1
|
Li Z, Zhu Y, Zhang W, Mu W. Rcs signal transduction system in Escherichia coli: Composition, related functions, regulatory mechanism, and applications. Microbiol Res 2024; 285:127783. [PMID: 38795407 DOI: 10.1016/j.micres.2024.127783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
The regulator of capsule synthesis (Rcs) system, an atypical two-component system prevalent in numerous gram-negative bacteria, serves as a sophisticated regulatory phosphorylation cascade mechanism. It plays a pivotal role in perceiving environmental stress and regulating the expression of downstream genes to ensure host survival. During the signaling transduction process, various proteins participate in phosphorylation to further modulate signal inputs and outputs. Although the structure of core proteins related to the Rcs system has been partially well-defined, and two models have been proposed to elucidate the intricate molecular mechanisms underlying signal sensing, a systematic characterization of the signal transduction process of the Rcs system remains challenging. Furthermore, exploring its corresponding regulator outputs is also unremitting. This review aimed to shed light on the regulation of bacterial virulence by the Rcs system. Moreover, with the assistance of the Rcs system, biosynthesis technology has developed high-value target production. Additionally, via this review, we propose designing chimeric Rcs biosensor systems to expand their application as synthesis tools. Finally, unsolved challenges are highlighted to provide the basic direction for future development of the Rcs system.
Collapse
Affiliation(s)
- Zeyu Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
2
|
Babina AM, Kirsebom LA, Andersson DI. Suppression of the Escherichia coli rnpA49 conditionally lethal phenotype by different compensatory mutations. RNA (NEW YORK, N.Y.) 2024; 30:977-991. [PMID: 38688559 PMCID: PMC11251521 DOI: 10.1261/rna.079909.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/12/2024] [Indexed: 05/02/2024]
Abstract
RNase P is an essential enzyme found across all domains of life that is responsible for the 5'-end maturation of precursor tRNAs. For decades, numerous studies have sought to elucidate the mechanisms and biochemistry governing RNase P function. However, much remains unknown about the regulation of RNase P expression, the turnover and degradation of the enzyme, and the mechanisms underlying the phenotypes and complementation of specific RNase P mutations, especially in the model bacterium, Escherichia coli In E. coli, the temperature-sensitive (ts) rnpA49 mutation in the protein subunit of RNase P has arguably been one of the most well-studied mutations for examining the enzyme's activity in vivo. Here, we report for the first time naturally occurring temperature-resistant suppressor mutations of E. coli strains carrying the rnpA49 allele. We find that rnpA49 strains can partially compensate the ts defect via gene amplifications of either RNase P subunit (rnpA49 or rnpB) or by the acquisition of loss-of-function mutations in Lon protease or RNase R. Our results agree with previous plasmid overexpression and gene deletion complementation studies, and importantly suggest the involvement of Lon protease in the degradation and/or regulatory pathway(s) of the mutant protein subunit of RNase P. This work offers novel insights into the behavior and complementation of the rnpA49 allele in vivo and provides direction for follow-up studies regarding RNase P regulation and turnover in E. coli.
Collapse
Affiliation(s)
| | - Leif A Kirsebom
- Department of Cell and Molecular Biology, Uppsala University, 751 23 Uppsala, Sweden
| | | |
Collapse
|
3
|
Izquierdo-Fiallo K, Muñoz-Villagrán C, Orellana O, Sjoberg R, Levicán G. Comparative genomics of the proteostasis network in extreme acidophiles. PLoS One 2023; 18:e0291164. [PMID: 37682893 PMCID: PMC10490939 DOI: 10.1371/journal.pone.0291164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Extreme acidophiles thrive in harsh environments characterized by acidic pH, high concentrations of dissolved metals and high osmolarity. Most of these microorganisms are chemolithoautotrophs that obtain energy from low redox potential sources, such as the oxidation of ferrous ions. Under these conditions, the mechanisms that maintain homeostasis of proteins (proteostasis), as the main organic components of the cells, are of utmost importance. Thus, the analysis of protein chaperones is critical for understanding how these organisms deal with proteostasis under such environmental conditions. In this work, using a bioinformatics approach, we performed a comparative genomic analysis of the genes encoding classical, periplasmic and stress chaperones, and the protease systems. The analysis included 35 genomes from iron- or sulfur-oxidizing autotrophic, heterotrophic, and mixotrophic acidophilic bacteria. The results showed that classical ATP-dependent chaperones, mostly folding chaperones, are widely distributed, although they are sub-represented in some groups. Acidophilic bacteria showed redundancy of genes coding for the ATP-independent holdase chaperones RidA and Hsp20. In addition, a systematically high redundancy of genes encoding periplasmic chaperones like HtrA and YidC was also detected. In the same way, the proteolytic ATPase complexes ClpPX and Lon presented redundancy and broad distribution. The presence of genes that encoded protein variants was noticeable. In addition, genes for chaperones and protease systems were clustered within the genomes, suggesting common regulation of these activities. Finally, some genes were differentially distributed between bacteria as a function of the autotrophic or heterotrophic character of their metabolism. These results suggest that acidophiles possess an abundant and flexible proteostasis network that protects proteins in organisms living in energy-limiting and extreme environmental conditions. Therefore, our results provide a means for understanding the diversity and significance of proteostasis mechanisms in extreme acidophilic bacteria.
Collapse
Affiliation(s)
- Katherin Izquierdo-Fiallo
- Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile (USACH), Santiago, Chile
| | - Claudia Muñoz-Villagrán
- Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile (USACH), Santiago, Chile
| | - Omar Orellana
- Programa de Biología Celular y Molecular, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Rachid Sjoberg
- Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile (USACH), Santiago, Chile
| | - Gloria Levicán
- Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile (USACH), Santiago, Chile
| |
Collapse
|
4
|
Xu W, Gao W, Bu Q, Li Y. Degradation Mechanism of AAA+ Proteases and Regulation of Streptomyces Metabolism. Biomolecules 2022; 12:biom12121848. [PMID: 36551276 PMCID: PMC9775585 DOI: 10.3390/biom12121848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/02/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Hundreds of proteins work together in microorganisms to coordinate and control normal activity in cells. Their degradation is not only the last step in the cell's lifespan but also the starting point for its recycling. In recent years, protein degradation has been extensively studied in both eukaryotic and prokaryotic organisms. Understanding the degradation process is essential for revealing the complex regulatory network in microorganisms, as well as further artificial reconstructions and applications. This review will discuss several studies on protein quality-control family members Lon, FtsH, ClpP, the proteasome in Streptomyces, and a few classical model organisms, mainly focusing on their structure, recognition mechanisms, and metabolic influences.
Collapse
Affiliation(s)
- Weifeng Xu
- Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China
| | - Wenli Gao
- Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China
| | - Qingting Bu
- Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China
| | - Yongquan Li
- Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China
- Correspondence:
| |
Collapse
|
5
|
Wlodawer A, Sekula B, Gustchina A, Rotanova TV. Structure and the Mode of Activity of Lon Proteases from Diverse Organisms. J Mol Biol 2022; 434:167504. [PMID: 35183556 PMCID: PMC9013511 DOI: 10.1016/j.jmb.2022.167504] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/14/2022] [Accepted: 02/14/2022] [Indexed: 11/19/2022]
Abstract
Lon proteases, members of the AAA+ superfamily of enzymes, are key components of the protein quality control system in bacterial cells, as well as in the mitochondria and other specialized organelles of higher organisms. These enzymes have been subject of extensive biochemical and structural investigations, resulting in 72 crystal and solution structures, including structures of the individual domains, multi-domain constructs, and full-length proteins. However, interpretation of the latter structures still leaves some questions unanswered. Based on their amino acid sequence and details of their structure, Lon proteases can be divided into at least three subfamilies, designated as LonA, LonB, and LonC. Protomers of all Lons are single-chain polypeptides and contain two functional domains, ATPase and protease. The LonA enzymes additionally include a large N-terminal region, and different Lons may also include non-conserved inserts in the principal domains. These ATP-dependent proteases function as homohexamers, in which unfolded substrates are translocated to a large central chamber where they undergo proteolysis by a processive mechanism. X-ray crystal structures provided high-resolution models which verified that Lons are hydrolases with the rare Ser-Lys catalytic dyad. Full-length LonA enzymes have been investigated by cryo-electron microscopy (cryo-EM), providing description of the functional enzyme at different stages of the catalytic cycle, indicating extensive flexibility of their N-terminal domains, and revealing insights into the substrate translocation mechanism. Structural studies of Lon proteases provide an interesting case for symbiosis of X-ray crystallography and cryo-EM, currently the two principal techniques for determination of macromolecular structures.
Collapse
Affiliation(s)
- Alexander Wlodawer
- Protein Structure Section, Center for Structural Biology, National Cancer Institute, Frederick, MD 21702, USA.
| | - Bartosz Sekula
- Protein Structure Section, Center for Structural Biology, National Cancer Institute, Frederick, MD 21702, USA
| | - Alla Gustchina
- Protein Structure Section, Center for Structural Biology, National Cancer Institute, Frederick, MD 21702, USA
| | - Tatyana V Rotanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| |
Collapse
|
6
|
Goo E, Hwang I. Essential roles of Lon protease in the morpho-physiological traits of the rice pathogen Burkholderia glumae. PLoS One 2021; 16:e0257257. [PMID: 34525127 PMCID: PMC8443046 DOI: 10.1371/journal.pone.0257257] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/26/2021] [Indexed: 11/18/2022] Open
Abstract
The highly conserved ATP-dependent Lon protease plays important roles in diverse biological processes. The lon gene is usually nonessential for viability; however, lon mutants of several bacterial species, although viable, exhibit cellular defects. Here, we show that a lack of Lon protease causes pleiotropic effects in the rice pathogen Burkholderia glumae. The null mutation of lon produced three colony types, big (BLONB), normal (BLONN), and small (BLONS), in Luria–Bertani (LB) medium. Colonies of the BLONB and BLONN types were re-segregated upon subculture, while those of the BLONS type were too small to manipulate. The BLONN type was chosen for further studies, as only this type was fully genetically complemented. BLONN-type cells did not reach the maximum growth capacity, and their population decreased drastically after the stationary phase in LB medium. BLONN-type cells were defective in the biosynthesis of quorum sensing (QS) signals and exhibited reduced oxalate biosynthetic activity, causing environmental alkaline toxicity and population collapse. Addition of excessive N-octanoyl-homoserine lactone (C8-HSL) to BLONN-type cell cultures did not fully restore oxalate biosynthesis, suggesting that the decrease in oxalate biosynthesis in BLONN-type cells was not due to insufficient C8-HSL. Co-expression of lon and tofR in Escherichia coli suggested that Lon negatively affects the TofR level in a C8-HSL-dependent manner. Lon protease interacted with the oxalate biosynthetic enzymes, ObcA and ObcB, indicating potential roles for the oxalate biosynthetic activity. These results suggest that Lon protease influences colony morphology, growth, QS system, and oxalate biosynthesis in B. glumae.
