1
|
Santamaria P, Jin Y, Ghuman M, Shoaie S, Spratt D, Troiano G, Nibali L. Microbiological and molecular profile of furcation defects in a population with untreated periodontitis. J Clin Periodontol 2024; 51:1421-1432. [PMID: 39109387 DOI: 10.1111/jcpe.14034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/03/2024] [Accepted: 06/10/2024] [Indexed: 10/19/2024]
Abstract
AIM To describe the microbiological composition of subgingival dental plaque and molecular profile of gingival crevicular fluid (GCF) of periodontal furcation-involved defects. MATERIALS AND METHODS Fifty-seven participants with periodontitis contributed with a degree II-III furcation involvement (FI), a non-furcation (NF) periodontal defect and a periodontally healthy site (HS). Subgingival plaque was analysed by sequencing the V3-V4 region of the 16S rRNA gene, and a multiplex bead immunoassay was carried out to estimate the GCF levels of 18 GCF biomarkers. Aiming to explore inherent patterns and the intrinsic structure of data, an AI-clustering method was also applied. RESULTS In total, 171 subgingival plaque and 84 GCF samples were analysed. Four microbiome clusters were identified and associated with FI, NF and HS. A reduced aerobic microbiota (p = .01) was detected in FI compared with NF; IL-6, MMP-3, MMP-8, BMP-2, SOST, EGF and TIMP-1 levels were increased in the GCF of FI compared with NF. CONCLUSIONS This is the first study to profile periodontal furcation defects from a microbiological and inflammatory standpoint using conventional and AI-based analyses. A reduced aerobic microbial biofilm and an increase of several inflammatory, connective tissue degradation and repair markers were detected compared with other periodontal defects.
Collapse
Affiliation(s)
- Pasquale Santamaria
- Periodontology Unit, Centre for Host Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| | - Yi Jin
- Periodontology Unit, Centre for Host Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| | - Mandeep Ghuman
- Periodontology Unit, Centre for Host Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| | - Saeed Shoaie
- Periodontology Unit, Centre for Host Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| | - David Spratt
- Microbial Diseases, Eastman Dental Institute, University College London, London, UK
| | - Giuseppe Troiano
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Luigi Nibali
- Periodontology Unit, Centre for Host Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| |
Collapse
|
2
|
da Silva Goulart R, Oliveira-Silva M, Faria-Junior M, Silva-Sousa YTC, Miranda CES, Pitondo-Silva A. Optimized protocol for collecting root canal biofilms for in vitro studies. J Microbiol Methods 2024; 226:107048. [PMID: 39332642 DOI: 10.1016/j.mimet.2024.107048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
Endodontic retreatment is often necessitated by several factors, including the persistence of microorganisms in the root canal system (RCS). Their complex organization in biofilms increases their pathogenic potential, necessitating new disinfection strategies. This study aimed to standardize a new in vitro protocol for collecting biofilm from the RCS. Thirty-four bovine incisors were used in the study, divided into two experimental groups with two collection steps each: (a) biofilm collection protocol and (b) absorbent paper points protocol. Twelve specimens from each group were selected for counting colony-forming units (CFUs), while eight specimens were prepared for scanning electron microscopy (SEM). Two additional specimens served as sterilization controls to ensure that experiments were free of contamination. The coronal region was removed and standardized at 15 mm. After preparation with ProTaper up to F5, the apical foramen was sealed with composite resin, and the roots were stabilized with acrylic resin in 1.5-mL Eppendorf tubes. The specimens were sterilized and inoculated with Enterococcus faecalis NTCT 775 every 24 h for 21 days. After this period, each group underwent biofilm collection protocols, and CFU and scanning electron microscopy (SEM) data were analyzed. The Shapiro-Wilk test was performed to assess the normality of log-transformed data, and the results indicated a normal distribution for all groups, allowing parametric testing. The Levene test was used to evaluate the equality of variances. The proposed biofilm collection method yielded significantly higher CFU counts compared with the absorbent paper points method, particularly when analyzed on a log₁₀ scale. An independent samples t-test confirmed a statistically significant difference between the two methods (p < 0.0001). The proposed protocol achieved an efficiency rate of 95.85 % ± 1.15 %, whereas the absorbent paper points protocol yielded a lower efficiency of 5.46 % ± 1.37 %. Therefore, the biofilm collection protocol proposed in this study proved to be more effective for biofilm removal from the RCS.
Collapse
Affiliation(s)
- Rafael da Silva Goulart
- Programa de Pós-Graduação em Odontologia, Universidade de Ribeirão Preto. Universidade de Ribeirão Preto. Av. Costábile Romano, 2201 - Ribeirânia, Ribeirão Preto, SP, Brazil CEP: 14096-900.
| | - Mariana Oliveira-Silva
- Programa de Pós-Graduação em Tecnologia Ambiental, Universidade de Ribeirão Preto. Av. Costábile Romano, 2201 - Ribeirânia, Ribeirão Preto, SP, Brazil CEP: 14096-900.
| | - Milton Faria-Junior
- Departamento de Exatas, Universidade de Ribeirão Preto. Av. Costábile Romano, 2201 - Ribeirânia, Ribeirão Preto, SP, Brazil CEP: 14096-900.
| | - Yara Teresinha Correa Silva-Sousa
- Programa de Pós-Graduação em Odontologia, Universidade de Ribeirão Preto. Universidade de Ribeirão Preto. Av. Costábile Romano, 2201 - Ribeirânia, Ribeirão Preto, SP, Brazil CEP: 14096-900.
| | - Carlos Eduardo Saraiva Miranda
- Programa de Pós-Graduação em Odontologia, Universidade de Ribeirão Preto. Universidade de Ribeirão Preto. Av. Costábile Romano, 2201 - Ribeirânia, Ribeirão Preto, SP, Brazil CEP: 14096-900; Curso de Ciências Farmacêuticas, Universidade de Ribeirão Preto. Av. Costábile Romano, 2201 - Ribeirânia, Ribeirão Preto, SP, Brazil CEP: 14096-900.
| | - André Pitondo-Silva
- Programa de Pós-Graduação em Odontologia, Universidade de Ribeirão Preto. Universidade de Ribeirão Preto. Av. Costábile Romano, 2201 - Ribeirânia, Ribeirão Preto, SP, Brazil CEP: 14096-900; Programa de Pós-Graduação em Tecnologia Ambiental, Universidade de Ribeirão Preto. Av. Costábile Romano, 2201 - Ribeirânia, Ribeirão Preto, SP, Brazil CEP: 14096-900.
| |
Collapse
|
3
|
Akase T, Inubushi J, Hayashi-Okada Y, Shimizu Y. Association of Fusobacterium nucleatum in human saliva with periodontal status and composition of the salivary microbiome including periodontopathogens. Microbiol Spectr 2024:e0085524. [PMID: 39436120 DOI: 10.1128/spectrum.00855-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 09/14/2024] [Indexed: 10/23/2024] Open
Abstract
Fusobacterium nucleatum promotes dental biofilm formation, increases the prevalence of periodontal disease, and is associated with systemic diseases such as colorectal cancer. However, differences in the composition of salivary microbiome among groups based on the abundance of F. nucleatum are unclear. Therefore, we analyzed the difference in salivary microbiome among groups based on the abundance of F. nucleatum in saliva samples collected from 611 subjects in Japan. Salivary DNA was extracted, and the oral microbiome was analyzed using next-generation sequencing of 16S rRNA. The relationship between F. nucleatum and the community periodontal index was evaluated to examine effects on periodontal status, and α- and β-diversity were analyzed in four groups based on quantiles of relative abundance of F. nucleatum. Spearman rank correlation tests were used to examine relationships between the relative abundance of F. nucleatum and oral bacteria. Subjects with the highest quantiles of F. nucleatum had a higher prevalence of periodontitis compared with those with the lowest quantile. β-Diversity also differed among these four groups. F. nucleatum showed significant correlations with several periodontopathogens, including the red complex, Prevotella intermedia, Filifactor alocis, and Fretibacterium ssp. These results suggest that the relative abundance of F. nucleatum in saliva is associated with periodontal status and the composition of the salivary microbiome, including the red complex and periodontopathogens. IMPORTANCE We characterized the composition of the saliva microbiome in groups based on the abundance of Fusobacterium nucleatum. There is a lot of periodontitis in subjects with a high abundance of F. nucleatum. The diversity of the saliva microbiome was different among groups based on the abundance of F. nucleatum. The abundance of F. nucleatum correlated with various periodontopathogens including red complex. These results support the influence of the abundance of F. nucleatum in saliva on periodontal status and the composition of the salivary microbiome, including the red complex and periodontopathogens.
Collapse
|
4
|
Lewin GR, Evans ER, Whiteley M. Microbial interactions impact stress tolerance in a model oral community. Microbiol Spectr 2024; 12:e0100524. [PMID: 39269155 PMCID: PMC11448157 DOI: 10.1128/spectrum.01005-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
Understanding the molecular mechanisms governing microbial interactions is crucial for unraveling the complexities of microbial communities and their ecological impacts. Here, we employed a two-species model system comprising the oral bacteria Aggregatibacter actinomycetemcomitans and Streptococcus gordonii to investigate how synergistic and antagonistic interactions between microbes impact their resilience to environmental change and invasion by other microbes. We used an in vitro colony biofilm model and focused on two S. gordonii-produced extracellular molecules, L-lactate and H2O2, which are known to impact fitness of this dual-species community. While the ability of A. actinomycetemcomitans to cross-feed on S. gordonii-produced L-lactate enhanced its fitness during co-culture, this function showed little impact on the ability of co-cultures to resist environmental change. In fact, the ability of A. actinomycetemcomitans to catabolize L-lactate may be detrimental in the presence of tetracycline, highlighting the complexity of interactions under antimicrobial stress. Furthermore, H2O2, known for its antimicrobial properties, had negative impacts on both species in our model system. However, H2O2 production by S. gordonii enhanced A. actinomycetemcomitans tolerance to tetracycline, suggesting a protective role under antibiotic pressure. Finally, S. gordonii significantly inhibited the bacterium Serratia marcescens from invading in vitro biofilms, but this inhibition was lost during co-culture with A. actinomycetemcomitans and in a murine abscess model, where S. gordonii actually promoted S. marcescens invasion. These data indicate that microbial interactions can impact fitness of a bacterial community upon exposure to stresses, but these impacts are highly environment dependent. IMPORTANCE Microbial interactions are critical modulators of the emergence of microbial communities and their functions. However, how these interactions impact the fitness of microbes in established communities upon exposure to environmental stresses is poorly understood. Here, we utilized a two-species community consisting of Aggregatibacter actinomycetemcomitans and Streptococcus gordonii to examine the impact of synergistic and antagonistic interactions on microbial resilience to environmental fluctuations and susceptibility to microbial invasion. We focused on the S. gordonii-produced extracellular molecules, L-lactate and H2O2, which have been shown to mediate interactions between these two microbes. We discovered that seemingly beneficial functions, such as A. actinomycetemcomitans cross-feeding on S. gordonii-produced L-Lactate, can paradoxically exacerbate vulnerabilities, such as susceptibility to antibiotics. Moreover, our data highlight the context-dependent nature of microbial interactions, emphasizing that a seemingly potent antimicrobial, such as H2O2, can have both synergistic and antagonistic effects on a microbial community dependent on the environment.
Collapse
Affiliation(s)
- Gina R. Lewin
- School of Biological Sciences and Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
- Emory-Children’s Cystic Fibrosis Center, Atlanta, Georgia, USA
| | - Emma R. Evans
- School of Biological Sciences and Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
- Emory-Children’s Cystic Fibrosis Center, Atlanta, Georgia, USA
| | - Marvin Whiteley
- School of Biological Sciences and Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
- Emory-Children’s Cystic Fibrosis Center, Atlanta, Georgia, USA
| |
Collapse
|
5
|
Tessarin GWL, Toro LF, Pereira RF, Dos Santos RM, Azevedo RG. Peri-implantitis with a potential axis to brain inflammation: an inferential review. Odontology 2024; 112:1033-1046. [PMID: 38630323 DOI: 10.1007/s10266-024-00936-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/26/2024] [Indexed: 09/21/2024]
Abstract
Peri-implantitis (PI) is a chronic, inflammatory, and infectious disease which affects dental implants and has certain similarities to periodontitis (PD). Evidence has shown that PD may be related to several types of systemic disorders, such as diabetes and insulin resistance, cardiovascular diseases, respiratory tract infections, adverse pregnancy outcomes, and neurological disorders. Furthermore, some types of bacteria in PD can also be found in PI, leading to certain similarities in the immunoinflammatory responses in the host. This review aims to discuss the possible connection between PI and neuroinflammation, using information based on studies about periodontal disorders, a topic whose connection with systemic alterations has been gaining the interest of the scientific community. Literature concerning PI, PD, and systemic disorders, such as neuroinflammation, brain inflammation, and neurological disorder, was searched in the PubMed database using different keyword combinations. All studies found were included in this narrative review. No filters were used. Eligible studies were analyzed and reviewed carefully. This study found similarities between PI and PD development, maintenance, and in the bacterial agents located around the teeth (periodontitis) or dental implants (peri-implantitis). Through the cardiovascular system, these pathologies may also affect blood-brain barrier permeability. Furthermore, scientific evidence has suggested that microorganisms from PI (as in PD) can be recognized by trigeminal fiber endings and start inflammatory responses into the trigeminal ganglion. In addition, bacteria can traverse from the mouth to the brain through the lymphatic system. Consequently, the immune system increases inflammatory mediators in the brain, affecting the homeostasis of the nervous tissue and vice-versa. Based on the interrelation of microbiological, inflammatory, and immunological findings between PD and PI, it is possible to infer that immunoinflammatory changes observed in PD can imply systemic changes in PI. This, as discussed, could lead to the development or intensification of neuroinflammatory changes, contributing to neurodegenerative diseases.
Collapse
Affiliation(s)
- Gestter Willian Lattari Tessarin
- University Center in the North of São Paulo (UNORTE), São José Do Rio Preto, SP, 15020-040, Brazil.
- Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil.
| | - Luan Felipe Toro
- Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
- Marilia Medical School (FAMEMA), Marília, São Paulo, Brazil
| | - Renato Felipe Pereira
- Union of Colleges of the Great Lakes (UNILAGO), São José Do Rio Preto, São Paulo, Brazil
| | - Rodrigo Martins Dos Santos
- Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Renato Gomes Azevedo
- University Center in the North of São Paulo (UNORTE), São José Do Rio Preto, SP, 15020-040, Brazil
| |
Collapse
|
6
|
Isolani R, Pilatti F, de Paula MN, Valone L, da Silva EL, de Oliveira Caleare A, Seixas FAV, Hensel A, Mello JCPD. Limonium brasiliense rhizomes extract against virulence factors of Porphyromonas gingivalis: Inhibition of gingipains, bacterial adhesion, and biofilm formation. Fitoterapia 2024; 177:106120. [PMID: 38992475 DOI: 10.1016/j.fitote.2024.106120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
Periodontitis is clinically characterized by destruction of the tooth support system and tooth loss. Porphyromonas gingivalis (Pg) plays a dominant role in periodontitis. Fractions and isolated compounds from an acetone-water extract of the roots of Limonium brasiliense (Lb) were tested in vitro for their anti-adhesive capacity against Pg on human KB buccal cells, influence on gingipains, the main virulence factors of Pg, and biofilm formation. Fractions EAF and FLB7 (50 μg/mL) reduced the bacterial adhesion of Pg to KB cells significantly (63 resp. 70%). The proanthocyanidin samarangenin A inhibited the adhesion (72%, 30 μM), samarangenin B (71%, 20 μM), and the flavan-3-ol epigallocatechin-3-O-gallate (79%, 30 μM). Fraction AQF, representing hydrophilic compounds, reduced the proteolytic activity of Arginin-specific gingipain (IC50 12.78 μg/mL). Fractions EAF and FLB7, characterized by lipohilic constituents, inhibited Arg-gingipain (IC50 3 μg/mL). On Lysine-specific gingipain, AQF has an IC50 15.89, EAF 14.15, and FLB7 6 μg/mL. The reduced bacterial adhesion is due to a strong interaction of proanthocyanidins with gingipains. AQF, EAF, and FLB7 significantly inhibited biofilm formation: IC50 11.34 (AQF), 11.66 (EAF), and 12.09 μg/mL (FLB7). In silico analysis indicated, that the polyphenols act against specific targets of Pg, not affecting mammalian cells. Therefore, Lb might be effective for prevention of periodontal disease by influencing virulence factors of Pg.
