1
|
Narayan OP, Kumar P, Yadav B, Dua M, Johri AK. Sulfur nutrition and its role in plant growth and development. PLANT SIGNALING & BEHAVIOR 2023; 18:2030082. [PMID: 35129079 PMCID: PMC10730164 DOI: 10.1080/15592324.2022.2030082] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
Sulfur is one of the essential nutrients that is required for the adequate growth and development of plants. Sulfur is a structural component of protein disulfide bonds, amino acids, vitamins, and cofactors. Most of the sulfur in soil is present in organic matter and hence not accessible to the plants. Anionic form of sulfur (SO42-) is the primary source of sulfur for plants that are generally present in minimal amounts in the soil. It is water-soluble, so readily leaches out of the soil. Sulfur and sulfur-containing compounds act as signaling molecules in stress management as well as normal metabolic processes. They also take part in crosstalk of complex signaling network as a mediator molecule. Plants uptake sulfate directly from the soil by using their dedicated sulfate transporters. In addition, plants also use the sulfur transporter of a symbiotically associated organism like bacteria and fungi to uptake sulfur from the soil especially under sulfur depleted conditions. So, sulfur is a very important component of plant metabolism and its analysis with different dimensions is highly required to improve the overall well-being of plants, and dependent animals as well as human beings. The deficiency of sulfur leads to stunted growth of plants and ultimately loss of yield. In this review, we have focused on sulfur nutrition, uptake, transport, and inter-organismic transfer to host plants. Given the strong potential for agricultural use of sulfur sources and their applications, we cover what is known about sulfur impact on the plant health. We identify opportunities to expand our understanding of how the application of soil microbes like AMF or other root endophytic fungi affects plant sulfur uptake and in turn plant growth and development.
Collapse
Affiliation(s)
| | - Paras Kumar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Bindu Yadav
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Meenakshi Dua
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Atul Kumar Johri
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
2
|
Sinharoy A, Lens PNL. Selenite and tellurite reduction by Aspergillus niger fungal pellets using lignocellulosic hydrolysate. JOURNAL OF HAZARDOUS MATERIALS 2022; 437:129333. [PMID: 35728327 DOI: 10.1016/j.jhazmat.2022.129333] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/24/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
The performance of Aspergillus niger pellets to remove selenite and tellurite from wastewater using batch and continuous fungal pelleted bioreactors was investigated. The acid hydrolysate of brewer's spent grain (BSG) was utilized by A. niger as the electron donor for selenite and tellurite reduction. The dilution of BSG hydrolysate using mineral medium had a positive effect on the selenite and tellurite removal efficiency with a 1:3 ratio giving the best efficiency. However, selenite and tellurite inhibited fungal growth with a 40.9% and 27.3% decrease in the A. niger biomass yield in the presence of 50 mg/L selenite and tellurite, respectively. The maximum selenite and tellurite removal efficiency using 25% BSG hydrolysate in batch incubations amounted to 72.8% and 99.5% Two fungal pelleted bioreactors were operated in continuous mode using BSG hydrolysate as the substrate. Both the selenite and tellurite removal efficiencies during steady state operation were > 80% with tellurite showing a maximum removal efficiency of 98.5% at 10 mg/L influent concentration. Elemental Se nanospheres for selenite and both Te nanospheres and nanorods for tellurite were formed within the fungal pellets. This study demonstrates the suitability BSG hydrolysate as a low cost carbon source for removal of selenite and tellurite using fungal pellet bioreactors.
Collapse
Affiliation(s)
- Arindam Sinharoy
- National University of Ireland Galway, University Road, H91 TK33 Galway, Ireland.