Collapse
Affiliation(s)
- Eunhye Goo
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- * E-mail:
| | - Ingyu Hwang
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
7
|
Tzeng SR, Tseng YC, Lin CC, Hsu CY, Huang SJ, Kuo YT, Chang CI. Molecular insights into substrate recognition and discrimination by the N-terminal domain of Lon AAA+ protease. eLife 2021; 10:64056. [PMID: 33929321 PMCID: PMC8087443 DOI: 10.7554/elife.64056] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 03/02/2021] [Indexed: 11/13/2022] Open
Abstract
The Lon AAA+ protease (LonA) is a ubiquitous ATP-dependent proteolytic machine, which selectively degrades damaged proteins or native proteins carrying exposed motifs (degrons). Here we characterize the structural basis for substrate recognition and discrimination by the N-terminal domain (NTD) of LonA. The results reveal that the six NTDs are attached to the hexameric LonA chamber by flexible linkers such that the formers tumble independently of the latter. Further spectral analyses show that the NTD selectively interacts with unfolded proteins, protein aggregates, and degron-tagged proteins by two hydrophobic patches of its N-lobe, but not intrinsically disordered substrate, α-casein. Moreover, the NTD selectively binds to protein substrates when they are thermally induced to adopt unfolded conformations. Collectively, our findings demonstrate that NTDs enable LonA to perform protein quality control to selectively degrade proteins in damaged states and suggest that substrate discrimination and selective degradation by LonA are mediated by multiple NTD interactions. There are many different types of protein which each have different roles in biology. Most proteins are surrounded by water and are folded so that their water-attracting regions are on the outside and more fat-like regions, which repel water, are on the inside. When a protein becomes damaged or is assembled incorrectly, some of the fat-like regions end up on the outside of the protein and become exposed to water. This can prevent the protein from performing its role and harm the cell instead. LonA proteases are responsible for dismantling and recycling these harmful proteins, as well as proteins that have been labelled for destruction. They do this by unfolding the unwanted protein and transporting it into an enclosed chamber made of six LonA molecules. Once inside the chamber, the target protein is broken down into smaller fragments that can be used to build other structures. LonA proteases contain a region called the N-terminal domain, or NTD for short, which is thought to be responsible for identifying which proteins need degrading. Yet it remained unclear how the NTD recognizes and binds to these target proteins. To answer this question, Tzeng et al. studied the detailed structure of a LonA protease that had been purified from bacteria cells. This revealed that the NTD of LonA contains two water-repelling regions which bind to fat-like segments on the surface of proteins that have become unfolded or tagged for destruction. Further experiments showed that the NTD is bound to the main body of LonA via a ‘flexible linker’. This led Tzeng et al. to propose that the NTD sways around loosely at the end of LonA searching for proteins with exposed water-repelling regions. Once an NTD identifies and attaches to a target, the NTDs of the other LonA molecules then bind to the protein and help insert it into the chamber. Proteases are a vital component of all biological systems. Controlling protein destruction and recycling is a key factor in how cells divide and respond to a changing environment. This study provides new insights into how LonA operates in bacteria, which may apply to proteases more widely. This contributes to our knowledge of fundamental biology and may also be relevant in a range of diseases where protein recycling is defective or inefficient.
Collapse
Affiliation(s)
- Shiou-Ru Tzeng
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yin-Chu Tseng
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chien-Chu Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Chia-Ying Hsu
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shing-Jong Huang
- Instrumentation Center, National Taiwan University, Taipei, Taiwan
| | - Yi-Ting Kuo
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chung-I Chang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.,Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
8
|
Andrianova AG, Kudzhaev AM, Abrikosova VA, Gustchina AE, Smirnov IV, Rotanova TV. Involvement of the N Domain Residues E34, K35, and R38 in the Functionally Active Structure of Escherichia coli Lon Protease. Acta Naturae 2020; 12:86-97. [PMID: 33456980 PMCID: PMC7800598 DOI: 10.32607/actanaturae.11197] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 10/21/2020] [Indexed: 11/20/2022] Open
Abstract
ATP-dependent Lon protease of Escherichia coli (EcLon), which belongs to the superfamily of AAA+ proteins, is a key component of the cellular proteome quality control system. It is responsible for the cleavage of mutant, damaged, and short-lived regulatory proteins that are potentially dangerous for the cell. EcLon functions as a homooligomer whose subunits contain a central characteristic AAA+ module, a C-terminal protease domain, and an N-terminal non-catalytic region composed of the actual N-terminal domain and the inserted α-helical domain. An analysis of the N domain crystal structure suggested a potential involvement of residues E34, K35, and R38 in the formation of stable and active EcLon. We prepared and studied a triple mutant LonEKR in which these residues were replaced with alanine. The introduced substitutions were shown to affect the conformational stability and nucleotide-induced intercenter allosteric interactions, as well as the formation of the proper protein binding site.
Collapse
Affiliation(s)
- A. G. Andrianova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997 Russia
| | - A. M. Kudzhaev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997 Russia
| | - V. A. Abrikosova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997 Russia
| | - A. E. Gustchina
- Macromolecular Crystallography Laboratory, NCI-Frederick, P.O. Box B, Frederick, MD 21702, USA
| | - I. V. Smirnov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997 Russia
| | - T. V. Rotanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997 Russia
| |
Collapse
|
9
|
Gibellini L, De Gaetano A, Mandrioli M, Van Tongeren E, Bortolotti CA, Cossarizza A, Pinti M. The biology of Lonp1: More than a mitochondrial protease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 354:1-61. [PMID: 32475470 DOI: 10.1016/bs.ircmb.2020.02.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Initially discovered as a protease responsible for degradation of misfolded or damaged proteins, the mitochondrial Lon protease (Lonp1) turned out to be a multifaceted enzyme, that displays at least three different functions (proteolysis, chaperone activity, binding of mtDNA) and that finely regulates several cellular processes, within and without mitochondria. Indeed, LONP1 in humans is ubiquitously expressed, and is involved in regulation of response to oxidative stress and, heat shock, in the maintenance of mtDNA, in the regulation of mitophagy. Furthermore, its proteolytic activity can regulate several biochemical pathways occurring totally or partially within mitochondria, such as TCA cycle, oxidative phosphorylation, steroid and heme biosynthesis and glutamine production. Because of these multiple activities, Lon protease is highly conserved throughout evolution, and mutations occurring in its gene determines severe diseases in humans, including a rare syndrome characterized by Cerebral, Ocular, Dental, Auricular and Skeletal anomalies (CODAS). Finally, alterations of LONP1 regulation in humans can favor tumor progression and aggressiveness, further highlighting the crucial role of this enzyme in mitochondrial and cellular homeostasis.
Collapse
Affiliation(s)
- Lara Gibellini
- Department of Medical and Surgical Sciences of Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Anna De Gaetano
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Mauro Mandrioli
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Elia Van Tongeren
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Andrea Cossarizza
- Department of Medical and Surgical Sciences of Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Marcello Pinti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| |
Collapse
|
10
|
Rotanova TV, Andrianova AG, Kudzhaev AM, Li M, Botos I, Wlodawer A, Gustchina A. New insights into structural and functional relationships between LonA proteases and ClpB chaperones. FEBS Open Bio 2019; 9:1536-1551. [PMID: 31237118 PMCID: PMC6722904 DOI: 10.1002/2211-5463.12691] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/17/2019] [Accepted: 06/24/2019] [Indexed: 11/12/2022] Open
Abstract
LonA proteases and ClpB chaperones are key components of the protein quality control system in bacterial cells. LonA proteases form a unique family of ATPases associated with diverse cellular activities (AAA+ ) proteins due to the presence of an unusual N-terminal region comprised of two domains: a β-structured N domain and an α-helical domain, including the coiled-coil fragment, which is referred to as HI(CC). The arrangement of helices in the HI(CC) domain is reminiscent of the structure of the H1 domain of the first AAA+ module of ClpB chaperones. It has been hypothesized that LonA proteases with a single AAA+ module may also contain a part of another AAA+ module, the full version of which is present in ClpB. Here, we established and tested the structural basis of this hypothesis using the known crystal structures of various fragments of LonA proteases and ClpB chaperones, as well as the newly determined structure of the Escherichia coli LonA fragment (235-584). The similarities and differences in the corresponding domains of LonA proteases and ClpB chaperones were examined in structural terms. The results of our analysis, complemented by the finding of a singular match in the location of the most conserved axial pore-1 loop between the LonA NB domain and the NB2 domain of ClpB, support our hypothesis that there is a structural and functional relationship between two coiled-coil fragments and implies a similar mechanism of engagement of the pore-1 loops in the AAA+ modules of LonAs and ClpBs.