Collapse
Affiliation(s)
- Raquel Isolani
- Pharmaceutical Biology Laboratory, Palafito; Postgraduate Program in Pharmaceutical Sciences, State University of Maringá, Maringá, Paraná, Brazil
| | - Fernanda Pilatti
- Pharmaceutical Biology Laboratory, Palafito; Postgraduate Program in Pharmaceutical Sciences, State University of Maringá, Maringá, Paraná, Brazil
| | - Mariana Nascimento de Paula
- Pharmaceutical Biology Laboratory, Palafito; Postgraduate Program in Pharmaceutical Sciences, State University of Maringá, Maringá, Paraná, Brazil
| | - Larissa Valone
- Pharmaceutical Biology Laboratory, Palafito; Postgraduate Program in Pharmaceutical Sciences, State University of Maringá, Maringá, Paraná, Brazil
| | - Eloisa Lorenzi da Silva
- Pharmaceutical Biology Laboratory, Palafito; Postgraduate Program in Pharmaceutical Sciences, State University of Maringá, Maringá, Paraná, Brazil
| | - Angelo de Oliveira Caleare
- Laboratory of Technological Innovation in the Development of Drugs and Cosmetics; Postgraduate Program in Biological Sciences, State University of Maringá, Maringá, Paraná, Brazil
| | | | - Andreas Hensel
- Institute of Pharmaceutical Biology and Phytochemistry, University of Münster, Münster, NRW, Germany
| | - João Carlos Palazzo de Mello
- Pharmaceutical Biology Laboratory, Palafito; Postgraduate Program in Pharmaceutical Sciences, State University of Maringá, Maringá, Paraná, Brazil.
| |
Collapse
|
7
|
Zhou P, Bibek GC, Hu B, Wu C. Development of SacB-based Counterselection for Efficient Allelic Exchange in Fusobacterium nucleatum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.16.608263. [PMID: 39229080 PMCID: PMC11370447 DOI: 10.1101/2024.08.16.608263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Fusobacterium nucleatum , prevalent in the oral cavity, is significantly linked to overall human health. Our molecular comprehension of its role in oral biofilm formation and its interactions with the host under various pathological circumstances has seen considerable advancements in recent years, primarily due to the development of various genetic tools for DNA manipulation in this bacterium. Of these, counterselection-based unmarked in-frame mutation methods have proved notably effective. Under suitable growth conditions, cells carrying a counterselectable gene die, enabling efficient selection of rare defined allelic exchange mutants. The sacB gene from Bacillus subtilis , encoding levansucrase, is a widely used counterselective marker partly due to the easy availability of sucrose. Yet, its potential application in F. nucleatum genetic study remains untested. We demonstrated that F. nucleatum cells expressing sacB in either a shuttle or suicide plasmid exhibit a lethal sensitivity to supplemental sucrose. Utilizing sucrose counterselection, we created an in-frame deletion of the F. nucleatum tonB gene, a critical gene for energy-dependent transport processes in Gram-negative bacteria, and a precise knockin of the luciferase gene immediately following the stop codon of the hslO gene, the last gene of a five-gene operon possible related to the natural competence of F. nucleatum . Post counterselection with 5% sucrose, chromosomal plasmid loss occurred in all colonies, leading to gene alternations in half of the screened isolates. This sacB -based counterselection technique provides a reliable method for isolating unmarked gene mutations in wild-type F. nucleatum , enriching the toolkit for fusobacterial research. IMPORTANCE Investigations into Fusobacterium nucleatum 's role in related diseases significantly benefit from the strategies of creating unmarked gene mutations, which hinge on using a counterselective marker. Previously, the galk -based allelic exchange method, while effective, faced an inherent limitation - the need for a modified host. This study aims to surmount this limitation by substituting galK with sacB for gene modification in F. nucleatum . Our application of the sacB -based methodology successfully yielded a tonB in-frame deletion mutant and a luciferase gene knockin at the precise chromosomal location in the wild-type background. The new method augments the existing toolkit for F. nucleatum research and has far-reaching implications due to the easy accessibility to the counterselection compound sucrose. We anticipate its broader adoption in further exploration, thereby reinforcing its critical role in propelling our understanding of F. nucleatum .
Collapse
|
8
|
Tanwar H, Gnanasekaran JM, Allison D, Chuang LS, He X, Aimetti M, Baima G, Costalonga M, Cross RK, Sears C, Mehandru S, Cho J, Colombel JF, Raufman JP, Thumbigere-Math V. Unravelling the Oral-Gut Axis: Interconnection Between Periodontitis and Inflammatory Bowel Disease, Current Challenges, and Future Perspective. J Crohns Colitis 2024; 18:1319-1341. [PMID: 38417137 PMCID: PMC11324343 DOI: 10.1093/ecco-jcc/jjae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/04/2023] [Accepted: 02/27/2024] [Indexed: 03/01/2024]
Abstract
As the opposite ends of the orodigestive tract, the oral cavity and the intestine share anatomical, microbial, and immunological ties that have bidirectional health implications. A growing body of evidence suggests an interconnection between oral pathologies and inflammatory bowel disease [IBD], implying a shift from the traditional concept of independent diseases to a complex, reciprocal cycle. This review outlines the evidence supporting an 'oral-gut' axis, marked by a higher prevalence of periodontitis and other oral conditions in IBD patients and vice versa. We present an in-depth examination of the interconnection between oral pathologies and IBD, highlighting the shared microbiological and immunological pathways, and proposing a 'multi-hit' hypothesis in the pathogenesis of periodontitis-mediated intestinal inflammation. Furthermore, the review underscores the critical need for a collaborative approach between dentists and gastroenterologists to provide holistic oral-systemic healthcare.
Collapse
Affiliation(s)
- Himanshi Tanwar
- Division of Periodontology, University of Maryland School of Dentistry, Baltimore, MD, USA
| | | | - Devon Allison
- Division of Periodontology, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - Ling-shiang Chuang
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xuesong He
- Department of Microbiology, The Forsyth Institute, Cambridge, MA, USA
| | - Mario Aimetti
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, Turin, Italy
| | - Giacomo Baima
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, Turin, Italy
| | - Massimo Costalonga
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, USA
| | - Raymond K Cross
- Division of Gastroenterology & Hepatology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Cynthia Sears
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Saurabh Mehandru
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Judy Cho
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jean-Frederic Colombel
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jean-Pierre Raufman
- Division of Gastroenterology & Hepatology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Vivek Thumbigere-Math
- Division of Periodontology, University of Maryland School of Dentistry, Baltimore, MD, USA
- National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD, USA
| |
Collapse
|
9
|
Pinheiro ET, Karygianni L, Candeiro GTM, Vilela BG, Dantas LO, Pereira ACC, Gomes BPFA, Attin T, Thurnheer T, Russo G. Metatranscriptome and Resistome of the Endodontic Microbiome. J Endod 2024; 50:1059-1072.e4. [PMID: 38719087 DOI: 10.1016/j.joen.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/07/2024] [Accepted: 03/11/2024] [Indexed: 06/07/2024]
Abstract
INTRODUCTION In this study, we used metatranscriptomics for the first time to investigate microbial composition, functional signatures, and antimicrobial resistance gene expression in endodontic infections. METHODS Root canal samples were collected from ten teeth, including five primary and five persistent/secondary endodontic infections. RNA from endodontic samples was extracted, and RNA sequencing was performed on a NovaSeq6000 system (Illumina). Taxonomic analysis was performed using the Kraken2 bacterial database. Then, sequences with a taxonomic classification were annotated against the Universal Protein Knowledgebase for functional annotation and the Comprehensive Antibiotic Resistance Database for AR-like gene identification. RESULTS Proteobacteria, Bacteroidetes, Firmicutes, and Actinobacteria represented the dominant phyla, whereas Fusobacteria, Spirochetes, and Synergistetes were among the nondominant phyla. The top ten species were mainly represented by obligate (or quasiobligate) anaerobes, including Gram-negative (eg, Capnocytophaga sp. oral taxon 323, Fusobacterium nucleatum, Prevotella intermedia, Prevotella oris, Tannerella forsythia, and Tannerella sp. oral taxon HOT-286) and Gram-positive species (eg, Olsenella uli and Parvimonas micra). Transcripts encoding moonlighting proteins (eg, glycolytic proteins, translational elongation factors, chaperonin, and heat shock proteins) were highly expressed, potentially affecting bacterial adhesion, biofilm formation, host defense evasion, and inflammation induction. Endodontic bacteria expressed genes conferring resistance to antibiotic classes commonly used in dentistry, with a high prevalence and expression of tetracycline and lincosamide resistance genes. Antibiotic efflux and antibiotic target alteration/protection were the main resistance mechanisms. CONCLUSIONS Metatranscriptomics revealed the activity of potential endodontic pathogens, which expressed putative virulence factors and a wide diversity of genes potentially involved in AR.
Collapse
Affiliation(s)
- Ericka T Pinheiro
- Department of Dentistry, School of Dentistry, University of São Paulo, São Paulo, Brazil; Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Zürich, Switzerland.
| | - Lamprini Karygianni
- Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Zürich, Switzerland
| | - George T M Candeiro
- Faculty of Dentistry, Christus University Center (Unichristus), Fortaleza, Ceará, Brazil
| | - Bruna G Vilela
- Department of Dentistry, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Larissa O Dantas
- Department of Dentistry, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Ana C C Pereira
- Department of Dentistry, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Brenda P F A Gomes
- Department of Restorative Dentistry, Division of Endodontics, Piracicaba Dental School, State University of Campinas - UNICAMP, Piracicaba, São Paulo, Brazil
| | - Thomas Attin
- Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Zürich, Switzerland
| | - Thomas Thurnheer
- Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Zürich, Switzerland
| | - Giancarlo Russo
- Functional Genomics Center Zurich, ETH-University of Zurich, Zürich, Switzerland (previous affiliation); EMBL Partnership Institute for Genome Editing Technologies, Life Sciences Center, Vilnius University, Vilnius, Lithuania; Institute of Bioscience, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
10
|
Loeurng V, Puth S, Hong SH, Lee YS, Radhakrishnan K, Koh JT, Kook JK, Rhee JH, Lee SE. A Flagellin-Adjuvanted Trivalent Mucosal Vaccine Targeting Key Periodontopathic Bacteria. Vaccines (Basel) 2024; 12:754. [PMID: 39066392 PMCID: PMC11281409 DOI: 10.3390/vaccines12070754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Periodontal disease (PD) is caused by microbial dysbiosis and accompanying adverse inflammatory responses. Due to its high incidence and association with various systemic diseases, disease-modifying treatments that modulate dysbiosis serve as promising therapeutic approaches. In this study, to simulate the pathophysiological situation, we established a "temporary ligature plus oral infection model" that incorporates a temporary silk ligature and oral infection with a cocktail of live Tannerella forsythia (Tf), Pophyromonas gingivalis (Pg), and Fusobacterium nucleatum (Fn) in mice and tested the efficacy of a new trivalent mucosal vaccine. It has been reported that Tf, a red complex pathogen, amplifies periodontitis severity by interacting with periodontopathic bacteria such as Pg and Fn. Here, we developed a recombinant mucosal vaccine targeting a surface-associated protein, BspA, of Tf by genetically combining truncated BspA with built-in adjuvant flagellin (FlaB). To simultaneously induce Tf-, Pg-, and Fn-specific immune responses, it was formulated as a trivalent mucosal vaccine containing Tf-FlaB-tBspA (BtB), Pg-Hgp44-FlaB (HB), and Fn-FlaB-tFomA (BtA). Intranasal immunization with the trivalent mucosal vaccine (BtB + HB + BtA) prevented alveolar bone loss and gingival proinflammatory cytokine production. Vaccinated mice exhibited significant induction of Tf-tBspA-, Pg-Hgp44-, and Fn-tFomA-specific IgG and IgA responses in the serum and saliva, respectively. The anti-sera and anti-saliva efficiently inhibited epithelial cell invasion by Tf and Pg and interfered with biofilm formation by Fn. The flagellin-adjuvanted trivalent mucosal vaccine offers a novel method for modulating dysbiotic bacteria associated with periodontitis. This approach leverages the adjuvant properties of flagellin to enhance the immune response, aiming to restore a balanced microbial environment and improve periodontal health.
Collapse
Affiliation(s)
- Vandara Loeurng
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun 58128, Republic of Korea (S.P.)
- Combinatorial Tumor Immunotherapy MRC, Chonnam National University Medical School, Hwasun-gun 58128, Republic of Korea
- Department of Microbiology, Chonnam National University Medical School, Hwasun-gun 58128, Republic of Korea
- National Immunotherapy Innovation Center, Hwasun-gun 58128, Republic of Korea
| | - Sao Puth
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun 58128, Republic of Korea (S.P.)
- National Immunotherapy Innovation Center, Hwasun-gun 58128, Republic of Korea
| | - Seol Hee Hong
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun 58128, Republic of Korea (S.P.)
- National Immunotherapy Innovation Center, Hwasun-gun 58128, Republic of Korea
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Yun Suhk Lee
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun 58128, Republic of Korea (S.P.)
- National Immunotherapy Innovation Center, Hwasun-gun 58128, Republic of Korea
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | | | - Jeong Tae Koh
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Joong-Ki Kook
- Korean Collection of Oral Microbiology and Department of Oral Biochemistry, School of Dentistry, Chosun University, Gwangju 61452, Republic of Korea
| | - Joon Haeng Rhee
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun 58128, Republic of Korea (S.P.)
- Combinatorial Tumor Immunotherapy MRC, Chonnam National University Medical School, Hwasun-gun 58128, Republic of Korea
- Department of Microbiology, Chonnam National University Medical School, Hwasun-gun 58128, Republic of Korea
| | - Shee Eun Lee
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun 58128, Republic of Korea (S.P.)
- National Immunotherapy Innovation Center, Hwasun-gun 58128, Republic of Korea
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
11
|
Khairunnisa Z, Tuygunov N, Cahyanto A, Aznita WH, Purwasena IA, Noor NSM, Azami NH, Zakaria MN. Potential of microbial-derived biosurfactants for oral applications-a systematic review. BMC Oral Health 2024; 24:707. [PMID: 38898470 PMCID: PMC11186162 DOI: 10.1186/s12903-024-04479-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Biosurfactants are amphiphilic compounds produced by various microorganisms. Current research evaluates diverse types of biosurfactants against a range of oral pathogens. OBJECTIVES This systematic review aims to explore the potential of microbial-derived biosurfactants for oral applications. METHODOLOGY A systematic literature search was performed utilizing PubMed-MEDLINE, Scopus, and Web of Science databases with designated keywords. The results were registered in the PROSPERO database and conducted following the PRISMA checklist. Criteria for eligibility, guided by the PICOS framework, were established for both inclusion and exclusion criteria. The QUIN tool was used to assess the bias risk for in vitro dentistry studies. RESULTS Among the initial 357 findings, ten studies were selected for further analysis. The outcomes of this systematic review reveal that both crude and purified forms of biosurfactants exhibit antimicrobial and antibiofilm properties against various oral pathogens. Noteworthy applications of biosurfactants in oral products include mouthwash, toothpaste, and implant coating. CONCLUSION Biosurfactants have garnered considerable interest and demonstrated their potential for application in oral health. This is attributed to their surface-active properties, antiadhesive activity, biodegradability, and antimicrobial effectiveness against a variety of oral microorganisms, including bacteria and fungi.
Collapse
Affiliation(s)
- Z Khairunnisa
- Department of Restorative Dentistry, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
- Department of Oral Biology, Faculty of Dentistry, University of Jenderal Achmad Yani, Cimahi, 40525, Indonesia
| | - N Tuygunov
- Department of Restorative Dentistry, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - A Cahyanto
- Department of Restorative Dentistry, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - W H Aznita
- Department of Oral & Craniofacial Sciences, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - I A Purwasena
- Department of Microbiology, School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung, 40132, Indonesia
| | - N S M Noor
- Department of Restorative Dentistry, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - N H Azami
- Department of Restorative Dentistry, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - M N Zakaria
- Department of Restorative Dentistry, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur, 50603, Malaysia.
| |
Collapse
|
12
|
Manoil D, Parga A, Bostanci N, Belibasakis GN. Microbial diagnostics in periodontal diseases. Periodontol 2000 2024; 95:176-193. [PMID: 38797888 DOI: 10.1111/prd.12571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/27/2024] [Accepted: 04/15/2024] [Indexed: 05/29/2024]
Abstract
Microbial analytical methods have been instrumental in elucidating the complex microbial etiology of periodontal diseases, by shaping our understanding of subgingival community dynamics. Certain pathobionts can orchestrate the establishment of dysbiotic communities that can subvert the host immune system, triggering inflammation and tissue destruction. Yet, diagnosis and management of periodontal conditions still rely on clinical and radiographic examinations, overlooking the well-established microbial etiology. This review summarizes the chronological emergence of periodontal etiological models and the co-evolution with technological advances in microbial detection. We additionally review the microbial analytical approaches currently accessible to clinicians, highlighting their value in broadening the periodontal assessment. The epidemiological importance of obtaining culture-based antimicrobial susceptibility profiles of periodontal taxa for antibiotic resistance surveillance is also underscored, together with clinically relevant analytical approaches to guide antibiotherapy choices, when necessary. Furthermore, the importance of 16S-based community and shotgun metagenomic profiling is discussed in outlining dysbiotic microbial signatures. Because dysbiosis precedes periodontal damage, biomarker identification offers early diagnostic possibilities to forestall disease relapses during maintenance. Altogether, this review highlights the underutilized potential of clinical microbiology in periodontology, spotlighting the clinical areas most conductive to its diagnostic implementation for enhancing prevention, treatment predictability, and addressing global antibiotic resistance.
