1
|
Kasho K, Sakai R, Ito K, Nakagaki W, Satomura R, Jinnouchi T, Ozaki S, Katayama T. Read-through transcription of tRNA underlies the cell cycle-dependent dissociation of IHF from the DnaA-inactivating sequence datA. Front Microbiol 2024; 15:1360108. [PMID: 38505555 PMCID: PMC10950094 DOI: 10.3389/fmicb.2024.1360108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/05/2024] [Indexed: 03/21/2024] Open
Abstract
Timely initiation of chromosomal DNA replication in Escherichia coli is achieved by cell cycle-coordinated regulation of the replication origin, oriC, and the replication initiator, ATP-DnaA. Cellular levels of ATP-DnaA increase and peak at the time for initiation at oriC, after which hydrolysis of DnaA-bound ATP causes those to fall, yielding initiation-inactive ADP-DnaA. This hydrolysis is facilitated by the chromosomal locus datA located downstream of the tRNA-Gly (glyV-X-Y) operon, which possesses a cluster of DnaA-binding sequences and a single binding site (IBS) for the DNA bending protein IHF (integration host factor). While IHF binding activates the datA function and is regulated to occur specifically at post-initiation time, the underlying regulatory mechanisms remain obscure. Here, we demonstrate that datA-IHF binding at pre-initiation time is down-regulated depending on the read-through transcription of datA IBS initiated at the glyV-X-Y promoter. During the cell cycle, the level of read-through transcription, but not promoter activity, fluctuated in a manner inversely related to datA-IHF binding. Transcription from the glyV-X-Y promoter was predominantly interrupted at datA IBS by IHF binding. The terminator/attenuator sequence of the glyV-X-Y operon, as well as DnaA binding within datA overall, contributed to attenuation of transcription upstream of datA IBS, preserving the timely fluctuation of read-through transcription. These findings provide a mechanistic insight of tRNA transcription-dependent datA-IHF regulation, in which an unidentified factor is additionally required for the timely datA-IHF dissociation, and support the significance of datA for controlling the cell cycle progression as a connecting hub of tRNA production and replication initiation.
Collapse
|
2
|
McKenzie AM, Henry C, Myers KS, Place MM, Keck JL. Identification of genetic interactions with priB links the PriA/PriB DNA replication restart pathway to double-strand DNA break repair in Escherichia coli. G3 (BETHESDA, MD.) 2022; 12:jkac295. [PMID: 36326440 PMCID: PMC9713433 DOI: 10.1093/g3journal/jkac295] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/20/2022] [Indexed: 11/30/2023]
Abstract
Collisions between DNA replication complexes (replisomes) and impediments such as damaged DNA or proteins tightly bound to the chromosome lead to premature dissociation of replisomes at least once per cell cycle in Escherichia coli. Left unrepaired, these events produce incompletely replicated chromosomes that cannot be properly partitioned into daughter cells. DNA replication restart, the process that reloads replisomes at prematurely terminated sites, is therefore essential in E. coli and other bacteria. Three replication restart pathways have been identified in E. coli: PriA/PriB, PriA/PriC, and PriC/Rep. A limited number of genetic interactions between replication restart and other genome maintenance pathways have been defined, but a systematic study placing replication restart reactions in a broader cellular context has not been performed. We have utilized transposon-insertion sequencing to identify new genetic interactions between DNA replication restart pathways and other cellular systems. Known genetic interactors with the priB replication restart gene (uniquely involved in the PriA/PriB pathway) were confirmed and several novel priB interactions were discovered. Targeted genetic and imaging-based experiments with priB and its genetic partners revealed significant double-strand DNA break accumulation in strains with mutations in dam, rep, rdgC, lexA, or polA. Modulating the activity of the RecA recombinase partially suppressed the detrimental effects of rdgC or lexA mutations in ΔpriB cells. Taken together, our results highlight roles for several genes in double-strand DNA break homeostasis and define a genetic network that facilitates DNA repair/processing upstream of PriA/PriB-mediated DNA replication restart in E. coli.
Collapse
Affiliation(s)
- Aidan M McKenzie
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | - Camille Henry
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kevin S Myers
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Michael M Place
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - James L Keck
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| |
Collapse
|
3
|
Huang D, Lo T, Merrikh H, Wiggins PA. Characterizing stochastic cell-cycle dynamics in exponential growth. Phys Rev E 2022; 105:014420. [PMID: 35193317 PMCID: PMC9506121 DOI: 10.1103/physreve.105.014420] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Two powerful and complementary experimental approaches are commonly used to study the cell cycle and cell biology: One class of experiments characterizes the statistics (or demographics) of an unsynchronized exponentially growing population, while the other captures cell-cycle dynamics, either by time-lapse imaging of full cell cycles or in bulk experiments on synchronized populations. In this paper, we study the subtle relationship between observations in these two distinct experimental approaches. We begin with an existing model: A single-cell deterministic description of cell-cycle dynamics where cell states (i.e., periods or phases) have precise lifetimes. We then generalize this description to a stochastic model in which the states have stochastic lifetimes, as described by arbitrary probability distribution functions. Our analyses of the demographics of an exponential culture reveal a simple and exact correspondence between the deterministic and stochastic models: The corresponding state ages in the deterministic model are equal to the exponential mean of the age in the stochastic model. An important implication is therefore that the demographics of an exponential culture will be well fit by a deterministic model even if the state timing is stochastic. Although we explore the implications of the models in the context of the Escherichia coli cell cycle, we expect both the models as well as the significance of the exponential-mean lifetimes to find many applications in the quantitative analysis of cell-cycle dynamics in other biological systems.
Collapse
Affiliation(s)
- Dean Huang
- Department of Physics, University of Washington, Seattle, WA, 98195
| | - Teresa Lo
- Department of Physics, University of Washington, Seattle, WA, 98195
| | - Houra Merrikh
- Department of Biochemistry, Vanderbilt University, Nashville, TN, 37205
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232
| | - Paul A. Wiggins
- Department of Physics, University of Washington, Seattle, WA, 98195
- Department of Bioengineering, University of Washington, Seattle, WA, 98195
- Department of Microbiology, University of Washington, Seattle, WA, 98195
| |
Collapse
|
4
|
Miyoshi K, Tatsumoto Y, Ozaki S, Katayama T. Negative feedback for DARS2-Fis complex by ATP-DnaA supports the cell cycle-coordinated regulation for chromosome replication. Nucleic Acids Res 2021; 49:12820-12835. [PMID: 34871419 PMCID: PMC8682772 DOI: 10.1093/nar/gkab1171] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 11/05/2021] [Accepted: 11/11/2021] [Indexed: 11/13/2022] Open
Abstract
In Escherichia coli, the replication initiator DnaA oscillates between an ATP- and an ADP-bound state in a cell cycle-dependent manner, supporting regulation for chromosome replication. ATP-DnaA cooperatively assembles on the replication origin using clusters of low-affinity DnaA-binding sites. After initiation, DnaA-bound ATP is hydrolyzed, producing initiation-inactive ADP-DnaA. For the next round of initiation, ADP-DnaA binds to the chromosomal locus DARS2, which promotes the release of ADP, yielding the apo-DnaA to regain the initiation activity through ATP binding. This DnaA reactivation by DARS2 depends on site-specific binding of IHF (integration host factor) and Fis proteins and IHF binding to DARS2 occurs specifically during pre-initiation. Here, we reveal that Fis binds to an essential region in DARS2 specifically during pre-initiation. Further analyses demonstrate that ATP-DnaA, but not ADP-DnaA, oligomerizes on a cluster of low-affinity DnaA-binding sites overlapping the Fis-binding region, which competitively inhibits Fis binding and hence the DARS2 activity. DiaA (DnaA initiator-associating protein) stimulating ATP-DnaA assembly enhances the dissociation of Fis. These observations lead to a negative feedback model where the activity of DARS2 is repressed around the time of initiation by the elevated ATP-DnaA level and is stimulated following initiation when the ATP-DnaA level is reduced.
Collapse
Affiliation(s)
- Kenya Miyoshi
- Department of Molecular Biology, Kyushu University Graduate School of Pharmaceutical Sciences, Fukuoka 812-8582, Japan
| | - Yuka Tatsumoto
- Department of Molecular Biology, Kyushu University Graduate School of Pharmaceutical Sciences, Fukuoka 812-8582, Japan
| | - Shogo Ozaki
- Department of Molecular Biology, Kyushu University Graduate School of Pharmaceutical Sciences, Fukuoka 812-8582, Japan
| | - Tsutomu Katayama
- Department of Molecular Biology, Kyushu University Graduate School of Pharmaceutical Sciences, Fukuoka 812-8582, Japan
| |
Collapse
|
5
|
Behrmann MS, Perera HM, Hoang JM, Venkat TA, Visser BJ, Bates D, Trakselis MA. Targeted chromosomal Escherichia coli:dnaB exterior surface residues regulate DNA helicase behavior to maintain genomic stability and organismal fitness. PLoS Genet 2021; 17:e1009886. [PMID: 34767550 PMCID: PMC8612530 DOI: 10.1371/journal.pgen.1009886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 11/24/2021] [Accepted: 10/18/2021] [Indexed: 12/05/2022] Open
Abstract
Helicase regulation involves modulation of unwinding speed to maintain coordination of DNA replication fork activities and is vital for replisome progression. Currently, mechanisms for helicase regulation that involve interactions with both DNA strands through a steric exclusion and wrapping (SEW) model and conformational shifts between dilated and constricted states have been examined in vitro. To better understand the mechanism and cellular impact of helicase regulation, we used CRISPR-Cas9 genome editing to study four previously identified SEW-deficient mutants of the bacterial replicative helicase DnaB. We discovered that these four SEW mutations stabilize constricted states, with more fully constricted mutants having a generally greater impact on genomic stress, suggesting a dynamic model for helicase regulation that involves both excluded strand interactions and conformational states. These dnaB mutations result in increased chromosome complexities, less stable genomes, and ultimately less viable and fit strains. Specifically, dnaB:mut strains present with increased mutational frequencies without significantly inducing SOS, consistent with leaving single-strand gaps in the genome during replication that are subsequently filled with lower fidelity. This work explores the genomic impacts of helicase dysregulation in vivo, supporting a combined dynamic regulatory mechanism involving a spectrum of DnaB conformational changes and relates current mechanistic understanding to functional helicase behavior at the replication fork. DNA replication is a vital biological process, and the proteins involved are structurally and functionally conserved across all domains of life. As our fundamental knowledge of genes and genetics grows, so does our awareness of links between acquired genetic mutations and disease. Understanding how genetic material is replicated accurately and efficiently and with high fidelity is the foundation to identifying and solving genome-based diseases. E. coli are model organisms, containing core replisome proteins, but lack the complexity of the human replication system, making them ideal for investigating conserved replisome behaviors. The helicase enzyme acts at the forefront of the replication fork to unwind the DNA helix and has also been shown to help coordinate other replisome functions. In this study, we examined specific mutations in the helicase that have been shown to regulate its conformation and speed of unwinding. We investigate how these mutations impact the growth, fitness, and cellular morphology of bacteria with the goal of understanding how helicase regulation mechanisms affect an organism’s ability to survive and maintain a stable genome.
