1
|
Kocik RA, Gasch AP. Regulated resource reallocation is transcriptionally hard wired into the yeast stress response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.03.626567. [PMID: 39677602 PMCID: PMC11642900 DOI: 10.1101/2024.12.03.626567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Many organisms maintain generalized stress responses activated by adverse conditions. Although details vary, a common theme is the redirection of transcriptional and translational capacity away from growth-promoting genes and toward defense genes. Yet the precise roles of these coupled programs are difficult to dissect. Here we investigated Saccharomyces cerevisiae responding to salt as a model stressor. We used molecular, genomic, and single-cell microfluidic methods to examine the interplay between transcription factors Msn2 and Msn4 that induce stress-defense genes and Dot6 and Tod6 that transiently repress growth-promoting genes during stress. Surprisingly, loss of Dot6/Tod6 led to slower acclimation to salt, whereas loss of Msn2/4 produced faster growth during stress. This supports a model where transient repression of growth-promoting genes accelerates the Msn2/4 response, which is essential for acquisition of subsequent peroxide tolerance. Remarkably, we find that Msn2/4 regulate DOT6 mRNA production, influence Dot6 activation dynamics, and are required for full repression of growth-promoting genes. Thus, Msn2/4 directly regulate resource reallocation needed to mount their own response. We discuss broader implications for common stress responses across organisms.
Collapse
Affiliation(s)
- Rachel A. Kocik
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53706
| | - Audrey P. Gasch
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53706
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
2
|
Galello F, Bermúdez-Moretti M, Martínez MCO, Rossi S, Portela P. The cAMP-PKA signalling crosstalks with CWI and HOG-MAPK pathways in yeast cell response to osmotic and thermal stress. MICROBIAL CELL (GRAZ, AUSTRIA) 2024; 11:90-105. [PMID: 38495453 PMCID: PMC10941952 DOI: 10.15698/mic2024.03.818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/13/2024] [Accepted: 02/22/2024] [Indexed: 03/19/2024]
Abstract
The yeast Saccharomyces cerevisiae is widely used in food and non-food industries. During industrial fermentation yeast strains are exposed to fluctuations in oxygen concentration, osmotic pressure, pH, ethanol concentration, nutrient availability and temperature. Fermentation performance depends on the ability of the yeast strains to adapt to these changes. Suboptimal conditions trigger responses to the external stimuli to allow homeostasis to be maintained. Stress-specific signalling pathways are activated to coordinate changes in transcription, translation, protein function, and metabolic fluxes while a transient arrest of growth and cell cycle progression occur. cAMP-PKA, HOG-MAPK and CWI signalling pathways are turned on during stress response. Comprehension of the mechanisms involved in the responses and in the adaptation to these stresses during fermentation is key to improving this industrial process. The scope of this review is to outline the advancement of knowledge about the cAMP-PKA signalling and the crosstalk of this pathway with the CWI and HOG-MAPK cascades in response to the environmental challenges heat and hyperosmotic stress.
Collapse
Affiliation(s)
- Fiorella Galello
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET). Buenos Aires, Argentina
| | - Mariana Bermúdez-Moretti
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET). Buenos Aires, Argentina
| | - María Clara Ortolá Martínez
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET). Buenos Aires, Argentina
| | - Silvia Rossi
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET). Buenos Aires, Argentina
| | - Paula Portela
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET). Buenos Aires, Argentina
| |
Collapse
|
3
|
Mühlhofer M, Offensperger F, Reschke S, Wallmann G, Csaba G, Berchtold E, Riedl M, Blum H, Haslbeck M, Zimmer R, Buchner J. Deletion of the transcription factors Hsf1, Msn2 and Msn4 in yeast uncovers transcriptional reprogramming in response to proteotoxic stress. FEBS Lett 2024; 598:635-657. [PMID: 38366111 DOI: 10.1002/1873-3468.14821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 02/18/2024]
Abstract
The response to proteotoxic stresses such as heat shock allows organisms to maintain protein homeostasis under changing environmental conditions. We asked what happens if an organism can no longer react to cytosolic proteotoxic stress. To test this, we deleted or depleted, either individually or in combination, the stress-responsive transcription factors Msn2, Msn4, and Hsf1 in Saccharomyces cerevisiae. Our study reveals a combination of survival strategies, which together protect essential proteins. Msn2 and 4 broadly reprogram transcription, triggering the response to oxidative stress, as well as biosynthesis of the protective sugar trehalose and glycolytic enzymes, while Hsf1 mainly induces the synthesis of molecular chaperones and reverses the transcriptional response upon prolonged mild heat stress (adaptation).
Collapse
Affiliation(s)
- Moritz Mühlhofer
- Center for Protein Assemblies, Department of Bioscience, Technische Universität München, Garching, Germany
| | - Felix Offensperger
- Institute of Bioinformatics, Department of Informatics, Ludwig-Maximilians-Universität München, München, Germany
| | - Sarah Reschke
- Laboratory for Functional Genome Analysis at the Gene Center, LMU München, München, Germany
| | - Georg Wallmann
- Institute of Bioinformatics, Department of Informatics, Ludwig-Maximilians-Universität München, München, Germany
| | - Gergely Csaba
- Institute of Bioinformatics, Department of Informatics, Ludwig-Maximilians-Universität München, München, Germany
| | - Evi Berchtold
- Institute of Bioinformatics, Department of Informatics, Ludwig-Maximilians-Universität München, München, Germany
| | - Maximilian Riedl
- Center for Protein Assemblies, Department of Bioscience, Technische Universität München, Garching, Germany
| | - Helmut Blum
- Laboratory for Functional Genome Analysis at the Gene Center, LMU München, München, Germany
| | - Martin Haslbeck
- Center for Protein Assemblies, Department of Bioscience, Technische Universität München, Garching, Germany
| | - Ralf Zimmer
- Institute of Bioinformatics, Department of Informatics, Ludwig-Maximilians-Universität München, München, Germany
| | - Johannes Buchner
- Center for Protein Assemblies, Department of Bioscience, Technische Universität München, Garching, Germany
| |
Collapse
|
4
|
D'Alessio Y, D'Alfonso A, Camilloni G. Chromatin conformations of HSP12 during transcriptional activation in the Saccharomyces cerevisiae stationary phase. Adv Biol Regul 2023; 90:100986. [PMID: 37741159 DOI: 10.1016/j.jbior.2023.100986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/17/2023] [Accepted: 09/16/2023] [Indexed: 09/25/2023]
Abstract
During evolution, living cells have developed sophisticated molecular and physiological processes to cope with a variety of stressors. These mechanisms, which collectively constitute the Environmental Stress Response, involve the activation/repression of hundreds of genes that are regulated to respond rapidly and effectively to protect the cell. The main stressors include sudden increases in environmental temperature and osmolarity, exposure to heavy metals, nutrient limitation, ROS accumulation, and protein-damaging events. The growth stages of the yeast S. cerevisiae proceed from the exponential to the diauxic phase, finally reaching the stationary phase. It is in this latter phase that the main stressor events are more active. In the present work, we aim to understand whether the responses evoked by the sudden onset of a stressor, like what happens to cells going through the stationary phase, would be different or similar to those induced by a gradual increase in the same stimulus. To this aim, we studied the expression of the HSP12 gene of the HSP family of proteins, typically induced by stress conditions, with a focus on the role of chromatin in this regulation. Analyses of nucleosome occupancy and three-dimensional chromatin conformation suggest the activation of a different response pathway upon a sudden vs a gradual onset of a stress stimulus. Here we show that it is the three-dimensional chromatin structure of HSP12, rather than nucleosome remodeling, that becomes altered in HSP12 transcription during the stationary phase.
Collapse
Affiliation(s)
- Yuri D'Alessio
- Dipartimento di Biologia e Biotecnologie, University of Rome, Sapienza Piazzale A. Moro 5, 00185, Rome, Italy.
| | - Anna D'Alfonso
- Dipartimento di Biologia e Biotecnologie, University of Rome, Sapienza Piazzale A. Moro 5, 00185, Rome, Italy.
| | - Giorgio Camilloni
- Dipartimento di Biologia e Biotecnologie, University of Rome, Sapienza Piazzale A. Moro 5, 00185, Rome, Italy.
| |
Collapse
|
5
|
Nguyen V, Xue P, Li Y, Zhao H, Lu T. Controlling circuitry underlies the growth optimization of Saccharomyces cerevisiae. Metab Eng 2023; 80:173-183. [PMID: 37739159 PMCID: PMC11089650 DOI: 10.1016/j.ymben.2023.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 08/29/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023]
Abstract
Microbial growth emerges from coordinated synthesis of various cellular components from limited resources. In Saccharomyces cerevisiae, cyclic AMP (cAMP)-mediated signaling is shown to orchestrate cellular metabolism; however, it remains unclear quantitatively how the controlling circuit drives resource partition and subsequently shapes biomass growth. Here we combined experiment with mathematical modeling to dissect the signaling-mediated growth optimization of S. cerevisiae. We showed that, through cAMP-mediated control, the organism achieves maximal or nearly maximal steady-state growth during the utilization of multiple tested substrates as well as under perturbations impairing glucose uptake. However, the optimal cAMP concentration varies across cases, suggesting that different modes of resource allocation are adopted for varied conditions. Under settings with nutrient alterations, S. cerevisiae tunes its cAMP level to dynamically reprogram itself to realize rapid adaptation. Moreover, to achieve growth maximization, cells employ additional regulatory systems such as the GCN2-mediated amino acid control. This study establishes a systematic understanding of global resource allocation in S. cerevisiae, providing insights into quantitative yeast physiology as well as metabolic strain engineering for biotechnological applications.
Collapse
Affiliation(s)
- Viviana Nguyen
- Department of Physics, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA; Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Pu Xue
- Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA; Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA; Carl R Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Yifei Li
- Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA; Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Huimin Zhao
- Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA; Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA; Carl R Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA; Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA; Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Ting Lu
- Department of Physics, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA; Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA; Carl R Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA; Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA; Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA; National Center for Supercomputing Applications, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
6
|
Duy DL, Kim N. Yeast transcription factor Msn2 binds to G4 DNA. Nucleic Acids Res 2023; 51:9643-9657. [PMID: 37615577 PMCID: PMC10570036 DOI: 10.1093/nar/gkad684] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 08/03/2023] [Accepted: 08/15/2023] [Indexed: 08/25/2023] Open
Abstract
Sequences capable of forming quadruplex or G4 DNA are prevalent in the promoter regions. The transformation from canonical to non-canonical secondary structure apparently regulates transcription of a number of human genes. In the budding yeast Saccharomyces cerevisiae, we identified 37 genes with a G4 motif in the promoters including 20 genes that contain stress response element (STRE) overlapping a G4 motif. STRE is the binding site of stress response regulators Msn2 and Msn4, transcription factors belonging to the C2H2 zinc-finger protein family. We show here that Msn2 binds directly to the G4 DNA structure through its zinc-finger domain with a dissociation constant similar to that of STRE-binding and that, in a stress condition, Msn2 is enriched at G4 DNA-forming loci in the yeast genome. For a large fraction of genes with G4/STRE-containing promoters, treating with G4-ligands led to significant elevations in transcription levels. Such transcriptional elevation was greatly diminished in a msn2Δ msn4Δ background and was partly muted when the G4 motif was disrupted. Taken together, our data suggest that G4 DNA could be an alternative binding site of Msn2 in addition to STRE, and that G4 DNA formation could be an important element of transcriptional regulation in yeast.