Collapse
Affiliation(s)
- Daniel Manoil
- Division of Cariology and Endodontics, University Clinics of Dental Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Division of Oral Health and Periodontology, Department of Dental Medicine, Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Ana Parga
- Division of Cariology and Endodontics, University Clinics of Dental Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Microbiology and Parasitology, CIBUS-Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Nagihan Bostanci
- Division of Oral Health and Periodontology, Department of Dental Medicine, Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Georgios N Belibasakis
- Division of Oral Health and Periodontology, Department of Dental Medicine, Karolinska Institutet, Huddinge, Stockholm, Sweden
| |
Collapse
|
13
|
Oscarsson J, Bao K, Shiratsuchi A, Grossmann J, Wolski W, Aung KM, Lindholm M, Johansson A, Mowsumi FR, Wai SN, Belibasakis GN, Bostanci N. Bacterial symbionts in oral niche use type VI secretion nanomachinery for fitness increase against pathobionts. iScience 2024; 27:109650. [PMID: 38650989 PMCID: PMC11033201 DOI: 10.1016/j.isci.2024.109650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/09/2024] [Accepted: 03/27/2024] [Indexed: 04/25/2024] Open
Abstract
Microbial ecosystems experience spatial and nutrient restrictions leading to the coevolution of cooperation and competition among cohabiting species. To increase their fitness for survival, bacteria exploit machinery to antagonizing rival species upon close contact. As such, the bacterial type VI secretion system (T6SS) nanomachinery, typically expressed by pathobionts, can transport proteins directly into eukaryotic or prokaryotic cells, consequently killing cohabiting competitors. Here, we demonstrate for the first time that oral symbiont Aggregatibacter aphrophilus possesses a T6SS and can eliminate its close relative oral pathobiont Aggregatibacter actinomycetemcomitans using its T6SS. These findings bring nearer the anti-bacterial prospects of symbionts against cohabiting pathobionts while introducing the presence of an active T6SS in the oral cavity.
Collapse
Affiliation(s)
- Jan Oscarsson
- Oral Microbiology, Department of Odontology, Umeå University, Umeå, Sweden
| | - Kai Bao
- Division of Oral Health and Periodontology, Department of Dental Medicine, Karolinska Institutet, Alfred Nobels Allé 8, 14104 Huddinge, Stockholm, Sweden
| | - Akiko Shiratsuchi
- Department of Liberal Arts and Sciences, Graduate School of Medicine, Sapporo Medical University, Sapporo, Hokkaido 060-8556, Japan
| | - Jonas Grossmann
- Functional Genomics Center Zurich, ETH Zürich and University of Zürich, Zürich, Switzerland
- Swiss Institute of Bioinformatics (SIB) Quartier Sorge-Batiment Amphipole, 1015 Lausanne, Switzerland
| | - Witold Wolski
- Functional Genomics Center Zurich, ETH Zürich and University of Zürich, Zürich, Switzerland
- Swiss Institute of Bioinformatics (SIB) Quartier Sorge-Batiment Amphipole, 1015 Lausanne, Switzerland
| | - Kyaw Min Aung
- Department of Molecular Biology and the Umeå Centre for Microbial Research (UCMR), and the Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90187 Umeå, Sweden
| | - Mark Lindholm
- Oral Microbiology, Department of Odontology, Umeå University, Umeå, Sweden
- Division of Oral Health and Periodontology, Department of Dental Medicine, Karolinska Institutet, Alfred Nobels Allé 8, 14104 Huddinge, Stockholm, Sweden
| | - Anders Johansson
- Oral Microbiology, Department of Odontology, Umeå University, Umeå, Sweden
| | | | - Sun Nyunt Wai
- Department of Molecular Biology and the Umeå Centre for Microbial Research (UCMR), and the Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90187 Umeå, Sweden
| | - Georgios N. Belibasakis
- Division of Oral Health and Periodontology, Department of Dental Medicine, Karolinska Institutet, Alfred Nobels Allé 8, 14104 Huddinge, Stockholm, Sweden
| | - Nagihan Bostanci
- Division of Oral Health and Periodontology, Department of Dental Medicine, Karolinska Institutet, Alfred Nobels Allé 8, 14104 Huddinge, Stockholm, Sweden
| |
Collapse
|
14
|
Lundtorp-Olsen C, Markvart M, Twetman S, Belstrøm D. Effect of Probiotic Supplements on the Oral Microbiota-A Narrative Review. Pathogens 2024; 13:419. [PMID: 38787271 PMCID: PMC11124442 DOI: 10.3390/pathogens13050419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
Data from systematic reviews and meta-analyses show that probiotics positively impact clinical parameters of oral diseases such as gingivitis, dental caries, and periodontitis. However, the working mechanism of probiotics is not fully understood, but is hypothesized to be mediated by direct and indirect interactions with the oral microbiota and the human host. In the present narrative review, we focused on the microbiological effect of probiotic supplements based on data retrieved from randomized clinical trials (RCTs). In addition, we assessed to what extent contemporary molecular methods have been employed in clinical trials in the field of oral probiotics. Multiple RCTs have been performed studying the potential effect of probiotics on gingivitis, dental caries, and periodontitis, as evaluated by microbial endpoints. In general, results are conflicting, with some studies reporting a positive effect, whereas others are not able to record any effect. Major differences in terms of study designs and sample size, as well as delivery route, frequency, and duration of probiotic consumption, hamper comparison across studies. In addition, most RCTs have been performed with a limited sample size using relatively simple methods for microbial identification, such as culturing, qPCR, and DNA-DNA checkerboard, while high-throughput methods such as 16S sequencing have only been employed in a few studies. Currently, state-of-the-art molecular methods such as metagenomics, metatranscriptomics, and metaproteomics have not yet been used in RCTs in the field of probiotics. The present narrative review revealed that the effect of probiotic supplements on the oral microbiota remains largely uncovered. One important reason is that most RCTs are performed without studying the microbiological effect. To facilitate future systematic reviews and meta-analyses, an internationally agreed core outcome set for the reporting of microbial endpoints in clinical trials would be desirable. Such a standardized collection of outcomes would most likely improve the quality of probiotic research in the oral context.
Collapse
Affiliation(s)
| | | | | | - Daniel Belstrøm
- Department of Odontology, Section for Clinical Oral Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (C.L.-O.); (M.M.); (S.T.)
| |
Collapse
|
15
|
Lee DY, Kim J, Lee GS, Park S, Song J, Lee BS, Lee SR, Kim KH, Kim CS. Characterization of Chemical Interactions between Clinical Drugs and the Oral Bacterium, Corynebacterium matruchotii, via Bioactivity-HiTES. ACS Chem Biol 2024; 19:973-980. [PMID: 38514380 DOI: 10.1021/acschembio.3c00798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
In the field of natural product research, the rediscovery of already-known compounds is one of the significant issues hindering new drug development. Recently, an innovative approach called bioactivity-HiTES has been developed to overcome this limitation, and several new bioactive metabolites have been successfully characterized by this method. In this study, we applied bioactivity-HiTES to Corynebacterium matruchotii, the human oral bacterium, with 3120 clinical drugs as potential elicitors. As a result, we identified two cryptic metabolites, methylindole-3-acetate (MIAA) and indole-3-acetic acid (IAA), elicited by imidafenacin, a urinary antispasmodic drug approved by the Japanese Pharmaceuticals and Medical Devices Agency (PMDA). MIAA showed weak antibacterial activity against a pulmonary disease-causing Mycobacterium conceptionense with an IC50 value of 185.7 μM. Unexpectedly, we also found that C. matruchotii metabolized fludarabine phosphate, a USFDA-approved anticancer drug, to 2-fluoroadenine which displayed moderate antibacterial activity against both Bacillus subtilis and Escherichia coli, with IC50 values of 8.9 and 20.1 μM, respectively. Finally, acelarin, a prodrug of the anticancer drug gemcitabine, was found to exhibit unreported antibacterial activity against B. subtilis with an IC50 value of 33.6 μM through the bioactivity-HiTES method as well. These results indicate that bioactivity-HiTES can also be applied to discover biotransformed products in addition to finding cryptic metabolites in microbes.
Collapse
Affiliation(s)
- Da Yeong Lee
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jonghwan Kim
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Gyu Sung Lee
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sehwan Park
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jeongwon Song
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Bum Soo Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Seoung Rak Lee
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Chung Sub Kim
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
16
|
Abdul-Azees PA, Wang H, Chun YHP, Pizzini J, Dean DD, Reveles KR, Marinkovic M, Chen XD, Salmon AB, Yeh CK. Changes in oral health during aging in a novel non-human primate model. GeroScience 2024; 46:1909-1926. [PMID: 37775702 PMCID: PMC10828187 DOI: 10.1007/s11357-023-00939-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/04/2023] [Indexed: 10/01/2023] Open
Abstract
Oral health plays a significant role in the quality of life and overall well-being of the aging population. However, age-related changes in oral health are not well understood due to challenges with current animal models. In this study, we analyzed the oral health and microbiota of a short-lived non-human primate (i.e., marmoset), as a step towards establishing a surrogate for studying the changes that occur in oral health during human aging. We investigated the oral health of marmosets using cadaveric tissues in three different cohorts: young (aged ≤6 years), middle-aged, and older (>10 years) and assessed the gingival bacterial community using analyses of the V3-V4 variable region of 16S rRNA gene. The oldest cohort had a significantly higher number of dental caries, increased dental attrition/erosion, and deeper periodontal pocket depth scores. Oral microbiome analyses showed that older marmosets had a significantly greater abundance of Escherichia-Shigella and Propionibacterium, and a lower abundance of Agrobacterium/Rhizobium at the genus level. Alpha diversity of the microbiome between the three groups showed no significant differences; however, principal coordinate analysis and non-metric multidimensional scaling analysis revealed that samples from middle-aged and older marmosets were more closely clustered than the youngest cohort. In addition, linear discriminant analysis effect size (LEFSe) identified a higher abundance of Esherichia-Shigella as a potential pathogenic biomarker in older animals. Our findings confirm that changes in the oral microbiome are associated with a decline in oral health in aging marmosets. The current study suggests that the marmoset model recapitulates some of the changes in oral health associated with human aging and may provide opportunities for developing new preventive strategies or interventions which target these disease conditions.
Collapse
Affiliation(s)
- Parveez Ahamed Abdul-Azees
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Hanzhou Wang
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Yong-Hee P Chun
- Department of Periodontics, Department of Cell Systems and Anatomy, Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Jason Pizzini
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - David D Dean
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Kelly R Reveles
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Pharmacotherapy Division, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - Milos Marinkovic
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Research Service, South Texas Veterans Health Care System, San Antonio, TX, USA
| | - Xiao-Dong Chen
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Research Service, South Texas Veterans Health Care System, San Antonio, TX, USA
| | - Adam B Salmon
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Geriatric Research Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, TX, USA
| | - Chih-Ko Yeh
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
- Geriatric Research Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, TX, USA.
| |
Collapse
|
17
|
Peeran SW, Murugan M, Doggalli N, Fageeh H, Ibrahim W, Al-Ak'hali MS, Basheer SN. Herbal Composite Preparation and Investigating its Efficiency to Inhibit Biofilm Formation and Virulence Factors of Prevotella Intermedia and Porphyromonas Gingivalis - Formulation of Mouthwash Using a Herbal Composite and Evaluating its Anti-microbial Activity. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2024; 16:S1574-S1584. [PMID: 38882878 PMCID: PMC11174225 DOI: 10.4103/jpbs.jpbs_998_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/09/2023] [Accepted: 11/25/2023] [Indexed: 06/18/2024] Open
Abstract
Herbal composite preparation was studied with the aim of inhibiting the virulence factors of two dental pathogens: Prevotella intermedia and Porphyromonas gingivalis. A novel herbal composite was developed using the herbal extracts of Wrightia tinctoria and Bauhinia variegata. During the study, the following observations were noted. The minimal inhibitory concentration of Wrightia tinctoria and Bauhinia variegata composites (WBc) was obtained for the test concentration of 20 μg/ml (16 ± 0.57 mm and 15 ± 0.75 mm of inhibitory zones against Prevotella intermedia and Porphyromonas gingivalis, respectively). Biofilm inhibition assay results revealed about 0.51 ± 1.25 mg/ml and 0.53 ± 0.57 mg/ml of minimal biofilm eradication concentration (MBEC) against Prevotella intermedia and Porphyromonas gingivalis, respectively. The effect of WBc on lactic acid production showed that 200 μg/ml and 400 μg/ml concentrates reduced up to 80% and 70% in Prevotella intermedia and Porphyromonas gingivalis, respectively. Formulated herbal mouthwash showed good stability under all three different test conditions (5°C, 25°C, and 40°C) as the color, odor, phase separation, and homogeneity were not changed for the period of 3 months. The anti-bacterial activity of formulated mouthwash (30 μg/ml) exhibited maximum inhibitory zones of about 18 ± 0.75 mm and 19 ± 1.05 mm against the respective test bacteria - Prevotella intermedia and Porphyromonas gingivalis. Amplification of mfa1 and clpB genes showed 246 bp and 294 bp fragments of P. gingivalis and 238 bp and 280 bp fragments of P. intermedia during agarose electrophoretic analysis. The docking report revealed -5.84 Kcal/Mol binding energy and found three hydrogen bonding between the quercetin and target protein, mfa1 of Porphyromonas gingivalis. The target protein, clpB of Prevotella intermedia, and quercetin had -6.72 Kcal/Mol binding energy and found four hydrogen bonds between them. The developed composite could be optimized in future to develop a novel and biocompatible herbal mouthwash for the prevention of different dental caries and gingival inflammation associated with dental biofilm formation.
Collapse
Affiliation(s)
- Syed Wali Peeran
- Department of Preventive Dental Sciences, Division of Periodontics, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| | - Manohar Murugan
- Department of Microbiology, Sadakathullah Appa College (Autonomous), Tirunelveli, Tamil Nadu, India
| | | | - Hytham Fageeh
- Department of Preventive Dental Sciences, Division of Periodontics, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| | - Wael Ibrahim
- Department of Preventive Dental Sciences, Division of Periodontics, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| | - Mohammed Sultan Al-Ak'hali
- Department of Preventive Dental Sciences, Division of Periodontics, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| | - Syed Nahid Basheer
- Department of Conservative Dental Sciences, College of Dentistry, Faculty of Dentistry, Jazan University, KSA
| |
Collapse
|
18
|
Radha S, Ahamed AS, Gutmann JL, Bhavani S, Rajaraman G, Chittrarasu M. Comparative Evaluation of Antibacterial Efficacy, Molecular Docking of Ethanolic Extract of Blackseed, Seaweed and Calcium Hydroxide Intracanal Medicament with Enterococcus Faecalis Antigens. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2024; 16:S1731-S1735. [PMID: 38882822 PMCID: PMC11174239 DOI: 10.4103/jpbs.jpbs_1152_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 06/18/2024] Open
Abstract
Aim To evaluate the inhibitory effect of ethanolic extract blackseed, seaweed, and calcium hydroxide intracanal medicament with Enterococcus faecalis biofilm. To study the binding interaction between the active components of blackseed and seaweed against the enterococcal surface protein of (E. faecalis) by molecular docking. Materials and Methods The ethanolic extracts of blackseed and seaweed were prepared using the Soxhlet apparatus. They were divided into three groups, namely, |Group I: Calcium hydroxide, Group II: Blackseed, and Group III: Seaweed. The antibacterial activity of the three groups was detected employing various concentrations ranging from 250, 125, and 62.5 μg/ml and based on the zone of inhibition. The inhibitory potential of medicaments to inhibit E. faecalis growth at various stages and kinetics plate were assessed following biofilm architecture evaluation by crystal violet biofilm assay. With the Swissdock suite, the molecular docking procedure was carried out. PyMOL version 4.1.5 was the program used for visualization. Since enterococcal surface protein (Esp) is primarily involved in the formation of biofilms, it was chosen as the target protein of E. faecalis. Based on their chromatographic investigations, Group II Thymoquinone (TQ) and Group III Ledenoxide were chosen as ligands. Results The percentage of inhibition of E. faecalis biofilm was analyzed as statistically significant observed within groups. On post-hoc analysis, significant differences were present between the groups (P < 0.05). Molecular docking reveals binding energies of thymoquinone (Group II) and ledenoxide (Group III) against the enterococcal surface protein of E. faecalis were -6.90 Kcal/mol and -6.44 Kcal/mol, respectively. Conclusion Compared to seaweed, black seed extract exhibited higher antibacterial activity against the E. faecalis biofilm in microbial inhibition and molecular interaction.