Collapse
Affiliation(s)
- Megan S. Behrmann
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas, United States of America
| | - Himasha M. Perera
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas, United States of America
| | - Joy M. Hoang
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas, United States of America
| | - Trisha A. Venkat
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas, United States of America
| | - Bryan J. Visser
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - David Bates
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Michael A. Trakselis
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas, United States of America
- * E-mail:
| |
Collapse
|
6
|
Wiktor J, Gynnå AH, Leroy P, Larsson J, Coceano G, Testa I, Elf J. RecA finds homologous DNA by reduced dimensionality search. Nature 2021; 597:426-429. [PMID: 34471288 PMCID: PMC8443446 DOI: 10.1038/s41586-021-03877-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 08/04/2021] [Indexed: 11/21/2022]
Abstract
Homologous recombination is essential for the accurate repair of double-stranded DNA breaks (DSBs)1. Initially, the RecBCD complex2 resects the ends of the DSB into 3' single-stranded DNA on which a RecA filament assembles3. Next, the filament locates the homologous repair template on the sister chromosome4. Here we directly visualize the repair of DSBs in single cells, using high-throughput microfluidics and fluorescence microscopy. We find that, in Escherichia coli, repair of DSBs between segregated sister loci is completed in 15 ± 5 min (mean ± s.d.) with minimal fitness loss. We further show that the search takes less than 9 ± 3 min (mean ± s.d) and is mediated by a thin, highly dynamic RecA filament that stretches throughout the cell. We propose that the architecture of the RecA filament effectively reduces search dimensionality. This model predicts a search time that is consistent with our measurement and is corroborated by the observation that the search time does not depend on the length of the cell or the amount of DNA. Given the abundance of RecA homologues5, we believe this model to be widely conserved across living organisms.
Collapse
Affiliation(s)
- Jakub Wiktor
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Arvid H Gynnå
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Prune Leroy
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Jimmy Larsson
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Giovanna Coceano
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Ilaria Testa
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Johan Elf
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
7
|
Kouzminova EA, Kuzminov A. Ultraviolet-induced RNA:DNA hybrids interfere with chromosomal DNA synthesis. Nucleic Acids Res 2021; 49:3888-3906. [PMID: 33693789 PMCID: PMC8053090 DOI: 10.1093/nar/gkab147] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 02/14/2021] [Accepted: 02/23/2021] [Indexed: 12/28/2022] Open
Abstract
Ultraviolet (UV) induces pyrimidine dimers (PDs) in DNA and replication-dependent fragmentation in chromosomes. The rnhAB mutants in Escherichia coli, accumulating R-loops and single DNA-rNs, are generally resistant to DNA damage, but are surprisingly UV-sensitive, even though they remove PDs normally, suggesting irreparable chromosome lesions. We show here that the RNase H defect does not cause additional chromosome fragmentation after UV, but inhibits DNA synthesis after replication restart. Genetic analysis implies formation of R-loop-anchored transcription elongation complexes (R-loop-aTECs) in UV-irradiated rnhAB mutants, predicting that their chromosomal DNA will accumulate: (i) RNA:DNA hybrids; (ii) a few slow-to-remove PDs. We confirm both features and also find that both, surprisingly, depend on replication restart. Finally, enriching for the UV-induced RNA:DNA hybrids in the rnhAB uvrA mutants also co-enriches for PDs, showing their co-residence in the same structures. We propose that PD-triggered R-loop-aTECs block head-on replication in RNase H-deficient mutants.
Collapse
Affiliation(s)
- Elena A Kouzminova
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Andrei Kuzminov
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
8
|
Gross MH, Konieczny I. Polyphosphate induces the proteolysis of ADP-bound fraction of initiator to inhibit DNA replication initiation upon stress in Escherichia coli. Nucleic Acids Res 2020; 48:5457-5466. [PMID: 32282902 PMCID: PMC7261185 DOI: 10.1093/nar/gkaa217] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 03/19/2020] [Accepted: 03/25/2020] [Indexed: 11/29/2022] Open
Abstract
The decision whether to replicate DNA is crucial for cell survival, not only to proliferate in favorable conditions, but also to adopt to environmental changes. When a bacteria encounters stress, e.g. starvation, it launches the stringent response, to arrest cell proliferation and to promote survival. During the stringent response a vast amount of polymer composed of phosphate residues, i.e. inorganic polyphosphate (PolyP) is synthesized from ATP. Despite extensive research on PolyP, we still lack the full understanding of the PolyP role during stress. It is also elusive what is the mechanism of DNA replication initiation arrest in starved Escherichia coli cells. Here, we show that during stringent response PolyP activates Lon protease to degrade selectively the replication initiaton protein DnaA bound to ADP, but not ATP. In contrast to DnaA-ADP, the DnaA-ATP does not interact with PolyP, but binds to dnaA promoter to block dnaA transcription. The systems controlling the ratio of nucleotide states of DnaA continue to convert DnaA-ATP to DnaA-ADP, which is proteolysed by Lon, thereby resulting in the DNA replication initiation arrest. The uncovered regulatory mechanism interlocks the PolyP-dependent protease activation with the ATP/ADP cycle of dual-functioning protein essential for bacterial cell proliferation.
Collapse
Affiliation(s)
- Marta H Gross
- Laboratory of Molecular Biology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, ul. Abrahama 58, 80-307 Gdansk, Poland
| | - Igor Konieczny
- Laboratory of Molecular Biology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, ul. Abrahama 58, 80-307 Gdansk, Poland
| |
Collapse
|
9
|
Gray WT, Govers SK, Xiang Y, Parry BR, Campos M, Kim S, Jacobs-Wagner C. Nucleoid Size Scaling and Intracellular Organization of Translation across Bacteria. Cell 2020; 177:1632-1648.e20. [PMID: 31150626 DOI: 10.1016/j.cell.2019.05.017] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 04/01/2019] [Accepted: 05/08/2019] [Indexed: 01/10/2023]
Abstract
The scaling of organelles with cell size is thought to be exclusive to eukaryotes. Here, we demonstrate that similar scaling relationships hold for the bacterial nucleoid. Despite the absence of a nuclear membrane, nucleoid size strongly correlates with cell size, independent of changes in DNA amount and across various nutrient conditions. This correlation is observed in diverse bacteria, revealing a near-constant ratio between nucleoid and cell size for a given species. As in eukaryotes, the nucleocytoplasmic ratio in bacteria varies greatly among species. This spectrum of nucleocytoplasmic ratios is independent of genome size, and instead it appears linked to the average population cell size. Bacteria with different nucleocytoplasmic ratios have a cytoplasm with different biophysical properties, impacting ribosome mobility and localization. Together, our findings identify new organizational principles and biophysical features of bacterial cells, implicating the nucleocytoplasmic ratio and cell size as determinants of the intracellular organization of translation.
Collapse
Affiliation(s)
- William T Gray
- Microbial Sciences Institute, Yale University, West Haven, CT, USA; Department of Pharmacology, Yale University, New Haven, CT, USA
| | - Sander K Govers
- Microbial Sciences Institute, Yale University, West Haven, CT, USA; Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Yingjie Xiang
- Microbial Sciences Institute, Yale University, West Haven, CT, USA; Department of Mechanical Engineering and Materials Science, Yale University, New Haven, CT, USA
| | - Bradley R Parry
- Microbial Sciences Institute, Yale University, West Haven, CT, USA; Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Manuel Campos
- Microbial Sciences Institute, Yale University, West Haven, CT, USA; Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Sangjin Kim
- Microbial Sciences Institute, Yale University, West Haven, CT, USA; Department of Mechanical Engineering and Materials Science, Yale University, New Haven, CT, USA
| | - Christine Jacobs-Wagner
- Microbial Sciences Institute, Yale University, West Haven, CT, USA; Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA; Howard Hughes Medical Institute, Yale University, New Haven, CT, USA; Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
10
|
Thymineless Death in Escherichia coli Is Unaffected by Chromosomal Replication Complexity. J Bacteriol 2019; 201:JB.00797-18. [PMID: 30745374 DOI: 10.1128/jb.00797-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 02/06/2019] [Indexed: 11/20/2022] Open
Abstract
Thymineless death (TLD) is a rapid loss of viability of unclear mechanism in cultures of thyA mutants starved for thymine/thymidine (T starvation). It is accepted that T starvation repeatedly breaks replication forks, while recombinational repair restores them, but when the resulting futile breakage-repair cycle affects the small replication bubbles at oriC, the origin is degraded, killing the cell. Indeed, cells with increased chromosomal replication complexity (CRC), expressed as an elevated origin/terminus (ori/ter) ratio, die more extensively during TLD. Here we tested this logic by elevating the CRC in Escherichia coli thyA mutants before T starvation, anticipating exaggerated TLD. Unexpectedly, TLD remained unaffected by a CRC increase to either the natural limit (ori/ter ratio, ∼6) or the functional limit (ori/ter ratio, ∼16). Moreover, when we forced the CRC over the functional limit (ori/ter ratio, ∼30), TLD lessened. Thus, prior overinitiation does not sensitize cells to TLD. In contradiction with the published results, even blocking new replication initiations by the dnaA(Ts) defect at 42°C fails to prevent TLD. Using the thyA dnaA(Ts) mutant in a new T starvation protocol that excludes new initiations, we show that at 42°C, the same degree of TLD still occurs when chromosomes are demonstrably nonreplicating. Remarkably, 80% of the chromosomal DNA in these nonreplicating T-starved cells is still lost, by an unclear mechanism.IMPORTANCE Thymineless death kills cells of any type and is used in anticancer and antimicrobial treatments. We tested the idea that the more replication forks there are in the chromosome during growth, the more extensive the resulting thymineless death. We varied the number of replication forks in the Escherichia coli chromosome, as measured by the origin-to-terminus ratio, ranging it from the normal 2 to 60, and even completely eliminated replication forks in the nonreplicating chromosomes (ori/ter ratio = 1). Unexpectedly, we found that thymineless death is unaffected by the intensity of replication or by its complete absence; we also found that even nonreplicating chromosomes still disappear during thymine starvation. We conclude that thymineless death can kill E. coli independently of chromosomal replication.
