1
|
Kim B, Oh SJ, Hwang JH, Kim HJ, Shin N, Joo JC, Choi KY, Park SH, Park K, Bhatia SK, Yang YH. Complementation of reducing power for 5-hydroxyvaleric acid and 1,5-pentanediol production via glucose dehydrogenase in Escherichia coli whole-cell system. Enzyme Microb Technol 2023; 170:110305. [PMID: 37595400 DOI: 10.1016/j.enzmictec.2023.110305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/20/2023]
Abstract
One of the key intermediates, 5-hydroxyvaleric acid (5-HV), is used in the synthesis of polyhydroxyalkanoate monomer, δ-valerolactone, 1,5-pentanediol (1,5-PDO), and many other substances. Due to global environmental problems, eco-friendly bio-based synthesis of various platform chemicals and key intermediates are socially required, but few previous studies on 5-HV biosynthesis have been conducted. To establish a sustainable bioprocess for 5-HV production, we introduced gabT encoding 4-aminobutyrate aminotransferase and yqhD encoding alcohol dehydrogenase to produce 5-HV from 5-aminovaleric acid (5-AVA), through glutarate semialdehyde in Escherichia coli whole-cell reaction. As, high reducing power is required to produce high concentrations of 5-HV, we newly introduced glucose dehydrogenase (GDH) for NADPH regeneration system from Bacillus subtilis 168. By applying GDH with D-glucose and optimizing the parameters, 5-HV conversion rate from 5-AVA increased from 47% (w/o GDH) to 82% when using 200 mM (23.4 g/L) of 5-AVA. Also, it reached 56% conversion in 2 h, showing 56 mM/h (6.547 g/L/h) productivity from 200 mM 5-AVA, finally reaching 350 mM (41 g/L) and 14.6 mM/h (1.708 g/L/h) productivity at 24 h when 1 M (117.15 g/L) 5-AVA was used. When the whole-cell system with GDH was expanded to produce 1,5-PDO, its production was also increased 5-fold. Considering that 5-HV and 1,5-PDO production depends heavily on the reducing power of the cells, we successfully achieved a significant increase in 5-HV and 1,5-PDO production using GDH.
Collapse
Affiliation(s)
- Byungchan Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Suk Jin Oh
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Jeong Hyeon Hwang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Hyun Jin Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Nara Shin
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Jeong Chan Joo
- Deparment of Biotechnology, The Catholic University of Korea, Bucheon, Republic of Korea
| | - Kwon-Young Choi
- Department of Environmental and Safety Engineering, College of Engineering, Ajou University, Gyeonggi-do, Republic of Korea; Department of Energy Systems Research, Ajou University, Gyeonggi-do, Republic of Korea
| | - See-Hyoung Park
- Department of Biological and Chemical Engineering, Hongik University, Sejong, Republic of Korea
| | - Kyungmoon Park
- Department of Biological and Chemical Engineering, Hongik University, Sejong, Republic of Korea
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea.
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Truchan HK, VieBrock L, Cockburn CL, Ojogun N, Griffin BP, Wijesinghe DS, Chalfant CE, Carlyon JA. Anaplasma phagocytophilum Rab10-dependent parasitism of the trans-Golgi network is critical for completion of the infection cycle. Cell Microbiol 2016; 18:260-81. [PMID: 26289115 PMCID: PMC4891814 DOI: 10.1111/cmi.12500] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 08/03/2015] [Accepted: 08/18/2015] [Indexed: 02/01/2023]
Abstract
Anaplasma phagocytophilum is an emerging human pathogen and obligate intracellular bacterium. It inhabits a host cell-derived vacuole and cycles between replicative reticulate cell (RC) and infectious dense-cored (DC) morphotypes. Host-pathogen interactions that are critical for RC-to-DC conversion are undefined. We previously reported that A. phagocytophilum recruits green fluorescent protein (GFP)-tagged Rab10, a GTPase that directs exocytic traffic from the sphingolipid-rich trans-Golgi network (TGN) to its vacuole in a guanine nucleotide-independent manner. Here, we demonstrate that endogenous Rab10-positive TGN vesicles are not only routed to but also delivered into the A. phagocytophilum-occupied vacuole (ApV). Consistent with this finding, A. phagocytophilum incorporates sphingolipids while intracellular and retains them when naturally released from host cells. TGN vesicle delivery into the ApV is Rab10 dependent, up-regulates expression of the DC-specific marker, APH1235, and is critical for the production of infectious progeny. The A. phagocytophilum surface protein, uridine monophosphate kinase, was identified as a guanine nucleotide-independent, Rab10-specific ligand. These data delineate why Rab10 is important for the A. phagocytophilum infection cycle and expand the understanding of the benefits that exploiting host cell membrane traffic affords intracellular bacterial pathogens.
