1
|
Choe D, Olson CA, Szubin R, Yang H, Sung J, Feist AM, Palsson BO. Advancing the scale of synthetic biology via cross-species transfer of cellular functions enabled by iModulon engraftment. Nat Commun 2024; 15:2356. [PMID: 38490991 PMCID: PMC10943186 DOI: 10.1038/s41467-024-46486-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 02/29/2024] [Indexed: 03/18/2024] Open
Abstract
Machine learning applied to large compendia of transcriptomic data has enabled the decomposition of bacterial transcriptomes to identify independently modulated sets of genes, such iModulons represent specific cellular functions. The identification of iModulons enables accurate identification of genes necessary and sufficient for cross-species transfer of cellular functions. We demonstrate cross-species transfer of: 1) the biotransformation of vanillate to protocatechuate, 2) a malonate catabolic pathway, 3) a catabolic pathway for 2,3-butanediol, and 4) an antimicrobial resistance to ampicillin found in multiple Pseudomonas species to Escherichia coli. iModulon-based engineering is a transformative strategy as it includes all genes comprising the transferred cellular function, including genes without functional annotation. Adaptive laboratory evolution was deployed to optimize the cellular function transferred, revealing mutations in the host. Combining big data analytics and laboratory evolution thus enhances the level of understanding of systems biology, and synthetic biology for strain design and development.
Collapse
Affiliation(s)
- Donghui Choe
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Connor A Olson
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Richard Szubin
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Hannah Yang
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jaemin Sung
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Adam M Feist
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Copenhagen, Denmark
| | - Bernhard O Palsson
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA.
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Copenhagen, Denmark.
| |
Collapse
|
2
|
Veličković D, Zemaitis KJ, Bhattacharjee A, Anderton CR. Mass spectrometry imaging of natural carbonyl products directly from agar-based microbial interactions using 4-APEBA derivatization. mSystems 2024; 9:e0080323. [PMID: 38064548 PMCID: PMC10804984 DOI: 10.1128/msystems.00803-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/31/2023] [Indexed: 01/24/2024] Open
Abstract
Aliphatic carboxylic acids, aldehydes, and ketones play diverse roles in microbial adaptation to their microenvironment, from excretion as toxins to adaptive metabolites for membrane fluidity. However, the spatial distribution of these molecules throughout biofilms and how microbes in these environments exchange these molecules remain elusive for many of these bioactive species due to inefficient molecular imaging strategies. Herein, we apply on-tissue chemical derivatization (OTCD) using 4-(2-((4-bromophenethyl)dimethylammonio)ethoxy)benzenaminium dibromide (4-APEBA) on a co-culture of a soil bacterium (Bacillus subtilis NCIB 3610) and fungus (Fusarium sp. DS 682) grown on agar as our model system. Using matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI), we spatially resolved more than 300 different metabolites containing carbonyl groups within this model system. Various spatial patterns are observable in these species, which indicate possible extracellular or intercellular processes of the metabolites and their up- or downregulation during microbial interaction. The unique chemistry of our approach allowed us to bring additional confidence in accurate carbonyl identification, especially when multiple isomeric candidates were possible, and this provided the ability to generate hypotheses about the potential role of some aliphatic carbonyls in this B. subtilis/Fusarium sp. interaction. The results shown here demonstrate the utility of 4-ABEBA-based OTCD MALDI-MSI in probing interkingdom interactions directly from microbial co-cultures, and these methods will enable future microbial interaction studies with expanded metabolic coverage.IMPORTANCEThe metabolic profiles within microbial biofilms and interkingdom interactions are extremely complex and serve a variety of functions, which include promoting colonization, growth, and survival within competitive and symbiotic environments. However, measuring and differentiating many of these molecules, especially in an in situ fashion, remains a significant analytical challenge. We demonstrate a chemical derivatization strategy that enabled highly sensitive, multiplexed mass spectrometry imaging of over 300 metabolites from a model microbial co-culture. Notably, this approach afforded us to visualize over two dozen classes of ketone-, aldehyde-, and carboxyl-containing molecules, which were previously undetectable from colonies grown on agar. We also demonstrate that this chemical derivatization strategy can enable the discrimination of isobaric and isomeric metabolites without the need for orthogonal separation (e.g., online chromatography or ion mobility). We anticipate that this approach will further enhance our knowledge of metabolic regulation within microbiomes and microbial systems used in bioengineering applications.