Collapse
|
11
|
Zhang S, Wunier W, Yao Y, Morigen M. Defects in ribosome function delay the initiation of chromosome replication in Escherichia coli. J Basic Microbiol 2018; 58:1091-1099. [PMID: 30211949 DOI: 10.1002/jobm.201800295] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/14/2018] [Accepted: 08/25/2018] [Indexed: 01/14/2023]
Abstract
The Sra protein is a component of the 30S ribosomal subunit while RimJ is a ribosome-associated protein that plays a role in the maturation of the 30S ribosomal subunit. Here we found that Δsra and ΔrimJ cells showed a delayed initiation of DNA replication, prolonged doubling time, decreased cell size, and decreased amounts of total protein and DnaA per cell compared with these observed for wild-type cells. A temperature sensitivity test demonstrated that absence of the Sra or RimJ protein did not change the temperature sensitivity of the dnaA46, dnaB252, or dnaC2 mutants. Moreover, ectopic expression of Sra reversed the mutant phenotype while cells carrying the pACYC177-rimJ plasmid did not reverse the rimJ mutant phenotype. The results indicate that deletion of sra or rimJ cause defects in ribosomal function and affect the translation process, leading to a decrease in synthesis of proteins including DnaA. Therefore, we conclude that Sra- and RimJ-mediated ribosomal function is required for precise timing of initiation of chromosome replication.
Collapse
Affiliation(s)
- Shujun Zhang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China.,School of Life Sciences, Inner Mongolia University for Nationalities, Tongliao, China
| | - Wunier Wunier
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yuan Yao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China.,Department of Neurology, Inner Mongolia People's Hospital, Hohhot, China
| | - Morigen Morigen
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| |
Collapse
|
12
|
Abstract
In all organisms, replication impairments are an important source of genome rearrangements, mainly because of the formation of double-stranded DNA (dsDNA) ends at inactivated replication forks. Three reactions for the formation of dsDNA ends at replication forks were originally described for Escherichia coli and became seminal models for all organisms: the encounter of replication forks with preexisting single-stranded DNA (ssDNA) interruptions, replication fork reversal, and head-to-tail collisions of successive replication rounds. Here, we first review the experimental evidence that now allows us to know when, where, and how these three different reactions occur in E. coli. Next, we recall our recent studies showing that in wild-type E. coli, spontaneous replication fork breakage occurs in 18% of cells at each generation. We propose that it results from the replication of preexisting nicks or gaps, since it does not involve replication fork reversal or head-to-tail fork collisions. In the recB mutant, deficient for double-strand break (DSB) repair, fork breakage triggers DSBs in the chromosome terminus during cell division, a reaction that is heritable for several generations. Finally, we recapitulate several observations suggesting that restart from intact inactivated replication forks and restart from recombination intermediates require different sets of enzymatic activities. The finding that 18% of cells suffer replication fork breakage suggests that DNA remains intact at most inactivated forks. Similarly, only 18% of cells need the helicase loader for replication restart, which leads us to speculate that the replicative helicase remains on DNA at intact inactivated replication forks and is reactivated by the replication restart proteins.
Collapse
|
13
|
Kemter FS, Messerschmidt SJ, Schallopp N, Sobetzko P, Lang E, Bunk B, Spröer C, Teschler JK, Yildiz FH, Overmann J, Waldminghaus T. Synchronous termination of replication of the two chromosomes is an evolutionary selected feature in Vibrionaceae. PLoS Genet 2018; 14:e1007251. [PMID: 29505558 PMCID: PMC5854411 DOI: 10.1371/journal.pgen.1007251] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/15/2018] [Accepted: 02/13/2018] [Indexed: 11/18/2022] Open
Abstract
Vibrio cholerae, the causative agent of the cholera disease, is commonly used as a model organism for the study of bacteria with multipartite genomes. Its two chromosomes of different sizes initiate their DNA replication at distinct time points in the cell cycle and terminate in synchrony. In this study, the time-delayed start of Chr2 was verified in a synchronized cell population. This replication pattern suggests two possible regulation mechanisms for other Vibrio species with different sized secondary chromosomes: Either all Chr2 start DNA replication with a fixed delay after Chr1 initiation, or the timepoint at which Chr2 initiates varies such that termination of chromosomal replication occurs in synchrony. We investigated these two models and revealed that the two chromosomes of various Vibrionaceae species terminate in synchrony while Chr2-initiation timing relative to Chr1 is variable. Moreover, the sequence and function of the Chr2-triggering crtS site recently discovered in V. cholerae were found to be conserved, explaining the observed timing mechanism. Our results suggest that it is beneficial for bacterial cells with multiple chromosomes to synchronize their replication termination, potentially to optimize chromosome related processes as dimer resolution or segregation.
Collapse
Affiliation(s)
- Franziska S. Kemter
- LOEWE Center for Synthetic Microbiology–SYNMIKRO, Philipps-Universität Marburg, Marburg, Germany
| | - Sonja J. Messerschmidt
- LOEWE Center for Synthetic Microbiology–SYNMIKRO, Philipps-Universität Marburg, Marburg, Germany
| | - Nadine Schallopp
- LOEWE Center for Synthetic Microbiology–SYNMIKRO, Philipps-Universität Marburg, Marburg, Germany
| | - Patrick Sobetzko
- LOEWE Center for Synthetic Microbiology–SYNMIKRO, Philipps-Universität Marburg, Marburg, Germany
| | - Elke Lang
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Boyke Bunk
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Cathrin Spröer
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Jennifer K. Teschler
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, United States of America
| | - Fitnat H. Yildiz
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, United States of America
| | - Jörg Overmann
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
- German Centre of Infection Research (DZIF), Partner Site Hannover–Braunschweig, Braunschweig, Germany
| | - Torsten Waldminghaus
- LOEWE Center for Synthetic Microbiology–SYNMIKRO, Philipps-Universität Marburg, Marburg, Germany
- * E-mail:
| |
Collapse
|
14
|
Abstract
The widespread interest in cell synchronization is maintained by the studies of control mechanism involved in cell cycle regulation. During the synchronization distinct subpopulations of cells are obtained representing different stages of the cell cycle. These subpopulations are then used to study regulatory mechanisms of the cycle at the level of macromolecular biosynthesis (DNA synthesis, gene expression, protein synthesis), protein phosphorylation, development of new drugs, etc. Although several synchronization methods have been described, it is of general interest that scientists get a compilation and an updated view of these synchronization techniques. This introductory chapter summarizes: (1) the basic concepts and principal criteria of cell cycle synchronizations, (2) the most frequently used synchronization methods, such as physical fractionation (flow cytometry, dielectrophoresis, cytofluorometric purification), chemical blockade, (3) synchronization of embryonic cells, (4) synchronization at low temperature, (5) comparison of cell synchrony techniques, (6) synchronization of unicellular organisms, and (7) the effect of synchronization on transfection.
Collapse
|
15
|
A Spatial Control for Correct Timing of Gene Expression during the Escherichia coli Cell Cycle. Genes (Basel) 2016; 8:genes8010001. [PMID: 28025549 PMCID: PMC5294996 DOI: 10.3390/genes8010001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 12/09/2016] [Accepted: 12/15/2016] [Indexed: 01/14/2023] Open
Abstract
Temporal transcriptions of genes are achieved by different mechanisms such as dynamic interaction of activator and repressor proteins with promoters, and accumulation and/or degradation of key regulators as a function of cell cycle. We find that the TorR protein localizes to the old poles of the Escherichia coli cells, forming a functional focus. The TorR focus co-localizes with the nucleoid in a cell-cycle-dependent manner, and consequently regulates transcription of a number of genes. Formation of one TorR focus at the old poles of cells requires interaction with the MreB and DnaK proteins, and ATP, suggesting that TorR delivery requires cytoskeleton organization and ATP. Further, absence of the protein–protein interactions and ATP leads to loss in function of TorR as a transcription factor. We propose a mechanism for timing of cell-cycle-dependent gene transcription, where a transcription factor interacts with its target genes during a specific period of the cell cycle by limiting its own spatial distribution.
Collapse
|
16
|
Beyene GT, Balasingham SV, Frye SA, Namouchi A, Homberset H, Kalayou S, Riaz T, Tønjum T. Characterization of the Neisseria meningitidis Helicase RecG. PLoS One 2016; 11:e0164588. [PMID: 27736945 PMCID: PMC5063381 DOI: 10.1371/journal.pone.0164588] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 09/27/2016] [Indexed: 11/19/2022] Open
Abstract
Neisseria meningitidis (Nm) is a Gram-negative oral commensal that opportunistically can cause septicaemia and/or meningitis. Here, we overexpressed, purified and characterized the Nm DNA repair/recombination helicase RecG (RecGNm) and examined its role during genotoxic stress. RecGNm possessed ATP-dependent DNA binding and unwinding activities in vitro on a variety of DNA model substrates including a Holliday junction (HJ). Database searching of the Nm genomes identified 49 single nucleotide polymorphisms (SNPs) in the recGNm including 37 non-synonymous SNPs (nsSNPs), and 7 of the nsSNPs were located in the codons for conserved active site residues of RecGNm. A transient reduction in transformation of DNA was observed in the Nm ΔrecG strain as compared to the wildtype. The gene encoding recGNm also contained an unusually high number of the DNA uptake sequence (DUS) that facilitate transformation in neisserial species. The differentially abundant protein profiles of the Nm wildtype and ΔrecG strains suggest that expression of RecGNm might be linked to expression of other proteins involved in DNA repair, recombination and replication, pilus biogenesis, glycan biosynthesis and ribosomal activity. This might explain the growth defect that was observed in the Nm ΔrecG null mutant.