Collapse
Affiliation(s)
- Duong Long Duy
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Nayun Kim
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
7
|
Assa D, Voorhies M, Sil A. Chemical stimuli override a temperature-dependent morphological program by reprogramming the transcriptome of a fungal pathogen. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.21.537729. [PMID: 37131633 PMCID: PMC10153268 DOI: 10.1101/2023.04.21.537729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The human fungal pathogen Histoplasma changes its morphology in response to temperature. At 37°C it grows as a budding yeast whereas at room temperature it transitions to hyphal growth. Prior work has demonstrated that 15-20% of transcripts are temperature-regulated, and that transcription factors Ryp1-4 are necessary to establish yeast growth. However, little is known about transcriptional regulators of the hyphal program. To identify TFs that regulate filamentation, we utilize chemical inducers of hyphal growth. We show that addition of cAMP analogs or an inhibitor of cAMP breakdown overrides yeast morphology, yielding inappropriate hyphal growth at 37°C. Additionally, butyrate supplementation triggers hyphal growth at 37°C. Transcriptional profiling of cultures filamenting in response to cAMP or butyrate reveals that a limited set of genes respond to cAMP while butyrate dysregulates a larger set. Comparison of these profiles to previous temperature- or morphology-regulated gene sets identifies a small set of morphology-specific transcripts. This set contains 9 TFs of which we characterized three, STU1 , FBC1 , and PAC2 , whose orthologs regulate development in other fungi. We found that each of these TFs is individually dispensable for room-temperature (RT) induced filamentation but each is required for other aspects of RT development. FBC1 and PAC2 , but not STU1 , are necessary for filamentation in response to cAMP at 37°C. Ectopic expression of each of these TFs is sufficient to induce filamentation at 37°C. Finally, PAC2 induction of filamentation at 37°C is dependent on STU1 , suggesting these TFs form a regulatory circuit that, when activated at RT, promotes the hyphal program. Importance Fungal illnesses pose a significant disease burden. However, the regulatory circuits that govern the development and virulence of fungi remain largely unknown. This study utilizes chemicals that can override the normal growth morphology of the human pathogen Histoplasma . Using transcriptomic approaches, we identify novel regulators of hyphal morphology and refine our understanding of the transcriptional circuits governing morphology in Histoplasma .
Collapse
|
8
|
Leite AC, Barbedo M, Costa V, Pereira C. The APC/C Activator Cdh1p Plays a Role in Mitochondrial Metabolic Remodelling in Yeast. Int J Mol Sci 2023; 24:ijms24044111. [PMID: 36835555 PMCID: PMC9967508 DOI: 10.3390/ijms24044111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/10/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Cdh1p is one of the two substrate adaptor proteins of the anaphase promoting complex/cyclosome (APC/C), a ubiquitin ligase that regulates proteolysis during cell cycle. In this work, using a proteomic approach, we found 135 mitochondrial proteins whose abundance was significantly altered in the cdh1Δ mutant, with 43 up-regulated proteins and 92 down-regulated proteins. The group of significantly up-regulated proteins included subunits of the mitochondrial respiratory chain, enzymes from the tricarboxylic acid cycle and regulators of mitochondrial organization, suggesting a metabolic remodelling towards an increase in mitochondrial respiration. In accordance, mitochondrial oxygen consumption and Cytochrome c oxidase activity increased in Cdh1p-deficient cells. These effects seem to be mediated by the transcriptional activator Yap1p, a major regulator of the yeast oxidative stress response. YAP1 deletion suppressed the increased Cyc1p levels and mitochondrial respiration in cdh1Δ cells. In agreement, Yap1p is transcriptionally more active in cdh1Δ cells and responsible for the higher oxidative stress tolerance of cdh1Δ mutant cells. Overall, our results unveil a new role for APC/C-Cdh1p in the regulation of the mitochondrial metabolic remodelling through Yap1p activity.
Collapse
Affiliation(s)
- Ana Cláudia Leite
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- IBMC—Instituto de Biologia Celular e Molecular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Maria Barbedo
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- IBMC—Instituto de Biologia Celular e Molecular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Vítor Costa
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- IBMC—Instituto de Biologia Celular e Molecular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Clara Pereira
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- IBMC—Instituto de Biologia Celular e Molecular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- Correspondence: ; Tel.: +351-220408800
| |
Collapse
|
9
|
Yeast Protein Kinase A Isoforms: A Means of Encoding Specificity in the Response to Diverse Stress Conditions? Biomolecules 2022; 12:biom12070958. [PMID: 35883514 PMCID: PMC9313097 DOI: 10.3390/biom12070958] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 02/07/2023] Open
Abstract
Eukaryotic cells have developed a complex circuitry of signalling molecules which monitor changes in their intra- and extracellular environments. One of the most widely studied signalling pathways is the highly conserved cyclic AMP (cAMP)/protein kinase A (PKA) pathway, which is a major glucose sensing circuit in the yeast Saccharomyces cerevisiae. PKA activity regulates diverse targets in yeast, positively activating the processes that are associated with rapid cell growth (e.g., fermentative metabolism, ribosome biogenesis and cell division) and negatively regulating the processes that are associated with slow growth, such as respiratory growth, carbohydrate storage and entry into stationary phase. As in higher eukaryotes, yeast has evolved complexity at the level of the PKA catalytic subunit, and Saccharomyces cerevisiae expresses three isoforms, denoted Tpk1-3. Despite evidence for isoform differences in multiple biological processes, the molecular basis of PKA signalling specificity remains poorly defined, and many studies continue to assume redundancy with regards to PKA-mediated regulation. PKA has canonically been shown to play a key role in fine-tuning the cellular response to diverse stressors; however, recent studies have now begun to interrogate the requirement for individual PKA catalytic isoforms in coordinating distinct steps in stress response pathways. In this review, we discuss the known non-redundant functions of the Tpk catalytic subunits and the evolving picture of how these isoforms establish specificity in the response to different stress conditions.
Collapse
|
10
|
Miyata N, Ito T, Nakashima M, Fujii S, Kuge O. Mitochondrial phosphatidylethanolamine synthesis affects mitochondrial energy metabolism and quiescence entry through attenuation of Snf1/AMPK signaling in yeast. FASEB J 2022; 36:e22355. [PMID: 35639425 DOI: 10.1096/fj.202101600rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 11/11/2022]
Abstract
The Ups2-Mdm35 complex mediates intramitochondrial phosphatidylserine (PS) transport to facilitate mitochondrial phosphatidylethanolamine (PE) synthesis. In the present study, we found that ups2∆ yeast showed increased mitochondrial ATP production and enhanced quiescence (G0) entry in the post-diauxic shift phase. Transcriptomic and biochemical analyses revealed that the depletion of Ups2 leads to overactivation of the yeast AMPK homolog Snf1. Inactivation of Snf1 by depletion of an Snf1-activating kinase, Sak1 canceled the changes in mitochondrial ATP production and quiescence entry observed in ups2∆ cells. Furthermore, among the factors regulated by Snf1, upregulation of pyruvate carboxylase, Pyc1 and downregulation of acetyl-CoA carboxylase, Acc1, respectively, were sufficient to increase mitochondrial ATP production and quiescence entry. These results suggested that a normal PE synthesis mediated by Ups2-Mdm35 complex attenuates Snf1/AMPK activity, and that Snf1-mediated regulation of carbon metabolisms has great impacts on mitochondrial energy metabolism and quiescence entry. We also found that depletion of Ups2 together with the cell-cycle regulators Whi5 and Whi7, functional orthologs of the Rb1 tumor suppressor, caused a synthetic growth defect in yeast. Similarly, knockdown of PRELID3b, the human homolog of Ups2, decreased the viability of Rb1-deficient breast cancer cells, suggesting that PRELID3b is a potential target for cancer therapy.
Collapse
Affiliation(s)
- Non Miyata
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Takanori Ito
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Miyu Nakashima
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Satoru Fujii
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Osamu Kuge
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
11
|
Willis SD, Hanley SE, Doyle SJ, Beluch K, Strich R, Cooper KF. Cyclin C-Cdk8 Kinase Phosphorylation of Rim15 Prevents the Aberrant Activation of Stress Response Genes. Front Cell Dev Biol 2022; 10:867257. [PMID: 35433688 PMCID: PMC9008841 DOI: 10.3389/fcell.2022.867257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/22/2022] [Indexed: 11/13/2022] Open
Abstract
Cells facing adverse environmental cues respond by inducing signal transduction pathways resulting in transcriptional reprograming. In the budding yeast Saccharomyces cerevisiae, nutrient deprivation stimulates stress response gene (SRG) transcription critical for entry into either quiescence or gametogenesis depending on the cell type. The induction of a subset of SRGs require nuclear translocation of the conserved serine-threonine kinase Rim15. However, Rim15 is also present in unstressed nuclei suggesting that additional activities are required to constrain its activity in the absence of stress. Here we show that Rim15 is directly phosphorylated by cyclin C-Cdk8, the conserved kinase module of the Mediator complex. Several results indicate that Cdk8-dependent phosphorylation prevents Rim15 activation in unstressed cells. First, Cdk8 does not control Rim15 subcellular localization and rim15∆ is epistatic to cdk8∆ with respect to SRG transcription and the execution of starvation programs required for viability. Next, Cdk8 phosphorylates a residue in the conserved PAS domain in vitro. This modification appears important as introducing a phosphomimetic at Cdk8 target residues reduces Rim15 activity. Moreover, the Rim15 phosphomimetic only compromises cell viability in stresses that induce cyclin C destruction as well as entrance into meiosis. Taken together, these findings suggest a model in which Cdk8 phosphorylation contributes to Rim15 repression whilst it cycles through the nucleus. Cyclin C destruction in response to stress inactivates Cdk8 which in turn stimulates Rim15 to maximize SRG transcription and cell survival.
Collapse
|
12
|
|
13
|
Colombo S, Longoni E, Gnugnoli M, Busti S, Martegani E. Fast detection of PKA activity in Saccharomyces cerevisiae cell population using AKAR fluorescence resonance energy transfer probes. Cell Signal 2022; 92:110262. [DOI: 10.1016/j.cellsig.2022.110262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/23/2021] [Accepted: 01/20/2022] [Indexed: 11/03/2022]
|
14
|
Lewis AG, Caldwell R, Rogers JV, Ingaramo M, Wang RY, Soifer I, Hendrickson DG, McIsaac RS, Botstein D, Gibney PA. Loss of major nutrient sensing and signaling pathways suppresses starvation lethality in electron transport chain mutants. Mol Biol Cell 2021; 32:ar39. [PMID: 34668730 PMCID: PMC8694083 DOI: 10.1091/mbc.e21-06-0314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The electron transport chain (ETC) is a well-studied and highly conserved metabolic pathway that produces ATP through generation of a proton gradient across the inner mitochondrial membrane coupled to oxidative phosphorylation. ETC mutations are associated with a wide array of human disease conditions and to aging-related phenotypes in a number of different organisms. In this study, we sought to better understand the role of the ETC in aging using a yeast model. A panel of ETC mutant strains that fail to survive starvation was used to isolate suppressor mutants that survive. These suppressors tend to fall into major nutrient sensing and signaling pathways, suggesting that the ETC is involved in proper starvation signaling to these pathways in yeast. These suppressors also partially restore ETC-associated gene expression and pH homeostasis defects, though it remains unclear whether these phenotypes directly cause the suppression or are simply effects. This work further highlights the complex cellular network connections between metabolic pathways and signaling events in the cell and their potential roles in aging and age-related diseases.