Collapse
Affiliation(s)
- Tatyana V. Rotanova
- Shemyakin‐Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussia
| | - Anna G. Andrianova
- Shemyakin‐Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussia
| | - Arsen M. Kudzhaev
- Shemyakin‐Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussia
| | - Mi Li
- Protein Structure Section, Macromolecular Crystallography LaboratoryNational Cancer InstituteFrederickMDUSA
- Basic Science Program, Leidos Biomedical ResearchFrederick National Laboratory for Cancer ResearchFrederickMDUSA
| | - Istvan Botos
- Laboratory of Molecular BiologyNational Institute of Diabetes and Digestive and Kidney DiseasesBethesdaMDUSA
| | - Alexander Wlodawer
- Protein Structure Section, Macromolecular Crystallography LaboratoryNational Cancer InstituteFrederickMDUSA
| | - Alla Gustchina
- Protein Structure Section, Macromolecular Crystallography LaboratoryNational Cancer InstituteFrederickMDUSA
| |
Collapse
|
11
|
Ching C, Yang B, Onwubueke C, Lazinski D, Camilli A, Godoy VG. Lon Protease Has Multifaceted Biological Functions in Acinetobacter baumannii. J Bacteriol 2019; 201:e00536-18. [PMID: 30348832 PMCID: PMC6304660 DOI: 10.1128/jb.00536-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 10/19/2018] [Indexed: 12/14/2022] Open
Abstract
Acinetobacter baumannii is a Gram-negative opportunistic pathogen that is known to survive harsh environmental conditions and is a leading cause of hospital-acquired infections. Specifically, multicellular communities (known as biofilms) of A. baumannii can withstand desiccation and survive on hospital surfaces and equipment. Biofilms are bacteria embedded in a self-produced extracellular matrix composed of proteins, sugars, and/or DNA. Bacteria in a biofilm are protected from environmental stresses, including antibiotics, which provides the bacteria with selective advantage for survival. Although some gene products are known to play roles in this developmental process in A. baumannii, mechanisms and signaling remain mostly unknown. Here, we find that Lon protease in A. baumannii affects biofilm development and has other important physiological roles, including motility and the cell envelope. Lon proteases are found in all domains of life, participating in regulatory processes and maintaining cellular homeostasis. These data reveal the importance of Lon protease in influencing key A. baumannii processes to survive stress and to maintain viability.IMPORTANCEAcinetobacter baumannii is an opportunistic pathogen and is a leading cause of hospital-acquired infections. A. baumannii is difficult to eradicate and to manage, because this bacterium is known to robustly survive desiccation and to quickly gain antibiotic resistance. We sought to investigate biofilm formation in A. baumannii, since much remains unknown about biofilm formation in this bacterium. Biofilms, which are multicellular communities of bacteria, are surface attached and difficult to eliminate from hospital equipment and implanted devices. Our research identifies multifaceted physiological roles for the conserved bacterial protease Lon in A. baumannii These roles include biofilm formation, motility, and viability. This work broadly affects and expands understanding of the biology of A. baumannii, which will permit us to find effective ways to eliminate the bacterium.
Collapse
Affiliation(s)
- Carly Ching
- Department of Biology, Northeastern University, Boston, Massachusetts, USA
| | - Brendan Yang
- Department of Biology, Northeastern University, Boston, Massachusetts, USA
| | - Chineme Onwubueke
- Department of Biology, Northeastern University, Boston, Massachusetts, USA
| | - David Lazinski
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, USA
| | - Andrew Camilli
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, USA
| | - Veronica G Godoy
- Department of Biology, Northeastern University, Boston, Massachusetts, USA
| |
Collapse
|
12
|
Brown BL, Vieux EF, Kalastavadi T, Kim S, Chen JZ, Baker TA. N domain of the Lon AAA+ protease controls assembly and substrate choice. Protein Sci 2018; 28:1239-1251. [PMID: 30461098 DOI: 10.1002/pro.3553] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 11/09/2018] [Accepted: 11/12/2018] [Indexed: 11/09/2022]
Abstract
The protein quality control network (pQC) plays critical roles in maintaining protein and cellular homeostasis, especially during stress. Lon is a major pQC AAA+ protease, conserved from bacteria to human mitochondria. It is the principal enzyme that degrades most unfolded or damaged proteins. Degradation by Lon also controls cellular levels of several key regulatory proteins. Recently, our group determined that Escherichia coli Lon, previously thought to be an obligate homo-hexamer, also forms a dodecamer. This larger assembly has decreased ATPase activity and displays substrate-specific alterations in degradation compared with the hexamer. Here we experimentally probe the physical hexamer-hexamer interactions and the biological roles of the Lon dodecamer. Using structure prediction methods coupled with mutagenesis, we identified a key interface and specific residues within the Lon N domain that participates in an intermolecular coiled coil unique to the dodecamer. With this knowledge, we made a Lon variant (LonVQ ) that forms a dodecamer with increased stability, as determined by analytical ultracentrifugation and electron microscopy. Using this altered Lon, we characterize the Lon dodecamer's activities using a panel of substrates. Lon dodecamers are clearly functional, and complement critical lon- phenotypes but also exhibit altered substrate specificity. For example, the small heat shock proteins IbpA and IbpB are only efficiently degraded well by the hexamer. Thus, by elucidating the intermolecular contacts connecting the hexamers, we are starting to illuminate how dodecamer formation versus disassembly can alter Lon function under conditions where controlling specific activities and substrate preferences of this key protease may be advantageous.
Collapse
Affiliation(s)
- Breann L Brown
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Ellen F Vieux
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts.,Howard Hughes Medical Institute, Chevy Chase, Maryland
| | - Tejas Kalastavadi
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts.,Howard Hughes Medical Institute, Chevy Chase, Maryland
| | - SaRa Kim
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts.,Howard Hughes Medical Institute, Chevy Chase, Maryland
| | - James Z Chen
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts.,Howard Hughes Medical Institute, Chevy Chase, Maryland
| | - Tania A Baker
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts.,Howard Hughes Medical Institute, Chevy Chase, Maryland
| |
Collapse
|
13
|
Andrianova AG, Kudzhaev AM, Dubovtseva ES, Rotanova TV. Involvement of the N-terminal region and its characteristic coiled-coil fragment in the function and structure maintenance of E. coli LonA protease. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2017. [DOI: 10.1134/s1068162017040021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Roles of Lon protease and its substrate MarA during sodium salicylate-mediated growth reduction and antibiotic resistance in Escherichia coli. Microbiology (Reading) 2016; 162:764-776. [DOI: 10.1099/mic.0.000271] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
15
|
Oxidization without substrate unfolding triggers proteolysis of the peroxide-sensor, PerR. Proc Natl Acad Sci U S A 2015; 113:E23-31. [PMID: 26677871 DOI: 10.1073/pnas.1522687112] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Peroxide operon regulator (PerR) is a broadly conserved hydrogen peroxide sensor in bacteria, and oxidation of PerR at its regulatory metal-binding site is considered irreversible. Here, we tested whether this oxidation specifically targets PerR for proteolysis. We find that oxidizing conditions stimulate PerR degradation in vivo, and LonA is the principal AAA+ (ATPases associated with diverse cellular activities) protease that degrades PerR. Degradation of PerR by LonA is recapitulated in vitro, and biochemical dissection of this degradation reveals that the presence of regulatory metal and PerR-binding DNA dramatically extends the half-life of the protein. We identified a LonA-recognition site critical for oxidation-controlled PerR turnover. Key residues for LonA-interaction are exposed to solvent in PerR lacking metal, but are buried in the metal-bound form. Furthermore, one residue critical for Lon recognition is also essential for specific DNA-binding by PerR, thus explaining how both the metal and DNA ligands prevent PerR degradation. This ligand-controlled allosteric mechanism for protease recognition provides a compelling explanation for how the oxidation-induced conformational change in PerR triggers degradation. Interestingly, the critical residues recognized by LonA and exposed by oxidation do not function as a degron, because they are not sufficient to convert a nonsubstrate protein into a LonA substrate. Rather, these residues are a conformation-discriminator sequence, which must work together with other residues in PerR to evoke efficient degradation. This mechanism provides a useful example of how other proteins with only mild or localized oxidative damage can be targeted for degradation without the need for extensive oxidation-dependent protein denaturation.
Collapse
|
16
|
Rotanova TV, Dergousova NI, Morozkin AD. [Unique structural organization of ATP-dependent LonA proteases]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2014; 39:303-19. [PMID: 24397029 DOI: 10.1134/s1068162013030114] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Homooligomeric LonA proteases are the key components of the protein quality control system in bacteria and eukaryotes. Domain organization of the common pool of LonA proteases is determined by comparative analysis of primary and secondary structures of a number of bacterial and eukaryotic enzymes. The similarity of individual enzyme domains was estimated, domain-domain linker areas were revealed, regions that are capable to include intercalated peptide fragments were identified. LonA proteases were shown to be unique AAA+ proteins, because in addition to the classic AAA+ module they contain a part of another AAA+ module, namely the alpha-helical domain including a coiled-coil region, which is similar to the alpha-helical domain of the AAA(+)-1 module of the chaperone-disagregases ClpB/Hsp104.
Collapse
|
17
|
Wohlever ML, Baker TA, Sauer RT. Roles of the N domain of the AAA+ Lon protease in substrate recognition, allosteric regulation and chaperone activity. Mol Microbiol 2013; 91:66-78. [PMID: 24205897 DOI: 10.1111/mmi.12444] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2013] [Indexed: 12/14/2022]
Abstract
Degron binding regulates the activities of the AAA+ Lon protease in addition to targeting proteins for degradation. The sul20 degron from the cell-division inhibitor SulA is shown here to bind to the N domain of Escherichia coli Lon, and the recognition site is identified by cross-linking and scanning for mutations that prevent sul20-peptide binding. These N-domain mutations limit the rates of proteolysis of model sul20-tagged substrates and ATP hydrolysis by an allosteric mechanism. Lon inactivation of SulA in vivo requires binding to the N domain and robust ATP hydrolysis but does not require degradation or translocation into the proteolytic chamber. Lon-mediated relief of proteotoxic stress and protein aggregation in vivo can also occur without degradation but is not dependent on robust ATP hydrolysis. In combination, these results demonstrate that Lon can function as a protease or a chaperone and reveal that some of its ATP-dependent biological activities do not require translocation.
Collapse
Affiliation(s)
- Matthew L Wohlever
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | | | | |
Collapse
|
18
|
A mutation in the N domain of Escherichia coli lon stabilizes dodecamers and selectively alters degradation of model substrates. J Bacteriol 2013; 195:5622-8. [PMID: 24123818 DOI: 10.1128/jb.00886-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli Lon, an ATP-dependent AAA(+) protease, recognizes and degrades many different substrates, including the RcsA and SulA regulatory proteins. More than a decade ago, the E240K mutation in the N domain of Lon was shown to prevent degradation of RcsA but not SulA in vivo. Here, we characterize the biochemical properties of the E240K mutant in vitro and present evidence that the effects of this mutation are complex. For example, Lon(E240K) exists almost exclusively as a dodecamer, whereas wild-type Lon equilibrates between hexamers and dodecamers. Moreover, Lon(E240K) displays degradation defects in vitro that do not correlate in any simple fashion with degron identity, substrate stability, or dodecamer formation. The Lon sequence segment near residue 240 is known to undergo nucleotide-dependent conformational changes, and our results suggest that this region may be important for coupling substrate binding with allosteric activation of Lon protease and ATPase activity.