Collapse
Affiliation(s)
| | | | - Stephan A. Frye
- Department of Microbiology, Oslo University Hospital (Rikshospitalet), Oslo, Norway
| | - Amine Namouchi
- Department of Microbiology, Oslo University Hospital (Rikshospitalet), Oslo, Norway
| | | | - Shewit Kalayou
- Department of Microbiology, University of Oslo, Oslo, Norway
| | - Tahira Riaz
- Department of Microbiology, University of Oslo, Oslo, Norway
| | - Tone Tønjum
- Department of Microbiology, University of Oslo, Oslo, Norway
- Department of Microbiology, Oslo University Hospital (Rikshospitalet), Oslo, Norway
- * E-mail:
| |
Collapse
|
17
|
Wiktor J, Lesterlin C, Sherratt DJ, Dekker C. CRISPR-mediated control of the bacterial initiation of replication. Nucleic Acids Res 2016; 44:3801-10. [PMID: 27036863 PMCID: PMC4857001 DOI: 10.1093/nar/gkw214] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 03/16/2016] [Accepted: 03/18/2016] [Indexed: 12/20/2022] Open
Abstract
Programmable control of the cell cycle has been shown to be a powerful tool in cell-biology studies. Here, we develop a novel system for controlling the bacterial cell cycle, based on binding of CRISPR/dCas9 to the origin-of-replication locus. Initiation of replication of bacterial chromosomes is accurately regulated by the DnaA protein, which promotes the unwinding of DNA at oriC We demonstrate that the binding of CRISPR/dCas9 to any position within origin or replication blocks the initiation of replication. Serial-dilution plating, single-cell fluorescence microscopy, and flow-cytometry experiments show that ongoing rounds of chromosome replication are finished upon CRISPR/dCas9 binding, but no new rounds are initiated. Upon arrest, cells stay metabolically active and accumulate cell mass. We find that elevating the temperature from 37 to 42°C releases the CRISR/dCas9 replication inhibition, and we use this feature to recover cells from the arrest. Our simple and robust method of controlling the bacterial cell cycle is a useful asset for synthetic biology and DNA-replication studies in particular. The inactivation of CRISPR/dCas9 binding at elevated temperatures may furthermore be of wide interest for CRISPR/Cas9 applications in genomic engineering.
Collapse
Affiliation(s)
- Jakub Wiktor
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2628CJ Delft, The Netherlands
| | | | - David J Sherratt
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2628CJ Delft, The Netherlands
| |
Collapse
|
18
|
Mahaseth T, Kuzminov A. Prompt repair of hydrogen peroxide-induced DNA lesions prevents catastrophic chromosomal fragmentation. DNA Repair (Amst) 2016; 41:42-53. [PMID: 27078578 PMCID: PMC4851570 DOI: 10.1016/j.dnarep.2016.03.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 03/25/2016] [Indexed: 12/13/2022]
Abstract
Iron-dependent oxidative DNA damage in vivo by hydrogen peroxide (H2O2, HP) induces copious single-strand(ss)-breaks and base modifications. HP also causes infrequent double-strand DNA breaks, whose relationship to the cell killing is unclear. Since hydrogen peroxide only fragments chromosomes in growing cells, these double-strand breaks were thought to represent replication forks collapsed at direct or excision ss-breaks and to be fully reparable. We have recently reported that hydrogen peroxide kills Escherichia coli by inducing catastrophic chromosome fragmentation, while cyanide (CN) potentiates both the killing and fragmentation. Remarkably, the extreme density of CN+HP-induced chromosomal double-strand breaks makes involvement of replication forks unlikely. Here we show that this massive fragmentation is further amplified by inactivation of ss-break repair or base-excision repair, suggesting that unrepaired primary DNA lesions are directly converted into double-strand breaks. Indeed, blocking DNA replication lowers CN+HP-induced fragmentation only ∼2-fold, without affecting the survival. Once cyanide is removed, recombinational repair in E. coli can mend several double-strand breaks, but cannot mend ∼100 breaks spread over the entire chromosome. Therefore, double-strand breaks induced by oxidative damage happen at the sites of unrepaired primary one-strand DNA lesions, are independent of replication and are highly lethal, supporting the model of clustered ss-breaks at the sites of stable DNA-iron complexes.
Collapse
Affiliation(s)
- Tulip Mahaseth
- Department of Microbiology, University of Illinois at Urbana-Champaign, USA
| | - Andrei Kuzminov
- Department of Microbiology, University of Illinois at Urbana-Champaign, USA.
| |
Collapse
|
19
|
Abstract
The initiation of chromosomal DNA replication starts at a replication origin, which in bacteria is a discrete locus that contains DNA sequence motifs recognized by an initiator protein whose role is to assemble the replication fork machinery at this site. In bacteria with a single chromosome, DnaA is the initiator and is highly conserved in all bacteria. As an adenine nucleotide binding protein, DnaA bound to ATP is active in the assembly of a DnaA oligomer onto these sites. Other proteins modulate DnaA oligomerization via their interaction with the N-terminal region of DnaA. Following the DnaA-dependent unwinding of an AT-rich region within the replication origin, DnaA then mediates the binding of DnaB, the replicative DNA helicase, in a complex with DnaC to form an intermediate named the prepriming complex. In the formation of this intermediate, the helicase is loaded onto the unwound region within the replication origin. As DnaC bound to DnaB inhibits its activity as a DNA helicase, DnaC must dissociate to activate DnaB. Apparently, the interaction of DnaB with primase (DnaG) and primer formation leads to the release of DnaC from DnaB, which is coordinated with or followed by translocation of DnaB to the junction of the replication fork. There, DnaB is able to coordinate its activity as a DNA helicase with the cellular replicase, DNA polymerase III holoenzyme, which uses the primers made by primase for leading strand DNA synthesis.
Collapse
Affiliation(s)
- S Chodavarapu
- Michigan State University, East Lansing, MI, United States
| | - J M Kaguni
- Michigan State University, East Lansing, MI, United States.
| |
Collapse
|
20
|
Sumares JAP, Morão LG, Martins PMM, Martins DAB, Gomes E, Belasque J, Ferreira H. Temperature stress promotes cell division arrest in Xanthomonas citri subsp. citri. Microbiologyopen 2015; 5:244-53. [PMID: 26663580 PMCID: PMC4831469 DOI: 10.1002/mbo3.323] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 11/02/2015] [Accepted: 11/06/2015] [Indexed: 11/10/2022] Open
Abstract
Citrus canker is an economically important disease that affects orange production in some of the most important producing areas around the world. It represents a great threat to the Brazilian and North American citriculture, particularly to the states of São Paulo and Florida, which together correspond to the biggest orange juice producers in the world. The etiological agent of this disease is the Gram‐negative bacterium Xanthomonas citri subsp. citri (Xcc), which grows optimally in laboratory cultures at ~30°C. To investigate how temperatures differing from 30°C influence the development of Xcc, we subjected the bacterium to thermal stresses, and afterward scored its recovery capability. In addition, we analyzed cell morphology and some markers of essential cellular processes that could indicate the extent of the heat‐induced damage. We found that the exposure of Xcc to 37°C for a period of 6 h led to a cell cycle arrest at the division stage. Thermal stress might have also interfered with the DNA replication and/or the chromosome segregation apparatuses, since cells displayed an increased number of sister origins side‐by‐side within rods. Additionally, Xcc treated at 37°C was still able to induce citrus canker symptoms, showing that thermal stress did not affect the ability of Xcc to colonize the host citrus. At 40–42°C, Xcc lost viability and became unable to induce disease symptoms in citrus. Our results provide evidence about essential cellular mechanisms perturbed by temperature, and can be potentially explored as a new method for Xanthomonas citri synchronization in cell cycle studies, as well as for the sanitation of plant material.
Collapse
Affiliation(s)
- Júlia A P Sumares
- Faculdade de Ciências Farmacêuticas, Depto. de Ciências Biológicas, Universidade Estadual Paulista, Rodovia Araraquara/Jaú Km 1, CP 502, Araraquara, SP, 14801-902, Brazil
| | - Luana Galvão Morão
- Depto. Bioquímica e Microbiologia, Instituto de Biociências, Universidade Estadual Paulista, Av. 24A 1515, Rio Claro, SP, 13506-900, Brazil
| | - Paula M M Martins
- Depto. Bioquímica e Microbiologia, Instituto de Biociências, Universidade Estadual Paulista, Av. 24A 1515, Rio Claro, SP, 13506-900, Brazil
| | - Daniela A B Martins
- Depto. de Bioquímica e Tecnologia Química, Instituto de Química, Universidade Estadual Paulista, R. Prof. Francisco Degni, 55, Araraquara, SP, 14800-060, Brazil
| | - Eleni Gomes
- Depto. de Biologia, Universidade Estadual Paulista, Rua Cristóvão Colombo, 2265 Jardim Nazareth, São Jose do Rio Preto, SP, 15054-000, Brazil
| | - José Belasque
- Depto. de Fitopatologia e Nematologia, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Av. Pádua Dias 11, Piracicaba, SP, 13418-900, Brazil
| | - Henrique Ferreira
- Depto. Bioquímica e Microbiologia, Instituto de Biociências, Universidade Estadual Paulista, Av. 24A 1515, Rio Claro, SP, 13506-900, Brazil
| |
Collapse
|
21
|
Kasho K, Fujimitsu K, Matoba T, Oshima T, Katayama T. Timely binding of IHF and Fis to DARS2 regulates ATP-DnaA production and replication initiation. Nucleic Acids Res 2014; 42:13134-49. [PMID: 25378325 PMCID: PMC4245941 DOI: 10.1093/nar/gku1051] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
In Escherichia coli, the ATP-bound form of DnaA (ATP-DnaA) promotes replication initiation. During replication, the bound ATP is hydrolyzed to ADP to yield the ADP-bound form (ADP-DnaA), which is inactive for initiation. The chromosomal site DARS2 facilitates the regeneration of ATP-DnaA by catalyzing nucleotide exchange between free ATP and ADP bound to DnaA. However, the regulatory mechanisms governing this exchange reaction are unclear. Here, using in vitro reconstituted experiments, we show that two nucleoid-associated proteins, IHF and Fis, bind site-specifically to DARS2 to activate coordinately the exchange reaction. The regenerated ATP-DnaA was fully active in replication initiation and underwent DnaA-ATP hydrolysis. ADP-DnaA formed heteromultimeric complexes with IHF and Fis on DARS2, and underwent nucleotide dissociation more efficiently than ATP-DnaA. Consistently, mutant analyses demonstrated that specific binding of IHF and Fis to DARS2 stimulates the formation of ATP-DnaA production, thereby promoting timely initiation. Moreover, we show that IHF-DARS2 binding is temporally regulated during the cell cycle, whereas Fis only binds to DARS2 in exponentially growing cells. These results elucidate the regulation of ATP-DnaA and replication initiation in coordination with the cell cycle and growth phase.
