild-type cells, but dipyridyl treatment did not enhance this activity. Thus, the CTD is not an inhibitor of Rob but is required for activation of Rob by dipyridyl. In contrast to its relatively low activity in vivo, Rob binding to cognate DNA and activation of transcription in vitro is similar to that of MarA, which has a homologous NTD but no CTD. In vitro nuclear magnetic resonance studies demonstrated that 2,2"-dipyridyl binds to Rob but not to the CTD-truncated Rob or to MarA, suggesting that the effect of dipyridyl on Rob is direct. Thus, it appears that Rob can be converted from a low activity state to a high-activity state by a CTD-mediated mechanism in vivo or by purification in vitro.
Collapse
Affiliation(s)
- Judah L Rosner
- Laboratory of Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bldg 5. Rm. 333, Bethesda, MD 20892-0560, USA.
| | | | | | | |
Collapse
|
27
|
Martin RG, Gillette WK, Martin NI, Rosner JL. Complex formation between activator and RNA polymerase as the basis for transcriptional activation by MarA and SoxS in Escherichia coli. Mol Microbiol 2002; 43:355-70. [PMID: 11985714 DOI: 10.1046/j.1365-2958.2002.02748.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Transcriptional activation in Escherichia coli is generally considered to proceed via the formation of an activator-DNA-RNA polymerase (RNP) ternary complex. Although the order of assembly of the three elements is thermodynamically irrelevant, a prevalent idea is that the activator-DNA complex is formed first, and recruitment of RNP to the binary complex occurs subsequently. We show here that the closely related activators, MarA, SoxS and Rob, which activate the same family of genes, are capable of forming complexes with RNP core or holoenzyme in the absence of DNA. In addition, we find that the ternary MarA-DNA-RNP and SoxS-DNA-RNP complexes are more stable than the corresponding Rob-DNA-RNP complex, although the binary Rob-DNA complex is often more stable than the corresponding MarA- or SoxS-DNA complexes. These results may help to explain certain puzzling aspects of the MarA/SoxS/Rob system. We suggest that activator-RNP complexes scan the chromosome and bind promoters of the regulon more efficiently than either RNP or the activators alone.
Collapse
Affiliation(s)
- Robert G Martin
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0560, USA.
| | | | | | | |
Collapse
|
28
|
Van Dyk TK, DeRose EJ, Gonye GE. LuxArray, a high-density, genomewide transcription analysis of Escherichia coli using bioluminescent reporter strains. J Bacteriol 2001; 183:5496-505. [PMID: 11544210 PMCID: PMC95439 DOI: 10.1128/jb.183.19.5496-5505.2001] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A sequenced collection of plasmid-borne random fusions of Escherichia coli DNA to a Photorhabdus luminescens luxCDABE reporter was used as a starting point to select a set of 689 nonredundant functional gene fusions. This group, called LuxArray 1.0, represented 27% of the predicted transcriptional units in E. coli. High-density printing of the LuxArray 1.0 reporter strains to membranes on agar plates was used for simultaneous reporter gene assays of gene expression. The cellular response to nalidixic acid perturbation was analyzed using this format. As expected, fusions to promoters of LexA-controlled SOS-responsive genes dinG, dinB, uvrA, and ydjM were found to be upregulated in the presence of nalidixic acid. In addition, six fusions to genes not previously known to be induced by nalidixic acid were also reproducibly upregulated. The responses of two of these, fusions to oraA and yigN, were induced in a LexA-dependent manner by both nalidixic acid and mitomycin C, identifying these as members of the LexA regulon. The responses of the other four were neither induced by mitomycin C nor dependent on lexA function. Thus, the promoters of ycgH, intG, rihC, and a putative operon consisting of lpxA, lpxB, rnhB, and dnaE were not generally DNA damage responsive and represent a more specific response to nalidixic acid. These results demonstrate that cellular arrays of reporter gene fusions are an important alternative to DNA arrays for genomewide transcriptional analyses.