Collapse
|
19
|
Li JK, Liao JH, Li H, Kuo CI, Huang KF, Yang LW, Wu SH, Chang CI. The N-terminal substrate-recognition domain of a LonC protease exhibits structural and functional similarity to cytosolic chaperones. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:1789-97. [PMID: 23999302 DOI: 10.1107/s090744491301500x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 05/31/2013] [Indexed: 11/10/2022]
Abstract
The Lon protease is ubiquitous in nature. Its proteolytic activity is associated with diverse cellular functions ranging from maintaining proteostasis under normal and stress conditions to regulating cell metabolism. Although Lon was originally identified as an ATP-dependent protease with fused AAA+ (ATPases associated with diverse cellular activities) and protease domains, analyses have recently identified LonC as a class of Lon-like proteases with no intrinsic ATPase activity. In contrast to the canonical ATP-dependent Lon present in eukaryotic organelles and prokaryotes, LonC contains an AAA-like domain that lacks the conserved ATPase motifs. Moreover, the LonC AAA-like domain is inserted with a large domain predicted to be largely α-helical; intriguingly, this unique Lon-insertion domain (LID) was disordered in the recently determined full-length crystal structure of Meiothermus taiwanensis LonC (MtaLonC). Here, the crystal structure of the N-terminal AAA-like α/β subdomain of MtaLonC containing an intact LID, which forms a large α-helical hairpin protruding from the AAA-like domain, is reported. The structure of the LID is remarkably similar to the tentacle-like prong of the periplasmic chaperone Skp. It is shown that the LID of LonC is involved both in Skp-like chaperone activity and in recognition of unfolded protein substrates. The structure allows the construction of a complete model of LonC with six helical hairpin extensions defining a basket-like structure atop the AAA ring and encircling the entry portal to the barrel-like degradation chamber of Lon.
Collapse
Affiliation(s)
- Jhen-Kai Li
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Navarro E, Peñaranda A, Hansberg W, Torres-Martínez S, Garre V. A white collar 1-like protein mediates opposite regulatory functions in Mucor circinelloides. Fungal Genet Biol 2013; 52:42-52. [PMID: 23357353 DOI: 10.1016/j.fgb.2012.12.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 12/19/2012] [Accepted: 12/29/2012] [Indexed: 01/10/2023]
Abstract
Protein ubiquitylation plays a major role in the regulation of many cellular processes by altering the stability, localization or function of target proteins. CrgA is a protein of Mucor circinelloides that shows the characteristics of ubiquitin ligases and is involved in the regulation of carotenogenesis and asexual sporulation in this fungus. CrgA, which belongs to a poorly characterized group of proteins present in almost all eukaryotes, represses carotenogenesis through the proteolysis-independent mono- and di-ubiquitylation of Mcwc-1b, a White Collar-1-like protein which, when it is non-ubiquitylated, activates carotenogenesis. Using a proteomic approach, this work shows that the regulation of M. circinelloides vegetative development by CrgA is also mediated by Mcwc-1b, although, in this case, the non-ubiquitylated Mcwc-1b form acts as a repressor. High levels of a protein that contains a classical Rossmann-fold NAD(P)H/NAD(P)(+) binding domain for NAD(P)H binding and is similar to NmrA NADP(H) sensor-like proteins occur when Mcwc-1b is inactivated by ubiquitylation. A role for this protein in the regulation of sporulation is suggested because its over-expression suppresses the sporulation defect in a crgAΔ mutant. NmrA-like proteins are repressors that interact with GATA transcription factors and have been shown to be related to cell differentiation in Magnaporthe oryzae and Dictyostelium discoideum. This proteomic approach also revealed that CrgA regulates the carbon and energy metabolism and that Mcwc-1b is the main, but not the only, target of CrgA.
Collapse
Affiliation(s)
- Eusebio Navarro
- Departamento de Genética y Microbiología (Unidad asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, 30071 Murcia, Spain
| | | | | | | | | |
Collapse
|
21
|
Adam C, Picard M, Déquard-Chablat M, Sellem CH, Denmat SHL, Contamine V. Biological roles of the Podospora anserina mitochondrial Lon protease and the importance of its N-domain. PLoS One 2012; 7:e38138. [PMID: 22693589 PMCID: PMC3364969 DOI: 10.1371/journal.pone.0038138] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 05/03/2012] [Indexed: 01/14/2023] Open
Abstract
Mitochondria have their own ATP-dependent proteases that maintain the functional state of the organelle. All multicellular eukaryotes, including filamentous fungi, possess the same set of mitochondrial proteases, unlike in unicellular yeasts, where ClpXP, one of the two matricial proteases, is absent. Despite the presence of ClpXP in the filamentous fungus Podospora anserina, deletion of the gene encoding the other matricial protease, PaLon1, leads to lethality at high and low temperatures, indicating that PaLON1 plays a main role in protein quality control. Under normal physiological conditions, the PaLon1 deletion is viable but decreases life span. PaLon1 deletion also leads to defects in two steps during development, ascospore germination and sexual reproduction, which suggests that PaLON1 ensures important regulatory functions during fungal development. Mitochondrial Lon proteases are composed of a central ATPase domain flanked by a large non-catalytic N-domain and a C-terminal protease domain. We found that three mutations in the N-domain of PaLON1 affected fungal life cycle, PaLON1 protein expression and mitochondrial proteolytic activity, which reveals the functional importance of the N-domain of the mitochondrial Lon protease. All PaLon1 mutations affected the C-terminal part of the N-domain. Considering that the C-terminal part is predicted to have an α helical arrangement in which the number, length and position of the helices are conserved with the solved structure of its bacterial homologs, we propose that this all-helical structure participates in Lon substrate interaction.
Collapse
Affiliation(s)
- Céline Adam
- Univ Paris-Sud, Institut de Génétique et Microbiologie, UMR 8621, Orsay, France
- CNRS, Orsay, France
| | - Marguerite Picard
- Univ Paris-Sud, Institut de Génétique et Microbiologie, UMR 8621, Orsay, France
- CNRS, Orsay, France
| | - Michelle Déquard-Chablat
- Univ Paris-Sud, Institut de Génétique et Microbiologie, UMR 8621, Orsay, France
- CNRS, Orsay, France
| | - Carole H. Sellem
- CNRS, Centre de Génétique Moléculaire, UPR 3404, Gif-sur-Yvette, France
| | - Sylvie Hermann-Le Denmat
- Univ Paris-Sud, Institut de Génétique et Microbiologie, UMR 8621, Orsay, France
- CNRS, Orsay, France
- Ecole Normale Supérieure, Paris, France
- * E-mail: (SHLD); (VC)
| | - Véronique Contamine
- Univ Paris-Sud, Institut de Génétique et Microbiologie, UMR 8621, Orsay, France
- CNRS, Orsay, France
- * E-mail: (SHLD); (VC)
| |
Collapse
|
22
|
Identification of a region in the N-terminus of Escherichia coli Lon that affects ATPase, substrate translocation and proteolytic activity. J Mol Biol 2012; 418:208-25. [PMID: 22387465 DOI: 10.1016/j.jmb.2012.02.039] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 02/21/2012] [Accepted: 02/24/2012] [Indexed: 11/24/2022]
Abstract
Lon, also known as protease La, is an AAA+ protease machine that contains the ATPase and proteolytic domain within each enzyme subunit. Three truncated Escherichia coli Lon (ELon) mutants were generated based on a previous limited tryptic digestion result and hydrogen-deuterium exchange mass spectrometry analyses performed in this study. Using methods developed for characterizing wild-type (WT) Lon, we compared the ATPase, ATP-dependent protein degradation and ATP-dependent peptidase activities. With the exception of not degrading a putative structured substrate known as CcrM (cell-cycle-regulated DNA methyltransferase), the mutant lacking the first 239 residues behaved like WT ELon. Comparing the activity data of WT and ELon mutants reveals that the first 239 residues are not needed for minimal enzyme catalysis. The mutants lacking the first 252 residues or residues 232-252 displayed compromised ATPase, protein degradation and ATP-dependent peptide translocation abilities but retained WT-like steady-state peptidase activity. The binding affinities of WT and Lon mutants were evaluated by determining the concentration of λ N (K(λN)) needed to achieve 50% maximal ATPase stimulation. Comparing the K(λN) values reveals that the region encompassing 232-252 of ELon could contribute to λ N binding, but the effect is modest. Taken together, results generated from this study reveal that the region constituting residues 240-252 of ELon is important for ATPase activity, substrate translocation and protein degradation.
Collapse
|
23
|
Yang HJ, Lee JS, Cha JY, Baik HS. Negative regulation of pathogenesis in Pseudomonas syringae pv. tabaci 11528 by ATP-dependent Lon protease. Mol Cells 2011; 32:317-23. [PMID: 21904881 PMCID: PMC3887642 DOI: 10.1007/s10059-011-1017-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2011] [Revised: 07/25/2011] [Accepted: 08/04/2011] [Indexed: 01/13/2023] Open
Abstract
Pseudomonas syringae pv. tabaci causes wildfire disease in tobacco plants. The hrp pathogenicity island (hrp PAI) of P. syringae pv. tabaci encodes a type III secretion system (TTSS) and its regulatory system, which are required for pathogenesis in plants. Three important regulatory proteins-HrpR, HrpS, and HrpL-have been identified to activate hrp PAI gene expression. The bacterial Lon protease regulates the expression of various genes. To investigate the regulatory mechanism of the Lon protease in P. syringae pv. tabaci 11528, we cloned the lon gene, and then a Δlon mutant was generated by allelic exchange. lon mutants showed increased UV sensitivity, which is a typical feature of such mutants. The Δlon mutant produced higher levels of tabtoxin than the wild-type. The lacZ gene was fused with hrpA promoter and activity of β-galactosidase was measured in hrp-repressing and hrp-inducing media. The Lon protease functioned as a negative regulator of hrp PAI under hrp-repressing conditions. We found that strains with lon disruption elicited the host defense system more rapidly and strongly than the wild-type strain, suggesting that the Lon protease is essential for systemic pathogenesis.