Collapse
Affiliation(s)
- Alisha G Lewis
- Department of Food Science, Cornell University, Ithaca, NY 14853
| | | | | | | | | | - Ilya Soifer
- Calico Life Sciences LLC, South San Francisco, CA 94080
| | | | | | | | - Patrick A Gibney
- Department of Food Science, Cornell University, Ithaca, NY 14853.,Calico Life Sciences LLC, South San Francisco, CA 94080
| |
Collapse
|
15
|
Kane AJ, Brennan CM, Xu AE, Solís EJ, Terhorst A, Denic V, Amon A. Cell adaptation to aneuploidy by the environmental stress response dampens induction of the cytosolic unfolded-protein response. Mol Biol Cell 2021; 32:1557-1564. [PMID: 34191542 PMCID: PMC8351746 DOI: 10.1091/mbc.e21-03-0104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 01/05/2023] Open
Abstract
Aneuploid yeast cells are in a chronic state of proteotoxicity, yet do not constitutively induce the cytosolic unfolded protein response, or heat shock response (HSR) by heat shock factor 1 (Hsf1). Here, we demonstrate that an active environmental stress response (ESR), a hallmark of aneuploidy across different models, suppresses Hsf1 induction in models of single-chromosome gain. Furthermore, engineered activation of the ESR in the absence of stress was sufficient to suppress Hsf1 activation in euploid cells by subsequent heat shock while increasing thermotolerance and blocking formation of heat-induced protein aggregates. Suppression of the ESR in aneuploid cells resulted in longer cell doubling times and decreased viability in the presence of additional proteotoxicity. Last, we show that in euploids, Hsf1 induction by heat shock is curbed by the ESR. Strikingly, we found a similar relationship between the ESR and the HSR using an inducible model of aneuploidy. Our work explains a long-standing paradox in the field and provides new insights into conserved mechanisms of proteostasis with potential relevance to cancers associated with aneuploidy.
Collapse
Affiliation(s)
- Andrew J. Kane
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
| | - Christopher M. Brennan
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139
- Paul F. Glenn Center for Biology of Aging Research, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Acer E. Xu
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139
- Paul F. Glenn Center for Biology of Aging Research, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Eric J. Solís
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
| | - Allegra Terhorst
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139
- Paul F. Glenn Center for Biology of Aging Research, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Vladimir Denic
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
| | - Angelika Amon
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139
- Paul F. Glenn Center for Biology of Aging Research, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
16
|
Reprogramming of the Ethanol Stress Response in Saccharomyces cerevisiae by the Transcription Factor Znf1 and Its Effect on the Biosynthesis of Glycerol and Ethanol. Appl Environ Microbiol 2021; 87:e0058821. [PMID: 34105981 PMCID: PMC8315178 DOI: 10.1128/aem.00588-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
High ethanol levels can severely inhibit the growth of yeast cells and fermentation productivity. The ethanologenic yeast Saccharomyces cerevisiae activates several well-defined cellular mechanisms of ethanol stress response (ESR); however, the involved regulatory control remains to be characterized. Here, we report a new transcription factor of ethanol stress adaptation called Znf1. It plays a central role in ESR by activating genes for glycerol and fatty acid production (GUP1, GPP1, GPP2, GPD1, GAT1, and OLE1) to preserve plasma membrane integrity. Importantly, Znf1 also activates genes implicated in cell wall biosynthesis (FKS1, SED1, and SMI1) and in the unfolded protein response (HSP30, HSP104, KAR1, and LHS1) to protect cells from proteotoxic stress. The znf1Δ strain displays increased sensitivity to ethanol, the endoplasmic reticulum (ER) stressor β-mercaptoethanol, and the cell wall-perturbing agent calcofluor white. To compensate for a defective cell wall, the strain lacking ZNF1 or its target SMI1 displays increased glycerol levels of 19.6% and 27.7%, respectively. Znf1 collectively regulates an intricate network of target genes essential for growth, protein refolding, and production of key metabolites. Overexpression of ZNF1 not only confers tolerance to high ethanol levels but also increases ethanol production by 4.6% (8.43 g/liter) or 2.8% (75.78 g/liter) when 2% or 20% (wt/vol) glucose, respectively, is used as a substrate, compared to that of the wild-type strain. The mutually stress-responsive transcription factors Msn2/4, Hsf1, and Yap1 are associated with some promoters of Znf1’s target genes to promote ethanol stress tolerance. In conclusion, this work implicates the novel regulator Znf1 in coordinating expression of ESR genes and illuminates the unifying transcriptional reprogramming during alcoholic fermentation. IMPORTANCE The yeast S. cerevisiae is a major microbe that is widely used in food and nonfood industries. However, accumulation of ethanol has a negative effect on its growth and limits ethanol production. The Znf1 transcription factor has been implicated as a key regulator of glycolysis and gluconeogenesis in the utilization of different carbon sources, including glucose, the most abundant sugar on earth, and nonfermentable substrates. Here, the role of Znf1 in ethanol stress response is defined. Znf1 actively reprograms expression of genes linked to the unfolded protein response (UPR), heat shock response, glycerol and carbohydrate metabolism, and biosynthesis of cell membrane and cell wall components. A complex interplay among transcription factors of ESR indicates transcriptional fine-tuning as the main mechanism of stress adaptation, and Znf1 plays a major regulatory role in the coordination. Understanding the adaptive ethanol stress mechanism is crucial to engineering robust yeast strains for enhanced stress tolerance or increased ethanol production.
Collapse
|
17
|
Kritsiligkou P, Nowicki-Osuch K, Carter Z, Kershaw CJ, Creamer DR, Weids AJ, Grant CM. Tolerance to nascent protein misfolding stress requires fine-tuning of the cAMP/PKA pathway. J Biol Chem 2021; 296:100690. [PMID: 33894203 PMCID: PMC8164027 DOI: 10.1016/j.jbc.2021.100690] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 04/08/2021] [Accepted: 04/20/2021] [Indexed: 02/08/2023] Open
Abstract
Protein aggregation is the abnormal association of misfolded proteins into larger, often insoluble structures that can be toxic during aging and in protein aggregation-associated diseases. Previous research has established a role for the cytosolic Tsa1 peroxiredoxin in responding to protein misfolding stress. Tsa1 is also known to downregulate the cAMP/protein kinase A (PKA) pathway as part of the response to hydrogen peroxide stress. However, whether the cAMP/PKA pathway is involved in protein misfolding stress is not known. Using transcriptomics, we examined the response to protein misfolding stress and found upregulation of numerous stress gene functions and downregulation of many genes related to protein synthesis and other growth-related processes consistent with the well-characterized environmental stress response. The scope of the transcriptional response is largely similar in wild-type and tsa1 mutant strains, but the magnitude is dampened in the strain lacking Tsa1. We identified a direct protein interaction between Tsa1 and the Bcy1 regulatory subunit of PKA that is present under normal growth conditions and explains the observed differences in gene expression profiles. This interaction is increased in a redox-dependent manner in response to nascent protein misfolding, via Tsa1-mediated oxidation of Bcy1. Oxidation of Bcy1 causes a reduction in cAMP binding by Bcy1, which dampens PKA pathway activity, leading to a targeted reprogramming of gene expression. Redox regulation of the regulatory subunit of PKA provides a mechanism to mitigate the toxic consequences of protein misfolding stress that is distinct to stress caused by exogenous sources of reactive oxygen species.
Collapse
Affiliation(s)
| | - Karol Nowicki-Osuch
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Zorana Carter
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Chris J Kershaw
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Declan R Creamer
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Alan J Weids
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Chris M Grant
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
| |
Collapse
|
18
|
Sinha A, Pick E. Fluorescence Detection of Increased Reactive Oxygen Species Levels in Saccharomyces cerevisiae at the Diauxic Shift. Methods Mol Biol 2021; 2202:81-91. [PMID: 32857348 DOI: 10.1007/978-1-0716-0896-8_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
The budding yeast Saccharomyces cerevisiae is a facultative organism that is able to utilize both anaerobic and aerobic metabolism, depending on the composition of carbon source in the growth medium. When glucose is abundant, yeast catabolizes it to ethanol and other by-products by anaerobic fermentation through the glycolysis pathway. Following glucose exhaustion, cells switch to oxygenic respiration (a.k.a. "diauxic shift"), which allows catabolizing ethanol and the other carbon compounds via the TCA cycle and oxidative phosphorylation in the mitochondria. The diauxic shift is accompanied by elevated reactive oxygen species (ROS) levels and is characterized by activation of ROS defense mechanisms. Traditional measurement of the diauxic shift is done through measuring optical density of cultures grown in a batch at intermediate time points and generating a typical growth curve or by estimating the reduction of glucose and accumulation of ethanol in growth media over time. In this manuscript, we describe a method for determining changes in ROS levels upon yeast growth, using carboxy-H(2)-dichloro-dihydrofluorescein diacetate (carboxy-H(2)-DCFDA). H2-DCFDA is a widely used fluorescent dye for measuring intracellular ROS levels. H2-DCFDA enables a direct measurement of ROS in yeast cells at intermediate time points. The outcome of H2-DCFDA fluorescent readout measurements correlates with the growth curve information, hence providing a clear understanding of the diauxic shift.
Collapse
Affiliation(s)
- Abhishek Sinha
- Department of Biology and Environment, University of Haifa at Oranim, Tivon, Israel
- Department of Microbiology, Swami Vivekand University, Sagar, Madhya Pradesh, India
| | - Elah Pick
- Department of Biology and Environment, University of Haifa at Oranim, Tivon, Israel.
| |
Collapse
|
19
|
Miles S, Bradley GT, Breeden LL. The budding yeast transition to quiescence. Yeast 2021; 38:30-38. [PMID: 33350501 DOI: 10.1002/yea.3546] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 11/06/2022] Open
Abstract
A subset of Saccharomyces cerevisiae cells in a stationary phase culture achieve a unique quiescent state characterized by increased cell density, stress tolerance, and longevity. Trehalose accumulation is necessary but not sufficient for conferring this state, and it is not recapitulated by abrupt starvation. The fraction of cells that achieve this state varies widely in haploids and diploids and can approach 100%, indicating that both mother and daughter cells can enter quiescence. The transition begins when about half the glucose has been taken up from the medium. The high affinity glucose transporters are turned on, glycogen storage begins, the Rim15 kinase enters the nucleus and the accumulation of cells in G1 is initiated. After the diauxic shift (DS), when glucose is exhausted from the medium, growth promoting genes are repressed by the recruitment of the histone deacetylase Rpd3 by quiescence-specific repressors. The final division that takes place post-DS is highly asymmetrical and G1 arrest is complete after 48 h. The timing of these events can vary considerably, but they are tightly correlated with total biomass of the culture, suggesting that the transition to quiescence is tightly linked to changes in external glucose levels. After 7 days in culture, there are massive morphological changes at the protein and organelle level. There are global changes in histone modification. An extensive array of condensin-dependent, long-range chromatin interactions lead to genome-wide chromatin compaction that is conserved in yeast and human cells. These interactions are required for the global transcriptional repression that occurs in quiescent yeast.