Collapse
Affiliation(s)
- T K Van Dyk
- Central Research and Development Department, DuPont Company, Wilmington, Delaware 19880-0173, USA.
| | | | | |
Collapse
|
29
|
Robbe-Saule V, Coynault C, Ibanez-Ruiz M, Hermant D, Norel F. Identification of a non-haem catalase in Salmonella and its regulation by RpoS (sigmaS). Mol Microbiol 2001; 39:1533-45. [PMID: 11260470 DOI: 10.1046/j.1365-2958.2001.02340.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We report the identification and functional analysis of katN, a gene encoding a non-haem catalase of Salmonella enterica serotype Typhimurium. katN, which is not present in Escherichia coli, is located between the yciGFE and yciD E. coli homologues in the Salmonella genome. Its predicted protein product has a molecular weight of 31 826 Da and is similar to the Mn-catalases of Lactobacillus plantarum and Thermus spp. Its product, KatN, was visualized as a 37 kDa protein in E. coli maxicells. A KatN recombinant protein, containing six histidine residues at its C-terminus, was purified, and its catalase activity was observed on a non-denaturing polyacrylamide gel. KatN was also visualized by catalase activity gel staining of bacterial cell extracts. Its expression was shown to be regulated by growth phase and rpoS. Northern blotting indicated that kat forms an operon with the upstream yciGFE genes. A putative rpoS-regulated promoter was identified upstream of yciG. Southern blotting revealed that katN is conserved within Salmonella serovars. katN homologues were found in Pseudomonas aeruginosa, Klebsiella pneumoniae, Klebsiella oxytoca, Enterobacter cloacae and Serratia marcescens. A katN mutation did not appear to affect the hydrogen peroxide (H2O2) response of Salmonella. However, the expression of katN increased the H2O2 resistance of unadapted cells in the exponential phase and of rpoS mutants in stationary phase. Thus, KatN may contribute to hydrogen peroxide resistance in Salmonella in certain environmental conditions.
Collapse
Affiliation(s)
- V Robbe-Saule
- Institut Pasteur, Unité de Génétique des Bactéries Intracellulaires, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | | | | | | | | |
Collapse
|
30
|
Van Dyk TK, Wei Y, Hanafey MK, Dolan M, Reeve MJ, Rafalski JA, Rothman-Denes LB, LaRossa RA. A genomic approach to gene fusion technology. Proc Natl Acad Sci U S A 2001; 98:2555-60. [PMID: 11226277 PMCID: PMC30176 DOI: 10.1073/pnas.041620498] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2000] [Accepted: 12/27/2000] [Indexed: 11/18/2022] Open
Abstract
Gene expression profiling provides powerful analyses of transcriptional responses to cellular perturbation. In contrast to DNA array-based methods, reporter gene technology has been underused for this application. Here we describe a genomewide, genome-registered collection of Escherichia coli bioluminescent reporter gene fusions. DNA sequences from plasmid-borne, random fusions of E. coli chromosomal DNA to a Photorhabdus luminescens luxCDABE reporter allowed precise mapping of each fusion. The utility of this collection covering about 30% of the transcriptional units was tested by analyzing individual fusions representative of heat shock, SOS, OxyR, SoxRS, and cya/crp stress-responsive regulons. Each fusion strain responded as anticipated to environmental conditions known to activate the corresponding regulatory circuit. Thus, the collection mirrors E. coli's transcriptional wiring diagram. This genomewide collection of gene fusions provides an independent test of results from other gene expression analyses. Accordingly, a DNA microarray-based analysis of mitomycin C-treated E. coli indicated elevated expression of expected and unanticipated genes. Selected luxCDABE fusions corresponding to these up-regulated genes were used to confirm or contradict the DNA microarray results. The power of partnering gene fusion and DNA microarray technology to discover promoters and define operons was demonstrated when data from both suggested that a cluster of 20 genes encoding production of type I extracellular polysaccharide in E. coli form a single operon.