Collapse
Affiliation(s)
- Hilary K. Truchan
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Lauren VieBrock
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Chelsea L. Cockburn
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Nore Ojogun
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Brian P. Griffin
- Molecular Biology and Genetics Program, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Dayanjan S. Wijesinghe
- Department of Surgery, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Charles E. Chalfant
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
- Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
- The Victoria Johnson Center, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
- Institute for Molecular Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
- Research and Development, Hunter Holmes McGuire Veterans Administration Medical Center, Richmond, VA, USA
| | - Jason A. Carlyon
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
- Molecular Biology and Genetics Program, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| |
Collapse
|
7
|
Watt RM, Wang J, Leong M, Kung HF, Cheah KS, Liu D, Danchin A, Huang JD. Visualizing the proteome of Escherichia coli: an efficient and versatile method for labeling chromosomal coding DNA sequences (CDSs) with fluorescent protein genes. Nucleic Acids Res 2007; 35:e37. [PMID: 17272300 PMCID: PMC1874593 DOI: 10.1093/nar/gkl1158] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
To investigate the feasibility of conducting a genomic-scale protein labeling and localization study in Escherichia coli, a representative subset of 23 coding DNA sequences (CDSs) was selected for chromosomal tagging with one or more fluorescent protein genes (EGFP, EYFP, mRFP1, DsRed2). We used λ-Red recombination to precisely and efficiently position PCR-generated DNA targeting cassettes containing a fluorescent protein gene and an antibiotic resistance marker, at the C-termini of the CDSs of interest, creating in-frame fusions under the control of their native promoters. We incorporated cre/loxP and flpe/frt technology to enable multiple rounds of chromosomal tagging events to be performed sequentially with minimal disruption to the target locus, thus allowing sets of proteins to be co-localized within the cell. The visualization of labeled proteins in live E. coli cells using fluorescence microscopy revealed a striking variety of distributions including: membrane and nucleoid association, polar foci and diffuse cytoplasmic localization. Fifty of the fifty-two independent targeting experiments performed were successful, and 21 of the 23 selected CDSs could be fluorescently visualized. Our results show that E. coli has an organized and dynamic proteome, and demonstrate that this approach is applicable for tagging and (co-) localizing CDSs on a genome-wide scale.