Collapse
Affiliation(s)
- S Radha
- Department of Conservative Dentistry and Endodontics, Government Dental College and Hospital, Cuddalor Dt, Tamil Nadu, India
| | - A Shafie Ahamed
- Department of Conservative Dentistry and Endodontics, Government Dental College and Hospital, Cuddalor Dt, Tamil Nadu, India
| | - James L Gutmann
- Texas A & M University, College of Dentistry, Dallas Texas, USA
| | - S Bhavani
- Department of Conservative Dentistry and Endodontics, Government Dental College and Hospital, Cuddalor Dt, Tamil Nadu, India
| | - G Rajaraman
- Department of Conservative Dentistry and Endodontics, Government Dental College and Hospital, Cuddalor Dt, Tamil Nadu, India
| | - M Chittrarasu
- Department of Conservative Dentistry and Endodontics, Vivekanantha Dental College for Women, Elayampalayam, Namakkal, Tamil Nadu, India
| |
Collapse
|
19
|
Podar NA, Carrell AA, Cassidy KA, Klingeman DM, Yang Z, Stahler EA, Smith DW, Stahler DR, Podar M. From wolves to humans: oral microbiome resistance to transfer across mammalian hosts. mBio 2024; 15:e0334223. [PMID: 38299854 PMCID: PMC10936156 DOI: 10.1128/mbio.03342-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 02/02/2024] Open
Abstract
The mammalian mouth is colonized by complex microbial communities, adapted to specific niches, and in homeostasis with the host. Individual microbes interact metabolically and rely primarily on nutrients provided by the host, with which they have potentially co-evolved along the mammalian lineages. The oral environment is similar across mammals, but the diversity, specificity, and evolution of community structure in related or interacting mammals are little understood. Here, we compared the oral microbiomes of dogs with those of wild wolves and humans. In dogs, we found an increased microbial diversity relative to wolves, possibly related to the transition to omnivorous nutrition following domestication. This includes a larger diversity of Patescibacteria than previously reported in any other oral microbiota. The oral microbes are most distinct at bacterial species or strain levels, with few if any shared between humans and canids, while the close evolutionary relationship between wolves and dogs is reflected by numerous shared taxa. More taxa are shared at higher taxonomic levels including with humans, supporting their more ancestral common mammalian colonization followed by diversification. Phylogenies of selected oral bacterial lineages do not support stable human-dog microbial transfers but suggest diversification along mammalian lineages (apes and canids). Therefore, despite millennia of cohabitation and close interaction, the host and its native community controls and limits the assimilation of new microbes, even if closely related. Higher resolution metagenomic and microbial physiological studies, covering a larger mammalian diversity, should help understand how oral communities assemble, adapt, and interact with their hosts.IMPORTANCENumerous types of microbes colonize the mouth after birth and play important roles in maintaining oral health. When the microbiota-host homeostasis is perturbed, proliferation of some bacteria leads to diseases such as caries and periodontitis. Unlike the gut microbiome, the diversity of oral microbes across the mammalian evolutionary space is not understood. Our study compared the oral microbiomes of wild wolves, dogs, and apes (humans, chimpanzees, and bonobos), with the aim of identifying if microbes have been potentially exchanged between humans and dogs as a result of domestication and cohabitation. We found little if any evidence for such exchanges. The significance of our research is in finding that the oral microbiota and/or the host limit the acquisition of exogenous microbes, which is important in the context of natural exclusion of potential novel pathogens. We provide a framework for expanded higher-resolution studies across domestic and wild animals to understand resistance/resilience.
Collapse
Affiliation(s)
- Nicholas A. Podar
- School of Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Alyssa A. Carrell
- Biosciences Department, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Kira A. Cassidy
- Yellowstone Center for Resources, National Park Service, Yellowstone National Park, Wyoming, USA
| | - Dawn M. Klingeman
- Biosciences Department, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Zamin Yang
- Biosciences Department, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Erin A. Stahler
- Yellowstone Center for Resources, National Park Service, Yellowstone National Park, Wyoming, USA
| | - Douglas W. Smith
- Yellowstone Center for Resources, National Park Service, Yellowstone National Park, Wyoming, USA
| | - Daniel R. Stahler
- Yellowstone Center for Resources, National Park Service, Yellowstone National Park, Wyoming, USA
| | - Mircea Podar
- Biosciences Department, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| |
Collapse
|
20
|
Hussein SA, Hussein AA, Nur AM, Ali AN, Mohamed YG, Ali AJA. Knowledge, Attitude and Practice of Toothbrush Contamination and Disinfection Among Undergraduate Students in Selected Universities in Somalia. Clin Cosmet Investig Dent 2024; 16:33-40. [PMID: 38410674 PMCID: PMC10896092 DOI: 10.2147/ccide.s448793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/17/2024] [Indexed: 02/28/2024] Open
Abstract
Background Oral health is crucial for overall well-being and systemic health and Humans are exposed to several bacteria after birth and will causes systemic illnesses like septicemia, respiratory, gastrointestinal, and renal issues. This study aimed to evaluate undergraduate students' knowledge, attitudes, and practices regarding toothbrush contamination and disinfection. Methods A descriptive cross-sectional study was carried out with undergraduates from seven selected universities, including public and private universities. A closed-ended questionnaire containing 24 items was distributed to A total of 490 undergraduate students. Results The study showed that (28.6%, n=140) had knowledge about toothbrush cleaning and disinfection. A total of (350, n=71.4%) needed to gain knowledge about toothbrush cleaning and disinfection. Fifty-two percent of the students feel that bacteria are the primary mode of toothbrush contamination. Many of the students had different ways of disinfecting toothbrushes, including, boiling a small pot of normal water (51.4%, n=252), chemical agent (31.8%, n=156), ultraviolet sanitizer (0.2%, n=4), and microwave radiation (0.2%, n=1) does not know (16.1%, n=79). Most students (76.9%, n=377) felt that toothbrush disinfection was necessary. Conclusion Fewer students have sufficient knowledge about toothbrush contamination and practice disinfection methods, whereas most students need to be made aware of the contamination of toothbrushes and the use of disinfectant methods.
Collapse
Affiliation(s)
- Saadaq Adan Hussein
- Department of Tropical and Infectious Diseases, Benadir University, Mogadishu, Somalia
| | | | | | - Ayan Nor Ali
- Department Radiology, Mogadishu Somali Türkiye Training and Research Hospital, Mogadishu, Somalia
| | - Yahye Garad Mohamed
- Department Radiology, Mogadishu Somali Türkiye Training and Research Hospital, Mogadishu, Somalia
| | | |
Collapse
|
21
|
Yu S, Ma Q, Huang J, Liu Y, Li J, Wang Y, Gong T, Zhang Q, Zou J, Li Y. SMU_1361c regulates the oxidative stress response of Streptococcus mutans. Appl Environ Microbiol 2024; 90:e0187123. [PMID: 38299814 PMCID: PMC10880606 DOI: 10.1128/aem.01871-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/22/2023] [Indexed: 02/02/2024] Open
Abstract
Dental caries is the most common chronic infectious disease around the world and disproportionately affects the marginalized socioeconomic group. Streptococcus mutans, considered a primary etiological agent of caries, depends on the coordinated physiological response to tolerate the oxidative stress generated by commensal species within dental plaque, which is a critical aspect of its pathogenicity. Here, we identified and characterized a novel tetracycline repressor family regulator, SMU_1361c, which appears to be acquired by the bacteria via horizontal gene transfer. Surprisingly, smu_1361c functions as a negative transcriptional regulator to regulate gene expression outside its operon and is involved in the oxidative stress response of S. mutans. The smu_1361c overexpression strain UA159/pDL278-1361c was more susceptible to oxidative stress and less competitive against hydrogen peroxide generated by commensal species Streptococcus gordonii and Streptococcus sanguinis. Transcriptomics analysis revealed that smu_1361c overexpression resulted in the significant downregulation of 22 genes, mainly belonging to three gene clusters responsible for the oxidative stress response. The conversed DNA binding motif of SMU_1361c was determined by electrophoretic mobility shift and DNase I footprinting assay with purified SMU_1361c protein; therefore, smu_1361c is directly involved in gene transcription related to the oxidative stress response. Crucially, our finding provides a new understanding of how S. mutans deals with the oxidative stress that is required for pathogenesis and will facilitate the development of new and improved therapeutic approaches for dental caries.IMPORTANCEStreptococcus mutans is the major organism associated with the development of dental caries, which globally is the most common chronic disease. To persist and survive in biofilms, S. mutans must compete with commensal species that occupy the same ecological niche. Here, we uncover a novel molecular mechanism of how tetracycline repressor family regulator smu_1361c is involved in the oxidative stress response through transcriptomics analysis, electrophoretic mobility shift assay, and DNase I footprinting assay. Furthermore, we demonstrated that smu_1361c mediates S. mutans sensitivity to oxidative stress and competitiveness with commensal streptococci. Therefore, this study has revealed a previously unknown regulation between smu_1361c and genes outside its operon and demonstrated the importance of smu_1361c in the oxidative stress response and the fitness of S. mutans within the plaque biofilms, which can be exploited as a new therapy to modulate ecological homeostasis and prevent dental caries.
Collapse
Affiliation(s)
- Shuxing Yu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qizhao Ma
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jun Huang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yaqi Liu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yan Wang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tao Gong
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qiong Zhang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Zou
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuqing Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
22
|
Wang Q, Wang BY, Pratap S, Xie H. Oral microbiome associated with differential ratios of Porphyromonas gingivalis and Streptococcus cristatus. Microbiol Spectr 2024; 12:e0348223. [PMID: 38230927 PMCID: PMC10846039 DOI: 10.1128/spectrum.03482-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/18/2023] [Indexed: 01/18/2024] Open
Abstract
Periodontitis has recently been defined as a dysbiotic disease caused by an imbalanced oral microbiota. The transition from commensal microbial communities to periodontitis-associated ones requires colonization by specific pathogens, including Porphyromonas gingivalis. We previously reported an antagonistic relationship between Streptococcus cristatus and P. gingivalis. To determine the role of S. cristatus in altering the interactions of P. gingivalis with other oral bacteria in a complex context, we collected dental plaque samples from patients with periodontitis and assigned them to two groups based on the ratios of S. cristatus and P. gingivalis. We then characterized the microbial profiles of the dental plaque samples using shotgun metagenomic sequencing and compared the oral microbial composition and functional capabilities of the group with high S. cristatus-P. gingivalis ratios with the low ratio group. Taxonomic annotation revealed significant differences in the microbial composition at both the genus and species levels between the low and high S. cristatus-P. gingivalis ratio groups. Notably, a higher microbial diversity was observed in the samples with low S. cristatus-P. gingivalis ratios. Furthermore, the antibiotic resistance gene profiles of the two groups were also distinct, with a significantly increased abundance of the genes in the dental plaque samples with low S. cristatus-P. gingivalis ratios. It, therefore, indicates that the S. cristatus-P. gingivalis ratios influenced the virulence potential of the oral microbiome. Our work shows that enhancing the S. cristatus-P. gingivalis ratio in oral microbial communities can be an attractive approach for revising the dysbiotic oral microbiome.IMPORTANCEPeriodontitis, one of the most common chronic diseases, is linked to several systemic diseases, such as cardiovascular disease and diabetes. Although Porphyromonas gingivalis is a keystone pathogen that causes periodontitis, its levels, interactions with accessory bacteria and pathobionts in the oral microbiome, and its association with the pathogenic potential of the microbial communities are still not well understood. In this study, we revealed the role of Streptococcus cristatus and the ratios of S. cristatus and P. gingivalis in modulating the oral microbiome to facilitate a deeper understanding of periodontitis and its progression. The study has important clinical implications as it laid a foundation for developing novel non-antibiotic therapies against P. gingivalis and improving the efficiency of periodontal treatments.
Collapse
Affiliation(s)
- Qingguo Wang
- School of Applied Computational Sciences, Meharry Medical College, Nashville, Tennessee, USA
| | - Bing-Yan Wang
- School of Dentistry, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Siddharth Pratap
- School of Medicine, Meharry Medical College, Nashville, Tennessee, USA
| | - Hua Xie
- School of Dentistry, Meharry Medical College, Nashville, Tennessee, USA
| |
Collapse
|
23
|
Kuraji R, Ye C, Zhao C, Gao L, Martinez A, Miyashita Y, Radaic A, Kamarajan P, Le C, Zhan L, Range H, Sunohara M, Numabe Y, Kapila YL. Nisin lantibiotic prevents NAFLD liver steatosis and mitochondrial oxidative stress following periodontal disease by abrogating oral, gut and liver dysbiosis. NPJ Biofilms Microbiomes 2024; 10:3. [PMID: 38233485 PMCID: PMC10794237 DOI: 10.1038/s41522-024-00476-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 01/02/2024] [Indexed: 01/19/2024] Open
Abstract
Oral microbiome dysbiosis mediates chronic periodontal disease, gut microbial dysbiosis, and mucosal barrier disfunction that leads to steatohepatitis via the enterohepatic circulation. Improving this dysbiosis towards health may improve liver disease. Treatment with antibiotics and probiotics have been used to modulate the microbial, immunological, and clinical landscape of periodontal disease with some success. The aim of the present investigation was to evaluate the potential for nisin, an antimicrobial peptide produced by Lactococcus lactis, to counteract the periodontitis-associated gut dysbiosis and to modulate the glycolipid-metabolism and inflammation in the liver. Periodontal pathogens, namely Porphyromonas gingivalis, Treponema denticola, Tannerella forsythia and Fusobacterium nucleatum, were administrated topically onto the oral cavity to establish polymicrobial periodontal disease in mice. In the context of disease, nisin treatment significantly shifted the microbiome towards a new composition, commensurate with health while preventing the harmful inflammation in the small intestine concomitant with decreased villi structural integrity, and heightened hepatic exposure to bacteria and lipid and malondialdehyde accumulation in the liver. Validation with RNA Seq analyses, confirmed the significant infection-related alteration of several genes involved in mitochondrial dysregulation, oxidative phosphorylation, and metal/iron binding and their restitution following nisin treatment. In support of these in vivo findings indicating that periodontopathogens induce gastrointestinal and liver distant organ lesions, human autopsy specimens demonstrated a correlation between tooth loss and severity of liver disease. Nisin's ability to shift the gut and liver microbiome towards a new state commensurate with health while mitigating enteritis, represents a novel approach to treating NAFLD-steatohepatitis-associated periodontal disease.
Collapse
Affiliation(s)
- Ryutaro Kuraji
- Orofacial Sciences Department, School of Dentistry, University of California, San Francisco, San Francisco, CA, USA
- Department of Periodontology, The Nippon Dental University School of Life Dentistry at Tokyo, Tokyo, Japan
| | - Changchang Ye
- Orofacial Sciences Department, School of Dentistry, University of California, San Francisco, San Francisco, CA, USA
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontology, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Chuanjiang Zhao
- Orofacial Sciences Department, School of Dentistry, University of California, San Francisco, San Francisco, CA, USA
- Department of Periodontology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Li Gao
- Orofacial Sciences Department, School of Dentistry, University of California, San Francisco, San Francisco, CA, USA
- Department of Periodontology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - April Martinez
- Orofacial Sciences Department, School of Dentistry, University of California, San Francisco, San Francisco, CA, USA
| | - Yukihiro Miyashita
- Department of Periodontology, The Nippon Dental University School of Life Dentistry at Tokyo, Tokyo, Japan
| | - Allan Radaic
- Orofacial Sciences Department, School of Dentistry, University of California, San Francisco, San Francisco, CA, USA
- Sections of Biosystems and Function and Periodontics, School of Dentistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Pachiyappan Kamarajan
- Orofacial Sciences Department, School of Dentistry, University of California, San Francisco, San Francisco, CA, USA
- Sections of Biosystems and Function and Periodontics, School of Dentistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Charles Le
- Orofacial Sciences Department, School of Dentistry, University of California, San Francisco, San Francisco, CA, USA
| | - Ling Zhan
- Orofacial Sciences Department, School of Dentistry, University of California, San Francisco, San Francisco, CA, USA
| | - Helene Range
- Orofacial Sciences Department, School of Dentistry, University of California, San Francisco, San Francisco, CA, USA
- Department of Periodontology, University of Rennes, UFR of Odontology; Service d'Odontologie, CHU de Rennes, Rennes, France
- INSERM CHU Rennes, Institut NUMECAN (Nutrition Metabolisms and Cancer); CIC 1414, Rennes, France
| | - Masataka Sunohara
- Department of Anatomy, The Nippon Dental University School of Life Dentistry at Tokyo, Tokyo, Japan
| | - Yukihiro Numabe
- Department of Periodontology, The Nippon Dental University School of Life Dentistry at Tokyo, Tokyo, Japan
| | - Yvonne L Kapila
- Orofacial Sciences Department, School of Dentistry, University of California, San Francisco, San Francisco, CA, USA.