Collapse
Affiliation(s)
- T K Van Dyk
- DuPont Company, Biochemical Sciences and Engineering, Wilmington, DE 19880, USA.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Jia MH, Larossa RA, Lee JM, Rafalski A, Derose E, Gonye G, Xue Z. Global expression profiling of yeast treated with an inhibitor of amino acid biosynthesis, sulfometuron methyl. Physiol Genomics 2000; 3:83-92. [PMID: 11015603 DOI: 10.1152/physiolgenomics.2000.3.2.83] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The expression pattern of 1,529 yeast genes in response to sulfometuron methyl (SM) was analyzed by DNA microarray technology. SM, a potent herbicide, inhibits acetolactate synthase, a branched-chain amino acid biosynthetic enzyme. Exposure of yeast cells to 0.2 microg/ml SM resulted in 40% growth inhibition, a Gcn4p-mediated induction of genes involved in amino acid and cofactor biosynthesis, and starvation response. The accumulation of intermediates led to the induction of stress response genes and the repression of genes involved in carbohydrate metabolism, nucleotide biosynthesis, and sulfur assimilation. Extended exposure to SM led to a relaxation of the initial response and induction of sugar transporter and ergosterol biosynthetic genes, as well as repression of histone and lipid metabolic genes. Exposure to 5 microg/ml SM resulted in >98% growth inhibition and stimulated a similar initial expression change, but with no relaxation after extended exposure. Instead, more stress response and DNA damage repair genes become induced, suggesting a serious cellular consequence. Other salient features of metabolic regulation, such as the coordinated expression of cofactor biosynthetic genes with amino acid biosynthetic ones, were evident from our data. A potential link between SM sensitivity and ergosterol metabolism was uncovered by expression profiling and confirmed by genetic analysis.
Collapse
Affiliation(s)
- M H Jia
- DuPont Central Research, DuPont Agricultural Biotechnology, Wilmington, Delaware 19880-0173, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Daunert S, Barrett G, Feliciano JS, Shetty RS, Shrestha S, Smith-Spencer W. Genetically engineered whole-cell sensing systems: coupling biological recognition with reporter genes. Chem Rev 2000; 100:2705-38. [PMID: 11749302 DOI: 10.1021/cr990115p] [Citation(s) in RCA: 339] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- S Daunert
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055
| | | | | | | | | | | |
Collapse
|
33
|
Oh JT, Cajal Y, Skowronska EM, Belkin S, Chen J, Van Dyk TK, Sasser M, Jain MK. Cationic peptide antimicrobials induce selective transcription of micF and osmY in Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1463:43-54. [PMID: 10631293 DOI: 10.1016/s0005-2736(99)00177-7] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Cationic antimicrobial peptides, such as polymyxin and cecropin, activated transcription of osmY and micF in growing Escherichia coli independently of each other. The micF response required the presence of a functional rob gene. It is intriguing that in this and other assays an identical response profile was also seen with hyperosmotic salt or sucrose gradient, two of the most commonly used traditional food preservatives. The osmY and micF transcription was not induced by hypoosmotic gradient, ionophoric peptides, uncouplers, or with other classes of membrane perturbing agents. The antibacterial peptides did not promote transcription of genes that respond to macromolecular or oxidative damage, fatty acid biosynthesis, heat shock, or depletion of proton or ion gradients. These and other results show that the antibacterial cationic peptides induce stasis in the early growth phase, and the transcriptional efficacy of antibacterial peptides correlates with their minimum inhibitory concentration, and also with their ability to mediate direct exchange of phospholipids between vesicles. The significance of these results is developed as the hypothesis that the cationic peptide antimicrobials stress growth of Gram-negative organisms by making contacts between the two phospholipid interfaces in the periplasmic space and prevent the hyperosmotic wrinkling of the cytoplasmic membrane. Broader significance of these results, and of the hypothesis that the peptide mediated contacts between the periplasmic phospholipid interfaces are the primary triggers, is discussed in relation to antibacterial resistance.