Collapse
Affiliation(s)
- Dušan Veličković
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Kevin J. Zemaitis
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Arunima Bhattacharjee
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Christopher R. Anderton
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| |
Collapse
|
3
|
Hwang Y, Na JG, Lee SJ. Transcriptional regulation of soluble methane monooxygenase via enhancer-binding protein derived from Methylosinus sporium 5. Appl Environ Microbiol 2023; 89:e0210422. [PMID: 37668365 PMCID: PMC10537576 DOI: 10.1128/aem.02104-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 07/07/2023] [Indexed: 09/06/2023] Open
Abstract
Methane is a major greenhouse gas, and methanotrophs regulate the methane level in the carbon cycle. Soluble methane monooxygenase (sMMO) is expressed in various methanotroph genera, including Alphaproteobacteria and Gammaproteobacteria, and catalyzes the hydroxylation of methane to methanol. It has been proposed that MmoR regulates the expression of sMMO as an enhancer-binding protein under copper-limited conditions; however, details on this transcriptional regulation remain limited. Herein, we elucidate the transcriptional pathway of sMMO depending on copper ion concentration, which affects the interaction of MmoR and sigma factor. MmoR and sigma-54 (σ54) from Methylosinus sporium 5 were successfully overexpressed in Escherichia coli and purified to investigate sMMO transcription in methanotrophs. The results indicated that σ54 binds to a promoter positioned -24 (GG) and -12 (TGC) upstream between mmoG and mmoX1. The binding affinity and selectivity are lower (Kd = 184.6 ± 6.2 nM) than those of MmoR. MmoR interacts with the upstream activator sequence (UAS) with a strong binding affinity (Kd = 12.5 ± 0.5 nM). Mutational studies demonstrated that MmoR has high selectivity to its binding partner (ACA-xx-TGT). Titration assays have demonstrated that MmoR does not coordinate with copper ions directly; however, its binding affinity to UAS decreases in a low-copper-containing medium. MmoR strongly interacts with adenosine triphosphate (Kd = 62.8 ± 0.5 nM) to generate RNA polymerase complex. This study demonstrated that the binding events of both MmoR and σ54 that regulate transcription in M. sporium 5 depend on the copper ion concentration. IMPORTANCE This study provides biochemical evidence of transcriptional regulation of soluble methane monooxygenase (sMMO) in methanotrophs that control methane levels in ecological systems. Previous studies have proposed transcriptional regulation of MMOs, including sMMO and pMMO, while we provide further evidence to elucidate its mechanism using a purified enhancer-binding protein (MmoR) and transcription factor (σ54). The characterization studies of σ54 and MmoR identified the promoter binding sites and enhancer-binding sequences essential for sMMO expression. Our findings also demonstrate that MmoR functions as a trigger for sMMO expression due to the high specificity and selectivity for enhancer-binding sequences. The UV-visible spectrum of purified MmoR suggested an iron coordination like other GAF domain, and that ATP is essential for the initiation of enhancer elements. Binding assays indicated that these interactions are blocked by the copper ion. These results provide novel insights into gene regulation of methanotrophs.