| | - Piet N L Lens
- National University of Ireland Galway, University Road, H91 TK33 Galway, Ireland
| |
Collapse
|
3
|
Martínez-Ruiz EB, Cooper M, Barrero-Canosa J, Haryono MAS, Bessarab I, Williams RBH, Szewzyk U. Genome analysis of Pseudomonas sp. OF001 and Rubrivivax sp. A210 suggests multicopper oxidases catalyze manganese oxidation required for cylindrospermopsin transformation. BMC Genomics 2021; 22:464. [PMID: 34157973 PMCID: PMC8218464 DOI: 10.1186/s12864-021-07766-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 06/03/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cylindrospermopsin is a highly persistent cyanobacterial secondary metabolite toxic to humans and other living organisms. Strain OF001 and A210 are manganese-oxidizing bacteria (MOB) able to transform cylindrospermopsin during the oxidation of Mn2+. So far, the enzymes involved in manganese oxidation in strain OF001 and A210 are unknown. Therefore, we analyze the genomes of two cylindrospermopsin-transforming MOB, Pseudomonas sp. OF001 and Rubrivivax sp. A210, to identify enzymes that could catalyze the oxidation of Mn2+. We also investigated specific metabolic features related to pollutant degradation and explored the metabolic potential of these two MOB with respect to the role they may play in biotechnological applications and/or in the environment. RESULTS Strain OF001 encodes two multicopper oxidases and one haem peroxidase potentially involved in Mn2+ oxidation, with a high similarity to manganese-oxidizing enzymes described for Pseudomonas putida GB-1 (80, 83 and 42% respectively). Strain A210 encodes one multicopper oxidase potentially involved in Mn2+ oxidation, with a high similarity (59%) to the manganese-oxidizing multicopper oxidase in Leptothrix discophora SS-1. Strain OF001 and A210 have genes that might confer them the ability to remove aromatic compounds via the catechol meta- and ortho-cleavage pathway, respectively. Based on the genomic content, both strains may grow over a wide range of O2 concentrations, including microaerophilic conditions, fix nitrogen, and reduce nitrate and sulfate in an assimilatory fashion. Moreover, the strain A210 encodes genes which may convey the ability to reduce nitrate in a dissimilatory manner, and fix carbon via the Calvin cycle. Both MOB encode CRISPR-Cas systems, several predicted genomic islands, and phage proteins, which likely contribute to their genome plasticity. CONCLUSIONS The genomes of Pseudomonas sp. OF001 and Rubrivivax sp. A210 encode sequences with high similarity to already described MCOs which may catalyze manganese oxidation required for cylindrospermopsin transformation. Furthermore, the analysis of the general metabolism of two MOB strains may contribute to a better understanding of the niches of cylindrospermopsin-removing MOB in natural habitats and their implementation in biotechnological applications to treat water.
Collapse
Affiliation(s)
- Erika Berenice Martínez-Ruiz
- Chair of Environmental Microbiology, Technische Universität Berlin, Institute of Environmental Technology, Straße des 17. Juni 135, 10623, Berlin, Germany.
| | - Myriel Cooper
- Chair of Environmental Microbiology, Technische Universität Berlin, Institute of Environmental Technology, Straße des 17. Juni 135, 10623, Berlin, Germany.
| | - Jimena Barrero-Canosa
- Chair of Environmental Microbiology, Technische Universität Berlin, Institute of Environmental Technology, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Mindia A S Haryono
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore, 119077, Singapore
| | - Irina Bessarab
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore, 119077, Singapore
| | - Rohan B H Williams
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore, 119077, Singapore
| | - Ulrich Szewzyk
- Chair of Environmental Microbiology, Technische Universität Berlin, Institute of Environmental Technology, Straße des 17. Juni 135, 10623, Berlin, Germany
| |
Collapse
|
4
|
Narayan OP, Verma N, Jogawat A, Dua M, Johri AK. Sulfur transfer from the endophytic fungus Serendipita indica improves maize growth and requires the sulfate transporter SiSulT. THE PLANT CELL 2021; 33:1268-1285. [PMID: 33793849 DOI: 10.1093/plcell/koab006] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
A deficiency of the essential macronutrient sulfur leads to stunted plant growth and yield loss; however, an association with a symbiotic fungus can greatly improve nutrient uptake by the host plant. Here, we identified and functionally characterized a high-affinity sulfate transporter from the endophytic fungus Serendipita indica. SiSulT fulfills all the criteria expected of a functional sulfate transporter responding to sulfur limitation: SiSulT expression was induced when S. indica was grown under low-sulfate conditions, and heterologous expression of SiSulT complemented a yeast mutant lacking sulfate transport. We generated a knockdown strain of SiSulT by RNA interference to investigate the consequences of the partial loss of this transporter for the fungus and the host plant (maize, Zea mays) during colonization. Wild-type (WT) S. indica, but not the knockdown strain (kd-SiSulT), largely compensated for low-sulfate availability and supported plant growth. Colonization by WT S. indica also allowed maize roots to allocate precious resources away from sulfate assimilation under low-sulfur conditions, as evidenced by the reduction in expression of most sulfate assimilation genes. Our study illustrates the utility of the endophyte S. indica in sulfur nutrition research and offers potential avenues for agronomically sound amelioration of plant growth in low-sulfate environments.