- Sections of Biosystems and Function and Periodontics, School of Dentistry, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
24
|
Usman I, Anwar A, Shukla S, Pathak P. Mechanistic Review on the Role of Gut Microbiota in the Pathology of Cardiovascular Diseases. Cardiovasc Hematol Disord Drug Targets 2024; 24:13-39. [PMID: 38879769 DOI: 10.2174/011871529x310857240607103028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/30/2024] [Accepted: 05/17/2024] [Indexed: 07/31/2024]
Abstract
Cardiovascular diseases (CVDs), which stand as the primary contributors to illness and death on a global scale, include vital risk factors like hyperlipidemia, hypertension, diabetes, and smoking, to name a few. However, conventional cardiovascular risk factors offer only partial insight into the complexity of CVDs. Lately, a growing body of research has illuminated that the gut microbiome and its by-products are also of paramount importance in the initiation and progression of CVDs. The gastrointestinal tract houses trillions of microorganisms, commonly known as gut microbiota, that metabolize nutrients, yielding substances like trimethylamine-N-oxide (TMAO), bile acids (BAs), short-chain fatty acids (SCFAs), indoxyl sulfate (IS), and so on. Strategies aimed at addressing these microbes and their correlated biological pathways have shown promise in the management and diagnosis of CVDs. This review offers a comprehensive examination of how the gut microbiota contributes to the pathogenesis of CVDs, particularly atherosclerosis, hypertension, heart failure (HF), and atrial fibrillation (AF), explores potential underlying mechanisms, and highlights emerging therapeutic prospects in this dynamic domain.
Collapse
Affiliation(s)
- Iqra Usman
- Department of Pharmacy, Amity Institute of Pharmacy, Amity University, Lucknow Campus, U.P., 226010, India
| | - Aamir Anwar
- Department of Pharmacy, Amity Institute of Pharmacy, Amity University, Lucknow Campus, U.P., 226010, India
| | - Shivang Shukla
- Department of Pharmacy, Amity Institute of Pharmacy, Amity University, Lucknow Campus, U.P., 226010, India
| | - Priya Pathak
- Department of Pharmacy, Amity Institute of Pharmacy, Amity University, Lucknow Campus, U.P., 226010, India
| |
Collapse
|
25
|
Bibek GC, Zhou P, Wu C. A New Method for Gene Deletion to Investigate Cell Wall Biogenesis in Fusobacterium nucleatum. Methods Mol Biol 2024; 2727:69-82. [PMID: 37815709 DOI: 10.1007/978-1-0716-3491-2_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Controlled septal peptidoglycan hydrolysis is vital for bacterial cell division, preserving cellular integrity and facilitating proper daughter cell separation. In Escherichia coli, the FtsEX ABC system governs cell wall hydrolase activation by regulating the EnvC activator. However, the processes underlying cell division in the Gram-negative oral bacterium Fusobacterium nucleatum are poorly understood, mainly due to its well-known genetic intractability. Herein, we provide a step-by-step procedure for a new gene deletion method in F. nucleatum, focusing on the ftsX gene as a target. This novel approach exploits the HicAB toxin-antitoxin system, using HicA as a counter-selective marker to enable efficient and precise gene deletion. By implementing this technique, we successfully demonstrated its applicability in F. nucleatum, providing new insights into this important microorganism's cell division process. Furthermore, this advanced gene deletion technique offers a valuable resource for future investigation into the functional characterization of genes involved in cell wall biogenesis in F. nucleatum and other genetically intractable microorganisms.
Collapse
Affiliation(s)
- G C Bibek
- Department of Microbiology & Molecular Genetics, The University of Texas Health Science Center, Houston, TX, USA
| | - Peng Zhou
- Department of Microbiology & Molecular Genetics, The University of Texas Health Science Center, Houston, TX, USA
| | - Chenggang Wu
- Department of Microbiology & Molecular Genetics, The University of Texas Health Science Center, Houston, TX, USA.
| |
Collapse
|
26
|
Tritean N, Dimitriu L, Dima ȘO, Stoica R, Trică B, Ghiurea M, Moraru I, Cimpean A, Oancea F, Constantinescu-Aruxandei D. Cytocompatibility, Antimicrobial and Antioxidant Activity of a Mucoadhesive Biopolymeric Hydrogel Embedding Selenium Nanoparticles Phytosynthesized by Sea Buckthorn Leaf Extract. Pharmaceuticals (Basel) 2023; 17:23. [PMID: 38256857 PMCID: PMC10819796 DOI: 10.3390/ph17010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
Phytosynthesized selenium nanoparticles (SeNPs) are less toxic than the inorganic salts of selenium and show high antioxidant and antibacterial activity. Chitosan prevents microbial biofilm formation and can also determine microbial biofilm dispersal. Never-dried bacterial nanocellulose (NDBNC) is an efficient carrier of bioactive compounds and a flexible nanofibrillar hydrophilic biopolymer. This study aimed to develop a selenium-enriched hydrogel nanoformulation (Se-HNF) based on NDBNC from kombucha fermentation and fungal chitosan with embedded biogenic SeNPs phytosynthesized by an aqueous extract of sea buckthorn leaves (SbLEx)-SeNPsSb-in order to both disperse gingival dysbiotic biofilm and prevent its development. We determined the total phenolic content and antioxidant activity of SbLEx. Liquid chromatography-mass spectrometry (LC-MS) and high-performance liquid chromatography (HPLC) were used for the identification of polyphenols from SbLEx. SeNPsSb were characterized by transmission electron microscopy-energy-dispersive X-ray spectroscopy (TEM-EDX), dynamic light scattering (DLS), zeta potential, Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) in small- and wide-angle X-ray scattering (SAXS and WAXS). The hydrogel nanoformulation with embedded SeNPsSb was characterized by SEM, FTIR, XRD, rheology, mucin binding efficiency, contact angle and interfacial tension measurements. We also assessed the in vitro biocompatibility, antioxidant activity and antimicrobial and antibiofilm potential of SeNPsSb and Se-HNF. TEM, DLS and SAXS evidenced polydisperse SeNPsSb, whereas FTIR highlighted a heterogeneous biocorona with various biocompounds. The contact angle on the polar surface was smaller (52.82 ± 1.23°) than that obtained on the non-polar surface (73.85 ± 0.39°). The interfacial tension was 97.6 ± 0.47 mN/m. The mucin binding efficiency of Se-HNF decreased as the amount of hydrogel decreased, and the SEM analysis showed a relatively compact structure upon mucin contact. FTIR and XRD analyses of Se-HNF evidenced an interaction between BNC and CS through characteristic peak shifting, and the rheological measurements highlighted a pseudoplastic behavior, 0.186 N adhesion force and 0.386 adhesion energy. The results showed a high degree of cytocompatibility and the significant antioxidant and antimicrobial efficiency of SeNPsSb and Se-HNF.
Collapse
Affiliation(s)
- Naomi Tritean
- Bioresources, Polymers and Analysis Departments, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independentei No. 202, Sector 6, 060021 Bucharest, Romania; (N.T.); (L.D.); (Ș.-O.D.); (R.S.); (B.T.); (M.G.)
- Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095 Bucharest, Romania;
| | - Luminița Dimitriu
- Bioresources, Polymers and Analysis Departments, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independentei No. 202, Sector 6, 060021 Bucharest, Romania; (N.T.); (L.D.); (Ș.-O.D.); (R.S.); (B.T.); (M.G.)
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, Mărăști Blv., No. 59, 011464 Bucharest, Romania
| | - Ștefan-Ovidiu Dima
- Bioresources, Polymers and Analysis Departments, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independentei No. 202, Sector 6, 060021 Bucharest, Romania; (N.T.); (L.D.); (Ș.-O.D.); (R.S.); (B.T.); (M.G.)
| | - Rusăndica Stoica
- Bioresources, Polymers and Analysis Departments, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independentei No. 202, Sector 6, 060021 Bucharest, Romania; (N.T.); (L.D.); (Ș.-O.D.); (R.S.); (B.T.); (M.G.)
| | - Bogdan Trică
- Bioresources, Polymers and Analysis Departments, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independentei No. 202, Sector 6, 060021 Bucharest, Romania; (N.T.); (L.D.); (Ș.-O.D.); (R.S.); (B.T.); (M.G.)
- Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology Politehnica Bucharest, Splaiul Independenței nr. 313, 060042 Bucharest, Romania
| | - Marius Ghiurea
- Bioresources, Polymers and Analysis Departments, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independentei No. 202, Sector 6, 060021 Bucharest, Romania; (N.T.); (L.D.); (Ș.-O.D.); (R.S.); (B.T.); (M.G.)
| | - Ionuț Moraru
- Laboratoarele Medica Srl, str. Frasinului nr. 11, 075100 Otopeni, Romania;
| | - Anisoara Cimpean
- Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095 Bucharest, Romania;
| | - Florin Oancea
- Bioresources, Polymers and Analysis Departments, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independentei No. 202, Sector 6, 060021 Bucharest, Romania; (N.T.); (L.D.); (Ș.-O.D.); (R.S.); (B.T.); (M.G.)
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, Mărăști Blv., No. 59, 011464 Bucharest, Romania
| | - Diana Constantinescu-Aruxandei
- Bioresources, Polymers and Analysis Departments, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independentei No. 202, Sector 6, 060021 Bucharest, Romania; (N.T.); (L.D.); (Ș.-O.D.); (R.S.); (B.T.); (M.G.)
| |
Collapse
|
27
|
Nam SH. Antimicrobial Activity of Crataegi fructus Extract Used for Potential Application in the Prevention and Treatment of Oral Diseases. MEDICINA (KAUNAS, LITHUANIA) 2023; 60:13. [PMID: 38276047 PMCID: PMC10817675 DOI: 10.3390/medicina60010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024]
Abstract
Background and Objectives: This study evaluated the antimicrobial effect and cytotoxic potential of the natural Crataegi fructus extract against Streptococcus mutans (S. mutans), the causative agent of dental caries, which is a typical oral disease, and Candida albicans (C. albicans), which causes oral candidiasis. Materials and Methods: Crataegi fructus was shaken in 70% ethanol for 12 h to obtain samples through enrichment and lyophilization. Then, 1, 5, 10, 20, 30, and 40 mg/mL of the Crataegi fructus extract were applied to S. mutans and C. albicans to demonstrate its antimicrobial effect after 24 h. The stability of Crataegi fructus extract on the survival rate of human keratinocytes (HaCaT) was confirmed using water-soluble tetrazolium salt (WST-1) analysis. A one-way ANOVA determined the difference between each group. A Tukey HSD test was performed as a post-hoc analysis at the 0.05 significance level. Results: Crataegi fructus extract showed antimicrobial effects against S. mutans and C. albicans that increased in a concentration-dependent manner. However, high concentrations affected cell growth and lowered cell survival. The half maximal inhibitory concentration (IC50 value) of Crataegi fructus extract showed a survival rate of 53.04% at a concentration of 30 mg/mL, which was found to be applicable. Conclusions: Thus, Crataegi fructus extract may be used as a natural material for the prevention and treatment of oral diseases. Crataegi fructus demonstrates optimal antimicrobial effects without affecting cell proliferation and growth at 30 mg/mL concentration.
Collapse
Affiliation(s)
- Seoul-Hee Nam
- Department of Dental Hygiene, College of Health Science, Kangwon National University, Samcheok 25945, Gangwon-do, Republic of Korea
| |
Collapse
|
28
|
Diallo K, Missa KF, Tuo JK, Amoikon TLS, Bla BK, Bonfoh B. Narrative review of application of metagenomic approaches to study the link between oropharyngeal microbiome and infectious diseases. Front Microbiol 2023; 14:1292526. [PMID: 38163063 PMCID: PMC10755466 DOI: 10.3389/fmicb.2023.1292526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/20/2023] [Indexed: 01/03/2024] Open
Abstract
Context Viral and bacterial infections are major causes of morbidity and mortality worldwide. The oropharyngeal microbiome could play an important role in preventing invasion of viral and bacterial pathogens by modulating its content and the host's innate immune response. Next Generation Sequencing (NGS) technologies now enable in-depth study of the genomes of microbial communities. The objective of this review is to highlight how metagenomics has contributed to establish links between changes in the oropharyngeal microbiome and emergence of bacterial and viral diseases. Method Two search engines, PubMed and Google scholar were used with filters to focus searches on peer-reviewed original articles published between January 2010 and September 2022. Different keywords were used and only articles with metagenomic approaches were included. Results This review shows that there were few articles studying the link between oropharyngeal microbiome and infectious diseases. Studies on viruses using metagenomic techniques have been growing exponentially in recent years due to the Covid-19 pandemic. This review shows that most studies still focus on the basic identification of microorganisms in different disease states and multiple microorganisms (Alloprevotella, Prevotella, Bacteroides, Haemophilus, Streptococcus, Klebsiella sp., Acinetobacter sp…), have been associated with development of infections such as childhood wheezing, influenza, Covid-19, pneumonia, meningitis, and tuberculosis. Conclusion The oropharyngeal microbiome, despite its importance, remains poorly studied. A limited number of articles were identified but this number has increased exponentially since 2020 due to research conducted on Covid-19. These studies have shown that metagenomic has contributed to the unbiased identification of bacteria that could be used as biomarkers of various diseases and that further research is now needed to capitalize on those findings for human health benefit.
Collapse
Affiliation(s)
- Kanny Diallo
- Centre Suisse de Recherches Scientifiques en Côte d’Ivoire (CSRS), Abidjan, Côte d’Ivoire
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
| | - Kouassi Firmin Missa
- Centre Suisse de Recherches Scientifiques en Côte d’Ivoire (CSRS), Abidjan, Côte d’Ivoire
- Université Félix Houphouët Boigny de Cocody, Abidjan, Côte d’Ivoire
| | - Jeremie Kolotioloman Tuo
- Centre Suisse de Recherches Scientifiques en Côte d’Ivoire (CSRS), Abidjan, Côte d’Ivoire
- Institut National Polytechnique Félix Houphouët-Boigny (INP-HB), Yamoussoukro, Côte d’Ivoire
| | | | - Brice K. Bla
- Université Félix Houphouët Boigny de Cocody, Abidjan, Côte d’Ivoire
| | - Bassirou Bonfoh
- Centre Suisse de Recherches Scientifiques en Côte d’Ivoire (CSRS), Abidjan, Côte d’Ivoire
| |
Collapse
|
29
|
Li B, Lu C, Yao X, Wu X, Wu G, Zeng X. Effects of three orthodontic retainers on periodontal pathogens and periodontal parameters. Sci Rep 2023; 13:20709. [PMID: 38001102 PMCID: PMC10673872 DOI: 10.1038/s41598-023-46922-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
The objective of this study was to compare and evaluate the changes in periodontal pathogens and periodontal status within 6 months of wearing three orthodontic retainers, namely, vacuum-formed retainer (VFR), Hawley retainer (HR), and lingual fixed retainer (LR). In total, 48 patients who underwent orthodontic treatment with ordinary metal brackets were divided into VFR, HR, and LR groups (n = 16 per group). Saliva samples were collected at the time of debonding (T0) and after 1 month (T1), 3 months (T2), and 6 months (T3). Porphyromonas gingivalis (Pg) and Aggregatibacter actinomycetemcomitans (Aa) were quantitatively analyzed using real-time PCR. Gingival index (GI), plaque index (PLI), and probing depth (PD) were measured at the four time points to evaluate changes in periodontal state. SPSS20.0 software was used to analyze the data, and P < 0.05 was considered statistically significant. The trial was registered at the Chinese Clinical Trial Registry (ChiCTR2300073704), the registration was retrospective. Compared to baseline (T0) values, Pg, Aa, GI, PLI, and PD were significantly decreased in all three groups 1 month after wearing the retainer (p < 0.05). Significant differences were observed in Aa at T3 among the three groups, whereby the HR group exhibited significantly better results compared to the VFR and LR groups (p < 0.05). Differences were found among the three groups' Porphyromonas gingivalis at T3, and the HR group was significantly better than the VFR and LR groups (P < 0.05). From T1 to T2, GI, PLI, and PD of the three groups tended to be stable, however differences were observed at T3, with the PLI and PD of the HR group being the lowest among the three groups (p < 0.05). Regardless of the type of retainer used, the periodontal condition of patients was significantly improved after removal of the metal brackets. After 6 months of retainer use, the Hawley retainer was superior to vacuum-formed retainer and lingual fixed retainer with regard to Pg, Aa, and periodontal clinical parameters.