Collapse
Affiliation(s)
- Yunha Hwang
- Department of Chemistry, Jeonbuk National University , Jeonju, South Korea
| | - Jeong-Geol Na
- Department of Chemical Engineering, Sogang University , Seoul, South Korea
| | - Seung Jae Lee
- Department of Chemistry, Jeonbuk National University , Jeonju, South Korea
- Institute of Molecular Biology and Genetics, Jeonbuk National University , Jeonju, South Korea
| |
Collapse
|
4
|
Wetzel D, Rizvi A, Edwards AN, McBride SM. The predicted acetoin dehydrogenase pathway represses sporulation of Clostridioides difficile. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.28.551048. [PMID: 37546766 PMCID: PMC10402147 DOI: 10.1101/2023.07.28.551048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Clostridioides difficile is a major gastrointestinal pathogen that is transmitted as a dormant spore. As an intestinal pathogen, C. difficile must contend with variable environmental conditions, including fluctuations in pH and nutrient availability. Nutrition and pH both influence growth and spore formation, but how pH and nutrition jointly influence sporulation are not known. In this study, we investigated the dual impact of pH and pH-dependent metabolism on C. difficile sporulation. Specifically, we examined the impacts of pH and the metabolite acetoin on C. difficile growth and sporulation. We found that expression of the predicted acetoin dehydrogenase operon, acoRABCL , was pH-dependent and regulated by acetoin. Regulation of the C. difficile aco locus is distinct from other characterized systems and appears to involve a co-transcribed DeoR-family regulator rather than the sigma 54 -dependent activator. In addition, an acoA null mutant produced significantly more spores and initiated sporulation earlier than the parent strain. However, unlike other Firmicutes, growth and culture density of C. difficile was not increased by acetoin availability or disruption of the aco pathway. Together, these results indicate that acetoin, pH, and the aco pathway play important roles in nutritional repression of sporulation in C. difficile , but acetoin metabolism does not support cell growth as a stationary phase energy source. IMPORTANCE Clostridioides difficile, or C. diff , is an anaerobic bacterium that lives within the gut of many mammals and causes infectious diarrhea. C. difficile is able to survive outside of the gut and transmit to new hosts by forming dormant spores. It is known that the pH of the intestine and the nutrients available both affect the growth and sporulation of C. diffiicile, but the specific conditions that result in sporulation in the host are not clear. In this study, we investigated how pH and the metabolite acetoin affect the ability of C. difficile to grow, proliferate, and form spores. We found that a mutant lacking the predicted acetoin metabolism pathway form more spores, but their growth is not impacted. These results show that C. difficile uses acetoin differently than many other species and that acetoin has an important role as an environmental metabolite that influences spore formation.
Collapse
|
5
|
Jun JS, Jeong HE, Moon SY, Shin SH, Hong KW. Time-Course Transcriptome Analysis of Bacillus subtilis DB104 during Growth. Microorganisms 2023; 11:1928. [PMID: 37630488 PMCID: PMC10458515 DOI: 10.3390/microorganisms11081928] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Bacillus subtilis DB104, an extracellular protease-deficient derivative of B. subtilis 168, is widely used for recombinant protein expression. An understanding of the changes in gene expression during growth is essential for the commercial use of bacterial strains. Transcriptome and proteome analyses are ideal methods to study the genomic response of microorganisms. In this study, transcriptome analysis was performed to monitor changes in the gene expression level of B. subtilis DB104 while growing on a complete medium. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, K-mean cluster analysis, gene ontology (GO) enrichment analysis, and the function of sigma factors were used to divide 2122 differentially expressed genes (DEGs) into 10 clusters and identified gene functions according to expression patterns. The results of KEGG pathway analysis indicated that ABC transporter is down-regulated during exponential growth and metabolic changes occur at the transition point where sporulation starts. At this point, several stress response genes were also turned on. The genes involved in the lipid catabolic process were up-regulated briefly at 15 h as an outcome of the programmed cell death that postpones sporulation. The results suggest that changes in the gene expression of B. subtilis DB104 were dependent on the initiation of sporulation. However, the expression timing of the spore coat gene was only affected by the relevant sigma factor. This study can help to understand gene expression and regulatory mechanisms in B. subtilis species by providing an overall view of transcriptional changes during the growth of B. subtilis DB104.
Collapse
Affiliation(s)
| | | | | | | | - Kwang-Won Hong
- Department of Food Science and Biotechnology, College of Life Science and Biotechnology, Dongguk University, Goyang-si 10326, Republic of Korea; (J.-S.J.); (H.-E.J.); (S.-Y.M.); (S.-H.S.)
| |
Collapse
|
6
|
Bertschi A, Stefanov BA, Xue S, Charpin-El Hamri G, Teixeira AP, Fussenegger M. Controlling therapeutic protein expression via inhalation of a butter flavor molecule. Nucleic Acids Res 2023; 51:e28. [PMID: 36625292 PMCID: PMC10018347 DOI: 10.1093/nar/gkac1256] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 11/29/2022] [Accepted: 12/20/2022] [Indexed: 01/11/2023] Open
Abstract
Precise control of the delivery of therapeutic proteins is critical for gene- and cell-based therapies, and expression should only be switched on in the presence of a specific trigger signal of appropriate magnitude. Focusing on the advantages of delivering the trigger by inhalation, we have developed a mammalian synthetic gene switch that enables regulation of transgene expression by exposure to the semi-volatile small molecule acetoin, a widely used, FDA-approved food flavor additive. The gene switch capitalizes on the bacterial regulatory protein AcoR fused to a mammalian transactivation domain, which binds to promoter regions with specific DNA sequences in the presence of acetoin and dose-dependently activates expression of downstream transgenes. Wild-type mice implanted with alginate-encapsulated cells transgenic for the acetoin gene switch showed a dose-dependent increase in blood levels of reporter protein in response to either administration of acetoin solution via oral gavage or longer exposure to acetoin aerosol generated by a commercial portable inhaler. Intake of typical acetoin-containing foods, such as butter, lychees and cheese, did not activate transgene expression. As a proof of concept, we show that blood glucose levels were normalized by acetoin aerosol inhalation in type-I diabetic mice implanted with acetoin-responsive insulin-producing cells. Delivery of trigger molecules using portable inhalers may facilitate regular administration of therapeutic proteins via next-generation cell-based therapies to treat chronic diseases for which frequent dosing is required.