Collapse
Affiliation(s)
- Om Prakash Narayan
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Nidhi Verma
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Abhimanyu Jogawat
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Meenakshi Dua
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Atul Kumar Johri
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
5
|
Kozuch J, Schneider SH, Boxer SG. Biosynthetic Incorporation of Site-Specific Isotopes in β-Lactam Antibiotics Enables Biophysical Studies. ACS Chem Biol 2020; 15:1148-1153. [PMID: 32175720 DOI: 10.1021/acschembio.9b01054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A biophysical understanding of the mechanistic, chemical, and physical origins underlying antibiotic action and resistance is vital to the discovery of novel therapeutics and the development of strategies to combat the growing emergence of antibiotic resistance. The site-specific introduction of stable-isotope labels into chemically complex natural products is particularly important for techniques such as NMR, IR, mass spectrometry, imaging, and kinetic isotope effects. Toward this goal, we developed a biosynthetic strategy for the site-specific incorporation of 13C labels into the canonical β-lactam carbonyl of penicillin G and cefotaxime, the latter via cephalosporin C. This was achieved through sulfur-replacement with 1-13C-l-cysteine, resulting in high isotope incorporations and milligram-scale yields. Using 13C NMR and isotope-edited IR difference spectroscopy, we illustrate how these molecules can be used to interrogate interactions with their protein targets, e.g., TEM-1 β-lactamase. This method provides a feasible route to isotopically labeled penicillin and cephalosporin precursors for future biophysical studies.
Collapse
Affiliation(s)
- Jacek Kozuch
- Department of Chemistry, Stanford University, Stanford, California 94305-5012, United States
| | - Samuel H. Schneider
- Department of Chemistry, Stanford University, Stanford, California 94305-5012, United States
| | - Steven G. Boxer
- Department of Chemistry, Stanford University, Stanford, California 94305-5012, United States
| |
Collapse
|
6
|
Impact of Classical Strain Improvement of Penicillium rubens on Amino Acid Metabolism during β-Lactam Production. Appl Environ Microbiol 2020; 86:AEM.01561-19. [PMID: 31757830 DOI: 10.1128/aem.01561-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 11/16/2019] [Indexed: 11/20/2022] Open
Abstract
To produce high levels of β-lactams, the filamentous fungus Penicillium rubens (previously named Penicillium chrysogenum) has been subjected to an extensive classical strain improvement (CSI) program during the last few decades. This has led to the accumulation of many mutations that were spread over the genome. Detailed analysis reveals that several mutations targeted genes that encode enzymes involved in amino acid metabolism, in particular biosynthesis of l-cysteine, one of the amino acids used for β-lactam production. To examine the impact of the mutations on enzyme function, the respective genes with and without the mutations were cloned and expressed in Escherichia coli, purified, and enzymatically analyzed. Mutations severely impaired the activities of a threonine and serine deaminase, and this inactivates metabolic pathways that compete for l-cysteine biosynthesis. Tryptophan synthase, which converts l-serine into l-tryptophan, was inactivated by a mutation, whereas a mutation in 5-aminolevulinate synthase, which utilizes glycine, was without an effect. Importantly, CSI caused increased expression levels of a set of genes directly involved in cysteine biosynthesis. These results suggest that CSI has resulted in improved cysteine biosynthesis by the inactivation of the enzymatic conversions that directly compete for resources with the cysteine biosynthetic pathway, consistent with the notion that cysteine is a key component during penicillin production.IMPORTANCE Penicillium rubens is an important industrial producer of β-lactam antibiotics. High levels of penicillin production were enforced through extensive mutagenesis during a classical strain improvement (CSI) program over 70 years. Several mutations targeted amino acid metabolism and resulted in enhanced l-cysteine biosynthesis. This work provides a molecular explanation for the interrelation between secondary metabolite production and amino acid metabolism and how classical strain improvement has resulted in improved production strains.