Collapse
Affiliation(s)
- Shawna Miles
- Fred Hutchinson Cancer Research Center, Basic Science Division, Seattle, Washington, USA
| | | | - Linda L Breeden
- Fred Hutchinson Cancer Research Center, Basic Science Division, Seattle, Washington, USA
| |
Collapse
|
20
|
Barba-Aliaga M, Villarroel-Vicente C, Stanciu A, Corman A, Martínez-Pastor MT, Alepuz P. Yeast Translation Elongation Factor eIF5A Expression Is Regulated by Nutrient Availability through Different Signalling Pathways. Int J Mol Sci 2020; 22:E219. [PMID: 33379337 PMCID: PMC7794953 DOI: 10.3390/ijms22010219] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/17/2020] [Accepted: 12/24/2020] [Indexed: 12/15/2022] Open
Abstract
Translation elongation factor eIF5A binds to ribosomes to promote peptide bonds between problematic amino acids for the reaction like prolines. eIF5A is highly conserved and essential in eukaryotes, which usually contain two similar but differentially expressed paralogue genes. The human eIF5A-1 isoform is abundant and implicated in some cancer types; the eIF5A-2 isoform is absent in most cells but becomes overexpressed in many metastatic cancers. Several reports have connected eIF5A and mitochondria because it co-purifies with the organelle or its inhibition reduces respiration and mitochondrial enzyme levels. However, the mechanisms of eIF5A mitochondrial function, and whether eIF5A expression is regulated by the mitochondrial metabolism, are unknown. We analysed the expression of yeast eIF5A isoforms Tif51A and Tif51B under several metabolic conditions and in mutants. The depletion of Tif51A, but not Tif51B, compromised yeast growth under respiration and reduced oxygen consumption. Tif51A expression followed dual positive regulation: by high glucose through TORC1 signalling, like other translation factors, to promote growth and by low glucose or non-fermentative carbon sources through Snf1 and heme-dependent transcription factor Hap1 to promote respiration. Upon iron depletion, Tif51A was down-regulated and Tif51B up-regulated. Both were Hap1-dependent. Our results demonstrate eIF5A expression regulation by cellular metabolic status.
Collapse
Affiliation(s)
- Marina Barba-Aliaga
- Instituto Biotecmed, Facultad de Ciencias Biológicas, Universitat de València, C/Dr. Moliner 50, E46100 Burjassot, Spain; (M.B.-A.); (C.V.-V.); (A.S.); (A.C.)
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universitat de València, C/Dr. Moliner 50, E46100 Burjassot, Spain;
| | - Carlos Villarroel-Vicente
- Instituto Biotecmed, Facultad de Ciencias Biológicas, Universitat de València, C/Dr. Moliner 50, E46100 Burjassot, Spain; (M.B.-A.); (C.V.-V.); (A.S.); (A.C.)
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universitat de València, C/Dr. Moliner 50, E46100 Burjassot, Spain;
| | - Alice Stanciu
- Instituto Biotecmed, Facultad de Ciencias Biológicas, Universitat de València, C/Dr. Moliner 50, E46100 Burjassot, Spain; (M.B.-A.); (C.V.-V.); (A.S.); (A.C.)
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universitat de València, C/Dr. Moliner 50, E46100 Burjassot, Spain;
| | - Alba Corman
- Instituto Biotecmed, Facultad de Ciencias Biológicas, Universitat de València, C/Dr. Moliner 50, E46100 Burjassot, Spain; (M.B.-A.); (C.V.-V.); (A.S.); (A.C.)
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universitat de València, C/Dr. Moliner 50, E46100 Burjassot, Spain;
| | - María Teresa Martínez-Pastor
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universitat de València, C/Dr. Moliner 50, E46100 Burjassot, Spain;
| | - Paula Alepuz
- Instituto Biotecmed, Facultad de Ciencias Biológicas, Universitat de València, C/Dr. Moliner 50, E46100 Burjassot, Spain; (M.B.-A.); (C.V.-V.); (A.S.); (A.C.)
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universitat de València, C/Dr. Moliner 50, E46100 Burjassot, Spain;
| |
Collapse
|
21
|
Cruz-Garcia D, Brouwers N, Malhotra V, Curwin AJ. Reactive oxygen species triggers unconventional secretion of antioxidants and Acb1. J Cell Biol 2020; 219:151570. [PMID: 32328640 PMCID: PMC7147093 DOI: 10.1083/jcb.201905028] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 12/18/2019] [Accepted: 01/24/2020] [Indexed: 02/07/2023] Open
Abstract
Nutrient deprivation triggers the release of signal-sequence–lacking Acb1 and the antioxidant superoxide dismutase 1 (SOD1). We now report that secreted SOD1 is functionally active and accompanied by export of other antioxidant enzymes such as thioredoxins (Trx1 and Trx2) and peroxiredoxin Ahp1 in a Grh1-dependent manner. Our data reveal that starvation leads to production of nontoxic levels of reactive oxygen species (ROS). Treatment of cells with N-acetylcysteine (NAC), which sequesters ROS, prevents antioxidants and Acb1 secretion. Starved cells lacking Grh1 are metabolically active, but defective in their ability to regrow upon return to growth conditions. Treatment with NAC restored the Grh1-dependent effect of starvation on cell growth. In sum, starvation triggers ROS production and cells respond by secreting antioxidants and the lipogenic signaling protein Acb1. We suggest that starvation-specific unconventional secretion of antioxidants and Acb1-like activities maintain cells in a form necessary for growth upon their eventual return to normal conditions.
Collapse
Affiliation(s)
- David Cruz-Garcia
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Nathalie Brouwers
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Vivek Malhotra
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Pg. Lluis COmpanys 23, 08010 Barcelona, Spain
| | - Amy J Curwin
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| |
Collapse
|
22
|
Wang L, Wang X, He ZQ, Zhou SJ, Xu L, Tan XY, Xu T, Li BZ, Yuan YJ. Engineering prokaryotic regulator IrrE to enhance stress tolerance in budding yeast. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:193. [PMID: 33292418 PMCID: PMC7706047 DOI: 10.1186/s13068-020-01833-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Stress tolerance is one of the important desired microbial traits for industrial bioprocesses, and global regulatory protein engineering is an efficient approach to improve strain tolerance. In our study, IrrE, a global regulatory protein from the prokaryotic organism Deinococcus radiodurans, was engineered to confer yeast improved tolerance to the inhibitors in lignocellulose hydrolysates or high temperatures. RESULTS Three IrrE mutations were developed through directed evolution, and the expression of these mutants could improve the yeast fermentation rate by threefold or more in the presence of multiple inhibitors. Subsequently, the tolerance to multiple inhibitors of single-site mutants based on the mutations from the variants were then evaluated, and 11 mutants, including L65P, I103T, E119V, L160F, P162S, M169V, V204A, R244G, Base 824 Deletion, V299A, and A300V were identified to be critical for the improved representative inhibitors, i.e., furfural, acetic acid and phenol (FAP) tolerance. Further studies indicated that IrrE caused genome-wide transcriptional perturbation in yeast, and the mutant I24 led to the rapid growth of Saccharomyces cerevisiae by primarily regulating the transcription level of transcription activators/factors, protecting the intracellular environment and enhancing the antioxidant capacity under inhibitor environments, which reflected IrrE plasticity. Meanwhile, we observed that the expression of the wild-type or mutant IrrE could also protect Saccharomyces cerevisiae from the damage caused by thermal stress. The recombinant yeast strains were able to grow with glucose at 42 ℃. CONCLUSIONS IrrE from Deinococcus radiodurans can be engineered as a tolerance-enhancer for Saccharomyces cerevisiae. Systematic research on the regulatory model and mechanism of a prokaryotic global regulatory factor IrrE to increase yeast tolerance provided valuable insights for the improvements in microbial tolerance to complex industrial stress conditions.
Collapse
Affiliation(s)
- Li Wang
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 P.R. China
- Synthetic Biology Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072 P.R. China
| | - Xin Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816 Jiangsu P.R. China
| | - Zhi-Qiang He
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 P.R. China
- Synthetic Biology Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072 P.R. China
| | - Si-Jie Zhou
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 P.R. China
- Synthetic Biology Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072 P.R. China
| | - Li Xu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 P.R. China
- Synthetic Biology Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072 P.R. China
| | - Xiao-Yu Tan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 P.R. China
- Synthetic Biology Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072 P.R. China
| | - Tao Xu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 P.R. China
- Synthetic Biology Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072 P.R. China
| | - Bing-Zhi Li
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 P.R. China
- Synthetic Biology Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072 P.R. China
| | - Ying-Jin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 P.R. China
- Synthetic Biology Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072 P.R. China
| |
Collapse
|
23
|
Bai C, Tesker M, Melamed-Kadosh D, Engelberg D, Admon A. Hog1-induced transcription of RTC3 and HSP12 is robust and occurs in cells lacking Msn2, Msn4, Hot1 and Sko1. PLoS One 2020; 15:e0237540. [PMID: 32804965 PMCID: PMC7430751 DOI: 10.1371/journal.pone.0237540] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 07/28/2020] [Indexed: 11/19/2022] Open
Abstract
The yeast MAP kinase Hog1 pathway activates transcription of several hundreds genes. Large-scale gene expression and DNA binding assays suggest that most Hog1-induced genes are regulated by the transcriptional activators Msn2/4, Hot1 and Sko1. These studies also revealed the target genes of each activator and the putative binding sites on their promoters. In a previous study we identified a group of genes, which we considered the bona fide targets of Hog1, because they were induced in response to expression of intrinsically active mutant of Hog1, in the absence of any stress. We previously analyzed the promoter of the most highly induced gene, STL1, and noticed that some promoter properties were different from those proposed by large-scale data. We therefore continue to study promoters individually and present here analyses of promoters of more Hog1's targets, RTC3, HSP12, DAK1 and ALD3. We report that RTC3 and HSP12 promoters are robust and are induced, to different degrees, even in cells lacking all four activators. DAK1 and ALD3 promoters are not robust and fully depend on a single activator, DAK1 on Sko1 and ALD3 on Msn2/4. Most of these observations could not be inferred from the large-scale data. Msn2/4 are involved in regulating all four promoters. It was assumed, therefore, that the promoters are spontaneously active in ras2Δ cells, in which Msn2/4 are known to be de-repressed. Intriguingly, the promoters were not active in BY4741ras2Δ cells, but were de-repressed, as expected, in ras2Δ cells of other genetic backgrounds. This study describes two phenomena. One, some Hog1's target promoters are most robust, backupped by many activators. Second, in contrast to most laboratory strains, the widely used BY4741 strain does not induce Msn2/4 activity when the Ras/cAMP cascade is downregulated.