Collapse
Affiliation(s)
- J T Oh
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Chang L, Wei LI, Audia JP, Morton RA, Schellhorn HE. Expression of the Escherichia coli NRZ nitrate reductase is highly growth phase dependent and is controlled by RpoS, the alternative vegetative sigma factor. Mol Microbiol 1999; 34:756-66. [PMID: 10564515 DOI: 10.1046/j.1365-2958.1999.01637.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the absence of oxygen, many bacteria preferentially use nitrate as a terminal electron acceptor for anaerobic respiration. In Escherichia coli, there are two membrane-bound, differentially regulated nitrate reductases. While the physiological basis for this metabolic redundancy is not completely understood, during exponential growth, synthesis of NRA is greatly induced by anaerobiosis plus nitrate, whereas NRZ is expressed at a low level that is not influenced by anaerobiosis or nitrate. In the course of identifying genes controlled by the stationary phase regulatory factor RpoS (sigmas), we found that the expression of NRZ is induced during entry into stationary phase and highly dependent on this alternative sigma factor. Expression studies, using operon fusions and nitrate reductase assays, revealed that the NRZ operon is controlled mainly at the level of transcription and is induced 10-fold at the onset of stationary phase in rich media. Consistent with previous reports of RpoS expression, the RpoS dependency of NRZ in minimal media was very high (several hundredfold). We also observed a fivefold stationary phase induction of NRZ in an rpoS background, indicating that other regulatory factors, besides RpoS, are probably involved in transcriptional control of NRZ. The RpoS dependence of NRZ expression was confirmed by Northern analyses using RNA extracted from wild-type and rpoS- strains sampled in exponential and stationary phase. In toto, these data indicate that RpoS-mediated regulation of NRZ may be an important physiological adaptation that allows the cell to use nitrate under stress-associated conditions.
Collapse
Affiliation(s)
- L Chang
- Department of Biology, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | | | | | | | | |
Collapse
|
35
|
Martin RG, Gillette WK, Rhee S, Rosner JL. Structural requirements for marbox function in transcriptional activation of mar/sox/rob regulon promoters in Escherichia coli: sequence, orientation and spatial relationship to the core promoter. Mol Microbiol 1999; 34:431-41. [PMID: 10564485 DOI: 10.1046/j.1365-2958.1999.01599.x] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The promoters of the mar/sox/rob regulon of Escherichia coli contain a binding site (marbox) for the homologous transcriptional activators MarA, SoxS and Rob. In spite of data from footprinting studies, the marbox has not been precisely defined because of its degeneracy and asymmetry and seemingly variable location with respect to the -10 and -35 hexamers for RNA polymerase (RNP) binding. Here, we use DNA retardation studies and hybrid promoters to identify optimally binding 20 bp minimal marboxes from a number of promoters. This has yielded a more defined marbox consensus sequence (AYnGCACnnWnnRYYAAAYn) and has led to the demonstration that some marboxes are inverted relative to others. Using transcriptional fusions to lacZ, we have found that only one marbox orientation is functional at a given location. Moreover, the functional orientation is determined by marbox location: marboxes that are 15 or more basepairs upstream of the -35 hexamer are oriented opposite those closer to the -35 hexamer. Marbox orientation and the spacing between marbox and signals for RNP binding are critical for transcriptional activation, presumably to align MarA with RNP.