Collapse
|
7
|
Exploration of Sulfur Assimilation of Aspergillus fumigatus Reveals Biosynthesis of Sulfur-Containing Amino Acids as a Virulence Determinant. Infect Immun 2016; 84:917-929. [PMID: 26787716 DOI: 10.1128/iai.01124-15] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 01/07/2016] [Indexed: 12/17/2022] Open
Abstract
Fungal infections are of major relevance due to the increased numbers of immunocompromised patients, frequently delayed diagnosis, and limited therapeutics. To date, the growth and nutritional requirements of fungi during infection, which are relevant for invasion of the host, are poorly understood. This is particularly true for invasive pulmonary aspergillosis, as so far, sources of (macro)elements that are exploited during infection have been identified to only a limited extent. Here, we have investigated sulfur (S) utilization by the human-pathogenic mold Aspergillus fumigatus during invasive growth. Our data reveal that inorganic S compounds or taurine is unlikely to serve as an S source during invasive pulmonary aspergillosis since a sulfate transporter mutant strain and a sulfite reductase mutant strain are fully virulent. In contrast, the S-containing amino acid cysteine is limiting for fungal growth, as proven by the reduced virulence of a cysteine auxotroph. Moreover, phenotypic characterization of this strain further revealed the robustness of the subordinate glutathione redox system. Interestingly, we demonstrate that methionine synthase is essential for A. fumigatus virulence, defining the biosynthetic route of this proteinogenic amino acid as a potential antifungal target. In conclusion, we provide novel insights into the nutritional requirements ofA. fumigatus during pathogenesis, a prerequisite to understanding and fighting infection.
Collapse
|
8
|
El-Sayed ASA, Yassin MA, Ali GS. Transcriptional and Proteomic Profiling of Aspergillus flavipes in Response to Sulfur Starvation. PLoS One 2015; 10:e0144304. [PMID: 26633307 PMCID: PMC4669086 DOI: 10.1371/journal.pone.0144304] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 11/15/2015] [Indexed: 12/19/2022] Open
Abstract
Aspergillus flavipes has received considerable interest due to its potential to produce therapeutic enzymes involved in sulfur amino acid metabolism. In natural habitats, A. flavipes survives under sulfur limitations by mobilizing endogenous and exogenous sulfur to operate diverse cellular processes. Sulfur limitation affects virulence and pathogenicity, and modulates proteome of sulfur assimilating enzymes of several fungi. However, there are no previous reports aimed at exploring effects of sulfur limitation on the regulation of A. flavipes sulfur metabolism enzymes at the transcriptional, post-transcriptional and proteomic levels. In this report, we show that sulfur limitation affects morphological and physiological responses of A. flavipes. Transcription and enzymatic activities of several key sulfur metabolism genes, ATP-sulfurylase, sulfite reductase, methionine permease, cysteine synthase, cystathionine β- and γ-lyase, glutathione reductase and glutathione peroxidase were increased under sulfur starvation conditions. A 50 kDa protein band was strongly induced by sulfur starvation, and the proteomic analyses of this protein band using LC-MS/MS revealed similarity to many proteins involved in the sulfur metabolism pathway.