Collapse
Affiliation(s)
- Chen Bai
- Singapore-HUJ Alliance for Research and Enterprise, Molecular Mechanisms of Inflammatory Diseases Interdisciplinary Research Group, Campus for Research Excellence and Technological Enterprise, Singapore, Singapore
- Dept. of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Masha Tesker
- Dept. of Biological Chemistry, The Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - David Engelberg
- Singapore-HUJ Alliance for Research and Enterprise, Molecular Mechanisms of Inflammatory Diseases Interdisciplinary Research Group, Campus for Research Excellence and Technological Enterprise, Singapore, Singapore
- Dept. of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Dept. of Biological Chemistry, The Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem, Israel
- * E-mail: (AA); (DE)
| | - Arie Admon
- Faculty of Biology, Technion–Israel Institute of Technology, Haifa, Israel
- * E-mail: (AA); (DE)
| |
Collapse
|
24
|
MacGilvray ME, Shishkova E, Place M, Wagner ER, Coon JJ, Gasch AP. Phosphoproteome Response to Dithiothreitol Reveals Unique Versus Shared Features of Saccharomyces cerevisiae Stress Responses. J Proteome Res 2020; 19:3405-3417. [PMID: 32597660 DOI: 10.1021/acs.jproteome.0c00253] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
To cope with sudden changes in the external environment, the budding yeast Saccharomyces cerevisiae orchestrates a multifaceted response that spans many levels of physiology. Several studies have interrogated the transcriptome response to endoplasmic reticulum (ER) stress and the role of regulators such as the Ire1 kinase and Hac1 transcription factors. However, less is known about responses to ER stress at other levels of physiology. Here, we used quantitative phosphoproteomics and computational network inference to uncover the yeast phosphoproteome response to the reducing agent dithiothreitol (DTT) and the upstream signaling network that controls it. We profiled wild-type cells and mutants lacking IRE1 or MAPK kinases MKK1 and MKK2, before and at various times after DTT treatment. In addition to revealing downstream targets of these kinases, our inference approach predicted new regulators in the DTT response, including cell-cycle regulator Cdc28 and osmotic-response kinase Rck2, which we validated computationally. Our results also revealed similarities and surprising differences in responses to different stress conditions, especially in the response of protein kinase A targets. These results have implications for the breadth of signaling programs that can give rise to common stress response signatures.
Collapse
Affiliation(s)
- Matthew E MacGilvray
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Evgenia Shishkova
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States.,Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Michael Place
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Ellen R Wagner
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States.,Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Joshua J Coon
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States.,Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States.,Departments of Chemistry and Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States.,Morgridge Institute for Research, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Audrey P Gasch
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States.,Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States.,Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
25
|
Linkage between Carbon Metabolism, Redox Status and Cellular Physiology in the Yeast Saccharomyces cerevisiae Devoid of SOD1 or SOD2 Gene. Genes (Basel) 2020; 11:genes11070780. [PMID: 32664606 PMCID: PMC7397328 DOI: 10.3390/genes11070780] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/30/2020] [Accepted: 07/09/2020] [Indexed: 12/17/2022] Open
Abstract
Saccharomyces cerevisiae yeast cells may generate energy both by fermentation and aerobic respiration, which are dependent on the type and availability of carbon sources. Cells adapt to changes in nutrient availability, which entails the specific costs and benefits of different types of metabolism but also may cause alteration in redox homeostasis, both by changes in reactive oxygen species (ROS) and in cellular reductant molecules contents. In this study, yeast cells devoid of the SOD1 or SOD2 gene and fermentative or respiratory conditions were used to unravel the connection between the type of metabolism and redox status of cells and also how this affects selected parameters of cellular physiology. The performed analysis provides an argument that the source of ROS depends on the type of metabolism and non-mitochondrial sources are an important pool of ROS in yeast cells, especially under fermentative metabolism. There is a strict interconnection between carbon metabolism and redox status, which in turn has an influence on the physiological efficiency of the cells. Furthermore, pyridine nucleotide cofactors play an important role in these relationships.
Collapse
|
26
|
Mat Nanyan NSB, Takagi H. Proline Homeostasis in Saccharomyces cerevisiae: How Does the Stress-Responsive Transcription Factor Msn2 Play a Role? Front Genet 2020; 11:438. [PMID: 32411186 PMCID: PMC7198862 DOI: 10.3389/fgene.2020.00438] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/09/2020] [Indexed: 12/12/2022] Open
Abstract
Overexpression of MSN2, which is the transcription factor gene in response to stress, is well-known to increase the tolerance of the yeast Saccharomyces cerevisiae cells to a wide variety of environmental stresses. Recent studies have found that the Msn2 is a feasible potential mediator of proline homeostasis in yeast. This result is based on the finding that overexpression of the MSN2 gene exacerbates the cytotoxicity of yeast to various amino acid analogs whose uptake is increased by the active amino acid permeases localized on the plasma membrane as a result of a dysfunctional deubiquitination process. Increased understanding of the cellular responses induced by the Msn2-mediated proline incorporation will provide better comprehension of how cells respond to and counteract to different kinds of stimuli and will also contribute to the breeding of industrial yeast strains with increased productivity.
Collapse
Affiliation(s)
| | - Hiroshi Takagi
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| |
Collapse
|
27
|
Morrissette VA, Rolfes RJ. The intersection between stress responses and inositol pyrophosphates in Saccharomyces cerevisiae. Curr Genet 2020; 66:901-910. [PMID: 32322930 DOI: 10.1007/s00294-020-01078-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/09/2020] [Accepted: 04/11/2020] [Indexed: 01/08/2023]
Abstract
Saccharomyces cerevisiae adapts to oxidative, osmotic stress and nutrient deprivation through transcriptional changes, decreased proliferation, and entry into other developmental pathways such as pseudohyphal formation and sporulation. Inositol pyrophosphates are necessary for these cellular responses. Inositol pyrophosphates are molecules composed of the phosphorylated myo-inositol ring that carries one or more diphosphates. Mutations in the enzymes that metabolize these molecules lead to altered patterns of stress resistance, altered morphology, and defective sporulation. Mechanisms to alter the synthesis of inositol pyrophosphates have been recently described, including inhibition of enzyme activity by oxidation and by phosphorylation. Cells with increased levels of 5-diphosphoinositol pentakisphosphate have increased nuclear localization of Msn2 and Gln3. The altered localization of these factors is consistent with the partially induced environmental stress response and increased expression of genes under the control of Msn2/4 and Gln3. Other transcription factors may also exhibit increased nuclear localization based on increased expression of their target genes. These transcription factors are each regulated by TORC1, suggesting that TORC1 may be inhibited by inositol pyrophosphates. Inositol pyrophosphates affect stress responses in other fungi (Aspergillus nidulans, Ustilago maydis, Schizosaccharomyces pombe, and Cryptococcus neoformans), in human and mouse, and in plants, suggesting common mechanisms and possible novel drug development targets.
Collapse
Affiliation(s)
- Victoria A Morrissette
- Department of Biology, Georgetown University, Reiss Science Building 406, Washington, DC, 20057, USA
| | - Ronda J Rolfes
- Department of Biology, Georgetown University, Reiss Science Building 406, Washington, DC, 20057, USA.
| |
Collapse
|
28
|
Steidle EA, Morrissette VA, Fujimaki K, Chong L, Resnick AC, Capaldi AP, Rolfes RJ. The InsP 7 phosphatase Siw14 regulates inositol pyrophosphate levels to control localization of the general stress response transcription factor Msn2. J Biol Chem 2019; 295:2043-2056. [PMID: 31848224 DOI: 10.1074/jbc.ra119.012148] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Indexed: 12/28/2022] Open
Abstract
The environmental stress response (ESR) is critical for cell survival. Yeast cells unable to synthesize inositol pyrophosphates (PP-InsPs) are unable to induce the ESR. We recently discovered a diphosphoinositol pentakisphosphate (PP-InsP5) phosphatase in Saccharomyces cerevisiae encoded by SIW14 Yeast strains deleted for SIW14 have increased levels of PP-InsPs. We hypothesized that strains with high inositol pyrophosphate levels will have an increased stress response. We examined the response of the siw14Δ mutant to heat shock, nutrient limitation, osmotic stress, and oxidative treatment using cell growth assays and found increased resistance to each. Transcriptional responses to oxidative and osmotic stresses were assessed using microarray and reverse transcriptase quantitative PCR. The ESR was partially induced in the siw14Δ mutant strain, consistent with the increased stress resistance, and the mutant strain further induced the ESR in response to oxidative and osmotic stresses. The levels of PP-InsPs increased in WT cells under oxidative stress but not under hyperosmotic stress, and they were high and unchanging in the mutant. Phosphatase activity of Siw14 was inhibited by oxidation that was reversible. To determine how altered PP-InsP levels affect the ESR, we performed epistasis experiments with mutations in rpd3 and msn2/4 combined with siw14Δ. We show that mutations in msn2Δ and msn4Δ, but not rpd3, are epistatic to siw14Δ by assessing growth under oxidative stress conditions and expression of CTT1 Msn2-GFP nuclear localization was increased in the siw14Δ. These data support a model in which the modulation of PP-InsPs influence the ESR through general stress response transcription factors Msn2/4.
Collapse
Affiliation(s)
| | | | - Kotaro Fujimaki
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona 85721
| | - Lucy Chong
- Division of Neurosurgery, Colket Translational Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | - Adam C Resnick
- Division of Neurosurgery, Colket Translational Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | - Andrew P Capaldi
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona 85721
| | - Ronda J Rolfes
- Department of Biology, Georgetown University, Washington, D. C. 20057.
| |
Collapse
|
29
|
Levitskii S, Baleva MV, Chicherin I, Krasheninnikov IA, Kamenski P. S. cerevisiae Strain Lacking Mitochondrial IF3 Shows Increased Levels of Tma19p during Adaptation to Respiratory Growth. Cells 2019; 8:cells8070645. [PMID: 31248014 PMCID: PMC6678281 DOI: 10.3390/cells8070645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/21/2019] [Accepted: 06/24/2019] [Indexed: 11/16/2022] Open
Abstract
After billions of years of evolution, mitochondrion retains its own genome, which gets expressed in mitochondrial matrix. Mitochondrial translation machinery rather differs from modern bacterial and eukaryotic cytosolic systems. Any disturbance in mitochondrial translation drastically impairs mitochondrial function. In budding yeast Saccharomyces cerevisiae, deletion of the gene coding for mitochondrial translation initiation factor 3 - AIM23, leads to an imbalance in mitochondrial protein synthesis and significantly delays growth after shifting from fermentable to non-fermentable carbon sources. Molecular mechanism underlying this adaptation to respiratory growth was unknown. Here, we demonstrate that slow adaptation from glycolysis to respiration in the absence of Aim23p is accompanied by a gradual increase of cytochrome c oxidase activity and by increased levels of Tma19p protein, which protects mitochondria from oxidative stress.
Collapse
Affiliation(s)
- Sergey Levitskii
- M.V. Lomonosov Moscow State University, Faculty of Biology, 119234 Moscow, Russia.
| | - Maria V Baleva
- M.V. Lomonosov Moscow State University, Faculty of Biology, 119234 Moscow, Russia.
| | - Ivan Chicherin
- M.V. Lomonosov Moscow State University, Faculty of Biology, 119234 Moscow, Russia.