Collapse
Affiliation(s)
- Hyun Ju Yang
- Department of Microbiology, College of Natural Science, Pusan National University, Busan 609-735, Korea
- These authors contributed equally to this study
- Present address: Alcoholic Beverage Research Institute, Daesun Distilling Co. Ltd., Busan 619-951, Korea
| | - Jun Seung Lee
- Department of Microbiology, College of Natural Science, Pusan National University, Busan 609-735, Korea
- These authors contributed equally to this study
| | - Ji Young Cha
- Department of Microbiology, College of Natural Science, Pusan National University, Busan 609-735, Korea
| | - Hyung Suk Baik
- Department of Microbiology, College of Natural Science, Pusan National University, Busan 609-735, Korea
| |
Collapse
|
24
|
Rotanova TV, Melnikov EE. A novel view on the architecture of the non-catalytic N-terminal region of ATP-dependent LonA proteases. BIOCHEMISTRY MOSCOW-SUPPLEMENT SERIES B-BIOMEDICAL CHEMISTRY 2010. [DOI: 10.1134/s1990750810040141] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Duman RE, Löwe J. Crystal Structures of Bacillus subtilis Lon Protease. J Mol Biol 2010; 401:653-70. [DOI: 10.1016/j.jmb.2010.06.030] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 06/14/2010] [Accepted: 06/15/2010] [Indexed: 11/29/2022]
|
26
|
Li M, Gustchina A, Rasulova FS, Melnikov EE, Maurizi MR, Rotanova TV, Dauter Z, Wlodawer A. Structure of the N-terminal fragment of Escherichia coli Lon protease. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2010; 66:865-73. [PMID: 20693685 PMCID: PMC2917273 DOI: 10.1107/s0907444910019554] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Accepted: 05/25/2010] [Indexed: 11/10/2022]
Abstract
The structure of a recombinant construct consisting of residues 1-245 of Escherichia coli Lon protease, the prototypical member of the A-type Lon family, is reported. This construct encompasses all or most of the N-terminal domain of the enzyme. The structure was solved by SeMet SAD to 2.6 A resolution utilizing trigonal crystals that contained one molecule in the asymmetric unit. The molecule consists of two compact subdomains and a very long C-terminal alpha-helix. The structure of the first subdomain (residues 1-117), which consists mostly of beta-strands, is similar to that of the shorter fragment previously expressed and crystallized, whereas the second subdomain is almost entirely helical. The fold and spatial relationship of the two subdomains, with the exception of the C-terminal helix, closely resemble the structure of BPP1347, a 203-amino-acid protein of unknown function from Bordetella parapertussis, and more distantly several other proteins. It was not possible to refine the structure to satisfactory convergence; however, since almost all of the Se atoms could be located on the basis of their anomalous scattering the correctness of the overall structure is not in question. The structure reported here was also compared with the structures of the putative substrate-binding domains of several proteins, showing topological similarities that should help in defining the binding sites used by Lon substrates.
Collapse
Affiliation(s)
- Mi Li
- Protein Structure Section, Macromolecular Crystallography Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702-1201, USA
- Basic Research Program, SAIC-Frederick, Frederick, MD 21702, USA
| | - Alla Gustchina
- Protein Structure Section, Macromolecular Crystallography Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702-1201, USA
| | - Fatima S. Rasulova
- Laboratory of Cell Biology, National Cancer Institute, Bethesda, MD 20892, USA
| | - Edward E. Melnikov
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Michael R. Maurizi
- Laboratory of Cell Biology, National Cancer Institute, Bethesda, MD 20892, USA
| | - Tatyana V. Rotanova
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Zbigniew Dauter
- Synchrotron Radiation Research Section, Macromolecular Crystallography Laboratory, NCI, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Alexander Wlodawer
- Protein Structure Section, Macromolecular Crystallography Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702-1201, USA
| |
Collapse
|
27
|
Novel conserved group A streptococcal proteins identified by the antigenome technology as vaccine candidates for a non-M protein-based vaccine. Infect Immun 2010; 78:4051-67. [PMID: 20624906 DOI: 10.1128/iai.00295-10] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Group A streptococci (GAS) can cause a wide variety of human infections ranging from asymptomatic colonization to life-threatening invasive diseases. Although antibiotic treatment is very effective, when left untreated, Streptococcus pyogenes infections can lead to poststreptococcal sequelae and severe disease causing significant morbidity and mortality worldwide. To aid the development of a non-M protein-based prophylactic vaccine for the prevention of group A streptococcal infections, we identified novel immunogenic proteins using genomic surface display libraries and human serum antibodies from donors exposed to or infected by S. pyogenes. Vaccine candidate antigens were further selected based on animal protection in murine lethal-sepsis models with intranasal or intravenous challenge with two different M serotype strains. The nine protective antigens identified are highly conserved; eight of them show more than 97% sequence identity in 13 published genomes as well as in approximately 50 clinical isolates tested. Since the functions of the selected vaccine candidates are largely unknown, we generated deletion mutants for three of the protective antigens and observed that deletion of the gene encoding Spy1536 drastically reduced binding of GAS cells to host extracellular matrix proteins, due to reduced surface expression of GAS proteins such as Spy0269 and M protein. The protective, highly conserved antigens identified in this study are promising candidates for the development of an M-type-independent, protein-based vaccine to prevent infection by S. pyogenes.
Collapse
|
28
|
Liao JH, Lin YC, Hsu J, Lee AYL, Chen TA, Hsu CH, Chir JL, Hua KF, Wu TH, Hong LJ, Yen PW, Chiou A, Wu SH. Binding and cleavage of E. coli HUbeta by the E. coli Lon protease. Biophys J 2010; 98:129-37. [PMID: 20085725 DOI: 10.1016/j.bpj.2009.09.052] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Revised: 09/22/2009] [Accepted: 09/24/2009] [Indexed: 10/20/2022] Open
Abstract
The Escherichia coli Lon protease degrades the E. coli DNA-binding protein HUbeta, but not the related protein HUalpha. Here we show that the Lon protease binds to both HUbeta and HUalpha, but selectively degrades only HUbeta in the presence of ATP. Mass spectrometry of HUbeta peptide fragments revealed that region K18-G22 is the preferred cleavage site, followed in preference by L36-K37. The preferred cleavage site was further refined to A20-A21 by constructing and testing mutant proteins; Lon degraded HUbeta-A20Q and HUbeta-A20D more slowly than HUbeta. We used optical tweezers to measure the rupture force between HU proteins and Lon; HUalpha, HUbeta, and HUbeta-A20D can bind to Lon, and in the presence of ATP, the rupture force between each of these proteins and Lon became weaker. Our results support a mechanism of Lon protease cleavage of HU proteins in at least three stages: binding of Lon with the HU protein (HUbeta, HUalpha, or HUbeta-A20D); hydrolysis of ATP by Lon to provide energy to loosen the binding to the HU protein and to allow an induced-fit conformational change; and specific cleavage of only HUbeta.
Collapse
Affiliation(s)
- Jiahn-Haur Liao
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Chir JL, Liao JH, Lin YC, Wu SH. The N-terminal sequence after residue 247 plays an important role in structure and function of Lon protease from Brevibacillus thermoruber WR-249. Biochem Biophys Res Commun 2009; 382:762-5. [PMID: 19324005 DOI: 10.1016/j.bbrc.2009.03.109] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Accepted: 03/19/2009] [Indexed: 11/16/2022]
Abstract
Previous studies on the N-terminal domain of Lon proteases have not clearly identified its function. Here we constructed randomly chosen N-terminal-truncated mutants of the Lon protease from Brevibacillus thermoruber WR-249 to elucidate the structure-function relationship of this domain. Mutants lacking amino acids from 1 to 247 of N terminus retained significant peptidase and ATPase activities, but lost approximately 90% of protease activity. Further truncation of the protein resulted in the loss of all three activities. Mutants lacking amino acids 246-259 or 248-256 also lost all activities and quaternary structure. Our results indicated that amino acids 248-256 (SEVDELRAQ) are important for the full function of the Lon protease.
Collapse
Affiliation(s)
- Jiun-Ly Chir
- Institute of Biological Chemistry, Academia Sinica, Nankang, Taipei, Taiwan
| | | | | | | |
Collapse
|
30
|
Abstract
Proteins unfold constantly in cells, especially under stress conditions. Degradation of denatured polypeptides by Lon and related ATP-dependent AAA(+) proteases helps prevent toxic aggregates formation and other deleterious consequences, but how these destructive enzymatic machines distinguish between damaged and properly folded proteins is poorly understood. Here, we show that Escherichia coli Lon recognizes specific sequences -- rich in aromatic residues -- that are accessible in unfolded polypeptides but hidden in most native structures. Denatured polypeptides lacking such sequences are poor substrates. Lon also unfolds and degrades stably folded proteins with accessible recognition tags. Thus, protein architecture and the positioning of appropriate targeting sequences allow Lon degradation to be dependent or independent of the folding status of a protein. Our results suggest that Lon can recognize multiple signals in unfolded polypeptides synergistically, resulting in nanomolar binding and a mechanism for discriminating irreversibly damaged proteins from transiently unfolded elements of structure.
Collapse
Affiliation(s)
- Eyal Gur
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
31
|
Melnikov EE, Andrianova AG, Morozkin AD, Stepnov AA, Makhovskaya OV, Botos I, Gustchina A, Wlodawer A, Rotanova TV. Limited proteolysis of E. coli ATP-dependent protease Lon - a unified view of the subunit architecture and characterization of isolated enzyme fragments. Acta Biochim Pol 2008; 55:281-296. [PMID: 18506223 PMCID: PMC7355814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Revised: 04/03/2008] [Accepted: 04/23/2008] [Indexed: 05/26/2023]
Abstract
We carried out chymotryptic digestion of multimeric ATP-dependent Lon protease from Escherichia coli. Four regions sensitive to proteolytic digestion were located in the enzyme and several fragments corresponding to the individual structural domains of the enzyme or their combinations were isolated. It was shown that (i) unlike the known AAA(+) proteins, the ATPase fragment (A) of Lon has no ATPase activity in spite of its ability to bind nucleotides, and it is monomeric in solution regardless of the presence of any effectors; (ii) the monomeric proteolytic domain (P) does not display proteolytic activity; (iii) in contrast to the inactive counterparts, the AP fragment is an oligomer and exhibits both the ATPase and proteolytic activities. However, unlike the full-length Lon, its AP fragment oligomerizes into a dimer or a tetramer only, exhibits the properties of a non-processive protease, and undergoes self-degradation upon ATP hydrolysis. These results reveal the crucial role played by the non-catalytic N fragment of Lon (including its coiled-coil region), as well as the contribution of individual domains to creation of the quaternary structure of the full-length enzyme, empowering its function as a processive protease.