Collapse
Affiliation(s)
- Adrian Bertschi
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Bozhidar-Adrian Stefanov
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Shuai Xue
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Ghislaine Charpin-El Hamri
- Département Génie Biologique, Institut Universitaire de Technologie, Université Claude Bernard, Lyon 1 Villeurbanne Cedex F-69622, France
| | - Ana Palma Teixeira
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Martin Fussenegger
- To whom correspondence should be addressed. Tel: +41 61 387 31 60; Fax: +41 61 387 39 88;
| |
Collapse
|
7
|
Li Y, Luo L, Ding X, Zhang X, Gan S, Shang C. Production of Tetramethylpyrazine from Cane Molasses by Bacillus sp. TTMP20. Molecules 2023; 28:molecules28062640. [PMID: 36985611 PMCID: PMC10054849 DOI: 10.3390/molecules28062640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/03/2023] [Accepted: 03/09/2023] [Indexed: 03/15/2023] Open
Abstract
2,3,5,6-Tetramethylpyrazine (TTMP) is an active ingredient of Ligusticum wallichii Franch. It can be used in medicine and food fields. In this study, Bacillus sp. TTMP20 was applied to produce TTMP using cane molasses as a carbon source. After pretreatment with phosphoric acid, 170 mL/L treated molasses, combined with 10 g/L yeast powder, 30 g/L tryptone and 30 g/L (NH4)2HPO4 were used for fermentation. After 36 h, TTMP output reached the highest value of 208.8 mg/L. The yield of TTMP using phosphoric acid-treated molasses as carbon source was 145.59% higher than control. Under the sulfuric acid treatment process of molasses (150 g), the maximum yield of TTMP was 895.13 mg/L, which was 183.18% higher than that of untreated molasses (316.1 mg/L). This study demonstrated that molasses is a high-quality and inexpensive carbon source for the manufacture of TTMP, laying the groundwork for the future industrial production of TTMP.
Collapse
|
8
|
Moreno R, Yuste L, Rojo F. The acetoin assimilation pathway of Pseudomonas putida KT2440 is regulated by overlapping global regulatory elements that respond to nutritional cues. Environ Microbiol 2023; 25:515-531. [PMID: 36482024 PMCID: PMC10107126 DOI: 10.1111/1462-2920.16304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Many microorganisms produce and excrete acetoin (3-hydroxy-2-butanone) when growing in environments that contain glucose or other fermentable carbon sources. This excreted compound can then be assimilated by other bacterial species such as pseudomonads. This work shows that acetoin is not a preferred carbon source of Pseudomonas putida, and that the induction of genes required for its assimilation is down-modulated by different, independent, global regulatory systems when succinate, glucose or components of the LB medium are also present. The expression of the acetoin degradation genes was found to rely on the RpoN alternative sigma factor and to be modulated by the Crc/Hfq, Cyo and PTSNtr regulatory elements, with the impact of the latter three varying according to the carbon source present in addition to acetoin. Pyruvate, a poor carbon source for P. putida, did not repress acetoin assimilation. Indeed, the presence of acetoin significantly improved growth on pyruvate, revealing these compounds to have a synergistic effect. This would provide a clear competitive advantage to P. putida when growing in environments in which all the preferred carbon sources have been depleted and pyruvate and acetoin remain as leftovers from the fermentation of sugars by other microorganisms.