Collapse
Affiliation(s)
- Bowen Li
- Institute of Oral Science, Department of Stomatology, Longgang Otorhinolaryngology Hospital, Shenzhen, 518172, People's Republic of China
| | - Cailian Lu
- Department of Stomatology, The First Hospital of Shanxi Medical University, Taiyuan, 030001, People's Republic of China
| | - Xinhui Yao
- Institute of Oral Science, Department of Stomatology, Longgang Otorhinolaryngology Hospital, Shenzhen, 518172, People's Republic of China
| | - Xiaojun Wu
- Institute of Oral Science, Department of Stomatology, Longgang Otorhinolaryngology Hospital, Shenzhen, 518172, People's Republic of China
| | - Guilin Wu
- Institute of Oral Science, Department of Stomatology, Longgang Otorhinolaryngology Hospital, Shenzhen, 518172, People's Republic of China
| | - Xiantao Zeng
- Institute of Oral Science, Department of Stomatology, Longgang Otorhinolaryngology Hospital, Shenzhen, 518172, People's Republic of China.
| |
Collapse
|
30
|
Tortora SC, Agurto MG, Martello LA. The oral-gut-circulatory axis: from homeostasis to colon cancer. Front Cell Infect Microbiol 2023; 13:1289452. [PMID: 38029267 PMCID: PMC10663299 DOI: 10.3389/fcimb.2023.1289452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
The human microbiota is widely recognized as providing crucial health benefits to its host, specifically by modulating immune homeostasis. Microbial imbalance, known as dysbiosis, is linked to several conditions in the body. The oral cavity and gut host the two largest microbial communities playing a major role in microbial-associated diseases. While the oral-gut axis has been previously explored, our review uniquely highlights the significance of incorporating the circulatory system into this axis. The interaction between immune cells, inflammatory factors, circulating bacteria, and microbial metabolites influences the homeostasis of both the oral and gut microbiota in a bidirectional manner. In this comprehensive review, we aim to describe the bacterial components of the oral-gut-circulatory axis in both health and disease, with a specific focus on colon cancer.
Collapse
Affiliation(s)
- Sofia C. Tortora
- Department of Medicine and Division of Gastroenterology & Hepatology, SUNY Downstate Health Sciences University, Brooklyn, NY, United States
| | - Maria Gonzalez Agurto
- Departamento de Rehabilitación Craneofacial Integral, Universidad de Los Andes, Santiago, Chile
| | - Laura A. Martello
- Department of Medicine and Division of Gastroenterology & Hepatology, SUNY Downstate Health Sciences University, Brooklyn, NY, United States
| |
Collapse
|
31
|
Lyons KM, Cannon RD, Beumer J, Bakr MM, Love RM. Microbial Analysis of Obturators During Maxillofacial Prosthodontic Treatment Over an 8-Year Period. Cleft Palate Craniofac J 2023; 60:1426-1441. [PMID: 35642284 DOI: 10.1177/10556656221104940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The aim of the study was to investigate the microbial colonization (by Candida species, anaerobic and facultative anaerobic bacteria) of maxillary obturators used for the restoration of maxillary defects, including during radiotherapy. Retrospective cohort study. Fifteen patients requiring a maxillary obturator prosthesis had swabs of their obturators and adjacent tissues taken at different stages of their treatment over a period of 8 years. Identification of microbial species from the swabs was carried out using randomly amplified polymorphic DNA polymerase chain reaction (RAPD PCR) analysis, checkerboard DNA-DNA hybridization, CHROMagar Candida chromogenic agar, and DNA sequencing. Candida species were detected in all patients and all patients developed mucositis and candidiasis during radiotherapy which was associated with an increase in colonization of surfaces with Candida spp., particularly C albicans. Microbial colonization increased during radiotherapy and as an obturator aged, and decreased following a reline, delivery of a new prosthesis, or antifungal treatment during radiotherapy. Microbial colonization of maxillary obturators was related to the stage of treatment, age of the obturator material, radiotherapy and antifungal medications, and antifungal treatment may be recommended if C albicans colonization of palatal tissues is greater than 105 colony-forming units per cm2 following the first week of radiotherapy.
Collapse
Affiliation(s)
- Karl M Lyons
- Department of Oral Rehabilitation and Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Richard D Cannon
- Department of Oral Sciences and Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - John Beumer
- Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, CA, USA
| | - Mahmoud M Bakr
- School of Medicine and Dentistry, Griffith University, Queensland, Australia
| | - Robert M Love
- School of Medicine and Dentistry, Griffith University, Queensland, Australia
| |
Collapse
|
32
|
Wang Y, Gallagher LA, Andrade PA, Liu A, Humphreys IR, Turkarslan S, Cutler KJ, Arrieta-Ortiz ML, Li Y, Radey MC, McLean JS, Cong Q, Baker D, Baliga NS, Peterson SB, Mougous JD. Genetic manipulation of Patescibacteria provides mechanistic insights into microbial dark matter and the epibiotic lifestyle. Cell 2023; 186:4803-4817.e13. [PMID: 37683634 PMCID: PMC10633639 DOI: 10.1016/j.cell.2023.08.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/06/2023] [Accepted: 08/16/2023] [Indexed: 09/10/2023]
Abstract
Patescibacteria, also known as the candidate phyla radiation (CPR), are a diverse group of bacteria that constitute a disproportionately large fraction of microbial dark matter. Its few cultivated members, belonging mostly to Saccharibacteria, grow as epibionts on host Actinobacteria. Due to a lack of suitable tools, the genetic basis of this lifestyle and other unique features of Patescibacteira remain unexplored. Here, we show that Saccharibacteria exhibit natural competence, and we exploit this property for their genetic manipulation. Imaging of fluorescent protein-labeled Saccharibacteria provides high spatiotemporal resolution of phenomena accompanying epibiotic growth, and a transposon-insertion sequencing (Tn-seq) genome-wide screen reveals the contribution of enigmatic Saccharibacterial genes to growth on their hosts. Finally, we leverage metagenomic data to provide cutting-edge protein structure-based bioinformatic resources that support the strain Southlakia epibionticum and its corresponding host, Actinomyces israelii, as a model system for unlocking the molecular underpinnings of the epibiotic lifestyle.
Collapse
Affiliation(s)
- Yaxi Wang
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA
| | - Larry A Gallagher
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA
| | - Pia A Andrade
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA
| | - Andi Liu
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA
| | - Ian R Humphreys
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | | | - Kevin J Cutler
- Department of Physics, University of Washington, Seattle, WA 98195, USA
| | | | - Yaqiao Li
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA; Institute for Systems Biology, Seattle, WA 98109, USA
| | - Matthew C Radey
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA
| | - Jeffrey S McLean
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA; Department of Periodontics, University of Washington, Seattle, WA 98195, USA
| | - Qian Cong
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98109, USA
| | | | - S Brook Peterson
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA
| | - Joseph D Mougous
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98109, USA; Microbial Interactions and Microbiome Center, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
33
|
Kerns KA, Bamashmous S, Hendrickson EL, Kotsakis GA, Leroux BG, Daubert DD, Roberts FA, Chen D, Trivedi HM, Darveau RP, McLean JS. Localized microbially induced inflammation influences distant healthy tissues in the human oral cavity. Proc Natl Acad Sci U S A 2023; 120:e2306020120. [PMID: 37782795 PMCID: PMC10576129 DOI: 10.1073/pnas.2306020120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/23/2023] [Indexed: 10/04/2023] Open
Abstract
Variation in human immune response to the same bacterial or viral pathogen is well established in the literature. Variation in immune response to microbial challenge has also been observed within the human oral cavity. Our recent study focused on characterizing observed variations in microbially induced gingival inflammation-resulting in three distinct clinical Inflammatory Responder Types (IRTs): High-IRT, Low-IRT, and Slow-IRT. Here, we applied a high-resolution temporal multiomic analysis during microbially induced inflammation in order to characterize the effects of localized oral inflammation on distant healthy tissues in young healthy adults. Our results highlight a nonlocalized subclinical effect with alterations in proinflammatory host mediators and an ecological shift toward dysbiosis within the subgingival microbiome in an IRT-dependent manner-despite maintained oral hygiene. Our results provide mechanistic insight into how healthy tissues within humans are influenced by distant localized inflammation and may ultimately become susceptible to disease.
Collapse
Affiliation(s)
- Kristopher A. Kerns
- Department of Periodontics, University of Washington, Seattle, WA98195
- Department of Oral Health Sciences, University of Washington, Seattle, WA98195
| | - Shatha Bamashmous
- Department of Periodontology, Faculty of Dentistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | | | | | - Brian G. Leroux
- Department of Periodontics, University of Washington, Seattle, WA98195
- Department of Biostatistics, University of Washington, Seattle, WA98195
| | - Diane D. Daubert
- Department of Periodontics, University of Washington, Seattle, WA98195
| | - Frank A. Roberts
- Department of Periodontics, University of Washington, Seattle, WA98195
| | - Dandan Chen
- Department of Oral Health Research, Colgate Palmolive Company, Piscataway, NJ08854
| | - Harsh M. Trivedi
- Department of Oral Health Research, Colgate Palmolive Company, Piscataway, NJ08854
| | - Richard P. Darveau
- Department of Periodontics, University of Washington, Seattle, WA98195
- Department of Microbiology, University of Washington, Seattle, WA98195
| | - Jeffrey S. McLean
- Department of Periodontics, University of Washington, Seattle, WA98195
- Department of Oral Health Sciences, University of Washington, Seattle, WA98195
- Department of Microbiology, University of Washington, Seattle, WA98195
| |
Collapse
|
34
|
Zhao C, Kuraji R, Ye C, Gao L, Radaic A, Kamarajan P, Taketani Y, Kapila YL. Nisin a probiotic bacteriocin mitigates brain microbiome dysbiosis and Alzheimer's disease-like neuroinflammation triggered by periodontal disease. J Neuroinflammation 2023; 20:228. [PMID: 37803465 PMCID: PMC10557354 DOI: 10.1186/s12974-023-02915-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 09/28/2023] [Indexed: 10/08/2023] Open
Abstract
INTRODUCTION Periodontitis-related oral microbial dysbiosis is thought to contribute to Alzheimer's disease (AD) neuroinflammation and brain amyloid production. Since probiotics can modulate periodontitis/oral dysbiosis, this study examined the effects of a probiotic/lantibiotic, nisin, in modulating brain pathology triggered by periodontitis. METHODS A polymicrobial mouse model of periodontal disease was used to evaluate the effects of this disease on brain microbiome dysbiosis, neuroinflammation, Alzheimer's-related changes, and nisin's therapeutic potential in this context. RESULTS 16S sequencing and real-time PCR data revealed that Nisin treatment mitigated the changes in the brain microbiome composition, diversity, and community structure, and reduced the levels of periodontal pathogen DNA in the brain induced by periodontal disease. Nisin treatment significantly decreased the mRNA expression of pro-inflammatory cytokines (Interleukin-1β/IL-1 β, Interleukin 6/IL-6, and Tumor Necrosis Factor α/TNF-α) in the brain that were elevated by periodontal infection. In addition, the concentrations of amyloid-β 42 (Aβ42), total Tau, and Tau (pS199) (445.69 ± 120.03, 1420.85 ± 331.40, 137.20 ± 36.01) were significantly higher in the infection group compared to the control group (193.01 ± 31.82, 384.27 ± 363.93, 6.09 ± 10.85), respectively. Nisin treatment markedly reduced the Aβ42 (261.80 ± 52.50), total Tau (865.37 ± 304.93), and phosphorylated Tau (82.53 ± 15.77) deposition in the brain of the infection group. DISCUSSION Nisin abrogation of brain microbiome dysbiosis induces beneficial effects on AD-like pathogenic changes and neuroinflammation, and thereby may serve as a potential therapeutic for periodontal-dysbiosis-related AD.
Collapse
Affiliation(s)
- Chuanjiang Zhao
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA, 94143, USA
- Department of Periodontology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, 510050, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, 510050, China
| | - Ryutaro Kuraji
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA, 94143, USA
- Department of Periodontology, The Nippon Dental University School of Life Dentistry at Tokyo, Tokyo, 102-8159, Japan
| | - Changchang Ye
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA, 94143, USA
- Department of Periodontology, West China School of Stomatology, National Clinical Research Center for Oral Diseases, State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, 610093, China
| | - Li Gao
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA, 94143, USA
- Department of Periodontology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, 510050, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, 510050, China
| | - Allan Radaic
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA, 94143, USA
- Department of Biosystems and Function and Periodontics, School of Dentistry, University of California Los Angeles, Los Angeles, CA, 90024, USA
| | - Pachiyappan Kamarajan
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA, 94143, USA
- Department of Biosystems and Function and Periodontics, School of Dentistry, University of California Los Angeles, Los Angeles, CA, 90024, USA
| | - Yoshimasa Taketani
- Department of Biosystems and Function and Periodontics, School of Dentistry, University of California Los Angeles, Los Angeles, CA, 90024, USA
- Division of Periodontology, Department of Oral Biology and Tissue Engineering, Meikai University School of Dentistry, Sakado, 350-0283, Japan
| | - Yvonne L Kapila
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA, 94143, USA.
- Department of Biosystems and Function and Periodontics, School of Dentistry, University of California Los Angeles, Los Angeles, CA, 90024, USA.
- Section of Biosystems and Function, Section of Periodontology, UCLA School of Dentistry, 10833 Le Conte Ave, Box 951668, Los Angeles, CA, 90095-1668, USA.
| |
Collapse
|
35
|
Antezack A, Etchecopar-Etchart D, La Scola B, Monnet-Corti V. New putative periodontopathogens and periodontal health-associated species: A systematic review and meta-analysis. J Periodontal Res 2023; 58:893-906. [PMID: 37572051 DOI: 10.1111/jre.13173] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/14/2023] [Accepted: 08/01/2023] [Indexed: 08/14/2023]
Abstract
To investigate the existence of any association between new putative periodontal pathogens and periodontitis. Two independent reviewers conducted electronic literature searches in the MEDLINE (PubMed), EMBASE, DOSS and Google Scholar databases as well as a manual search to identify eligible clinical studies prior to November 2022. Studies comparing the prevalence of microorganisms other than the already-known periodontal pathogens in subgingival plaque and/or saliva samples between subjects with periodontitis and subject with periodontal health were included. Meta-analyses were performed on data provided by the included studies. Fifty studies including a total of 2739 periodontitis subjects and 1747 subjects with periodontal health were included. The Archaea domain and 25 bacterial species (Anaeroglobus geminatus, Bacteroidales [G-2] bacterium HMT 274, Desulfobulbus sp. HMT 041, Dialister invisus, Dialister pneumosintes, Eubacterium brachy, Enterococcus faecalis, Eubacterium nodatum, Eubacterium saphenum, Filifactor alocis, Fretibacterium sp. HMT 360, Fretibacterium sp. HMT 362, Mogibacterium timidum, Peptoniphilaceae sp. HMT 113, Peptostreptococcus stomatis, Porphyromonas endodontalis, Slackia exigua, Streptococcus gordonii, Selenomonas sputigena, Treponema amylovorum, Treponema lecithinolyticum, Treponema maltophilum, Treponema medium, Treponema parvum and Treponema socranskii) were found to be statistically significantly associated with periodontitis. Network studies should be conducted to investigate the role of these newly identified periodontitis-associated microorganisms through interspecies interaction and host-microbe crosstalk analyses.
Collapse
Affiliation(s)
- Angéline Antezack
- Faculté des Sciences Médicales et Paramédicales, Ecole de Médecine Dentaire, Aix-Marseille Univ, Marseille, France
- AP-HM, Hôpital Timone, Pôle Odontologie, Service de Parodontologie, Marseille, France
- MEPHI, IRD, AP-HM, IHU Méditerranée Infection, Aix Marseille Univ, Marseille, France
| | - Damien Etchecopar-Etchart
- EA 3279: CEREeSS-Health Service Research and Quality of Life Center, Aix-Marseille Univ, Marseille, France
- Département de Psychiatrie, Assistance Publique-Hôpitaux de Marseille (AP-HM), Marseille, France
- FondaMental Foundation, Creteil, France
| | - Bernard La Scola
- MEPHI, IRD, AP-HM, IHU Méditerranée Infection, Aix Marseille Univ, Marseille, France
| | - Virginie Monnet-Corti
- Faculté des Sciences Médicales et Paramédicales, Ecole de Médecine Dentaire, Aix-Marseille Univ, Marseille, France
- AP-HM, Hôpital Timone, Pôle Odontologie, Service de Parodontologie, Marseille, France
- MEPHI, IRD, AP-HM, IHU Méditerranée Infection, Aix Marseille Univ, Marseille, France
| |
Collapse
|
36
|
Pärnänen P, Lomu S, Räisänen IT, Tervahartiala T, Sorsa T. Antimicrobial and Anti-Inflammatory Oral Effects of Fermented Lingonberry Juice-A One-Year Prospective Human Intervention Study. Eur J Dent 2023; 17:1235-1240. [PMID: 36599454 PMCID: PMC10756786 DOI: 10.1055/s-0042-1759619] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVES A 1-year prospective human intervention study was performed to examine the anticaries, anti-inflammatory, antiproteolytic, and antimicrobial effects of fermented lingonberry juice (FLJ), used as a mouthwash for a period of 6 months, followed by a 6-month washout period. MATERIALS AND METHODS Twenty-five adults were recruited from private dental clinics in Helsinki and Joensuu (Finland). Standard oral examinations and sample gatherings were performed at base level, 6 months, and 1 year for oral Streptococcus mutans (S. mutans), Candida, and Lactobacilli levels, and active matrix metalloprotease-8 (aMMP-8) levels, and for decayed, missing, filled teeth (DMFT), decayed, missing filled surfaces (DMFS) and decayed surfaces (DS) indexes, and probing pocket depths (PPDs), bleeding on probing (BOP), and visible plaque index (VPI). FLJ was used by the participants once daily for 30 seconds for 6 months. FLJ contains 0.212% (w/v) polyphenols, 3% (w/ v) sugars, and contains no excipients. Ten milliliters of FLJ were equal to 1 dL of lingonberry juice. STATISTICAL ANALYSIS Statistical analyses were performed with nonparametric Friedman's test and pairwise post-hoc analysis with Dunn-Bonferroni test, SPSS (version 27; IBM) and p < 0.05 was considered as statistically significant. RESULTS The levels of S. mutans and Candida counts, DS, BOP, and VPI decreased significantly (p < 0.05) during the FLJ period. Lactobacilli counts increased significantly, while there was also significant difference in aMMP-8 levels, DMFT, and DMFS between the three measurement points. PPDs were not affected. CONCLUSIONS The specially formulated FLJ may have a positive decreasing effect on S. mutans, and Candida counts as well as decrease low-grade inflammation and proteolytic burden in the oral mucosa and periodontal tissues. The beneficial effects to the oral cavity of FLJ mouthwash may be useful among patients with oral diseases, such as dental caries, periodontitis and candidosis.