- M.V. Lomonosov Moscow State University, Institute of Functional Genomics, 119234 Moscow, Russia.
| | | | - Piotr Kamenski
- M.V. Lomonosov Moscow State University, Faculty of Biology, 119234 Moscow, Russia.
| |
Collapse
|
30
|
Hacısalihoğlu B, Holyavkin C, Topaloğlu A, Kısakesen Hİ, Çakar ZP. Genomic and transcriptomic analysis of a coniferyl aldehyde-resistant Saccharomyces cerevisiae strain obtained by evolutionary engineering. FEMS Yeast Res 2019; 19:5369625. [DOI: 10.1093/femsyr/foz021] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 03/03/2019] [Indexed: 12/19/2022] Open
Abstract
ABSTRACT
Phenolic inhibitors in lignocellulosic hydrolysates interfere with the performance of fermenting microorganisms. Among these, coniferyl aldehyde is one of the most toxic inhibitors. In this study, genetically stable Saccharomyces cerevisiae mutants with high coniferyl aldehyde resistance were successfully obtained for the first time by using an evolutionary engineering strategy, based on the systematic application of increasing coniferyl aldehyde stress in batch cultures. Among the selected coniferyl aldehyde-resistant mutants, the highly resistant strain called BH13 was also cross-resistant to other phenolic inhibitors, vanillin, ferulic acid and 4-hydroxybenzaldehyde. In the presence of 1.2 mM coniferyl aldehyde stress, BH13 had a significantly reduced lag phase, which was less than 3 h and only about 25% of that of the reference strain and converted coniferyl aldehyde faster. Additionally, there was no reduction in its growth rate, either. Comparative transcriptomic analysis of a highly coniferyl aldehyde-resistant mutant revealed upregulation of the genes involved in energy pathways, response to oxidative stress and oxidoreductase activity in the mutant strain BH13, already under non-stress conditions. Transcripts associated with pleiotropic drug resistance were also identified as upregulated. Genome re-sequencing data generally supported transcriptomic results and identified gene targets that may have a potential role in coniferyl aldehyde resistance.
Collapse
Affiliation(s)
- Burcu Hacısalihoğlu
- Department of Molecular Biology and Genetics, Faculty of Science & Letters, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey
- Dr. Orhan Öcalgiray Molecular Biology, Biotechnology and Genetics Research Center (İTÜ-MOBGAM), Istanbul Technical University, Maslak, Istanbul, 34469, Turkey
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, 25050, Turkey
| | - Can Holyavkin
- Department of Molecular Biology and Genetics, Faculty of Science & Letters, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey
- Dr. Orhan Öcalgiray Molecular Biology, Biotechnology and Genetics Research Center (İTÜ-MOBGAM), Istanbul Technical University, Maslak, Istanbul, 34469, Turkey
| | - Alican Topaloğlu
- Department of Molecular Biology and Genetics, Faculty of Science & Letters, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey
- Dr. Orhan Öcalgiray Molecular Biology, Biotechnology and Genetics Research Center (İTÜ-MOBGAM), Istanbul Technical University, Maslak, Istanbul, 34469, Turkey
| | - Halil İbrahim Kısakesen
- Department of Molecular Biology and Genetics, Faculty of Science & Letters, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey
- Dr. Orhan Öcalgiray Molecular Biology, Biotechnology and Genetics Research Center (İTÜ-MOBGAM), Istanbul Technical University, Maslak, Istanbul, 34469, Turkey
| | - Zeynep Petek Çakar
- Department of Molecular Biology and Genetics, Faculty of Science & Letters, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey
- Dr. Orhan Öcalgiray Molecular Biology, Biotechnology and Genetics Research Center (İTÜ-MOBGAM), Istanbul Technical University, Maslak, Istanbul, 34469, Turkey
| |
Collapse
|
31
|
Pfanzagl V, Görner W, Radolf M, Parich A, Schuhmacher R, Strauss J, Reiter W, Schüller C. A constitutive active allele of the transcription factor Msn2 mimicking low PKA activity dictates metabolic remodeling in yeast. Mol Biol Cell 2018; 29:2848-2862. [PMID: 30256697 PMCID: PMC6249869 DOI: 10.1091/mbc.e18-06-0389] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In yeast, protein kinase A (PKA) adjusts transcriptional profiles, metabolic rates, and cell growth in accord with carbon source availability. PKA affects gene expression mostly via the transcription factors Msn2 and Msn4, two key regulators of the environmental stress response. Here we analyze the role of the PKA-Msn2 signaling module using an Msn2 allele that harbors serine-to-alanine substitutions at six functionally important PKA motifs (Msn2A6) . Expression of Msn2A6 mimics low PKA activity, entails a transcription profile similar to that of respiring cells, and prevents formation of colonies on glucose-containing medium. Furthermore, Msn2A6 leads to high oxygen consumption and hence high respiratory activity. Substantially increased intracellular concentrations of several carbon metabolites, such as trehalose, point to a metabolic adjustment similar to diauxic shift. This partial metabolic switch is the likely cause for the slow-growth phenotype in the presence of glucose. Consistently, Msn2A6 expression does not interfere with growth on ethanol and tolerated is to a limited degree in deletion mutant strains with a gene expression signature corresponding to nonfermentative growth. We propose that the lethality observed in mutants with hampered PKA activity resides in metabolic reprogramming that is initiated by Msn2 hyperactivity.
Collapse
Affiliation(s)
- Vera Pfanzagl
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna (BOKU), 1190 Vienna, Austria
| | - Wolfram Görner
- Department for Biochemistry, Max. F. Perutz Laboratories, University of Vienna, 1030 Vienna, Austria
| | - Martin Radolf
- Management Scientific Service/EHS, Research Institute of Molecular Pathology (IMP), 1030 Vienna, Austria
| | - Alexandra Parich
- Department of Agrobiotechnology (IFA-Tulln), Center for Analytical Chemistry, University of Natural Resources and Life Sciences, 3430 Tulln, Austria
| | - Rainer Schuhmacher
- Department of Agrobiotechnology (IFA-Tulln), Center for Analytical Chemistry, University of Natural Resources and Life Sciences, 3430 Tulln, Austria
| | - Joseph Strauss
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna (BOKU), 1190 Vienna, Austria
| | - Wolfgang Reiter
- Department for Biochemistry, Max. F. Perutz Laboratories, University of Vienna, 1030 Vienna, Austria
| | - Christoph Schüller
- Department of Applied Genetics and Cell Biology (DAGZ), University of Natural Resources and Life Sciences, 3430 Tulln, Austria
| |
Collapse
|
32
|
Induction and relocalization of telomeric repeat-containing RNAs during diauxic shift in budding yeast. Curr Genet 2018; 64:1117-1127. [PMID: 29569051 DOI: 10.1007/s00294-018-0829-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/09/2018] [Accepted: 03/20/2018] [Indexed: 02/03/2023]
Abstract
Telomeres are maintained in a heterochromatic state that represses transcription of subtelomeric genes, a phenomenon known as telomere position effect. Nevertheless, telomeric DNA is actively transcribed, leading to the synthesis of telomeric repeat-containing noncoding RNA or TERRA. This nuclear noncoding RNA has been proposed to play important roles at telomeres, regulating their silencing, capping, repair and elongation by telomerase. In the budding yeast Saccharomyces cerevisiae, TERRA accumulation is repressed by telomeric silencing and the Rat1 exonuclease. On the other hand, telomere shortening promotes expression of TERRA. So far, little is known about the biological processes that induce TERRA expression in yeast. Understanding the dynamics of TERRA expression and localization is essential to define its function in telomere biology. Here, we aim to study the dynamics of TERRA expression during yeast cell growth. Using live-cell imaging, RNA-FISH and quantitative RT-PCR, we show that TERRA expression is induced as yeast cells undergo diauxic shift, a lag phase during which yeast cells switch their metabolism from anaerobic fermentation to oxidative respiration. This induction is transient as TERRA levels decrease during post-diauxic shift. The increased expression of TERRA is not due to the shortening of telomeres or increased stability of this transcript. Surprisingly, this induction is coincident with a cytoplasmic accumulation of TERRA molecules. Our results suggest that TERRA transcripts may play extranuclear functions with important implications in telomere biology and add a novel layer of complexity in the interplay between telomere biology, metabolism and stress response.
Collapse
|
33
|
Osiro KO, Brink DP, Borgström C, Wasserstrom L, Carlquist M, Gorwa-Grauslund MF. Assessing the effect of d-xylose on the sugar signaling pathways of Saccharomyces cerevisiae in strains engineered for xylose transport and assimilation. FEMS Yeast Res 2018; 18:4791530. [DOI: 10.1093/femsyr/fox096] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 12/27/2017] [Indexed: 01/18/2023] Open
Affiliation(s)
- Karen O Osiro
- Applied Microbiology, Department of Chemistry, Lund University, Kemicentrum, Naturvetarvägen 14, Lund 223 62, Sweden
| | - Daniel P Brink
- Applied Microbiology, Department of Chemistry, Lund University, Kemicentrum, Naturvetarvägen 14, Lund 223 62, Sweden
| | - Celina Borgström
- Applied Microbiology, Department of Chemistry, Lund University, Kemicentrum, Naturvetarvägen 14, Lund 223 62, Sweden
| | - Lisa Wasserstrom
- Applied Microbiology, Department of Chemistry, Lund University, Kemicentrum, Naturvetarvägen 14, Lund 223 62, Sweden
| | - Magnus Carlquist
- Applied Microbiology, Department of Chemistry, Lund University, Kemicentrum, Naturvetarvägen 14, Lund 223 62, Sweden
| | | |
Collapse
|
34
|
Jirakkakul J, Roytrakul S, Srisuksam C, Swangmaneecharern P, Kittisenachai S, Jaresitthikunchai J, Punya J, Prommeenate P, Senachak J, So L, Tachaleat A, Tanticharoen M, Cheevadhanarak S, Wattanachaisaereekul S, Amnuaykanjanasin A. Culture degeneration in conidia of Beauveria bassiana and virulence determinants by proteomics. Fungal Biol 2017; 122:156-171. [PMID: 29458719 DOI: 10.1016/j.funbio.2017.12.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 12/04/2017] [Accepted: 12/15/2017] [Indexed: 01/18/2023]
Abstract
The quality of Beauveria bassiana conidia directly affects the virulence against insects. In this study, continuous subculturing of B. bassiana on both rice grains and potato dextrose agar (PDA) resulted in 55 and 49 % conidial yield reduction after 12 passages and 68 and 60 % virulence reduction after 20 and 12 passages at four d post-inoculation, respectively. The passage through Tenebrio molitor and Spodoptera exigua restored the virulence of rice and PDA subcultures, respectively. To explore the molecular mechanisms underlying the conidial quality and the decline of virulence after multiple subculturing, we investigated the conidial proteomic changes. Successive subculturing markedly increased the protein levels in oxidative stress response, autophagy, amino acid homeostasis, and apoptosis, but decreased the protein levels in DNA repair, ribosome biogenesis, energy metabolism, and virulence. The nitro blue tetrazolium assay verified that the late subculture's colony and conidia had a higher oxidative stress level than the early subculture. A 2A-type protein phosphatase and a Pleckstrin homology domain protein Slm1, effector proteins of the target of rapamycin (TOR) complex 1 and 2, respectively, were dramatically increased in the late subculture. These results suggest that TOR signalling might be associated with ageing in B. bassiana late subculture, in turn affecting its physiological characteristics and virulence.