Collapse
Affiliation(s)
- Edward E. Melnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Anna G. Andrianova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Andrey D. Morozkin
- Cardiology Research Center, Institute of Experimental Cardiology, Moscow, Russia
| | - Anton A. Stepnov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Oksana V. Makhovskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Istvan Botos
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Alla Gustchina
- Macromolecular Crystallography Laboratory, National Cancer Institute at Frederick, Frederick, MD, USA
| | - Alexander Wlodawer
- Macromolecular Crystallography Laboratory, National Cancer Institute at Frederick, Frederick, MD, USA
| | - Tatyana V. Rotanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
32
|
Maehara T, Hoshino T, Nakamura A. Characterization of three putative Lon proteases of Thermus thermophilus HB27 and use of their defective mutants as hosts for production of heterologous proteins. Extremophiles 2007; 12:285-96. [PMID: 18157502 DOI: 10.1007/s00792-007-0129-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2007] [Accepted: 11/22/2007] [Indexed: 11/29/2022]
Abstract
In the genome of a thermophilic bacterium, Thermus thermophilus HB27, three genes, TTC0418, TTC0746 and TTC1975, were annotated as ATP-dependent protease La (Lon). Sequence comparisons indicated that TTC0418 and TTC0746 showed significant similarities to bacterial LonA-type proteases, such as Escherichia coli Lon protease, especially in regions corresponding to domains for ATP-binding and hydrolysis, and for proteolysis, but TTC1975 exhibited a similarity only at the C-terminal proteolytic domain. The enzymatic analyses, using purified recombinant proteins produced by E. coli, revealed that TTC0418 and TTC0746 exhibited peptidase and protease activities against two synthetic peptides and casein, respectively, in an ATP-dependent manner, and at the same time, both the enzymes had significant ATPase activities in the presence of substrates. On the other hand, TTC1975 possessed a protease activity against casein, but addition of ATP did not enhance this activity. Moreover, a T. thermophilus mutant deficient in both TTC0418 and TTC0746 showed a similar growth characteristic to an E. coli lon mutant, i.e., a growth defect lag after a nutritional downshift. These results indicate that TTC0418 and TTC0746 are actually members of bacterial LonA-type proteases with different substrate specificities, whereas TTC1975 should not be classified as a Lon protease. Finally, the effects of mutations deficient in these proteases were assessed on production of several heterologous gene products from Pyrococcus horikoshii and Geobacillus stearothermophilus. It was shown that TTC0746 mutation was more effective in improving production than the other two mutations, especially for production of P. horikoshii alpha-mannosidase and G. stearothermophilus alpha-amylase, indicating that the TTC0746 mutant of T. thermophilus HB27 may be useful for production of heterologous proteins from thermophiles and hyperthermophiles.
Collapse
Affiliation(s)
- Tomoko Maehara
- Division of Integrative Environmental Sciences, Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | | | | |
Collapse
|
33
|
Tsilibaris V, Maenhaut-Michel G, Van Melderen L. Biological roles of the Lon ATP-dependent protease. Res Microbiol 2006; 157:701-13. [PMID: 16854568 DOI: 10.1016/j.resmic.2006.05.004] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2006] [Revised: 05/22/2006] [Accepted: 05/23/2006] [Indexed: 12/24/2022]
Abstract
The Lon ATP-dependent protease plays a major role in protein quality control. An increasing number of regulatory proteins, however, are being identified as Lon substrates, thus indicating that in addition to its housekeeping function, Lon plays an important role in regulating many biological processes in bacteria. This review presents and discusses the involvement of Lon in different aspects of bacterial physiology, including cell differentiation, sporulation, pathogenicity and survival under starvation conditions.
Collapse
Affiliation(s)
- Virginie Tsilibaris
- Laboratoire de Génétique des Procaryotes, IBMM, Université Libre de Bruxelles, 12 rue des Professeurs Jeener et Brachet, 6041 Gosselies, Belgium
| | | | | |
Collapse
|
34
|
Rotanova TV, Botos I, Melnikov EE, Rasulova F, Gustchina A, Maurizi MR, Wlodawer A. Slicing a protease: structural features of the ATP-dependent Lon proteases gleaned from investigations of isolated domains. Protein Sci 2006; 15:1815-28. [PMID: 16877706 PMCID: PMC2242575 DOI: 10.1110/ps.052069306] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
ATP-dependent Lon proteases are multi-domain enzymes found in all living organisms. All Lon proteases contain an ATPase domain belonging to the AAA(+) superfamily of molecular machines and a proteolytic domain with a serine-lysine catalytic dyad. Lon proteases can be divided into two subfamilies, LonA and LonB, exemplified by the Escherichia coli and Archaeoglobus fulgidus paralogs, respectively. The LonA subfamily is defined by the presence of a large N-terminal domain, whereas the LonB subfamily has no such domain, but has a membrane-spanning domain that anchors the protein to the cytoplasmic side of the membrane. The two subfamilies also differ in their consensus sequences. Recent crystal structures for several individual domains and sub-fragments of Lon proteases have begun to illuminate similarities and differences in structure-function relationships between the two subfamilies. Differences in orientation of the active site residues in several isolated Lon protease domains point to possible roles for the AAA(+) domains and/or substrates in positioning the catalytic residues within the active site. Structures of the proteolytic domains have also indicated a possible hexameric arrangement of subunits in the native state of bacterial Lon proteases. The structure of a large segment of the N-terminal domain has revealed a folding motif present in other protein families of unknown function and should lead to new insights regarding ways in which Lon interacts with substrates or other cellular factors. These first glimpses of the structure of Lon are heralding an exciting new era of research on this ancient family of proteases.
Collapse
Affiliation(s)
- Tatyana V Rotanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow
| | | | | | | | | | | | | |
Collapse
|
35
|
Vera A, Arís A, Carrió M, González-Montalbán N, Villaverde A. Lon and ClpP proteases participate in the physiological disintegration of bacterial inclusion bodies. J Biotechnol 2005; 119:163-71. [PMID: 15967532 DOI: 10.1016/j.jbiotec.2005.04.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2004] [Revised: 04/14/2005] [Accepted: 04/19/2005] [Indexed: 11/25/2022]
Abstract
Aggregated protein is solubilized by the combined activity of chaperones ClpB, DnaK and small heat-shock proteins, and this could account, at least partially, for the physiological disintegration of bacterial inclusion bodies. In vivo, the involvement of proteases in this process had been suspected but not investigated. By using an aggregation prone beta-galactosidase fusion protein produced in Escherichia coli, we show in this study that the main ATP-dependent proteases Lon and ClpP participate in the physiological disintegration of cytoplasmic inclusion bodies, their absence minimizing the protein removal up to 40%. However, the role of these proteases is clearly distinguishable especially regarding the fate of solubilized protein. While Lon appears as a minor contributor in the disintegration process, ClpP directs an important attack on the released or releasable protein even not being irreversibly misfolded. ClpP is then observed as a wide-spectrum, main processor of aggregation-prone proteins and also of polypeptides physiologically released from inclusion bodies, even when occurring as soluble versions with a conformation compatible with their enzymatic activity.
Collapse
Affiliation(s)
- Andrea Vera
- Institut de Biotecnologia i de Biomedicina, Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | | | | | | | | |
Collapse
|
36
|
Rotanova TV, Melnikov EE, Khalatova AG, Makhovskaya OV, Botos I, Wlodawer A, Gustchina A. Classification of ATP-dependent proteases Lon and comparison of the active sites of their proteolytic domains. ACTA ACUST UNITED AC 2005; 271:4865-71. [PMID: 15606774 DOI: 10.1111/j.1432-1033.2004.04452.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
ATP-dependent Lon proteases belong to the superfamily of AAA+ proteins. Until recently, the identity of the residues involved in their proteolytic active sites was not elucidated. However, the putative catalytic Ser-Lys dyad was recently suggested through sequence comparison of more than 100 Lon proteases from various sources. The presence of the catalytic dyad was experimentally confirmed by site-directed mutagenesis of the Escherichia coli Lon protease and by determination of the crystal structure of its proteolytic domain. Furthermore, this extensive sequence analysis allowed the definition of two subfamilies of Lon proteases, LonA and LonB, based on the consensus sequences in the active sites of their proteolytic domains. These differences strictly associate with the specific characteristics of their AAA+ modules, as well as with the presence or absence of an N-terminal domain.
Collapse
Affiliation(s)
- Tatyana V Rotanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.
| | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
The cellular stress response is a universal mechanism of extraordinary physiological/pathophysiological significance. It represents a defense reaction of cells to damage that environmental forces inflict on macromolecules. Many aspects of the cellular stress response are not stressor specific because cells monitor stress based on macromolecular damage without regard to the type of stress that causes such damage. Cellular mechanisms activated by DNA damage and protein damage are interconnected and share common elements. Other cellular responses directed at re-establishing homeostasis are stressor specific and often activated in parallel to the cellular stress response. All organisms have stress proteins, and universally conserved stress proteins can be regarded as the minimal stress proteome. Functional analysis of the minimal stress proteome yields information about key aspects of the cellular stress response, including physiological mechanisms of sensing membrane lipid, protein, and DNA damage; redox sensing and regulation; cell cycle control; macromolecular stabilization/repair; and control of energy metabolism. In addition, cells can quantify stress and activate a death program (apoptosis) when tolerance limits are exceeded.