Collapse
Affiliation(s)
- Kazutoshi Kasho
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Kazuyuki Fujimitsu
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Toshihiro Matoba
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Taku Oshima
- Division of Genomics of Bacterial Cell Functions, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Tsutomu Katayama
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
22
|
Morigen M, Flåtten I, Skarstad K. The Escherichia coli datA site promotes proper regulation of cell division. MICROBIOLOGY-SGM 2014; 160:703-710. [PMID: 24574433 DOI: 10.1099/mic.0.074898-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In Escherichia coli inhibition of replication leads to a block of cell division. This checkpoint mechanism ensures that no cell divides without having two complete copies of the genome to pass on to the two daughter cells. The chromosomal datA site is a 1 kb region that contains binding sites for the DnaA replication initiator protein, and which contributes to the inactivation of DnaA. An excess of datA sites provided on plasmids has been found to lead to both a delay in initiation of replication and in cell division during exponential growth. Here we have investigated the effect of datA on the cell division block that occurs upon inhibition of replication initiation in a dnaC2 mutant. We found that this checkpoint mechanism was aided by the presence of datA. In cells where datA was deleted or an excess of DnaA was provided, cell division occurred in the absence of replication and anucleate cells were formed. This finding indicates that loss of datA and/or excess of DnaA protein promote cell division. This conclusion was supported by the finding that the lethality of the division-compromised mutants ftsZ84 and ftsI23 was suppressed by deletion of datA, at the lowest non-permissive temperature. We propose that the cell division block that occurs upon inhibition of DNA replication is, at least in part, due to a drop in the concentration of the ATP-DnaA protein.
Collapse
Affiliation(s)
- Morigen Morigen
- College of Life Sciences, Inner Mongolia University, Da Xue Xi Lu 235, Hohhot, 010021, PR China.,Department of Cell Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Oslo 0310, Norway
| | - Ingvild Flåtten
- Department of Cell Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Oslo 0310, Norway
| | - Kirsten Skarstad
- Department of Cell Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Oslo 0310, Norway
| |
Collapse
|
23
|
The SMC complex MukBEF recruits topoisomerase IV to the origin of replication region in live Escherichia coli. mBio 2014; 5:e01001-13. [PMID: 24520061 PMCID: PMC3950513 DOI: 10.1128/mbio.01001-13] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The Escherichia coli structural maintenance of chromosome (SMC) complex, MukBEF, and topoisomerase IV (TopoIV) interact in vitro through a direct contact between the MukB dimerization hinge and the C-terminal domain of ParC, the catalytic subunit of TopoIV. The interaction stimulates catalysis by TopoIV in vitro. Using live-cell quantitative imaging, we show that MukBEF directs TopoIV to ori, with fluorescent fusions of ParC and ParE both forming cellular foci that colocalize with those formed by MukBEF throughout the cell cycle and in cells unable to initiate DNA replication. Removal of MukBEF leads to loss of fluorescent ParC/ParE foci. In the absence of functional TopoIV, MukBEF forms multiple foci that are distributed uniformly throughout the nucleoid, whereas multiple catenated oris cluster at midcell. Once functional TopoIV is restored, the decatenated oris segregate to positions that are largely coincident with the MukBEF foci, thereby providing support for a mechanism by which MukBEF acts in chromosome segregation by positioning newly replicated and decatenated oris. Additional evidence for such a mechanism comes from the observation that in TopoIV-positive (TopoIV(+)) cells, newly replicated oris segregate rapidly to the positions of MukBEF foci. Taken together, the data implicate MukBEF as a key component of the DNA segregation process by acting in concert with TopoIV to promote decatenation and positioning of newly replicated oris. IMPORTANCE Mechanistic understanding of how newly replicated bacterial chromosomes are segregated prior to cell division is incomplete. In this work, we provide in vivo experimental support for the view that topoisomerase IV (TopoIV), which decatenates newly replicated sister duplexes as a prelude to successful segregation, is directed to the replication origin region of the Escherichia coli chromosome by the SMC (structural maintenance of chromosome) complex, MukBEF. We provide in vivo data that support the demonstration in vitro that the MukB interaction with TopoIV stimulates catalysis by TopoIV. Finally, we show that MukBEF directs the normal positioning of sister origins after their replication and during their segregation. Overall, the data support models in which the coordinate and sequential action of TopoIV and MukBEF plays an important role during bacterial chromosome segregation.
Collapse
|
24
|
Parry BR, Surovtsev IV, Cabeen MT, O'Hern CS, Dufresne ER, Jacobs-Wagner C. The bacterial cytoplasm has glass-like properties and is fluidized by metabolic activity. Cell 2013; 156:183-94. [PMID: 24361104 DOI: 10.1016/j.cell.2013.11.028] [Citation(s) in RCA: 497] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 07/31/2013] [Accepted: 11/05/2013] [Indexed: 11/17/2022]
Abstract
The physical nature of the bacterial cytoplasm is poorly understood even though it determines cytoplasmic dynamics and hence cellular physiology and behavior. Through single-particle tracking of protein filaments, plasmids, storage granules, and foreign particles of different sizes, we find that the bacterial cytoplasm displays properties that are characteristic of glass-forming liquids and changes from liquid-like to solid-like in a component size-dependent fashion. As a result, the motion of cytoplasmic components becomes disproportionally constrained with increasing size. Remarkably, cellular metabolism fluidizes the cytoplasm, allowing larger components to escape their local environment and explore larger regions of the cytoplasm. Consequently, cytoplasmic fluidity and dynamics dramatically change as cells shift between metabolically active and dormant states in response to fluctuating environments. Our findings provide insight into bacterial dormancy and have broad implications to our understanding of bacterial physiology, as the glassy behavior of the cytoplasm impacts all intracellular processes involving large components.
Collapse
Affiliation(s)
- Bradley R Parry
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - Ivan V Surovtsev
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Yale University, New Haven, CT 06520, USA
| | - Matthew T Cabeen
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - Corey S O'Hern
- Department of Applied Physics, Yale University, New Haven, CT 06520, USA; Department of Physics, Yale University, New Haven, CT 06520, USA; Department of Mechanical Engineering and Materials Science, Yale University, New Haven, CT 06520, USA
| | - Eric R Dufresne
- Department of Physics, Yale University, New Haven, CT 06520, USA; Department of Mechanical Engineering and Materials Science, Yale University, New Haven, CT 06520, USA; Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06520, USA; Department of Cell Biology, Yale University, New Haven, CT 06520, USA
| | - Christine Jacobs-Wagner
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Yale University, New Haven, CT 06520, USA; Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
25
|
A replication-inhibited unsegregated nucleoid at mid-cell blocks Z-ring formation and cell division independently of SOS and the SlmA nucleoid occlusion protein in Escherichia coli. J Bacteriol 2013; 196:36-49. [PMID: 24142249 DOI: 10.1128/jb.01230-12] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chromosome replication and cell division of Escherichia coli are coordinated with growth such that wild-type cells divide once and only once after each replication cycle. To investigate the nature of this coordination, the effects of inhibiting replication on Z-ring formation and cell division were tested in both synchronized and exponentially growing cells with only one replicating chromosome. When replication elongation was blocked by hydroxyurea or nalidixic acid, arrested cells contained one partially replicated, compact nucleoid located mid-cell. Cell division was strongly inhibited at or before the level of Z-ring formation. DNA cross-linking by mitomycin C delayed segregation, and the accumulation of about two chromosome equivalents at mid-cell also blocked Z-ring formation and cell division. Z-ring inhibition occurred independently of SOS, SlmA-mediated nucleoid occlusion, and MinCDE proteins and did not result from a decreased FtsZ protein concentration. We propose that the presence of a compact, incompletely replicated nucleoid or unsegregated chromosome masses at the normal mid-cell division site inhibits Z-ring formation and that the SOS system, SlmA, and MinC are not required for this inhibition.
Collapse
|
26
|
Pomerantz RT, Kurth I, Goodman MF, O'Donnell ME. Preferential D-loop extension by a translesion DNA polymerase underlies error-prone recombination. Nat Struct Mol Biol 2013; 20:748-55. [PMID: 23686288 PMCID: PMC3685420 DOI: 10.1038/nsmb.2573] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 03/27/2013] [Indexed: 12/14/2022]
Abstract
Although homologous recombination (HR) is considered an accurate form of DNA repair, genetics suggest that Escherichia coli (E. coli) translesion DNA polymerase (pol) IV (DinB) promotes error-prone recombination during stress which allows cells to overcome adverse conditions. How pol IV functions and is regulated during recombination under stress, however, is unknown. We show that pol IV is highly proficient in error-prone recombination, and is preferentially recruited to D-loops at stress-induced concentrations in vitro. Unexpectedly, we find that high-fidelity pol II switches to exonuclease mode at D-loops which is stimulated by topological stress and reduced deoxy-ribonucleotide pools observed during stationary-phase. The exonuclease activity of pol II enables it to compete with pol IV which likely suppresses error-prone recombination. These findings indicate that preferential D-loop extension by pol IV facilitates error-prone recombination and explain how pol II reduces such errors in vivo.
Collapse
Affiliation(s)
- Richard T Pomerantz
- The Rockefeller University, Howard Hughes Medical Institute, New York, New York, USA
| | | | | | | |
Collapse
|
27
|
Sister chromatid interactions in bacteria revealed by a site-specific recombination assay. EMBO J 2012; 31:3468-79. [PMID: 22820946 DOI: 10.1038/emboj.2012.194] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 06/28/2012] [Indexed: 11/08/2022] Open
Abstract
The process of Sister Chromosome Cohesion (SCC), which holds together sister chromatids upon replication, is essential for chromosome segregation and DNA repair in eukaryotic cells. Although cohesion at the molecular level has never been described in E. coli, previous studies have reported that sister sequences remain co-localized for a period after their replication. Here, we have developed a new genetic recombination assay that probes the ability of newly replicated chromosome loci to interact physically. We show that Sister Chromatid Interaction (SCI) occurs exclusively within a limited time frame after replication. Importantly, we could differentiate sister cohesion and co-localization since factors such as MatP and MukB that reduced the co-localization of markers had no effect on molecular cohesion. The frequency of sister chromatid interactions were modulated by the activity of Topo-IV, revealing that DNA topology modulates cohesion at the molecular scale in bacteria.
Collapse
|
28
|
The Escherichia coli SMC complex, MukBEF, shapes nucleoid organization independently of DNA replication. J Bacteriol 2012; 194:4669-76. [PMID: 22753058 DOI: 10.1128/jb.00957-12] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
SMC (structural maintenance of chromosomes) complexes function ubiquitously in organizing and maintaining chromosomes. Functional fluorescent derivatives of the Escherichia coli SMC complex, MukBEF, form foci that associate with the replication origin region (ori). MukBEF impairment results in mispositioning of ori and other loci in steady-state cells. These observations led to an earlier proposal that MukBEF positions new replicated sister oris. We show here that MukBEF generates and maintains the cellular positioning of chromosome loci independently of DNA replication. Rapid impairment of MukBEF function by depleting a Muk component in the absence of DNA replication leads to loss of MukBEF foci as well as mispositioning of ori and other loci, while rapid Muk synthesis leads to rapid MukBEF focus formation but slow restoration of normal chromosomal locus positioning.