Collapse
Affiliation(s)
- Jiraporn Jirakkakul
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi (KMUTT), Bangkhuntien, Bangkok 10150, Thailand
| | - Sittiruk Roytrakul
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120, Thailand
| | - Chettida Srisuksam
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120, Thailand
| | - Pratchya Swangmaneecharern
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120, Thailand
| | - Suthathip Kittisenachai
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120, Thailand
| | - Janthima Jaresitthikunchai
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120, Thailand
| | - Juntira Punya
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120, Thailand
| | - Peerada Prommeenate
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120, Thailand
| | - Jittisak Senachak
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120, Thailand
| | - Laihong So
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Kowloon, Hong Kong
| | - Anuwat Tachaleat
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi (KMUTT), Bangkhuntien, Bangkok 10150, Thailand
| | - Morakot Tanticharoen
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi (KMUTT), Bangkhuntien, Bangkok 10150, Thailand
| | - Supapon Cheevadhanarak
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi (KMUTT), Bangkhuntien, Bangkok 10150, Thailand
| | - Songsak Wattanachaisaereekul
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi (KMUTT), Bangkhuntien, Bangkok 10150, Thailand.
| | - Alongkorn Amnuaykanjanasin
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120, Thailand.
| |
Collapse
|
35
|
Engineering of global regulators and cell surface properties toward enhancing stress tolerance in Saccharomyces cerevisiae. J Biosci Bioeng 2017; 124:599-605. [DOI: 10.1016/j.jbiosc.2017.06.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 06/21/2017] [Accepted: 06/22/2017] [Indexed: 01/22/2023]
|
36
|
The C 2 H 2 transcription factor VdMsn2 controls hyphal growth, microsclerotia formation, and virulence of Verticillium dahliae. Fungal Biol 2017; 121:1001-1010. [DOI: 10.1016/j.funbio.2017.08.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 08/14/2017] [Accepted: 08/15/2017] [Indexed: 11/22/2022]
|
37
|
Rajvanshi PK, Arya M, Rajasekharan R. The stress-regulatory transcription factors Msn2 and Msn4 regulate fatty acid oxidation in budding yeast. J Biol Chem 2017; 292:18628-18643. [PMID: 28924051 DOI: 10.1074/jbc.m117.801704] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/12/2017] [Indexed: 11/06/2022] Open
Abstract
The transcription factors Msn2 and Msn4 (multicopy suppressor of SNF1 mutation proteins 2 and 4) bind the stress-response element in gene promoters in the yeast Saccharomyces cerevisiae However, the roles of Msn2/4 in primary metabolic pathways such as fatty acid β-oxidation are unclear. Here, in silico analysis revealed that the promoters of most genes involved in the biogenesis, function, and regulation of the peroxisome contain Msn2/4-binding sites. We also found that transcript levels of MSN2/MSN4 are increased in glucose-depletion conditions and that during growth in nonpreferred carbon sources, Msn2 is constantly localized to the nucleus in wild-type cells. Of note, the double mutant msn2Δmsn4Δ exhibited a severe growth defect when grown with oleic acid as the sole carbon source and had reduced transcript levels of major β-oxidation genes. ChIP indicated that Msn2 has increased occupancy on the promoters of β-oxidation genes in glucose-depleted conditions, and in vivo reporter gene analysis indicated reduced expression of these genes in msn2Δmsn4Δ cells. Moreover, mobility shift assays revealed that Msn4 binds β-oxidation gene promoters. Immunofluorescence microscopy with anti-peroxisome membrane protein antibodies disclosed that the msn2Δmsn4Δ strain had fewer peroxisomes than the wild type, and lipid analysis indicated that the msn2Δmsn4Δ strain had increased triacylglycerol and steryl ester levels. Collectively, our data suggest that Msn2/Msn4 transcription factors activate expression of the genes involved in fatty acid oxidation. Because glucose sensing, signaling, and fatty acid β-oxidation pathways are evolutionarily conserved throughout eukaryotes, the msn2Δmsn4Δ strain could therefore be a good model system for further study of these critical processes.
Collapse
Affiliation(s)
- Praveen Kumar Rajvanshi
- From the Department of Lipid Science of the Lipidomic Centre and.,the Academy of Scientific and Innovative Research, Council of Scientific and Industrial Research-Central Food Technological Research Institute, Mysuru 570020, Karnataka, India
| | - Madhuri Arya
- From the Department of Lipid Science of the Lipidomic Centre and.,the Academy of Scientific and Innovative Research, Council of Scientific and Industrial Research-Central Food Technological Research Institute, Mysuru 570020, Karnataka, India
| | - Ram Rajasekharan
- From the Department of Lipid Science of the Lipidomic Centre and .,the Academy of Scientific and Innovative Research, Council of Scientific and Industrial Research-Central Food Technological Research Institute, Mysuru 570020, Karnataka, India
| |
Collapse
|
38
|
Factors Influencing the Production of Sensory Active Substances in Brewer's and Wine Yeast. KVASNY PRUMYSL 2017. [DOI: 10.18832/kp201720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
39
|
Vázquez J, González B, Sempere V, Mas A, Torija MJ, Beltran G. Melatonin Reduces Oxidative Stress Damage Induced by Hydrogen Peroxide in Saccharomyces cerevisiae. Front Microbiol 2017; 8:1066. [PMID: 28663741 PMCID: PMC5471302 DOI: 10.3389/fmicb.2017.01066] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 05/29/2017] [Indexed: 12/15/2022] Open
Abstract
Melatonin (N-acetyl-5-methoxytryptamine), which is synthesized from tryptophan, is formed during alcoholic fermentation, though its role in yeast is unknown. This study employed Saccharomyces cerevisiae as an eukaryote model to evaluate the possible effects of melatonin supplementation on endogenous cellular defense systems by measuring its effects on various cellular targets. Cell viability, intracellular reduced and oxidized glutathione levels (GSH and GSSG, respectively), reactive oxygen species (ROS) production, and expression of genes related to antioxidant defense in yeast, such as the glutathione system, catalase, superoxide dismutase, glutaredoxin, and thioredoxin, were assessed. Melatonin alone decreased GSH, increased GSSG, and activated antioxidant defense system genes, which reached maximum levels in the stationary phase. These results indicate that melatonin supplementation enables cells to resist better the stress generated in the stationary phase. However, when cells were subjected to oxidative stress induced by H2O2, melatonin was able to partially mitigate cell damage by decreasing ROS accumulation and GSH and increasing GSSG; this was followed by enhanced cell viability after stress exposure, mostly when occurring in the early stationary phase. Additionally, under such conditions, most genes related to endogenous antioxidant defense continued to be up-regulated with melatonin supplementation. The findings demonstrate that melatonin can act as antioxidant in S. cerevisiae.
Collapse
Affiliation(s)
- Jennifer Vázquez
- Departament de Bioquímica i Biotecnologia, Facultat d'Enologia, Universitat Rovira i VirgiliTarragona, Spain
| | - Beatriz González
- Departament de Bioquímica i Biotecnologia, Facultat d'Enologia, Universitat Rovira i VirgiliTarragona, Spain
| | - Verónica Sempere
- Departament de Bioquímica i Biotecnologia, Facultat d'Enologia, Universitat Rovira i VirgiliTarragona, Spain
| | - Albert Mas
- Departament de Bioquímica i Biotecnologia, Facultat d'Enologia, Universitat Rovira i VirgiliTarragona, Spain
| | - María Jesús Torija
- Departament de Bioquímica i Biotecnologia, Facultat d'Enologia, Universitat Rovira i VirgiliTarragona, Spain
| | - Gemma Beltran
- Departament de Bioquímica i Biotecnologia, Facultat d'Enologia, Universitat Rovira i VirgiliTarragona, Spain
| |
Collapse
|
40
|
The proteome of baker's yeast mitochondria. Mitochondrion 2017; 33:15-21. [DOI: 10.1016/j.mito.2016.08.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 08/12/2016] [Accepted: 08/13/2016] [Indexed: 01/29/2023]
|
41
|
Targeted proteome analysis of single-gene deletion strains of Saccharomyces cerevisiae lacking enzymes in the central carbon metabolism. PLoS One 2017; 12:e0172742. [PMID: 28241048 PMCID: PMC5328394 DOI: 10.1371/journal.pone.0172742] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Accepted: 02/08/2017] [Indexed: 12/25/2022] Open
Abstract
Central carbon metabolism is controlled by modulating the protein abundance profiles of enzymes that maintain the essential systems in living organisms. In this study, metabolic adaptation mechanisms in the model organism Saccharomyces cerevisiae were investigated by direct determination of enzyme abundance levels in 30 wild type and mutant strains. We performed a targeted proteome analysis using S. cerevisiae strains that lack genes encoding the enzymes responsible for central carbon metabolism. Our analysis revealed that at least 30% of the observed variations in enzyme abundance levels could be explained by global regulatory mechanisms. A enzyme-enzyme co-abundance analysis revealed that the abundances of enzyme proteins involved in the trehalose metabolism and glycolysis changed in a coordinated manner under the control of the transcription factors for global regulation. The remaining variations were derived from local mechanisms such as a mutant-specific increase in the abundances of remote enzymes. The proteome data also suggested that, although the functional compensation of the deficient enzyme was attained by using more resources for protein biosynthesis, available resources for the biosynthesis of the enzymes responsible for central metabolism were not abundant in S. cerevisiae cells. These results showed that global and local regulation of enzyme abundance levels shape central carbon metabolism in S. cerevisiae by using a limited resource for protein biosynthesis.
Collapse
|
42
|
Overexpression of smORF YNR034W-A/EGO4 in Saccharomyces cerevisiae increases the fermentative efficiency of Agave tequilana Weber must. ACTA ACUST UNITED AC 2017; 44:63-74. [DOI: 10.1007/s10295-016-1871-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 11/09/2016] [Indexed: 10/20/2022]
Abstract
Abstract
Fermentative processes are widely used to produce food, beverages and biofuels. Saccharomyces cerevisiae is an efficient ethanol-producing microorganism. However, a concentration of high ethanol and other metabolites can affect yeast viability and decrease the ethanol yield. Many studies have focused on improving the fermentative efficiency, mostly through the genetic engineering of genes that have a direct impact on specific metabolic pathways. In the present study, we characterized a small open reading frame encoding a protein with an unknown function and biological role termed YNR034W-A. We analyzed the expression profile of the YNR034W-A gene during growth and glucose treatment, finding that it is expressed during the diauxic shift and stationary phase and is negatively regulated by glucose. We overexpressed the YNR034W-A gene in the BY4741 laboratory strain and a wild-type yeast strain (AR5) isolated during the Tequila fermentation process. Transformant derivatives of the AR5 strain showed an improved fermentative efficiency during fermentation of Agave tequilana Weber juice. We suggest that the improved fermentative efficiency is the result of a higher stress tolerance response in the YNR034W-A overexpressing transformant.