Collapse
Affiliation(s)
- Dietmar Kültz
- Physiological Genomics Group, Department of Animal Sciences, University of California, Davis, California 95616, USA.
| |
Collapse
|
38
|
Botos I, Melnikov EE, Cherry S, Khalatova AG, Rasulova FS, Tropea JE, Maurizi MR, Rotanova TV, Gustchina A, Wlodawer A. Crystal structure of the AAA+ alpha domain of E. coli Lon protease at 1.9A resolution. J Struct Biol 2004; 146:113-22. [PMID: 15037242 DOI: 10.1016/j.jsb.2003.09.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2003] [Indexed: 10/27/2022]
Abstract
The crystal structure of the small, mostly helical alpha domain of the AAA+ module of the Escherichia coli ATP-dependent protease Lon has been solved by single isomorphous replacement combined with anomalous scattering and refined at 1.9A resolution to a crystallographic R factor of 17.9%. This domain, comprising residues 491-584, was obtained by chymotrypsin digestion of the recombinant full-length protease. The alpha domain of Lon contains four alpha helices and two parallel strands and resembles similar domains found in a variety of ATPases and helicases, including the oligomeric proteases HslVU and ClpAP. The highly conserved "sensor-2" Arg residue is located at the beginning of the third helix. Detailed comparison with the structures of 11 similar domains established the putative location of the nucleotide-binding site in this first fragment of Lon for which a crystal structure has become available.
Collapse
Affiliation(s)
- Istvan Botos
- Macromolecular Crystallography Laboratory, National Cancer Institute at Frederick, MCL Bldg. 536, Rm. 5, Frederick, MD 21702-1201, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Mogk A, Dougan D, Weibezahn J, Schlieker C, Turgay K, Bukau B. Broad yet high substrate specificity: the challenge of AAA+ proteins. J Struct Biol 2004; 146:90-8. [PMID: 15037240 DOI: 10.1016/j.jsb.2003.10.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2003] [Revised: 10/09/2003] [Indexed: 11/21/2022]
Abstract
AAA+ proteins remodel target substrates in an ATP-dependent manner, an activity that is of central importance for a plethora of cellular processes. While sharing a similar hexameric structure AAA+ proteins must exhibit differences in substrate recognition to fulfil their diverse biological functions. Here we describe strategies of AAA+ proteins to ensure substrate specificity. AAA domains can directly mediate substrate recognition, however, in general extra domains, added to the core AAA domain, control substrate interaction. Such extra domains may either directly recognize substrates or serve as a platform for adaptor proteins, which transfer bound substrates to their AAA+ partner proteins. The positioning of adaptor proteins in substrate recognition can enable them to control the activity of their partner proteins by coupling AAA+ protein activation to substrate availability.
Collapse
Affiliation(s)
- Axel Mogk
- Zentrum für Molekulare Biologie Heidelberg, Universität Heidelberg, Im Neuenheimer Feld 282, Heidelberg D-69120, Germany.
| | | | | | | | | | | |
Collapse
|
40
|
Nomura K, Kato J, Takiguchi N, Ohtake H, Kuroda A. Effects of inorganic polyphosphate on the proteolytic and DNA-binding activities of Lon in Escherichia coli. J Biol Chem 2004; 279:34406-10. [PMID: 15187082 DOI: 10.1074/jbc.m404725200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lon belongs to a unique group of proteases that bind to DNA and is involved in the regulation of several important cellular functions, including adaptation to nutritional downshift. Previously, we revealed that inorganic polyphosphate (polyP) increases in Escherichia coli in response to amino acid starvation and that it stimulates the degradation of free ribosomal proteins by Lon. In this work, we examined the effects of polyP on the proteolytic and DNA-binding activities of Lon. An order-of-addition experiment suggested that polyP first binds to Lon, which stimulates Lon-mediated degradation of ribosomal proteins. A polyP-binding assay using Lon deletion mutants showed that the polyP-binding site of Lon is localized in the ATPase domain. Because the same ATPase domain also contains the DNA-binding site, polyP can compete with DNA for binding to Lon. In fact, an equimolar amount of polyP almost completely inhibited DNA-Lon complex formation, suggesting that Lon binds to polyP with a higher affinity than it binds to DNA. Collectively, our results showed that polyP may control the cellular activity of Lon not only as a protease but also as a DNA-binding protein.
Collapse
Affiliation(s)
- Kazutaka Nomura
- Department of Molecular Biotechnology, Hiroshima University, Hiroshima 739-8530, Japan
| | | | | | | | | |
Collapse
|
41
|
Lee AYL, Hsu CH, Wu SH. Functional domains of Brevibacillus thermoruber lon protease for oligomerization and DNA binding: role of N-terminal and sensor and substrate discrimination domains. J Biol Chem 2004; 279:34903-12. [PMID: 15181012 DOI: 10.1074/jbc.m403562200] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lon protease is a multifunctional enzyme, and its functions include the degradation of damaged proteins and naturally short lived proteins, ATPase and chaperone-like activities, as well as DNA binding. A thermostable Lon protease from Brevibacillus thermoruber WR-249 (Bt-Lon) has been cloned and characterized with an N-terminal domain, a central ATPase domain that includes a sensor and substrate discrimination (SSD) domain, and a C-terminal protease domain. Here we present a detailed structure-function characterization of Bt-Lon, not only dissecting the individual roles of Bt-Lon domains in oligomerization, catalytic activities, chaperone-like activity, and DNA binding activity but also describing the nature of oligomerization. Seven truncated mutants of Bt-Lon were designed, expressed, and purified. Our results show that the N-terminal domain is essential for oligomerization. The truncation of the N-terminal domain resulted in the failure of oligomerization and led to the inactivation of proteolytic, ATPase, and chaperone-like activities but retained the DNA binding activity, suggesting that oligomerization of Bt-Lon is a prerequisite for its catalytic and chaperone-like activities. We further found that the SSD is involved in DNA binding based on gel mobility shift assays. On the other hand, the oligomerization of Bt-Lon proceeds through a dimer <--> tetramer <--> hexamer assembly model revealed by chemical cross-linking experiments. The results also showed that hydrophobic interactions may play important roles in the dimerization of Bt-Lon, and ionic interactions are mainly responsible for the assembly of hexamers.
Collapse
|
42
|
Lee AYL, Tsay SS, Chen MY, Wu SH. Identification of a gene encoding Lon protease from Brevibacillus thermoruber WR-249 and biochemical characterization of its thermostable recombinant enzyme. ACTA ACUST UNITED AC 2004; 271:834-44. [PMID: 14764100 DOI: 10.1111/j.1432-1033.2004.03988.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A gene encoding thermostable Lon protease from Brevibacillus thermoruber WR-249 was cloned and characterized. The Br. thermoruber Lon gene (Bt-lon) encodes an 88 kDa protein characterized by an N-terminal domain, a central ATPase domain which includes an SSD (sensor- and substrate-discrimination) domain, and a C-terminal protease domain. The Bt-lon is a heat-inducible gene and may be controlled under a putative Bacillus subtilis sigmaA-dependent promoter, but in the absence of CIRCE (controlling inverted repeat of chaperone expression). Bt-lon was expressed in Escherichia coli, and its protein product was purified. The native recombinant Br. thermoruber Lon protease (Bt-Lon) displayed a hexameric structure. The optimal temperature of ATPase activity for Bt-Lon was 70 degrees C, and the optimal temperature of peptidase and DNA-binding activities was 50 degrees C. This implies that the functions of Lon protease in thermophilic bacteria may be switched, depending on temperature, to regulate their physiological needs. The peptidase activity of Bt-Lon increases substantially in the presence of ATP. Furthermore, the substrate specificity of Bt-Lon is different from that of E. coli Lon in using fluorogenic peptides as substrates. Notably, the Bt-Lon protein shows chaperone-like activity by preventing aggregation of denatured insulin B-chain in a dose-dependent and ATP-independent manner. In thermal denaturation experiments, Bt-Lon was found to display an indicator of thermostability value, Tm of 71.5 degrees C. Sequence comparison with mesophilic Lon proteases shows differences in the rigidity, electrostatic interactions, and hydrogen bonding of Bt-Lon relevant to thermostability.
Collapse
Affiliation(s)
- Alan Y-L Lee
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | | | | | | |
Collapse
|
43
|
Flanagan JM, Bewley MC. Protein quality control in bacterial cells: integrated networks of chaperones and ATP-dependent proteases. GENETIC ENGINEERING 2003; 24:17-47. [PMID: 12416299 DOI: 10.1007/978-1-4615-0721-5_2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Affiliation(s)
- John M Flanagan
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | | |
Collapse
|
44
|
Dougan DA, Mogk A, Zeth K, Turgay K, Bukau B. AAA+ proteins and substrate recognition, it all depends on their partner in crime. FEBS Lett 2002; 529:6-10. [PMID: 12354604 DOI: 10.1016/s0014-5793(02)03179-4] [Citation(s) in RCA: 170] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Members of the AAA+ superfamily have been identified in all organisms studied to date. They are involved in a wide range of cellular events. In bacteria, representatives of this superfamily are involved in functions as diverse as transcription and protein degradation and play an important role in the protein quality control network. Often they employ a common mechanism to mediate an ATP-dependent unfolding/disassembly of protein-protein or DNA-protein complexes. In an increasing number of examples it appears that the activities of these AAA+ proteins may be modulated by a group of otherwise unrelated proteins, called adaptor proteins. These usually small proteins specifically modify the substrate recognition of their AAA+ partner protein. The occurrence of such adaptor proteins are widespread; representatives have been identified not only in Escherichia coli but also in Bacillus subtilis, not to mention yeast and other eukaryotic organisms. Interestingly, from the currently known examples, it appears that the N domain of AAA+ proteins (the most divergent region of the protein within the family) provides a common platform for the recognition of these diverse adaptor proteins. Finally, the use of adaptor proteins to modulate AAA+ activity is, in some cases, an elegant way to redirect the activity of an AAA+ protein towards a particular substrate without necessarily affecting other activities of that AAA+ protein while, in other cases, the adaptor protein triggers a complete switch in AAA+ activity.