Collapse
|
29
|
Abstract
Bacterial DNA ligases, NAD⁺-dependent enzymes, are distinct from eukaryotic ATP-dependent ligases, representing promising targets for broad-spectrum antimicrobials. Yet, the chromosomal consequences of ligase-deficient DNA replication, during which Okazaki fragments accumulate, are still unclear. Using ligA251(Ts), the strongest ligase mutant of Escherichia coli, we studied ligase-deficient DNA replication by genetic and physical approaches. Here we show that replication without ligase kills after a short resistance period. We found that double-strand break repair via RecA, RecBCD, RuvABC and RecG explains the transient resistance, whereas irreparable chromosomal fragmentation explains subsequent cell death. Remarkably, death is mostly prevented by elimination of linear DNA degradation activity of ExoV, suggesting that non-allelic double-strand breaks behind replication forks precipitate DNA degradation that enlarge them into allelic double-strand gaps. Marker frequency profiling of synchronized replication reveals stalling of ligase-deficient forks with subsequent degradation of the DNA synthesized without ligase. The mechanism that converts unsealed nicks behind replication forks first into repairable double-strand breaks and then into irreparable double-strand gaps may be behind lethality of any DNA damaging treatment.
Collapse
Affiliation(s)
- Elena A Kouzminova
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801-3709, USA
| | | |
Collapse
|
30
|
Silva F, Queiroz JA, Domingues FC. Evaluating metabolic stress and plasmid stability in plasmid DNA production by Escherichia coli. Biotechnol Adv 2012; 30:691-708. [DOI: 10.1016/j.biotechadv.2011.12.005] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 12/01/2011] [Accepted: 12/29/2011] [Indexed: 01/26/2023]
|
31
|
Waldminghaus T, Weigel C, Skarstad K. Replication fork movement and methylation govern SeqA binding to the Escherichia coli chromosome. Nucleic Acids Res 2012; 40:5465-76. [PMID: 22373925 PMCID: PMC3384311 DOI: 10.1093/nar/gks187] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
In Escherichia coli, the SeqA protein binds specifically to GATC sequences which are methylated on the A of the old strand but not on the new strand. Such hemimethylated DNA is produced by progression of the replication forks and lasts until Dam methyltransferase methylates the new strand. It is therefore believed that a region of hemimethylated DNA covered by SeqA follows the replication fork. We show that this is, indeed, the case by using global ChIP on Chip analysis of SeqA in cells synchronized regarding DNA replication. To assess hemimethylation, we developed the first genome-wide method for methylation analysis in bacteria. Since loss of the SeqA protein affects growth rate only during rapid growth when cells contain multiple replication forks, a comparison of rapid and slow growth was performed. In cells with six replication forks per chromosome, the two old forks were found to bind surprisingly little SeqA protein. Cell cycle analysis showed that loss of SeqA from the old forks did not occur at initiation of the new forks, but instead occurs at a time point coinciding with the end of SeqA-dependent origin sequestration. The finding suggests simultaneous origin de-sequestration and loss of SeqA from old replication forks.
Collapse
Affiliation(s)
- Torsten Waldminghaus
- Department of Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital and University of Oslo, 0310 Oslo, Norway
| | | | | |
Collapse
|
32
|
Chodavarapu S, Felczak MM, Kaguni JM. Two forms of ribosomal protein L2 of Escherichia coli that inhibit DnaA in DNA replication. Nucleic Acids Res 2011; 39:4180-91. [PMID: 21288885 PMCID: PMC3105425 DOI: 10.1093/nar/gkq1203] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
We purified an inhibitor of oriC plasmid replication and determined that it is a truncated form of ribosomal protein L2 evidently lacking 59 amino acid residues from the C-terminal region encoded by rplB. We show that this truncated form of L2 or mature L2 physically interacts with the N-terminal region of DnaA to inhibit initiation from oriC by apparently interfering with DnaA oligomer formation, and the subsequent assembly of the prepriming complex on an oriC plasmid. Both forms of L2 also inhibit the unwinding of oriC by DnaA. These in vitro results raise the possibility that one or both forms of L2 modulate DnaA function in vivo to regulate the frequency of initiation.
Collapse
Affiliation(s)
- Sundari Chodavarapu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824-1319, USA
| | | | | |
Collapse
|
33
|
Abstract
Widespread interest in cell synchronization is maintained by the studies of control mechanisms involved in cell cycle regulation. During the synchronization distinct subpopulations of cells are obtained representing different stages of the cell cycle. These subpopulations are then used to study regulatory mechanisms of the cycle at the level of macromolecular biosynthesis (DNA synthesis, gene expression, protein synthesis), protein phosphorylation, development of new drugs, etc. Although several synchronization methods have been described, it is of general interest that scientists get a compilation and an updated view of these synchronization techniques. This introductory chapter summarizes: (1) the basic concepts and principal criteria of cell cycle synchronizations, (2) the most frequently used synchronization methods, such as physical fractionation (flow cytometry, dielectrophoresis, cytofluorometric purification), chemical blockade, (3) synchronization of embryonic cells, (4) synchronization at low temperature, (5) comparison of cell synchrony techniques, (6) synchronization of unicellular organisms, and (7) the effect of synchronization on transfection.
Collapse
Affiliation(s)
- Gaspar Banfalvi
- Department of Microbial Biotechnology and Cell Biology, University of Debrecen, 4010, Debrecen, Hungary.
| |
Collapse
|
34
|
Sánchez-Romero MA, Busby SJW, Dyer NP, Ott S, Millard AD, Grainger DC. Dynamic distribution of seqa protein across the chromosome of escherichia coli K-12. mBio 2010; 1:e00012-10. [PMID: 20689753 PMCID: PMC2912659 DOI: 10.1128/mbio.00012-10] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Accepted: 02/10/2010] [Indexed: 11/20/2022] Open
Abstract
The bacterial SeqA protein binds to hemi-methylated GATC sequences that arise in newly synthesized DNA upon passage of the replication machinery. In Escherichia coli K-12, the single replication origin oriC is a well-characterized target for SeqA, which binds to multiple hemi-methylated GATC sequences immediately after replication has initiated. This sequesters oriC, thereby preventing reinitiation of replication. However, the genome-wide DNA binding properties of SeqA are unknown, and hence, here, we describe a study of the binding of SeqA across the entire Escherichia coli K-12 chromosome, using chromatin immunoprecipitation in combination with DNA microarrays. Our data show that SeqA binding correlates with the frequency and spacing of GATC sequences across the entire genome. Less SeqA is found in highly transcribed regions, as well as in the ter macrodomain. Using synchronized cultures, we show that SeqA distribution differs with the cell cycle. SeqA remains bound to some targets after replication has ceased, and these targets locate to genes encoding factors involved in nucleotide metabolism, chromosome replication, and methyl transfer.
Collapse
Affiliation(s)
| | - Stephen J. W. Busby
- School of Biosciences, the University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Nigel P. Dyer
- Systems Biology Centre, Coventry House, the University of Warwick, Coventry, United Kingdom; and
| | - Sascha Ott
- Systems Biology Centre, Coventry House, the University of Warwick, Coventry, United Kingdom; and
| | - Andrew D. Millard
- Department of Biological Sciences, the University of Warwick, Coventry, United Kingdom
| | - David C. Grainger
- Department of Biological Sciences, the University of Warwick, Coventry, United Kingdom
| |
Collapse
|
35
|
Abstract
Over the last few decades, advances in cultivation-independent methods have significantly contributed to our understanding of microbial diversity and community composition in the environment. At the same time, cultivation-dependent methods have thrived, and the growing number of organisms obtained thereby have allowed for detailed studies of their physiology and genetics. Still, most microorganisms are recalcitrant to cultivation. This review not only conveys current knowledge about different isolation and cultivation strategies but also discusses what implications can be drawn from pure culture work for studies in microbial ecology. Specifically, in the light of single-cell individuality and genome heterogeneity, it becomes important to evaluate population-wide measurements carefully. An overview of various approaches in microbial ecology is given, and the cell as a central unit for understanding processes on a community level is discussed.
Collapse
Affiliation(s)
- Karsten Zengler
- Bioengineering Department, University of California, San Diego, La Jolla, California 92093, USA.
| |
Collapse
|
36
|
Ferullo DJ, Cooper DL, Moore HR, Lovett ST. Cell cycle synchronization of Escherichia coli using the stringent response, with fluorescence labeling assays for DNA content and replication. Methods 2009; 48:8-13. [PMID: 19245839 DOI: 10.1016/j.ymeth.2009.02.010] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Accepted: 02/15/2009] [Indexed: 10/21/2022] Open
Abstract
We describe a method for synchronization of the cell cycle in the bacterium Escherichia coli. Treatment of asynchronous cultures with the amino acid analog, dl-serine hydroxamate, induces the stringent response, with concomitant arrest of DNA replication at initiation. Following release of the stringent response, cells initiate DNA replication in synchrony, as determined by flow cytometry for DNA content, Southern blotting and microscopy. This method has the advantage that it can be used in fully wild-type cells, at different growth rates, and may be applicable to other bacterial species with replication control by the stringent response. We also elaborate other methods useful for establishing cell cycle parameters in bacterial populations. We describe flow cytometric methods for analyzing bacterial populations for DNA content using the DNA-specific dye PicoGreen, readily detected by most commercial flow cytometers. We also present an method for incorporation of the nucleotide ethynyl-deoxyuridine, EdU, followed by "click" labeling with fluorescent dyes, which allows us to measure and visualize newly replicated DNA in fixed E. coli K-12 cells under non-denaturing conditions.
Collapse
Affiliation(s)
- Daniel J Ferullo
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454-9110, USA
| | | | | | | |
Collapse
|
37
|
Structural synergy and molecular crosstalk between bacterial helicase loaders and replication initiators. Cell 2008; 135:623-34. [PMID: 19013274 DOI: 10.1016/j.cell.2008.09.058] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2008] [Revised: 07/18/2008] [Accepted: 09/26/2008] [Indexed: 11/23/2022]
Abstract
The loading of oligomeric helicases onto replication origins marks an essential step in replisome assembly. In cells, dedicated AAA+ ATPases regulate loading, however, the mechanism by which these factors recruit and deposit helicases has remained unclear. To better understand this process, we determined the structure of the ATPase region of the bacterial helicase loader DnaC from Aquifex aeolicus to 2.7 A resolution. The structure shows that DnaC is a close paralog of the bacterial replication initiator, DnaA, and unexpectedly shares an ability to form a helical assembly similar to that of ATP-bound DnaA. Complementation and ssDNA-binding assays validate the importance of homomeric DnaC interactions, while pull-down experiments show that the DnaC and DnaA AAA+ domains interact in a nucleotide-dependent manner. These findings implicate DnaC as a molecular adaptor that uses ATP-activated DnaA as a docking site for regulating the recruitment and correct spatial deposition of the DnaB helicase onto origins.