Collapse
|
43
|
Yadav KK, Singh N, Rajvanshi PK, Rajasekharan R. The RNA polymerase I subunit Rpa12p interacts with the stress-responsive transcription factor Msn4p to regulate lipid metabolism in budding yeast. FEBS Lett 2016; 590:3559-3573. [DOI: 10.1002/1873-3468.12422] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 09/07/2016] [Accepted: 09/07/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Kamlesh Kumar Yadav
- Lipidomics Centre; Department of Lipid Science; Council of Scientific and Industrial Research (CSIR) - Central Food Technological Research Institute (CFTRI); Mysore Karnataka India
- Academy of Scientific and Innovative Research; CSIR-CFTRI; Mysore Karnataka India
| | - Neelima Singh
- Lipidomics Centre; Department of Lipid Science; Council of Scientific and Industrial Research (CSIR) - Central Food Technological Research Institute (CFTRI); Mysore Karnataka India
- Academy of Scientific and Innovative Research; CSIR-CFTRI; Mysore Karnataka India
| | - Praveen Kumar Rajvanshi
- Lipidomics Centre; Department of Lipid Science; Council of Scientific and Industrial Research (CSIR) - Central Food Technological Research Institute (CFTRI); Mysore Karnataka India
- Academy of Scientific and Innovative Research; CSIR-CFTRI; Mysore Karnataka India
| | - Ram Rajasekharan
- Lipidomics Centre; Department of Lipid Science; Council of Scientific and Industrial Research (CSIR) - Central Food Technological Research Institute (CFTRI); Mysore Karnataka India
- Academy of Scientific and Innovative Research; CSIR-CFTRI; Mysore Karnataka India
| |
Collapse
|
44
|
Dakik P, Titorenko VI. Communications between Mitochondria, the Nucleus, Vacuoles, Peroxisomes, the Endoplasmic Reticulum, the Plasma Membrane, Lipid Droplets, and the Cytosol during Yeast Chronological Aging. Front Genet 2016; 7:177. [PMID: 27729926 PMCID: PMC5037234 DOI: 10.3389/fgene.2016.00177] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 09/16/2016] [Indexed: 12/14/2022] Open
Abstract
Studies employing the budding yeast Saccharomyces cerevisiae as a model organism have provided deep insights into molecular mechanisms of cellular and organismal aging in multicellular eukaryotes and have demonstrated that the main features of biological aging are evolutionarily conserved. Aging in S. cerevisiae is studied by measuring replicative or chronological lifespan. Yeast replicative aging is likely to model aging of mitotically competent human cell types, while yeast chronological aging is believed to mimic aging of post-mitotic human cell types. Emergent evidence implies that various organelle-organelle and organelle-cytosol communications play essential roles in chronological aging of S. cerevisiae. The molecular mechanisms underlying the vital roles of intercompartmental communications in yeast chronological aging have begun to emerge. The scope of this review is to critically analyze recent progress in understanding such mechanisms. Our analysis suggests a model for how temporally and spatially coordinated movements of certain metabolites between various cellular compartments impact yeast chronological aging. In our model, diverse changes in these key metabolites are restricted to critical longevity-defining periods of chronological lifespan. In each of these periods, a limited set of proteins responds to such changes of the metabolites by altering the rate and efficiency of a certain cellular process essential for longevity regulation. Spatiotemporal dynamics of alterations in these longevity-defining cellular processes orchestrates the development and maintenance of a pro- or anti-aging cellular pattern.
Collapse
Affiliation(s)
- Pamela Dakik
- Department of Biology, Faculty of Arts and Science, Concordia University Montreal, PQ, Canada
| | - Vladimir I Titorenko
- Department of Biology, Faculty of Arts and Science, Concordia University Montreal, PQ, Canada
| |
Collapse
|
45
|
Harata K, Nishiuchi T, Kubo Y. Colletotrichum orbiculare WHI2, a Yeast Stress-Response Regulator Homolog, Controls the Biotrophic Stage of Hemibiotrophic Infection Through TOR Signaling. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:468-483. [PMID: 27018615 DOI: 10.1094/mpmi-02-16-0030-r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The hemibiotrophic fungus Colletotrichum orbiculare first establishes a biotrophic infection stage in cucumber (Cucumber sativus) epidermal cells and subsequently transitions to a necrotrophic stage. Here, we found that C. orbiculare established hemibiotrophic infection via C. orbiculare WHI2, a yeast stress regulator homolog, and TOR (target of rapamycin) signaling. Plant defense responses such as callose deposition, H2O2, and antimicrobial proteins were strongly induced by the C. orbiculare whi2Δ mutant, resulting in defective pathogenesis. Expression analysis of biotrophy-specific genes evaluated by the promoter VENUS fusion gene indicated weaker VENUS signal intensity in the whi2Δ mutant, thereby suggesting that C. orbiculare WHI2 plays a key role in regulating biotrophic infection of C. orbiculare. The involvement of CoWHI2 in biotrophic infection was further explored with a DNA microarray. In the Cowhi2Δ mutant, TOR-dependent ribosomal protein-related genes were strikingly upregulated compared with the wild type. Moreover, callose deposition in the host plant after inoculation with the Cowhi2Δ mutant treated with rapamycin, which inhibits TOR activity, was reduced, and the mutant remained biotrophic in contrast to the untreated mutant. Thus, regulation of TOR by Whi2 is apparently crucial to the biotrophic stage of hemibiotrophic infection in C. orbiculare.
Collapse
Affiliation(s)
- Ken Harata
- 1 Laboratory of Plant Pathology, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan; and
| | - Takumi Nishiuchi
- 2 Division of Functional Genomics, Advanced Science Research Centre, Kanazawa University, Kanazawa, Japan
| | - Yasuyuki Kubo
- 1 Laboratory of Plant Pathology, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan; and
| |
Collapse
|
46
|
The signaling pathways underlying starvation-induced upregulation of α-mannosidase Ams1 in Saccharomyces cerevisiae. Biochim Biophys Acta Gen Subj 2016; 1860:1192-201. [DOI: 10.1016/j.bbagen.2016.02.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 02/10/2016] [Accepted: 02/28/2016] [Indexed: 12/22/2022]
|
47
|
Satomura A, Miura N, Kuroda K, Ueda M. Reconstruction of thermotolerant yeast by one-point mutation identified through whole-genome analyses of adaptively-evolved strains. Sci Rep 2016; 6:23157. [PMID: 26984760 DOI: 10.1038/srep23157] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 03/01/2016] [Indexed: 01/26/2023] Open
Abstract
Saccharomyces cerevisiae is used as a host strain in bioproduction, because of its rapid growth, ease of genetic manipulation, and high reducing capacity. However, the heat produced during the fermentation processes inhibits the biological activities and growth of the yeast cells. We performed whole-genome sequencing of 19 intermediate strains previously obtained during adaptation experiments under heat stress; 49 mutations were found in the adaptation steps. Phylogenetic tree revealed at least five events in which these strains had acquired mutations in the CDC25 gene. Reconstructed CDC25 point mutants based on a parental strain had acquired thermotolerance without any growth defects. These mutations led to the downregulation of the cAMP-dependent protein kinase (PKA) signaling pathway, which controls a variety of processes such as cell-cycle progression and stress tolerance. The one-point mutations in CDC25 were involved in the global transcriptional regulation through the cAMP/PKA pathway. Additionally, the mutations enabled efficient ethanol fermentation at 39 °C, suggesting that the one-point mutations in CDC25 may contribute to bioproduction.
Collapse
Affiliation(s)
- Atsushi Satomura
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan.,Japan Society for the Promotion of Science, Sakyo-ku, Kyoto, Japan
| | - Natsuko Miura
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Kouichi Kuroda
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Mitsuyoshi Ueda
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
48
|
Święciło A. Cross-stress resistance in Saccharomyces cerevisiae yeast--new insight into an old phenomenon. Cell Stress Chaperones 2016; 21:187-200. [PMID: 26825800 PMCID: PMC4786536 DOI: 10.1007/s12192-016-0667-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/27/2015] [Accepted: 01/04/2016] [Indexed: 12/20/2022] Open
Abstract
Acquired stress resistance is the result of mild stress causing the acquisition of resistance to severe stress of the same or a different type. The mechanism of "same-stress" resistance (resistance to a second, strong stress after mild primary stress of the same type) probably depends on the activation of defense and repair mechanisms specific for a particular type of stress, while cross-stress resistance (i.e., resistance to a second, strong stress after a different type of mild primary stress) is the effect of activation of both a specific and general stress response program, which in Saccharomyces cerevisiae yeast is known as the environmental stress response (ESR). Advancements in research techniques have made it possible to study the mechanism of cross-stress resistance at various levels of cellular organization: stress signal transduction pathways, regulation of gene expression, and transcription or translation processes. As a result of this type of research, views on the cross-stress protection mechanism have been reconsidered. It was originally thought that cross-stress resistance, irrespective of the nature of the two stresses, was determined by universal mechanisms, i.e., the same mechanisms within the general stress response. They are now believed to be more specific and strictly dependent on the features of the first stress.
Collapse
Affiliation(s)
- Agata Święciło
- Faculty of Agrobioengineering, Department of Environmental Microbiology, University of Life Sciences in Lublin, Leszczynskiego 7, 20-069, Lublin, Poland.
| |
Collapse
|
49
|
Kanprasoet W, Jensen LT, Sriprach S, Thitiananpakorn K, Rattanapornsompong K, Jensen AN. Deletion of Mitochondrial Porin Alleviates Stress Sensitivity in the Yeast Model of Shwachman-Diamond Syndrome. J Genet Genomics 2015; 42:671-84. [DOI: 10.1016/j.jgg.2015.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 09/13/2015] [Accepted: 09/14/2015] [Indexed: 10/23/2022]
|
50
|
Lin Y, Sohn CH, Dalal CK, Cai L, Elowitz MB. Combinatorial gene regulation by modulation of relative pulse timing. Nature 2015; 527:54-8. [PMID: 26466562 PMCID: PMC4870307 DOI: 10.1038/nature15710] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 09/04/2015] [Indexed: 02/07/2023]
Abstract
Studies of individual living cells have revealed that many transcription factors activate in dynamic, and often stochastic, pulses within the same cell. However, it has remained unclear whether cells might modulate the relative timing of these pulses to control gene expression. Here, using quantitative single-cell time-lapse imaging of Saccharomyces cerevisiae, we show that the pulsatile transcription factors Msn2 and Mig1 combinatorially regulate their target genes through modulation of their relative pulse timing. The activator Msn2 and repressor Mig1 pulsed in either a temporally overlapping or non-overlapping manner during their transient response to different inputs, with only the non-overlapping dynamics efficiently activating target gene expression. Similarly, under constant environmental conditions, where Msn2 and Mig1 exhibit sporadic pulsing, glucose concentration modulated the temporal overlap between pulses of the two factors. Together, these results reveal a time-based mode of combinatorial gene regulation. Regulation through relative signal timing is common in engineering and neurobiology, and these results suggest that it could also function broadly within the signaling and regulatory systems of the cell.
Collapse
Affiliation(s)
- Yihan Lin
- Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California 91125, USA.,Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Chang Ho Sohn
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Chiraj K Dalal
- Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California 91125, USA.,Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Long Cai
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Michael B Elowitz
- Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California 91125, USA.,Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|