Collapse
Affiliation(s)
- David A Dougan
- Zentrum für Molekulare Biologie Heidelberg, Universität Heidelberg, Im Neuenheimer Feld 282, D-69120, Heidelberg, Germany.
| | | | | | | | | |
Collapse
|
45
|
Voos W, Röttgers K. Molecular chaperones as essential mediators of mitochondrial biogenesis. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1592:51-62. [PMID: 12191768 DOI: 10.1016/s0167-4889(02)00264-1] [Citation(s) in RCA: 216] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Chaperone proteins have been initially identified by their ability to confer cellular resistance to various stress conditions. However, molecular chaperones participate also in many constitutive cellular processes. Mitochondria contain several members of the major chaperone families that have important functions in maintaining mitochondrial function. The major Hsp70 of the mitochondrial matrix (mtHsp70) is essential for the translocation of cytosolic precursor proteins across the two mitochondrial membranes. MtHsp70 interacts with the preprotein in transit in an ATP-dependent reaction as it emerges from the translocation channel of the inner membrane. Together with two essential partner proteins, Tim44 and Mge1, mtHsp70 forms a membrane-associated import motor complex responsible for vectorial polypeptide movement and unfolding of preprotein domains. Folding of newly imported proteins in the matrix is assisted by the soluble chaperone system formed by mtHsp70 and its partner protein Mdj1. For certain substrate proteins, the protected folding environment that is offered by the large oligomeric Hsp60 complex facilitates further folding reactions. The mitochondrial Hsp70 Ssq1 is involved in the assembly of mitochondrial Fe/S clusters together with another member of the DnaJ family, Jac1. Chaperones of the Clp/Hsp100 family mediate the prevention of aggregation under stress conditions and eventually the degradation of mitochondrial proteins. Together, the chaperones of the mitochondrial matrix form a complex interdependent chaperone network that is essential for most reactions of mitochondrial protein biogenesis.
Collapse
Affiliation(s)
- Wolfgang Voos
- Institut für Biochemie und Molekularbiologie, Universität Freiburg, Hermann-Herder-Str. 7, D-79104, Freiburg, Germany.
| | | |
Collapse
|
46
|
Fukui T, Eguchi T, Atomi H, Imanaka T. A membrane-bound archaeal Lon protease displays ATP-independent proteolytic activity towards unfolded proteins and ATP-dependent activity for folded proteins. J Bacteriol 2002; 184:3689-98. [PMID: 12057965 PMCID: PMC135145 DOI: 10.1128/jb.184.13.3689-3698.2002] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In contrast to the eucaryal 26S proteasome and the bacterial ATP-dependent proteases, little is known about the energy-dependent proteolysis in members of the third domain, Archae. We cloned a gene homologous to ATP-dependent Lon protease from a hyperthermophilic archaeon and observed the unique properties of the archaeal Lon. Lon from Thermococcus kodakaraensis KOD1 (Lon(Tk)) is a 70-kDa protein with an N-terminal ATPase domain belonging to the AAA(+) superfamily and a C-terminal protease domain including a putative catalytic triad. Interestingly, a secondary structure prediction suggested the presence of two transmembrane helices within the ATPase domain and Western blot analysis using specific antiserum against the recombinant protein clearly indicated that Lon(Tk) was actually a membrane-bound protein. The recombinant Lon(Tk) possessed thermostable ATPase activity and peptide cleavage activity toward fluorogenic peptides with optimum temperatures of 95 and 70 degrees C, respectively. Unlike the enzyme from Escherichia coli, we found that Lon(Tk) showed higher peptide cleavage activity in the absence of ATP than it did in the presence of ATP. When three kinds of proteins with different thermostabilities were examined as substrates, it was found that Lon(Tk) required ATP for degradation of folded proteins, probably due to a chaperone-like function of the ATPase domain, along with ATP hydrolysis. In contrast, Lon(Tk) degraded unfolded proteins in an ATP-independent manner, suggesting a mode of action in Lon(Tk) different from that of its bacterial counterpart.
Collapse
Affiliation(s)
- Toshiaki Fukui
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | |
Collapse
|
47
|
Bretz J, Losada L, Lisboa K, Hutcheson SW. Lon protease functions as a negative regulator of type III protein secretion in Pseudomonas syringae. Mol Microbiol 2002; 45:397-409. [PMID: 12123452 DOI: 10.1046/j.1365-2958.2002.03008.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The central conserved region of the Pseudomonas syringae hrp pathogenicity island encodes a type III protein secretion system (TTSS) that is required for pathogenicity in plants. Expression of the hrp TTSS is controlled by the alternative sigma factor, HrpL, whose expression, in turn, is positively controlled by two truncated enhancer binding proteins, HrpR and HrpS. Although a number of environmental conditions are known to modulate hrp TTSS expression, such as stringent conditions and pathogenesis, the mechanism by which the activities of these transcriptional factors are modulated had not been established. In this study, HrpR and HrpS were found to be constitutively expressed under conditions in which the hrpL promoter was inactive. To identify a postulated negative regulator of hrpL expression, transposome (Tz) mutagenesis was used to isolate hrp constitutive mutants. P. syringae Pss61 and DC3000 hrp constitutive mutants were identified that carried lon::Tz insertions and exhibited increased cell length and UV sensitivity typical of Delta lon mutants. The P. syringae Lon protease retained structural features of its homologues found in other bacteria and was capable of complementing an Escherichia coli Delta lon mutant. P. syringae lon::Tz mutants exhibited enhanced expression of the hrpL promoter, suggesting an effect on HrpR and/or HrpS. HrpR was observed to be unstable in wild-type P. syringae strains grown in non-inductive media. However, the apparent half-life increased more than 10-fold in the P. syringae lon::Tz mutants or upon transfer to an inductive medium. The P. syringae lon mutants elicited rapidly developing plant responses and were shown to hypersecrete effector proteins, such as AvrPto. These results indicate that expression of the hrp regulon and type III secretion are negatively regulated by Lon-mediated degradation of HrpR.
Collapse
Affiliation(s)
- James Bretz
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | | | | | | |
Collapse
|
48
|
Abstract
Cytoplasmic proteolysis is an indispensable process for proper function of a cell. Degradation of many intracellular proteins is initiated by ATP-dependent proteinases, which are involved in the regulation of the level of proteins with short half-lives. In addition, they remove many damaged and abnormal proteins and thus play also an important role during stress. ATP-dependent proteinases are large multi-subunit assemblies composed of proteolytic core domains and ATPase-containing regulatory domains on a single polypeptide chain or on distinct subunits, which can act as molecular chaperones. This review briefly summarizes the data about four main groups of these proteinases in bacteria (i.e. Lon, Clp family, HslUV and FtsH) and characterizes their structure, mechanism of action and properties.
Collapse
Affiliation(s)
- O Hlavácek
- Institute of Microbiology, Academy of Sciences of the Czech Republic, 142 20 Prague, Czechia
| | | |
Collapse
|
49
|
Serrano M, Hövel S, Moran CP, Henriques AO, Völker U. Forespore-specific transcription of the lonB gene during sporulation in Bacillus subtilis. J Bacteriol 2001; 183:2995-3003. [PMID: 11325926 PMCID: PMC95198 DOI: 10.1128/jb.183.10.2995-3003.2001] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Bacillus subtilis genome encodes two members of the Lon family of prokaryotic ATP-dependent proteases. One, LonA, is produced in response to temperature, osmotic, and oxidative stress and has also been implicated in preventing sigma(G) activity under nonsporulation conditions. The second is encoded by the lonB gene, which resides immediately upstream from lonA. Here we report that transcription of lonB occurs during sporulation under sigma(F) control and thus is restricted to the prespore compartment of sporulating cells. First, expression of a lonB-lacZ transcriptional fusion was abolished in strains unable to produce sigma(F) but remained unaffected upon disruption of the genes encoding the early and late mother cell regulators sigma(E) and sigma(K) or the late forespore regulator sigma(G). Second, the fluorescence of strains harboring a lonB-gfp fusion was confined to the prespore compartment and depended on sigma(F) production. Last, primer extension analysis of the lonB transcript revealed -10 and -35 sequences resembling the consensus sequence recognized by sigma(F)-containing RNA polymerase. We further show that the lonB message accumulated as a single monocistronic transcript during sporulation, synthesis of which required sigma(F) activity. Disruption of the lonB gene did not confer any discernible sporulation phenotype to otherwise wild-type cells, nor did expression of lonB from a multicopy plasmid. In contrast, expression of a fusion of the lonB promoter to the lonA gene severely reduced expression of the sigma(G)-dependent sspE gene and the frequency of sporulation. In confirmation of earlier observations, we found elevated levels of sigma(F)-dependent activity in a spoIIIE47 mutant, in which the lonB region of the chromosome is not translocated into the prespore. Expression of either lonB or the P(lonB)-lonA fusion from a plasmid in the spoIIIE47 mutant reduced sigma(F) -dependent activity to wild-type levels. The results suggest that both LonA and LonB can prevent abnormally high sigma(F) activity but that only LonA can negatively regulate sigma(G).
Collapse
Affiliation(s)
- M Serrano
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, 2781-901 Oeiras Codex, Portugal
| | | | | | | | | |
Collapse
|
50
|
Whistler CA, Stockwell VO, Loper JE. Lon protease influences antibiotic production and UV tolerance of Pseudomonas fluorescens Pf-5. Appl Environ Microbiol 2000; 66:2718-25. [PMID: 10877760 PMCID: PMC92065 DOI: 10.1128/aem.66.7.2718-2725.2000] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas fluorescens Pf-5 is a soil bacterium that suppresses plant pathogens due in part to its production of the antibiotic pyoluteorin. Previous characterization of Pf-5 revealed three global regulators, including the stationary-phase sigma factor sigma(S) and the two-component regulators GacA and GacS, that influence both antibiotic production and stress response. In this report, we describe the serine protease Lon as a fourth global regulator influencing these phenotypes in Pf-5. lon mutants overproduced pyoluteorin, transcribed pyoluteorin biosynthesis genes at enhanced levels, and were more sensitive to UV exposure than Pf-5. The lon gene was preceded by sequences that resembled promoters recognized by the heat shock sigma factor sigma(32) (sigma(H)) of Escherichia coli, and Lon accumulation by Pf-5 increased after heat shock. Therefore, sigma(H) represents the third sigma factor (with sigma(S) and sigma(70)) implicated in the regulation of antibiotic production by P. fluorescens. Lon protein levels were similar in stationary-phase and exponentially growing cultures of Pf-5 and were not positively affected by the global regulator sigma(S) or GacS. The association of antibiotic production and stress response has practical implications for the success of disease suppression in the soil environment, where biological control organisms such as Pf-5 are likely to encounter environmental stresses.
Collapse
Affiliation(s)
- C A Whistler
- Molecular and Cellular Biology Program, Corvallis, Oregon
| | | | | |
Collapse
|