Collapse
Affiliation(s)
- Ashraf S. A. El-Sayed
- Botany and Microbiology Department, Faculty of Science, Zagazig University, 44519, Zagazig, Egypt
- Mid-Florida Research and Education Center, Department of Plant Pathology, University of Florida, Apopka, Florida 32703, United States of America
- * E-mail: (GSA); (AES)
| | - Marwa A. Yassin
- Botany and Microbiology Department, Faculty of Science, Zagazig University, 44519, Zagazig, Egypt
| | - Gul Shad Ali
- Mid-Florida Research and Education Center, Department of Plant Pathology, University of Florida, Apopka, Florida 32703, United States of America
- * E-mail: (GSA); (AES)
| |
Collapse
|
9
|
Zhang L, Jiang W, Nan J, Almqvist J, Huang Y. The Escherichia coli CysZ is a pH dependent sulfate transporter that can be inhibited by sulfite. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:1809-16. [DOI: 10.1016/j.bbamem.2014.03.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 03/08/2014] [Accepted: 03/10/2014] [Indexed: 12/27/2022]
|
10
|
Hoff B, Kamerewerd J, Sigl C, Zadra I, Kück U. Homologous recombination in the antibiotic producer Penicillium chrysogenum: strain ΔPcku70 shows up-regulation of genes from the HOG pathway. Appl Microbiol Biotechnol 2009; 85:1081-94. [DOI: 10.1007/s00253-009-2168-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 07/24/2009] [Accepted: 07/25/2009] [Indexed: 11/29/2022]
|
11
|
Harris DM, van der Krogt ZA, Klaassen P, Raamsdonk LM, Hage S, van den Berg MA, Bovenberg RAL, Pronk JT, Daran JM. Exploring and dissecting genome-wide gene expression responses of Penicillium chrysogenum to phenylacetic acid consumption and penicillinG production. BMC Genomics 2009; 10:75. [PMID: 19203396 PMCID: PMC2657799 DOI: 10.1186/1471-2164-10-75] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Accepted: 02/10/2009] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Since the discovery of the antibacterial activity of penicillin by Fleming 80 years ago, improvements of penicillin titer were essentially achieved by classical strain improvement through mutagenesis and screening. The recent sequencing of Penicillium chrysogenum strain Wisconsin1255-54 and the availability of genomics tools such as DNA-microarray offer new perspective. RESULTS In studies on beta-lactam production by P. chrysogenum, addition and omission of a side-chain precursor is commonly used to generate producing and non-producing scenarios. To dissect effects of penicillinG production and of its side-chain precursor phenylacetic acid (PAA), a derivative of a penicillinG high-producing strain without a functional penicillin-biosynthesis gene cluster was constructed. In glucose-limited chemostat cultures of the high-producing and cluster-free strains, PAA addition caused a small reduction of the biomass yield, consistent with PAA acting as a weak-organic-acid uncoupler. Microarray-based analysis on chemostat cultures of the high-producing and cluster-free strains, grown in the presence and absence of PAA, showed that: (i) Absence of a penicillin gene cluster resulted in transcriptional upregulation of a gene cluster putatively involved in production of the secondary metabolite aristolochene and its derivatives, (ii) The homogentisate pathway for PAA catabolism is strongly transcriptionally upregulated in PAA-supplemented cultures (iii) Several genes involved in nitrogen and sulfur metabolism were transcriptionally upregulated under penicillinG producing conditions only, suggesting a drain of amino-acid precursor pools. Furthermore, the number of candidate genes for penicillin transporters was strongly reduced, thus enabling a focusing of functional analysis studies. CONCLUSION This study demonstrates the usefulness of combinatorial transcriptome analysis in chemostat cultures to dissect effects of biological and process parameters on gene expression regulation. This study provides for the first time clear-cut target genes for metabolic engineering, beyond the three genes of the beta-lactam pathway.
Collapse
Affiliation(s)
- Diana M Harris
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
- Kluyver Centre for Genomics of Industrial Fermentation, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - Zita A van der Krogt
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
- Kluyver Centre for Genomics of Industrial Fermentation, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - Paul Klaassen
- DSM Anti-Infectives, DAI/INNO (624-0270), Postbus 425, 2600 AK, Delft, The Netherlands
| | - Leonie M Raamsdonk
- DSM Anti-Infectives, DAI/INNO (624-0270), Postbus 425, 2600 AK, Delft, The Netherlands
| | - Susanne Hage
- DSM Anti-Infectives, DAI/INNO (624-0270), Postbus 425, 2600 AK, Delft, The Netherlands
| | - Marco A van den Berg
- DSM Anti-Infectives, DAI/INNO (624-0270), Postbus 425, 2600 AK, Delft, The Netherlands
| | - Roel AL Bovenberg
- DSM Anti-Infectives, DAI/INNO (624-0270), Postbus 425, 2600 AK, Delft, The Netherlands