Collapse
|
38
|
Bach T, Morigen, Skarstad K. The initiator protein DnaA contributes to keeping new origins inactivated by promoting the presence of hemimethylated DNA. J Mol Biol 2008; 384:1076-85. [PMID: 18835566 DOI: 10.1016/j.jmb.2008.09.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Revised: 09/10/2008] [Accepted: 09/15/2008] [Indexed: 10/21/2022]
Abstract
The Escherichia coli replication origin oriC and other regions with high numbers of GATC sites remain hemimethylated after replication much longer than regions with average numbers of GATC sites. The prolonged period of hemimethylation has been attributed to the presence of bound SeqA protein. Here, it was found that a GATC cluster inserted at the datA site, which binds large amounts of DnaA in vivo, did not become remethylated at all, unless the availability of the DnaA protein was severely reduced. Sequestration of oriC was also found to be affected by the availability of DnaA. The period of origin hemimethylation was reduced by approximately 30% upon a reduction in the availability of DnaA. The result shows that not only SeqA binding but also DnaA binding to newly replicated origins contributes to keeping them hemimethylated. It was also found that the number of SeqA foci increased in cells with a combination of DnaA-mediated protection and sequestration at the GATC::datA cluster.
Collapse
Affiliation(s)
- Trond Bach
- Department of Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Rikshospitalet, University of Oslo, 0310 Oslo, Norway
| | | | | |
Collapse
|
39
|
DnaC inactivation in Escherichia coli K-12 induces the SOS response and expression of nucleotide biosynthesis genes. PLoS One 2008; 3:e2984. [PMID: 18714349 PMCID: PMC2500167 DOI: 10.1371/journal.pone.0002984] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Accepted: 07/29/2008] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Initiation of chromosome replication in E. coli requires the DnaA and DnaC proteins and conditionally-lethal dnaA and dnaC mutants are often used to synchronize cell populations. METHODOLOGY/PRINCIPAL FINDINGS DNA microarrays were used to measure mRNA steady-state levels in initiation-deficient dnaA46 and dnaC2 bacteria at permissive and non-permissive temperatures and their expression profiles were compared to MG1655 wildtype cells. For both mutants there was altered expression of genes involved in nucleotide biosynthesis at the non-permissive temperature. Transcription of the dnaA and dnaC genes was increased at the non-permissive temperature in the respective mutant strains indicating auto-regulation of both genes. Induction of the SOS regulon was observed in dnaC2 cells at 38 degrees C and 42 degrees C. Flow cytometric analysis revealed that dnaC2 mutant cells at non-permissive temperature had completed the early stages of chromosome replication initiation. CONCLUSION/SIGNIFICANCE We suggest that in dnaC2 cells the SOS response is triggered by persistent open-complex formation at oriC and/or by arrested forks that require DnaC for replication restart.
Collapse
|
40
|
Reyes-Lamothe R, Possoz C, Danilova O, Sherratt DJ. Independent positioning and action of Escherichia coli replisomes in live cells. Cell 2008; 133:90-102. [PMID: 18394992 PMCID: PMC2288635 DOI: 10.1016/j.cell.2008.01.044] [Citation(s) in RCA: 216] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2007] [Revised: 12/20/2007] [Accepted: 01/31/2008] [Indexed: 12/25/2022]
Abstract
A prevalent view of DNA replication has been that it is carried out in fixed “replication factories.” By tracking the progression of sister replication forks with respect to genetic loci in live Escherichia coli, we show that at initiation replisomes assemble at replication origins irrespective of where the origins are positioned within the cell. Sister replisomes separate and move to opposite cell halves shortly after initiation, migrating outwards as replication proceeds and both returning to midcell as replication termination approaches. DNA polymerase is maintained at stalled replication forks, and over short intervals of time replisomes are more dynamic than genetic loci. The data are inconsistent with models in which replisomes associated with sister forks act within a fixed replication factory. We conclude that independent replication forks follow the path of the compacted chromosomal DNA, with no structure other than DNA anchoring the replisome to any particular cellular region.
Collapse
|
41
|
Pennington JM, Rosenberg SM. Spontaneous DNA breakage in single living Escherichia coli cells. Nat Genet 2007; 39:797-802. [PMID: 17529976 PMCID: PMC2856310 DOI: 10.1038/ng2051] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2007] [Accepted: 04/26/2007] [Indexed: 12/20/2022]
Abstract
Spontaneous DNA breakage is predicted to be a frequent, inevitable consequence of DNA replication and is thought to underlie much of the genomic change that fuels cancer and evolution. Despite its importance, there has been little direct measurement of the amounts, types, sources and fates of spontaneous DNA lesions in living cells. We present a direct, sensitive flow cytometric assay in single living Escherichia coli cells for DNA lesions capable of inducing the SOS DNA damage response, and we report its use in quantification of spontaneous DNA double-strand breaks (DSBs). We report efficient detection of single chromosomal DSBs and rates of spontaneous breakage approximately 20- to 100-fold lower than predicted. In addition, we implicate DNA replication in the origin of spontaneous DSBs with the finding of fewer spontaneous DSBs in a mutant with altered DNA polymerase III. The data imply that spontaneous DSBs induce genomic changes and instability 20-100 times more potently than previously appreciated. Finally, FACS demonstrated two main cell fates after spontaneous DNA damage: viability with or without resumption of proliferation.
Collapse
Affiliation(s)
- Jeanine M Pennington
- Interdepartmental Program in Cell and Molecular Biology and Department of Molecular and Human Genetics, Houston, Texas 77030-3411, USA
| | | |
Collapse
|
42
|
Jeong KS, Xie Y, Hiasa H, Khodursky AB. Analysis of pleiotropic transcriptional profiles: a case study of DNA gyrase inhibition. PLoS Genet 2006; 2:e152. [PMID: 17009874 PMCID: PMC1584274 DOI: 10.1371/journal.pgen.0020152] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2006] [Accepted: 08/02/2006] [Indexed: 01/05/2023] Open
Abstract
Genetic and environmental perturbations often result in complex transcriptional responses involving multiple genes and regulons. In order to understand the nature of a response, one has to account for the contribution of the downstream effects to the formation of a response. Such analysis can be carried out within a statistical framework in which the individual effects are independently collected and then combined within a linear model. Here, we modeled the contribution of DNA replication, supercoiling, and repair to the transcriptional response of inhibition of the Escherichia coli gyrase. By representing the gyrase inhibition as a true pleiotropic phenomenon, we were able to demonstrate that: (1) DNA replication is required for the formation of spatial transcriptional domains; (2) the transcriptional response to the gyrase inhibition is coordinated between at least two modules involved in DNA maintenance, relaxation and damage response; (3) the genes whose transcriptional response to the gyrase inhibition does not depend on the main relaxation activity of the cell can be classified on the basis of a GC excess in their upstream and coding sequences; and (4) relaxation by topoisomerase I dominates the transcriptional response, followed by the effects of replication and RecA. We functionally tested the effect of the interaction between relaxation and repair activities, and found support for the model derived from the microarray data. We conclude that modeling compound transcriptional profiles as a combination of downstream transcriptional effects allows for a more realistic, accurate, and meaningful representation of the transcriptional activity of a genome. Pleiotropism—a movement, or reaction, in multiple directions: although it was initially used specifically to describe the effect of a single genetic mutation on multiple characters in the offspring, the transcriptional responses of cells are often best described in terms of pleiotropy, when a single input affects multiple components inside the cell. This, in turn, presents a dilemma with the analysis and interpretation of the observed effects: which effects are directly due to the input itself and which are not? How are the effects related to each other and which are more important? And finally, can the overall transcriptional response be summarized as a combination of the effects? There is, however, a problem with recording the effects when they occur almost simultaneously in the same organism. The authors approached this by recording the effects independently, using mutants that could generate all of the effects of interest but one, and then estimating the effects and their interactions from a multivariate linear model. The authors applied this method to explain the transcriptional response of Escherichia coli to a quinolone antibacterial, a relative of Cipro (ciprofloxacin hydrochloride), and discovered unexpected interactions between DNA maintenance modules in the cell.
Collapse
Affiliation(s)
- Kyeong Soo Jeong
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, St. Paul, Minnesota, United States of America
- Biotechnology Institute, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Yang Xie
- Biotechnology Institute, University of Minnesota, St. Paul, Minnesota, United States of America
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Hiroshi Hiasa
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Arkady B Khodursky
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, St. Paul, Minnesota, United States of America
- Biotechnology Institute, University of Minnesota, St. Paul, Minnesota, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
43
|
Yamazoe M, Adachi S, Kanaya S, Ohsumi K, Hiraga S. Sequential binding of SeqA protein to nascent DNA segments at replication forks in synchronized cultures of Escherichia coli. Mol Microbiol 2005; 55:289-98. [PMID: 15612935 DOI: 10.1111/j.1365-2958.2004.04389.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
To demonstrate that sequestration A (SeqA) protein binds preferentially to hemimethylated GATC sequences at replication forks and forms clusters in Escherichia coli growing cells, we analysed, by the chromatin immunoprecipitation (ChIP) assay using anti-SeqA antibody, a synchronized culture of a temperature-sensitive dnaC mutant strain in which only one round of chromosomal DNA replication was synchronously initiated. After synchronized initiation of chromosome replication, the replication origin oriC was first detected by the ChIP assay, and other six chromosomal regions having multiple GATC sequences were sequentially detected according to bidirectional replication of the chromosome. In contrast, DNA regions lacking the GATC sequence were not detected by the ChIP assay. These results indicate that SeqA binds hemimethylated nascent DNA segments according to the proceeding of replication forks in the chromosome, and SeqA releases from the DNA segments when fully methylated. Immunofluorescence microscopy reveals that a single SeqA focus containing paired replication apparatuses appears at the middle of the cell immediately after initiation of chromosome replication and the focus is subsequently separated into two foci that migrate to 1/4 and 3/4 cellular positions, when replication forks proceed bidirectionally an approximately one-fourth distance from the replication origin towards the terminus. This supports the translocating replication apparatuses model.