Collapse
Affiliation(s)
- R G Martin
- Laboratory of Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, Bldg. 5, Rm. 333, NIH, Bethesda, MD 20892-0560, USA.
| | | | | | | |
Collapse
|
36
|
Ben-Jacob E, Cohen I, Gutnick DL. Cooperative organization of bacterial colonies: from genotype to morphotype. Annu Rev Microbiol 1999; 52:779-806. [PMID: 9891813 DOI: 10.1146/annurev.micro.52.1.779] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In nature, bacteria must often cope with difficult environmental conditions. To do so they have developed sophisticated cooperative behavior and intricate communication pathways. Utilizing these elements, motile microbial colonies frequently develop complex patterns in response to adverse growth conditions on hard surfaces under conditions of energy limitation. We employ the term morphotype to refer to specific properties of colonial development. The morphologies we discuss include a tip-splitting (T) morphotype, chiral (C) morphotype, and vortex (V) morphotype. A generic modeling approach was developed by combining a detailed study of the cellular behavior and dynamics during colonial development and invoking concepts derived from the study of pattern formation in nonliving systems. Analysis of patterning behavior of the models suggests bacterial processes whereby communication leads to self-organization by using cooperative cellular interactions. New features emerging from the model include various models of cell-cell signaling, such as long-range chemorepulsion, short-range chemoattraction, and, in the case of the V morphotype, rotational chemotaxis. In this regard, pattern formation in microorganisms can be viewed as the result of the exchange of information between the micro-level (the individual cells) and the macro-level (the colony).
Collapse
Affiliation(s)
- E Ben-Jacob
- School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Israel
| | | | | |
Collapse
|
37
|
Oh JT, Cajal Y, Dhurjati PS, Van Dyk TK, Jain MK. Cecropins induce the hyperosmotic stress response in Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1415:235-45. [PMID: 9858741 DOI: 10.1016/s0005-2736(98)00195-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cecropin A and B, below or near their minimum inhibitory concentrations in viable Escherichia coli, interfered with the rapid NaCl-induced hyperosmotic shrinkage of the cytoplasmic volume (plasmolysis), and also activated the promoter of the hyperosmotic stress gene osmY. The same promoter was also expressed by hyperosmolar NaCl or sucrose, two of the most commonly used antimicrobial food preservatives. Stress responses were monitored during the logarithmic growth phase of E. coli strains that contain specific promoters fused to a luxCDABE operon on a plasmid. The luminescence assay, developed to monitor the transcriptional response to stresses, is based on the premise that organisms often respond and adapt to sublethal environmental adversities by increased expression of stress proteins to restore homeostasis. The luminescence response from these fusion strains to a specific stress occurs as the transcription at the promoter site is activated. Cecropins induced luminescence response only from the osmY-luxCDABE fusion, but not the corresponding stress promoter activation associated with macromolecular or oxidative damage, or leakage of the cytoplasmic content including the proton gradient. The inhibitory effect of cecropins on plasmolysis is interpreted to suggest that the primary locus of action of these antimicrobial peptides in the periplasmic space is on the coupling between the inner and outer membrane.
Collapse
Affiliation(s)
- J T Oh
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | | | | | | | | |
Collapse
|
38
|
Schellhorn HE, Audia JP, Wei LI, Chang L. Identification of conserved, RpoS-dependent stationary-phase genes of Escherichia coli. J Bacteriol 1998; 180:6283-91. [PMID: 9829938 PMCID: PMC107714 DOI: 10.1128/jb.180.23.6283-6291.1998] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During entry into stationary phase, many free-living, gram-negative bacteria express genes that impart cellular resistance to environmental stresses, such as oxidative stress and osmotic stress. Many genes that are required for stationary-phase adaptation are controlled by RpoS, a conserved alternative sigma factor, whose expression is, in turn, controlled by many factors. To better understand the numbers and types of genes dependent upon RpoS, we employed a genetic screen to isolate more than 100 independent RpoS-dependent gene fusions from a bank of several thousand mutants harboring random, independent promoter-lacZ operon fusion mutations. Dependence on RpoS varied from 2-fold to over 100-fold. The expression of all fusion mutations was normal in an rpoS/rpoS+ merodiploid (rpoS background transformed with an rpoS-containing plasmid). Surprisingly, the expression of many RpoS-dependent genes was growth phase dependent, albeit at lower levels, even in an rpoS background, suggesting that other growth-phase-dependent regulatory mechanisms, in addition to RpoS, may control postexponential gene expression. These results are consistent with the idea that many growth-phase-regulated functions in Escherichia coli do not require RpoS for expression. The identities of the 10 most highly RpoS-dependent fusions identified in this study were determined by DNA sequence analysis. Three of the mutations mapped to otsA, katE, ecnB, and osmY-genes that have been previously shown by others to be highly RpoS dependent. The six remaining highly-RpoS-dependent fusion mutations were located in other genes, namely, gabP, yhiUV, o371, o381, f186, and o215.