Collapse
Affiliation(s)
- Pirjo Pärnänen
- Department of Oral and Maxillofacial Diseases, Head and Neck Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Sari Lomu
- Department of Oral and Maxillofacial Diseases, Head and Neck Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Ismo T. Räisänen
- Department of Oral and Maxillofacial Diseases, Head and Neck Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Taina Tervahartiala
- Department of Oral and Maxillofacial Diseases, Head and Neck Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Timo Sorsa
- Department of Oral and Maxillofacial Diseases, Head and Neck Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Division of Periodontology, Department of Dental Medicine, Karolinska Institute, Huddinge, Sweden
| |
Collapse
|
37
|
G C B, Zhou P, Naha A, Gu J, Wu C. Development of a xylose-inducible promoter and riboswitch combination system for manipulating gene expression in Fusobacterium nucleatum. Appl Environ Microbiol 2023; 89:e0066723. [PMID: 37695289 PMCID: PMC10537658 DOI: 10.1128/aem.00667-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/05/2023] [Indexed: 09/12/2023] Open
Abstract
Inducible gene expression systems are important for studying bacterial gene function, yet most exhibit leakage. In this study, we engineered a leakage-free hybrid system for precise gene expression controls in Fusobacterium nucleatum by integrating the xylose-inducible expression system with the theophylline-responsive riboswitch. This innovative method enables concurrent control of target gene expression at both transcription and translation initiation levels. Using luciferase and the indole-producing enzyme tryptophanase (TnaA) as reporters, we demonstrated that the hybrid system displays virtually no observable signal in the absence of inducers. We employed this system to express FtsX, a protein related to fusobacterial cytokinesis, in an ftsX mutant strain, unveiling a dose-dependent manner in FtsX production. Without inducers, cells form long filaments, while increasing FtsX levels by increasing inducer concentrations led to a gradual reduction in cell length until normal morphology was restored. Crucially, this system facilitated essential gene investigation, identifying the signal peptidase lepB gene as vital for F. nucleatum. LepB's essentiality stems from depletion, affecting outer membrane biogenesis and cell division. This novel hybrid system holds the potential for advancing research on essential genes and accurate gene regulation in F. nucleatum. IMPORTANCE Fusobacterium nucleatum, an anaerobic bacterium prevalent in the human oral cavity, is strongly linked to periodontitis and can colonize areas beyond the oral cavity, such as the placenta and gastrointestinal tract, causing adverse pregnancy outcomes and promoting colorectal cancer growth. Given F. nucleatum's clinical significance, research is underway to develop targeted therapies to inhibit its growth or eradicate the bacterium specifically. Essential genes, crucial for bacterial survival, growth, and reproduction, are promising drug targets. A leak-free-inducible gene expression system is needed for studying these genes, enabling conditional gene knockouts and elucidating the importance of those essential genes. Our study identified lepB as the essential gene by first generating a conditional gene mutation in F. nucleatum. Combining a xylose-inducible system with a riboswitch facilitated the analysis of essential genes in F. nucleatum, paving the way for potential drug development targeting this bacterium for various clinical applications.
Collapse
Affiliation(s)
- Bibek G C
- Department of Microbiology & Molecular Genetics, The University of Texas Health Science Center, Houston, Texas, USA
| | - Peng Zhou
- Department of Microbiology & Molecular Genetics, The University of Texas Health Science Center, Houston, Texas, USA
| | - Arindam Naha
- Department of Microbiology & Molecular Genetics, The University of Texas Health Science Center, Houston, Texas, USA
| | - Jianhua Gu
- Houston Methodist Hospital Research Institute, Houston, Texas, USA
| | - Chenggang Wu
- Department of Microbiology & Molecular Genetics, The University of Texas Health Science Center, Houston, Texas, USA
| |
Collapse
|
38
|
Wang Q, Wang BY, Pratap S, Xie H. Oral microbiome associated with differential ratios of Porphyromonas gingivalis and Streptococcus cristatus. RESEARCH SQUARE 2023:rs.3.rs-3266326. [PMID: 37674718 PMCID: PMC10479432 DOI: 10.21203/rs.3.rs-3266326/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Background Periodontitis has been recently defined as a dysbiotic disease resulting from imbalanced oral microbiota. The transition of microbial communities from commensal to periodontitis-associated ones likely requires colonization by specific pathogens, including Porphyromonas gingivalis. We previously reported an antagonistic relationship between Streptococcus cristatus and P. gingivalis and the role of S. cristatus in inhibition of the biofilm formation, invasion, and gingipain enzymatic activity of P. gingivalis. Given the importance of P. gingivalis as a keystone pathogen of polymicrobial communities, the determinants of P. gingivalis levels, its interaction with the core microbiota, and association with the pathogenic potential of the microbial communities need to be addressed. Results This present study intends to determine the role of S. cristatus in altering interactions of P. gingivalis with other oral bacteria in a complex context. We collected dental plaque samples from periodontitis patients and assigned them into two groups based on their ratios of S. cristatus and P. gingivalis. We then characterized microbial profiles of the dental plaque samples using shotgun metagenomic sequencing and subsequently compared oral microbial composition and functional capabilities between groups with high or low S. cristatus-P. gingivalis ratios. Taxonomic annotation showed significant differences in microbial compositions at both genus and species levels between the two groups. Notably, a higher microbial composition diversity was observed in the samples with low S. cristatus-P. gingivalis ratios. The antibiotic resistance gene profiles of the two groups are also distinct, with significantly increased diversity and abundance of antibiotic resistance genes in the dental plaque samples with low S. cristatus-P. gingivalis ratios, which likely lead to elevated virulence potential. Conclusions Overall, our work highlights the importance of S. cristatus-P. gingivalis ratios in influencing the virulence of the oral microbiome. Approaches to enhance S. cristatus-P. gingivalis ratios in oral microbial communities will be attractive for revising the dysbiotic oral microbiome.
Collapse
Affiliation(s)
| | - Bing-Yan Wang
- University of Texas Health Science Center at Houston
| | | | | |
Collapse
|
39
|
Tanwar H, Gnanasekaran JM, Allison D, Chuang LS, He X, Aimetti M, Baima G, Costalonga M, Cross RK, Sears C, Mehandru S, Cho J, Colombel JF, Raufman JP, Thumbigere-Math V. Unraveling the Link between Periodontitis and Inflammatory Bowel Disease: Challenges and Outlook. ARXIV 2023:arXiv:2308.10907v1. [PMID: 37645044 PMCID: PMC10462160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Periodontitis and Inflammatory Bowel Disease (IBD) are chronic inflammatory conditions, characterized by microbial dysbiosis and hyper-immunoinflammatory responses. Growing evidence suggest an interconnection between periodontitis and IBD, implying a shift from the traditional concept of independent diseases to a complex, reciprocal cycle. This review outlines the evidence supporting an "Oral-Gut" axis, marked by a higher prevalence of periodontitis in IBD patients and vice versa. The specific mechanisms linking periodontitis and IBD remain to be fully elucidated, but emerging evidence points to the ectopic colonization of the gut by oral bacteria, which promote intestinal inflammation by activating host immune responses. This review presents an in-depth examination of the interconnection between periodontitis and IBD, highlighting the shared microbiological and immunological pathways, and proposing a "multi-hit" hypothesis in the pathogenesis of periodontitis-mediated intestinal inflammation. Furthermore, the review underscores the critical need for a collaborative approach between dentists and gastroenterologists to provide holistic oral-systemic healthcare.
Collapse
Affiliation(s)
- Himanshi Tanwar
- Division of Periodontology, University of Maryland School of Dentistry, Baltimore, MD, USA
| | | | - Devon Allison
- Division of Periodontology, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - Ling-shiang Chuang
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xuesong He
- Department of Microbiology, The Forsyth Institute, Cambridge, MA, USA
| | - Mario Aimetti
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, Turin, Italy
| | - Giacomo Baima
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, Turin, Italy
| | - Massimo Costalonga
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, USA
| | - Raymond K. Cross
- Division of Gastroenterology & Hepatology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Cynthia Sears
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Saurabh Mehandru
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Judy Cho
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jean-Frederic Colombel
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jean-Pierre Raufman
- Division of Gastroenterology & Hepatology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Vivek Thumbigere-Math
- Division of Periodontology, University of Maryland School of Dentistry, Baltimore, MD, USA
- National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD, USA
| |
Collapse
|
40
|
Das A, Patro S, Simnani FZ, Singh D, Sinha A, Kumari K, Rao PV, Singh S, Kaushik NK, Panda PK, Suar M, Verma SK. Biofilm modifiers: The disparity in paradigm of oral biofilm ecosystem. Biomed Pharmacother 2023; 164:114966. [PMID: 37269809 DOI: 10.1016/j.biopha.2023.114966] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/19/2023] [Accepted: 05/29/2023] [Indexed: 06/05/2023] Open
Abstract
A biofilm is a population of sessile microorganisms that has a distinct organized structure and characteristics like channels and projections. Good oral hygiene and reduction in the prevalence of periodontal diseases arise from minimal biofilm accumulation in the mouth, however, studies focusing on modifying the ecology of oral biofilms have not yet been consistently effective. The self-produced matrix of extracellular polymeric substances and greater antibiotic resistance make it difficult to target and eliminate biofilm infections, which lead to serious clinical consequences that are often lethal. Therefore, a better understanding is required to target and modify the ecology of biofilms in order to eradicate the infection, not only in instances of oral disorders but also in terms of nosocomial infections. The review focuses on several biofilm ecology modifiers to prevent biofilm infections, as well as the involvement of biofilm in antibiotic resistance, implants or in-dwelling device contamination, dental caries, and other periodontal disorders. It also discusses recent advances in nanotechnology that may lead to novel strategies for preventing and treating infections caused by biofilms as well as a novel outlook to infection control.
Collapse
Affiliation(s)
- Antarikshya Das
- KIIT School of Dental Sciences, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Swadheena Patro
- KIIT School of Dental Sciences, KIIT University, Bhubaneswar 751024, Odisha, India.
| | | | - Dibyangshee Singh
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Adrija Sinha
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Khushbu Kumari
- KIIT School of Dental Sciences, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Patnala Vedika Rao
- KIIT School of Medical Sciences, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Sarita Singh
- BVG Life Sciences Limited, Sagar Complex, Old Pune-Mumbai Road, Chinchwad, Pune 411034, India
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897 Seoul, Republic of Korea.
| | - Pritam Kumar Panda
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden.
| | - Mrutyunjay Suar
- KIIT School of Dental Sciences, KIIT University, Bhubaneswar 751024, Odisha, India.
| | - Suresh K Verma
- KIIT School of Dental Sciences, KIIT University, Bhubaneswar 751024, Odisha, India.
| |
Collapse
|
41
|
Guinee ME, Bhagtani H. Evaluation of a 13-Month-Old Anemic Child With Gushing Gums. Cureus 2023; 15:e42665. [PMID: 37644949 PMCID: PMC10462415 DOI: 10.7759/cureus.42665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2023] [Indexed: 08/31/2023] Open
Abstract
While it is common practice for adults to brush their teeth twice a day and instill in their children the importance of setting hygiene routines centered around brushing their teeth, infants and toddlers are often overlooked. Infants begin teething around four to seven months of age; during this period of tooth eruption, their gums are highly susceptible to bacterial build-up, causing problems long before oral hygiene comes to mind. We describe a case of a 13-month-old child presenting with bleeding gums and worsening anemia. After blood tests, iron supplementation, and a referral to a pediatric hematologist-oncologist out of concern for a potential bleeding disorder, this patient was diagnosed with normochromic, normocytic anemia caused by bleeding due to infectious gingivitis. After the completion of antibiotic therapy and changes to the patient's routine to incorporate appropriate oral hygiene, the anemia resolved. Generally benign, gingivitis induced by plaque biofilm can advance to more severe forms of periodontal disease, leading to receding gums and abscesses, thus reinforcing the importance of promoting adequate oral hygiene in all ages regardless of dentition. Additionally, educating primary-care providers on pediatric gingivitis allows for the inclusion of this diagnosis on differentials, limiting extensive blood tests and specialist appointments.
Collapse
Affiliation(s)
- Meghan E Guinee
- Pediatrics, Edward Via College of Osteopathic Medicine, Blacksburg, USA
| | - Harsha Bhagtani
- Pediatrics, Edward Via College of Osteopathic Medicine, Blacksburg, USA
| |
Collapse
|
42
|
Sobstyl A, Chałupnik A, Mertowska P, Grywalska E. How Do Microorganisms Influence the Development of Endometriosis? Participation of Genital, Intestinal and Oral Microbiota in Metabolic Regulation and Immunopathogenesis of Endometriosis. Int J Mol Sci 2023; 24:10920. [PMID: 37446108 DOI: 10.3390/ijms241310920] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Microorganisms inhabiting the human body play an extremely key role in its proper functioning, as well as in the development of the immune system, which, by maintaining the immune balance, allows you to enjoy health. Dysbiosis of the intestinal microbiota, or in the oral cavity or reproductive tract, understood as a change in the number and diversity of all microorganisms inhabiting them, may correlate with the development of many diseases, including endometriosis, as researchers have emphasized. Endometriosis is an inflammatory, estrogen-dependent gynecological condition defined by the growth of endometrial cells outside the uterine cavity. Deregulation of immune homeostasis resulting from microbiological disorders may generate chronic inflammation, thus creating an environment conducive to the increased adhesion and angiogenesis involved in the development of endometriosis. In addition, research in recent years has implicated bacterial contamination and immune activation, reduced gastrointestinal function by cytokines, altered estrogen metabolism and signaling, and abnormal progenitor and stem cell homeostasis, in the pathogenesis of endometriosis. The aim of this review was to present the influence of intestinal, oral and genital microbiota dysbiosis in the metabolic regulation and immunopathogenesis of endometriosis.
Collapse
Affiliation(s)
- Anna Sobstyl
- Department of Experimental Immunology, Medical University of Lublin, Chodzki Street, 20-093 Lublin, Poland
| | - Aleksandra Chałupnik
- Department of Experimental Immunology, Medical University of Lublin, Chodzki Street, 20-093 Lublin, Poland
| | - Paulina Mertowska
- Department of Experimental Immunology, Medical University of Lublin, Chodzki Street, 20-093 Lublin, Poland
| | - Ewelina Grywalska
- Department of Experimental Immunology, Medical University of Lublin, Chodzki Street, 20-093 Lublin, Poland
| |
Collapse
|
43
|
Bauer R, Haider D, Grempels A, Roscher R, Mauerer S, Spellerberg B. Diversity of CRISPR-Cas type II-A systems in Streptococcus anginosus. Front Microbiol 2023; 14:1188671. [PMID: 37396379 PMCID: PMC10310304 DOI: 10.3389/fmicb.2023.1188671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/25/2023] [Indexed: 07/04/2023] Open
Abstract
Streptococcus anginosus is a commensal Streptococcal species that is often associated with invasive bacterial infections. However, little is known about its molecular genetic background. Many Streptococcal species, including S. anginosus, harbor clustered regularly interspaced short palindromic repeats (CRISPR)-Cas systems. A CRISPR-Cas type II-A system as well as a type II-C system have been reported for this species. To characterize the CRISPR-Cas type II systems of S. anginosus in more detail, we conducted a phylogenetic analysis of Cas9 sequences from CRISPR-Cas type II systems with a special focus on streptococci and S. anginosus. In addition, a phylogenetic analysis of S. anginosus strains based on housekeeping genes included in MLST analysis, was performed. All analyzed Cas9 sequences of S. anginosus clustered with the Cas9 sequences of CRISPR type II-A systems, including the Cas9 sequences of S. anginosus strains reported to harbor a type II-C system. The Cas9 genes of the CRISPR-Cas type II-C systems of other bacterial species separated into a different cluster. Moreover, analyzing the CRISPR loci found in S. anginosus, two distinct csn2 genes could be detected, a short form showing high similarity to the canonical form of the csn2 gene present in S. pyogenes. The second CRISPR type II locus of S. anginosus contained a longer variant of csn2 with close similarities to a csn2 gene that has previously been described in Streptococcus thermophilus. Since CRISPR-Cas type II-C systems do not contain a csn2 gene, the S. anginosus strains reported to have a CRISPR-Cas type II-C system appear to carry a variation of CRISPR-Cas type II-A harboring a long variant of csn2.