Collapse
Affiliation(s)
- Mitsuyoshi Yamazoe
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Konoe, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | |
Collapse
|
44
|
Bach T, Skarstad K. An oriC-like Distribution of GATC Sites Mediates Full Sequestration of Non-origin Sequences in Escherichia coli. J Mol Biol 2005; 350:7-11. [PMID: 15922360 DOI: 10.1016/j.jmb.2005.04.055] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2005] [Revised: 04/25/2005] [Accepted: 04/25/2005] [Indexed: 11/19/2022]
Abstract
Sequestration of newly replicated origins is one of the mechanisms required to limit initiation of Escherichia coli chromosome replication to once per generation. Origin sequestration lasts for a considerably longer period of time than the sequestration of other newly replicated regions of the chromosome. The reason for this may be the high number of GATC sites present in the origin. Alternatively, other sequence elements in the origin region may be important for its prolonged sequestration. To distinguish between these possibilities we constructed a DNA fragment containing ten GATC sites distributed with the same spacing as the ten GATC sites in the left half of oriC, but with random sequence between the GATC sites, and inserted it at a non-sequestered chromosome location. Sequestration of this GATC-cluster lasted as long as that of oriC, or even longer. The result shows that the presence of ten GATC sites, distributed as in oriC, is sufficient to cause full sequestration, and that other sequence elements most likely do not contribute to sequestration.
Collapse
Affiliation(s)
- Trond Bach
- Department of Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital HF, 0310 Oslo, Norway
| | | |
Collapse
|
45
|
Breier AM, Weier HUG, Cozzarelli NR. Independence of replisomes in Escherichia coli chromosomal replication. Proc Natl Acad Sci U S A 2005; 102:3942-7. [PMID: 15738384 PMCID: PMC552787 DOI: 10.1073/pnas.0500812102] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In Escherichia coli DNA replication is carried out by the coordinated action of the proteins within a replisome. After replication initiation, the two bidirectionally oriented replisomes from a single origin are colocalized into higher-order structures termed replication factories. The factory model postulated that the two replisomes are also functionally coupled. We tested this hypothesis by using DNA combing and whole-genome microarrays. Nascent DNA surrounding oriC in single, combed chromosomes showed instead that one replisome, usually the leftward one, was significantly ahead of the other 70% of the time. We next used microarrays to follow replication throughout the genome by measuring DNA copy number. We found in multiple E. coli strains that the replisomes are independent, with the leftward replisome ahead of the rightward one. The size of the bias was strain-specific, varying from 50 to 130 kb in the array results. When we artificially blocked one replisome, the other continued unabated, again demonstrating independence. We suggest an improved version of the factory model that retains the advantages of threading DNA through colocalized replisomes at about equal rates, but allows the cell flexibility to overcome obstacles encountered during elongation.
Collapse
Affiliation(s)
- Adam M Breier
- Graduate Group in Biophysics and Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
46
|
Bravo A, Serrano-Heras G, Salas M. Compartmentalization of prokaryotic DNA replication. FEMS Microbiol Rev 2005; 29:25-47. [PMID: 15652974 DOI: 10.1016/j.femsre.2004.06.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2004] [Revised: 06/15/2004] [Accepted: 06/17/2004] [Indexed: 11/22/2022] Open
Abstract
It becomes now apparent that prokaryotic DNA replication takes place at specific intracellular locations. Early studies indicated that chromosomal DNA replication, as well as plasmid and viral DNA replication, occurs in close association with the bacterial membrane. Moreover, over the last several years, it has been shown that some replication proteins and specific DNA sequences are localized to particular subcellular regions in bacteria, supporting the existence of replication compartments. Although the mechanisms underlying compartmentalization of prokaryotic DNA replication are largely unknown, the docking of replication factors to large organizing structures may be important for the assembly of active replication complexes. In this article, we review the current state of this subject in two bacterial species, Escherichia coli and Bacillus subtilis, focusing our attention in both chromosomal and extrachromosomal DNA replication. A comparison with eukaryotic systems is also presented.
Collapse
Affiliation(s)
- Alicia Bravo
- Instituto de Biología Molecular Eladio Viñuela (CSIC), Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain.
| | | | | |
Collapse
|
47
|
Jeong KS, Ahn J, Khodursky AB. Spatial patterns of transcriptional activity in the chromosome of Escherichia coli. Genome Biol 2004; 5:R86. [PMID: 15535862 PMCID: PMC545777 DOI: 10.1186/gb-2004-5-11-r86] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2004] [Revised: 09/13/2004] [Accepted: 09/29/2004] [Indexed: 12/16/2022] Open
Abstract
Analysis of the transcriptional activity in Escherichia coli K12 revealed an asymmetry in the distribution of transcriptional patterns along the bacterial chromosome and showed that spatial patterns of transcription could be modulated pharmacologically and genetically. Background Although genes on the chromosome are organized in a fixed order, the spatial correlations in transcription have not been systematically evaluated. We used a combination of genomic and signal processing techniques to investigate the properties of transcription in the genome of Escherichia coli K12 as a function of the position of genes on the chromosome. Results Spectral analysis of transcriptional series revealed the existence of statistically significant patterns in the spatial series of transcriptional activity. These patterns could be classified into three categories: short-range, of up to 16 kilobases (kb); medium-range, over 100-125 kb; and long-range, over 600-800 kb. We show that the significant similarities in gene activities extend beyond the length of an operon and that local patterns of coexpression are dependent on DNA supercoiling. Unlike short-range patterns, the formation of medium and long-range transcriptional patterns does not strictly depend on the level of DNA supercoiling. The long-range patterns appear to correlate with the patterns of distribution of DNA gyrase on the bacterial chromosome. Conclusions Localization of structural components in the transcriptional signal revealed an asymmetry in the distribution of transcriptional patterns along the bacterial chromosome. The demonstration that spatial patterns of transcription could be modulated pharmacologically and genetically, along with the identification of molecular correlates of transcriptional patterns, offer for the first time strong evidence of physiologically determined higher-order organization of transcription in the bacterial chromosome.
Collapse
Affiliation(s)
- Kyeong Soo Jeong
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, St. Paul, MN 55108, USA
| | - Jaeyong Ahn
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, St. Paul, MN 55108, USA
| | - Arkady B Khodursky
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, St. Paul, MN 55108, USA
| |
Collapse
|
48
|
Ishida T, Akimitsu N, Kashioka T, Hatano M, Kubota T, Ogata Y, Sekimizu K, Katayama T. DiaA, a novel DnaA-binding protein, ensures the timely initiation of Escherichia coli chromosome replication. J Biol Chem 2004; 279:45546-55. [PMID: 15326179 DOI: 10.1074/jbc.m402762200] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The DnaA protein is the initiator of Escherichia coli chromosomal replication. In this study, we identify a novel DnaA-associating protein, DiaA, that is required for the timely initiation of replication during the cell cycle. DiaA promotes the growth of specific temperature-sensitive dnaA mutants and ensures stable minichromosome maintenance, whereas DiaA does not decrease the cellular DnaA content. A diaA::Tn5 mutation suppresses the cold-sensitive growth of an overinitiation type dnaA mutant independently of SeqA, a negative modulator of initiation. Flow cytometry analyses revealed that the timing of replication initiation is disrupted in the diaA mutant cells as well as wild-type cells with pBR322 expressing the diaA gene. Gel filtration and chemical cross-linking experiments showed that purified DiaA forms a stable homodimer. Immunoblotting analysis indicated that a single cell contains about 280 DiaA dimers. DiaA stimulates minichromosome replication in an in vitro system especially when the level of DnaA included is limited. Moreover, specific and direct binding between DnaA and DiaA was observed, which requires a DnaA N-terminal region. DiaA binds to both ATP- and ADP-bound forms of DnaA with a similar affinity. Thus, we conclude that DiaA is a novel DnaA-associating factor that is crucial to ensure the timely initiation of chromosomal replication.
Collapse
Affiliation(s)
- Takuma Ishida
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Bach T, Skarstad K. Re-replication from non-sequesterable origins generates three-nucleoid cells which divide asymmetrically. Mol Microbiol 2004; 51:1589-600. [PMID: 15009887 DOI: 10.1111/j.1365-2958.2003.03943.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In rapidly growing Escherichia coli cells replication cycles overlap and initiation occurs at multiple replication origins (oriCs). All origins within a cell are initiated essentially in synchrony and only once per cell cycle. Immediate re-initiation of new origins is avoided by sequestration, a mechanism dependent on the SeqA protein and Dam methylation of GATC sites in oriC. Here, GATC sites in oriC were changed to GTTC. This reduced the sequestration to essentially the level found in SeqA-less cells. The mutant origins underwent re-initiation, showing that the GATC sites in oriC are required for sequestration. Each re-initiation eventually gave rise to a cell containing an extra nucleoid. The three-nucleoid cells displayed one asymmetrically placed FtsZ-ring and divided into a two-nucleoid cell and a one-nucleoid cell. The three nucleoid-cells thus divided into three daughters by two consecutive divisions. The results show that extra rounds of replication cause extra daughter cells to be formed prematurely. The fairly normal mutant growth rate and size distribution show, however, that premature rounds of replication, chromosome segregation, and cell division are flexibly accommodated by the existing cell cycle controls.
Collapse
Affiliation(s)
- Trond Bach
- Department of Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, 0310 Oslo, Norway
| | | |
Collapse
|
50
|
Su'etsugu M, Emoto A, Fujimitsu K, Keyamura K, Katayama T. Transcriptional control for initiation of chromosomal replication in Escherichia coli: fluctuation of the level of origin transcription ensures timely initiation. Genes Cells 2003; 8:731-45. [PMID: 12940821 DOI: 10.1046/j.1365-2443.2003.00671.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND During the cell cycle, the initiation of chromosomal replication is strictly controlled. In Escherichia coli, the initiator DnaA and the replication origin oriC are major targets for this regulation. Here, we assessed the role of transcription of the mioC gene, which reads through the adjacent oriC region. This mioC-oriC transcription is regulated in coordination with the replication cycle so that it is activated after initiation and repressed before initiation. RESULTS We isolated a strain bearing a mioC promoter mutation that causes constitutive mioC-oriC transcription from the chromosome. A quantitative S1 nuclease assay indicated that in this mutant, the level of transcription does not fluctuate. Introduction of this mutation suppressed the growth defect of an overinitiation-type dnaAcos mutant, and severely inhibited the growth of initiation-defective dnaA mutants at semipermissive temperatures in a dnaA allele-specific manner. These results suggest that mioC-oriC transcription inhibits initiation at oriC. Indeed, flow cytometry analysis and quantification of DNA replication in synchronized cultures revealed that the mioC promoter mutation alters the control of the initiation of chromosomal replication, for instance by delaying replication within the cell cycle. CONCLUSIONS These results suggest that the transcriptional regulation of the mioC gene is required for cell cycle-coordinated initiation of chromosomal replication.
Collapse
Affiliation(s)
- Masayuki Su'etsugu
- Department of Molecular Biology, Kyushu University Graduate School of Pharmaceutical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | |
Collapse
|