| | - Jack T Pronk
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
- Kluyver Centre for Genomics of Industrial Fermentation, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - Jean-Marc Daran
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
- Kluyver Centre for Genomics of Industrial Fermentation, Julianalaan 67, 2628 BC Delft, The Netherlands
| |
Collapse
|
12
|
Piłsyk S, Natorff R, Sieńko M, Paszewski A. Sulfate transport in Aspergillus nidulans: a novel gene encoding alternative sulfate transporter. Fungal Genet Biol 2007; 44:715-25. [PMID: 17223367 DOI: 10.1016/j.fgb.2006.11.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2006] [Revised: 11/13/2006] [Accepted: 11/14/2006] [Indexed: 10/23/2022]
Abstract
In Aspergillus nidulans sulfate is taken up by sulfate permease encoded by the sB gene. A unique tight auxotrophic mutant with an impaired promoter region of the sulfate permease gene, sB1(pr), was isolated. Three suppressor genes were cloned by complementation of this mutation. One of them, described here, is the astA gene (alternative sulfate transporter) derived from a genomic library of the Japanese A. nidulans IAM 2006 strain. In the reference strain of Glasgow origin the astA gene was found to be a pseudogene having several nucleotide deletions in ORF. The gene encodes a novel type of sulfate transporter which is distinct from other known sulfate permeases forming the SulP family. The putative ASTA protein belongs to an extensive and poorly characterized Dal5 allantoate permease family of fungal organic anion transporters. We have shown that ASTA is a physiological sulfate transporter. We also report cloning and characterization of the sB gene in this work. Both genes, sB and astA, are regulated at the transcriptional level by sulfur metabolite repression (SMR).
Collapse
Affiliation(s)
- Sebastian Piłsyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Department of Genetics, 5A Pawińskiego Str, 02-106 Warszawa, Poland
| | | | | | | |
Collapse
|
13
|
Abstract
Methionine has long been known as the major stimulant of the formation of cephalosporin C in Acremonium chrysogenum. Enzymatic and genetic studies of methionine have revealed that it induces four of the enzymes of cephalosporin-C biosynthesis at the level of transcription. It is also converted to cysteine, one of three precursors of cephalosporin C, by cystathionine-gamma-lyase. The main effect of methionine on cephalosporin production results from its regulatory role, which can be duplicated by the non-sulfur analog norleucine. Eliminating cystathionine-gamma-lyase prevents the enhancing precursor effect of methionine on cephalosporin-C production, and cystathionine-gamma-lyase overproduction in moderate doses increases cephalosporin-C formation.
Collapse
|
14
|
Grynberg M, Piotrowska M, Pizzinini E, Turner G, Paszewski A. The Aspergillus nidulans metE gene is regulated by a second system independent from sulphur metabolite repression. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1519:78-84. [PMID: 11406274 DOI: 10.1016/s0167-4781(01)00224-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mutations in the Aspergillus nidulans metE gene lead to requirement for O-acetylhomoserine. The gene was cloned by complementation of the metE31 mutation. The coding sequence was found to be interrupted by two introns of 66 and 50 bp, respectively. metE codes for a peptide of 489 amino acids which belongs to the family of homoserine O-acetyltransferases and a well-defined superfamily of alpha/beta hydrolases. Transcription of the metE gene is strongly up-regulated by a severe limitation of methionine, but not of cysteine. This gene is the first sulphur metabolism gene described in A. nidulans which is not regulated by the sulphur metabolite repression system in which cysteine acts as the low-molecular-weight effector.
Collapse
Affiliation(s)
- M Grynberg
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | | | | | | | |
Collapse
|
15
|
van de Kamp M, Schuurs TA, Vos A, van der Lende TR, Konings WN, Driessen AJ. Sulfur regulation of the sulfate transporter genes sutA and sutB in Penicillium chrysogenum. Appl Environ Microbiol 2000; 66:4536-8. [PMID: 11010912 PMCID: PMC92338 DOI: 10.1128/aem.66.10.4536-4538.2000] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Penicillium chrysogenum uses sulfate as a source of sulfur for the biosynthesis of penicillin. Sulfate uptake and the mRNA levels of the sulfate transporter-encoding sutB and sutA genes are all reduced by high sulfate concentrations and are elevated by sulfate starvation. In a high-penicillin-yielding strain, sutB is effectively transcribed even in the presence of excess sulfate. This deregulation may facilitate the efficient incorporation of sulfur into cysteine and penicillin.
Collapse
Affiliation(s)
- M van de Kamp
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9750 AA Haren, The Netherlands
| | | | | | | | | | | |
Collapse
|