Collapse
Affiliation(s)
- Rory M. Watt
- Open Laboratory of Chemical Biology, The Institute of Molecular Technology for Drug Discovery and Synthesis, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China, Department of Biochemistry, The University of Hong Kong, 3/F Laboratory Block, Faculty of Medicine Building, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China, The Center for Emerging Infectious Diseases, Faculty of Medicine, Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China, National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing 100005, P.R. China, Unité GGB, CNRS URA 2171, Institut Pasteur, 28 rue Dr. Roux, 75015 Paris, France and HKU-Pasteur Research Centre, Dexter HC Man Building, 8, Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - Jing Wang
- Open Laboratory of Chemical Biology, The Institute of Molecular Technology for Drug Discovery and Synthesis, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China, Department of Biochemistry, The University of Hong Kong, 3/F Laboratory Block, Faculty of Medicine Building, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China, The Center for Emerging Infectious Diseases, Faculty of Medicine, Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China, National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing 100005, P.R. China, Unité GGB, CNRS URA 2171, Institut Pasteur, 28 rue Dr. Roux, 75015 Paris, France and HKU-Pasteur Research Centre, Dexter HC Man Building, 8, Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - Meikid Leong
- Open Laboratory of Chemical Biology, The Institute of Molecular Technology for Drug Discovery and Synthesis, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China, Department of Biochemistry, The University of Hong Kong, 3/F Laboratory Block, Faculty of Medicine Building, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China, The Center for Emerging Infectious Diseases, Faculty of Medicine, Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China, National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing 100005, P.R. China, Unité GGB, CNRS URA 2171, Institut Pasteur, 28 rue Dr. Roux, 75015 Paris, France and HKU-Pasteur Research Centre, Dexter HC Man Building, 8, Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - Hsiang-fu Kung
- Open Laboratory of Chemical Biology, The Institute of Molecular Technology for Drug Discovery and Synthesis, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China, Department of Biochemistry, The University of Hong Kong, 3/F Laboratory Block, Faculty of Medicine Building, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China, The Center for Emerging Infectious Diseases, Faculty of Medicine, Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China, National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing 100005, P.R. China, Unité GGB, CNRS URA 2171, Institut Pasteur, 28 rue Dr. Roux, 75015 Paris, France and HKU-Pasteur Research Centre, Dexter HC Man Building, 8, Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - Kathryn S.E. Cheah
- Open Laboratory of Chemical Biology, The Institute of Molecular Technology for Drug Discovery and Synthesis, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China, Department of Biochemistry, The University of Hong Kong, 3/F Laboratory Block, Faculty of Medicine Building, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China, The Center for Emerging Infectious Diseases, Faculty of Medicine, Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China, National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing 100005, P.R. China, Unité GGB, CNRS URA 2171, Institut Pasteur, 28 rue Dr. Roux, 75015 Paris, France and HKU-Pasteur Research Centre, Dexter HC Man Building, 8, Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - Depei Liu
- Open Laboratory of Chemical Biology, The Institute of Molecular Technology for Drug Discovery and Synthesis, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China, Department of Biochemistry, The University of Hong Kong, 3/F Laboratory Block, Faculty of Medicine Building, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China, The Center for Emerging Infectious Diseases, Faculty of Medicine, Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China, National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing 100005, P.R. China, Unité GGB, CNRS URA 2171, Institut Pasteur, 28 rue Dr. Roux, 75015 Paris, France and HKU-Pasteur Research Centre, Dexter HC Man Building, 8, Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - Antoine Danchin
- Open Laboratory of Chemical Biology, The Institute of Molecular Technology for Drug Discovery and Synthesis, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China, Department of Biochemistry, The University of Hong Kong, 3/F Laboratory Block, Faculty of Medicine Building, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China, The Center for Emerging Infectious Diseases, Faculty of Medicine, Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China, National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing 100005, P.R. China, Unité GGB, CNRS URA 2171, Institut Pasteur, 28 rue Dr. Roux, 75015 Paris, France and HKU-Pasteur Research Centre, Dexter HC Man Building, 8, Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - Jian-Dong Huang
- Open Laboratory of Chemical Biology, The Institute of Molecular Technology for Drug Discovery and Synthesis, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China, Department of Biochemistry, The University of Hong Kong, 3/F Laboratory Block, Faculty of Medicine Building, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China, The Center for Emerging Infectious Diseases, Faculty of Medicine, Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China, National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing 100005, P.R. China, Unité GGB, CNRS URA 2171, Institut Pasteur, 28 rue Dr. Roux, 75015 Paris, France and HKU-Pasteur Research Centre, Dexter HC Man Building, 8, Sassoon Road, Pokfulam, Hong Kong SAR, China
- *To whom correspondence should be addressed. (+852) 2819 2810(+852) 2855 1254
| |
Collapse
|