Collapse
|
44
|
Cho H, Ren Z, Divaris K, Roach J, Lin BM, Liu C, Azcarate-Peril MA, Simancas-Pallares MA, Shrestha P, Orlenko A, Ginnis J, North KE, Zandona AGF, Ribeiro AA, Wu D, Koo H. Selenomonas sputigena acts as a pathobiont mediating spatial structure and biofilm virulence in early childhood caries. Nat Commun 2023; 14:2919. [PMID: 37217495 PMCID: PMC10202936 DOI: 10.1038/s41467-023-38346-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 04/21/2023] [Indexed: 05/24/2023] Open
Abstract
Streptococcus mutans has been implicated as the primary pathogen in childhood caries (tooth decay). While the role of polymicrobial communities is appreciated, it remains unclear whether other microorganisms are active contributors or interact with pathogens. Here, we integrate multi-omics of supragingival biofilm (dental plaque) from 416 preschool-age children (208 males and 208 females) in a discovery-validation pipeline to identify disease-relevant inter-species interactions. Sixteen taxa associate with childhood caries in metagenomics-metatranscriptomics analyses. Using multiscale/computational imaging and virulence assays, we examine biofilm formation dynamics, spatial arrangement, and metabolic activity of Selenomonas sputigena, Prevotella salivae and Leptotrichia wadei, either individually or with S. mutans. We show that S. sputigena, a flagellated anaerobe with previously unknown role in supragingival biofilm, becomes trapped in streptococcal exoglucans, loses motility but actively proliferates to build a honeycomb-like multicellular-superstructure encapsulating S. mutans, enhancing acidogenesis. Rodent model experiments reveal an unrecognized ability of S. sputigena to colonize supragingival tooth surfaces. While incapable of causing caries on its own, when co-infected with S. mutans, S. sputigena causes extensive tooth enamel lesions and exacerbates disease severity in vivo. In summary, we discover a pathobiont cooperating with a known pathogen to build a unique spatial structure and heighten biofilm virulence in a prevalent human disease.
Collapse
Affiliation(s)
- Hunyong Cho
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Zhi Ren
- Biofilm Research Laboratories, Center for Innovation & Precision Dentistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kimon Divaris
- Division of Pediatric and Public Health, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Jeffrey Roach
- UNC Information Technology Services and Research Computing, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Microbiome Core, Center for Gastrointestinal Biology and Disease, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Bridget M Lin
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Chuwen Liu
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - M Andrea Azcarate-Peril
- UNC Microbiome Core, Center for Gastrointestinal Biology and Disease, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Medicine, Division of Gastroenterology and Hepatology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Miguel A Simancas-Pallares
- Division of Pediatric and Public Health, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Poojan Shrestha
- Division of Pediatric and Public Health, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alena Orlenko
- Artificial Intelligence Innovation Lab, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jeannie Ginnis
- Division of Pediatric and Public Health, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kari E North
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Apoena Aguiar Ribeiro
- Division of Diagnostic Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Di Wu
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Hyun Koo
- Biofilm Research Laboratories, Center for Innovation & Precision Dentistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
45
|
Herrera BS, Henz SL, Dua S, Martin L, Teles RP, Patel M, Teles FRF. Pursuing new periodontal pathogens with an improved RNA-oligonucleotide quantification technique (ROQT). Arch Oral Biol 2023; 152:105721. [PMID: 37196563 DOI: 10.1016/j.archoralbio.2023.105721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/22/2023] [Accepted: 05/09/2023] [Indexed: 05/19/2023]
Abstract
OBJECTIVE The aim of this study was to optimize the sensitivity, specificity and cost-effectiveness of the RNA-Oligonucleotide Quantification Technique (ROQT) in order to identify periodontal pathogens that remain unrecognized or uncultured in the oral microbiome. DESIGN Total nucleic acids (TNA) were extracted from subgingival biofilm samples using an automated process. RNA, DNA and Locked Nucleic Acid (LNA) digoxigenin-labeled oligonucleotide probes targeting 5 cultivated/named species and 16 uncultivated or unnamed bacterial taxa were synthesized. Probe specificity was determined by targeting 96 oral bacterial species; sensitivity was assessed using serial dilutions of reference bacterial strains. Different stringency temperatures were compared and new standards were tested. The tested conditions were evaluated analyzing samples from periodontally healthy individuals, and patients with moderate or severe periodontitis. RESULTS The automated extraction method at 63⁰C along with LNA-oligunucleotides probes, and use of reverse RNA sequences for standards yielded stronger signals without cross-reactions. In the pilot clinical study, the most commonly detected uncultivated/unrecognized species were Selenomonas sp. HMT 134, Prevotella sp. HMT 306, Desulfobulbus sp. HMT 041, Synergistetes sp. HMT 360 and Bacteroidetes HMT 274. In the cultivated segment of the microbiota, the most abundant taxa were T. forsythia HMT 613 and Fretibacterium fastidiosum (formerly Synergistetes) HMT 363. CONCLUSIONS In general, samples from severe patients had the greatest levels of organisms. Classic (T. forsythia, P. gingivalis) and newly proposed (F. alocis and Desulfobulbus sp. HMT 041) pathogens were present in greater amounts in samples from severe periodontitis sites, followed by moderate periodontitis sites.
Collapse
Affiliation(s)
- Bruno S Herrera
- Department of Periodontology, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sandra L Henz
- Department of Periodontology, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Preventive and Social Dentistry, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Shawn Dua
- Department of Periodontology, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lynn Martin
- Department of Basic and Translational Sciences, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA, USA
| | - Ricardo P Teles
- Department of Periodontics, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA, USA
| | - Michele Patel
- Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, MA, USA.
| | - Flavia R F Teles
- Department of Basic and Translational Sciences, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA, USA
| |
Collapse
|
46
|
GC B, Zhou P, Wu C. HicA Toxin-Based Counterselection Marker for Allelic Exchange Mutations in Fusobacterium nucleatum. Appl Environ Microbiol 2023; 89:e0009123. [PMID: 37039662 PMCID: PMC10132090 DOI: 10.1128/aem.00091-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/20/2023] [Indexed: 04/12/2023] Open
Abstract
The study of fusobacterial virulence factors has dramatically benefited from the creation of various genetic tools for DNA manipulation, including galK-based counterselection for in-frame deletion mutagenesis in Fusobacterium nucleatum, which was recently developed. However, this method requires a host lacking the galK gene, which is an inherent limitation. To circumvent this limitation, we explored the possibility of using the hicA gene that encodes a toxin consisting of a HicAB toxin-antitoxin module in Fusobacterium periodonticum as a new counterselective marker. Interestingly, the full-length hicA gene is not toxic in F. nucleatum, but a truncated hicA gene version lacking the first six amino acids is functional as a toxin. The toxin expression is driven by an rpsJ promoter and is controlled at its translational level by using a theophylline-responsive riboswitch unit. As a proof of concept, we created markerless in-frame deletions in the fusobacterial adhesin radD gene within the F. nucleatum rad operon and the tnaA gene that encodes the tryptophanase for indole production. After vector integration, plasmid excision after counterselection appeared to have occurred in 100% of colonies grown on theophylline-added plates and resulted in in-frame deletions in 50% of the screened isolates. This hicA-based counterselection system provides a robust and reliable counterselection in wild-type background F. nucleatum and should also be adapted for use in other bacteria. IMPORTANCE Fusobacterium nucleatum is an indole-producing human oral anaerobe associated with periodontal diseases, preterm birth, and several cancers. Little is known about the mechanisms of fusobacterial pathogenesis and associated factors, mainly due to the lack of robust genetic tools for this organism. Here, we showed that a mutated hicA gene from Fusobacterium periodonticum expresses an active toxin and was used as a counterselection marker. This hicA-based in-frame deletion system efficiently creates in-frame deletion mutations in the wild-type background of F. nucleatum. This is the first report to use the hicA gene as a counterselection marker in a bacterial genetic study.
Collapse
Affiliation(s)
- Bibek GC
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center, Houston, Texas, USA
| | - Peng Zhou
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center, Houston, Texas, USA
| | - Chenggang Wu
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center, Houston, Texas, USA
| |
Collapse
|
47
|
Bibek GC, Zhou P, Naha A, Gu J, Wu C. Development of a Xylose-Inducible Promoter and Riboswitch Combination System for Manipulating Gene Expression in Fusobacterium nucleatum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.24.538132. [PMID: 37163003 PMCID: PMC10168284 DOI: 10.1101/2023.04.24.538132] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Inducible gene expression systems are important for studying bacterial gene function, yet most exhibit leakage. In this study, we engineered a leakage-free hybrid system for precise gene expression controls in Fusobacterium nucleatum by integrating the xylose-inducible expression system with the theophylline-responsive riboswitch. This innovative method enables concurrent control of target gene expression at both transcription and translation initiation levels. Using luciferase and the indole-producing enzyme tryptophanase (TnaA) as reporters, we demonstrated that the hybrid system displays virtually no observable signal in the absence of inducers. We employed this system to express FtsX, a protein related to fusobacterial cytokinesis, in an ftsX mutant strain, unveiling a dose-dependent manner in FtsX production. Without inducers, cells form long filaments, while increasing FtsX levels by increasing inducers concentrations led to a gradual reduction in cell length until normal morphology was restored. Crucially, this system facilitated essential gene investigation, identifying the signal peptidase lepB gene as vital for F. nucleatum . LepB's essentiality stems from depletion, affecting outer membrane biogenesis and cell division. This novel hybrid system holds the potential for advancing research on essential genes and accurate gene regulation in F. nucleatum .
Collapse
|
48
|
Chih SM, Cheng CD, Chen SH, Sung CE, Huang RY, Cheng WC. The Impact of Smoking on Peri-implant Microbiota: A Systematic Review. J Dent 2023; 133:104525. [PMID: 37088258 DOI: 10.1016/j.jdent.2023.104525] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/06/2023] [Accepted: 04/18/2023] [Indexed: 04/25/2023] Open
Abstract
OBJECTIVES Peri-implantitis is associated with bacterial plaque biofilms and with patients who have a history of periodontitis. Smoking is a risk factor for periodontitis, but the relationship between smoking and peri-implantitis is unclear. The aim of this systematic review was to assess evidence ascertaining the relationship between smoking and peri-implant microbiota. DATA SOURCES An electronic search was conducted in the MEDLINE/PubMed, Embase and Scopus® databases in duplicate up to January 2023 without language restrictions. Studies were considered eligible for inclusion if they involved evaluation of the peri-implant microbiota of smokers and nonsmokers. Methodological quality was assessed with the adapted Newcastle-Ottawa scale. STUDY SELECTION Fourteen studies were identified for inclusion in the present study, and 85.7% of the studies were defined as medium to high methodological quality. Overall, the evidence presented in this review was limited to medium to high methodological quality. The data indicates that significantly higher frequencies of anaerobic pathogens are detectable in healthy peri-implant tissues of smokers. A lower diversity of microbiota was observed in healthy peri-implant sites of smokers. In the transition from clinically healthy to a diseased status, smoking shaped a reduced peri-implant microbiota by depleting commensal and enriching pathogenic species. CONCLUSIONS The composition of peri-implant microbiota may be influenced by smoking. More studies are needed to determine the impact of smoking on peri-implant microbiota. CLINICAL SIGNIFICANCE In the transition from clinically healthy to a diseased status, smoking shaped a reduced peri-implant microbiota by depleting commensal and enriching pathogenic species. The composition of peri-implant microbiota may be influenced by smoking.
Collapse
Affiliation(s)
- Shu-Mi Chih
- Department of Periodontology, School of Dentistry, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan; Graduate Institute of Dental Science, National Defense Medical Center
| | - Chia-Dan Cheng
- Department of Periodontology, School of Dentistry, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan
| | - Siao-Han Chen
- Department of Periodontology, School of Dentistry, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan
| | - Cheng-En Sung
- Department of Periodontology, School of Dentistry, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan
| | - Ren-Yeong Huang
- Department of Periodontology, School of Dentistry, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan
| | - Wan-Chien Cheng
- Department of Periodontology, School of Dentistry, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
49
|
Wang Y, Li J, Tang M, Peng C, Wang G, Wang J, Wang X, Chang X, Guo J, Gui S. Smart stimuli-responsive hydrogels for drug delivery in periodontitis treatment. Biomed Pharmacother 2023; 162:114688. [PMID: 37068334 DOI: 10.1016/j.biopha.2023.114688] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/03/2023] [Accepted: 04/10/2023] [Indexed: 04/19/2023] Open
Abstract
Periodontitis is a chronic inflammatory disease initiated by pathogenic biofilms and host immunity that damages tooth-supporting tissues, including the gingiva, periodontal ligament and alveolar bone. The physiological functions of the oral cavity, such as saliva secretion and chewing, greatly reduce the residence of therapeutic drugs in the area of a periodontal lesion. In addition, complex and diverse pathogenic mechanisms make effectively treating periodontitis difficult. Therefore, designing advanced local drug delivery systems and rational therapeutic strategies are the basis for successful periodontitis treatment. Hydrogels have attracted considerable interest in the field of periodontitis treatment due to their biocompatibility, biodegradability and convenient administration to the periodontal pocket. In recent years, the focus of hydrogel research has shifted to smart stimuli-responsive hydrogels, which can undergo flexible sol-gel transitions in situ and control drug release in response to stimulation by temperature, light, pH, ROS, glucose, or enzymes. In this review, we systematically introduce the development and rational design of emerging smart stimuli-responsive hydrogels for periodontitis treatment. We also discuss the state-of-the-art therapeutic strategies of smart hydrogels based on the pathogenesis of periodontitis. Additionally, the challenges and future research directions of smart hydrogels for periodontitis treatment are discussed from the perspective of developing efficient hydrogel delivery systems and potential clinical applications.
Collapse
Affiliation(s)
- Yuxiao Wang
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Jiaxin Li
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Maomao Tang
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Chengjun Peng
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, Anhui 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, Anhui 230012, China; Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, Anhui 230012, China
| | - Guichun Wang
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Jingjing Wang
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Xinrui Wang
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Xiangwei Chang
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, Anhui 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, Anhui 230012, China; Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, Anhui 230012, China
| | - Jian Guo
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, Anhui 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, Anhui 230012, China; Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, Anhui 230012, China.
| | - Shuangying Gui
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, Anhui 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, Anhui 230012, China; Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, Anhui 230012, China.
| |
Collapse
|
50
|
Begić G, Badovinac IJ, Karleuša L, Kralik K, Cvijanovic Peloza O, Kuiš D, Gobin I. Streptococcus salivarius as an Important Factor in Dental Biofilm Homeostasis: Influence on Streptococcus mutans and Aggregatibacter actinomycetemcomitans in Mixed Biofilm. Int J Mol Sci 2023; 24:ijms24087249. [PMID: 37108414 PMCID: PMC10139097 DOI: 10.3390/ijms24087249] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
A disturbed balance within the dental biofilm can result in the dominance of cariogenic and periodontopathogenic species and disease development. Due to the failure of pharmacological treatment of biofilm infection, a preventive approach to promoting healthy oral microbiota is necessary. This study analyzed the influence of Streptococcus salivarius K12 on the development of a multispecies biofilm composed of Streptococcus mutans, S. oralis and Aggregatibacter actinomycetemcomitans. Four different materials were used: hydroxyapatite, dentin and two dense polytetrafluoroethylene (d-PTFE) membranes. Total bacteria, individual species and their proportions in the mixed biofilm were quantified. A qualitative analysis of the mixed biofilm was performed using scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). The results showed that in the presence of S. salivarius K 12 in the initial stage of biofilm development, the proportion of S. mutans was reduced, which resulted in the inhibition of microcolony development and the complex three-dimensional structure of the biofilm. In the mature biofilm, a significantly lower proportion of the periodontopathogenic species A. actinomycetemcomitans was found in the salivarius biofilm. Our results show that S. salivarius K 12 can inhibit the growth of pathogens in the dental biofilm and help maintain the physiological balance in the oral microbiome.
Collapse
Affiliation(s)
- Gabrijela Begić
- Department of Microbiology and Parasitology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Ivana Jelovica Badovinac
- Faculty of Physics and Centre for Micro- and Nanosciences and Technologies, University of Rijeka, 51000 Rijeka, Croatia
| | - Ljerka Karleuša
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Kristina Kralik
- Department of Medical Statistics and Medical Informatics, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | | | - Davor Kuiš
- Department of Periodontology, Faculty of Dental Medicine, University of Rijeka, 51000 Rijeka, Croatia
- Department of Dental Medicine, Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Clinical Hospital Centre, 51000 Rijeka, Croatia
| | - Ivana Gobin
- Department of Microbiology and Parasitology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| |
Collapse
|