Collapse
Affiliation(s)
- H E Schellhorn
- Department of Biology, McMaster University, Hamilton, Ontario L8S 4K1, Canada.
| | | | | | | |
Collapse
|
39
|
Abstract
Our research has focused on bacterial gene products that protect cells from damage by near-ultraviolet radiation (near-UV) including gene products involved in the subsequent recovery process. Protective gene products include such anti-oxidants as catalases, superoxide dismutases and glutathione reductase. Near-UV damage recovery products include exonuclease III and DNA-glycosylases. Perhaps more critical than the products of structural genes are certain regulatory gene products that are triggered upon excess near-UV oxidation and lead to synthesis of entire batteries of anti-oxidant enzymes, DNA repair enzymes, and DNA-integrity proteins. Our recent experiments have focused on RpoS and its interaction with OxyR, two proteins that regulate the synthesis of molecules that protect cells from near-UV and other oxidative stresses.
Collapse
Affiliation(s)
- A Eisenstark
- Cancer Research Center, Columbia, MO 65201, USA.
| |
Collapse
|
40
|
Abstract
This map is an update of the edition 9 map by Berlyn et al. (M. K. B. Berlyn, K. B. Low, and K. E. Rudd, p. 1715-1902, in F. C. Neidhardt et al., ed., Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed., vol. 2, 1996). It uses coordinates established by the completed sequence, expressed as 100 minutes for the entire circular map, and adds new genes discovered and established since 1996 and eliminates those shown to correspond to other known genes. The latter are included as synonyms. An alphabetical list of genes showing map location, synonyms, the protein or RNA product of the gene, phenotypes of mutants, and reference citations is provided. In addition to genes known to correspond to gene sequences, other genes, often older, that are described by phenotype and older mapping techniques and that have not been correlated with sequences are included.
Collapse
Affiliation(s)
- M K Berlyn
- Department of Biology and School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut 06520-8104, USA.
| |
Collapse
|
41
|
Oh JT, Van Dyk TK, Cajal Y, Dhurjati PS, Sasser M, Jain MK. Osmotic stress in viable Escherichia coli as the basis for the antibiotic response by polymyxin B. Biochem Biophys Res Commun 1998; 246:619-23. [PMID: 9618261 DOI: 10.1006/bbrc.1998.8682] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cationic antimicrobial peptides, such as polymyxin B (PxB), below growth inhibitory concentration induce expression of osmY gene in viable E. coli without leakage of solutes and protons. osmY expression is also a locus of hyperosmotic stress response induced by common food preservatives, such as hypertonic NaCl or sucrose. High selectivity of PxB against Gram-negative organisms and the basis for the hyperosmotic stress response at sublethal PxB concentrations is attributed to PxB-induced mixing of anionic phospholipid between the outer layer of the cytoplasmic membrane with phospholipids in the inner layer of the outer membrane. This explanation is supported by PxB-mediated rapid and direct exchange of anionic phospholipid between vesicles. This mechanism is consistent with the observation that genetically stable resistance against PxB could not be induced by mutagenesis.
Collapse
Affiliation(s)
- J T Oh
- Department of Chemistry, University of Delaware, Newark 19716, USA
| | | | | | | | | | | |
Collapse
|