Collapse
Affiliation(s)
- Renata Moreno
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Cantoblanco, Madrid, Spain
| | - Luis Yuste
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Cantoblanco, Madrid, Spain
| | - Fernando Rojo
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Cantoblanco, Madrid, Spain
| |
Collapse
|
9
|
Sheng L, Madika A, Lau MSH, Zhang Y, Minton NP. Metabolic engineering for the production of acetoin and 2,3-butanediol at elevated temperature in Parageobacillus thermoglucosidasius NCIMB 11955. Front Bioeng Biotechnol 2023; 11:1191079. [PMID: 37200846 PMCID: PMC10185769 DOI: 10.3389/fbioe.2023.1191079] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 04/20/2023] [Indexed: 05/20/2023] Open
Abstract
The current climate crisis has emphasised the need to achieve global net-zero by 2050, with countries being urged to set considerable emission reduction targets by 2030. Exploitation of a fermentative process that uses a thermophilic chassis can represent a way to manufacture chemicals and fuels through more environmentally friendly routes with a net reduction in greenhouse gas emissions. In this study, the industrially relevant thermophile Parageobacillus thermoglucosidasius NCIMB 11955 was engineered to produce 3-hydroxybutanone (acetoin) and 2,3-butanediol (2,3-BDO), organic compounds with commercial applications. Using heterologous acetolactate synthase (ALS) and acetolactate decarboxylase (ALD) enzymes, a functional 2,3-BDO biosynthetic pathway was constructed. The formation of by-products was minimized by the deletion of competing pathways surrounding the pyruvate node. Redox imbalance was addressed through autonomous overexpression of the butanediol dehydrogenase and by investigating appropriate aeration levels. Through this, we were able to produce 2,3-BDO as the predominant fermentation metabolite, with up to 6.6 g/L 2,3-BDO (0.33 g/g glucose) representing 66% of the theoretical maximum at 50°C. In addition, the identification and subsequent deletion of a previously unreported thermophilic acetoin degradation gene (acoB1) resulted in enhanced acetoin production under aerobic conditions, producing 7.6 g/L (0.38 g/g glucose) representing 78% of the theoretical maximum. Furthermore, through the generation of a ΔacoB1 mutant and by testing the effect of glucose concentration on 2,3-BDO production, we were able to produce 15.6 g/L of 2,3-BDO in media supplemented with 5% glucose, the highest titre of 2,3-BDO produced in Parageobacillus and Geobacillus species to date.
Collapse
Affiliation(s)
- Lili Sheng
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, Biodiscovery Institute, The University of Nottingham, Nottingham, United Kingdom
| | - Abubakar Madika
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, Biodiscovery Institute, The University of Nottingham, Nottingham, United Kingdom
- Department of Microbiology, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Matthew S. H. Lau
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, Biodiscovery Institute, The University of Nottingham, Nottingham, United Kingdom
| | - Ying Zhang
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, Biodiscovery Institute, The University of Nottingham, Nottingham, United Kingdom
| | - Nigel P. Minton
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, Biodiscovery Institute, The University of Nottingham, Nottingham, United Kingdom
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust, The University of Nottingham, Nottingham, United Kingdom
- *Correspondence: Nigel P. Minton,
| |
Collapse
|
10
|
Rebelo A, Duarte B, Ferreira C, Mourão J, Ribeiro S, Freitas AR, Coque TM, Willems R, Corander J, Peixe L, Antunes P, Novais C. Enterococcus spp. from chicken meat collected 20 years apart overcome multiple stresses occurring in the poultry production chain: Antibiotics, copper and acids. Int J Food Microbiol 2023; 384:109981. [DOI: 10.1016/j.ijfoodmicro.2022.109981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/03/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
|
11
|
Association between microbial composition, diversity, and function of the maternal gastrointestinal microbiome with impaired glucose tolerance on the glucose challenge test. PLoS One 2022; 17:e0271261. [PMID: 36584051 PMCID: PMC9803092 DOI: 10.1371/journal.pone.0271261] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 06/28/2022] [Indexed: 12/31/2022] Open
Abstract
Over the last two decades, the incidence of gestational diabetes (GDM) has almost doubled resulting in almost 9% of pregnant women diagnosed with GDM. Occurring more frequently than GDM is impaired glucose tolerance (IGT), also known as pre-diabetes, but it has been understudied during pregnancy resulting in a lack of clinical recommendations of maternal and fetal surveillance. The purpose of this retrospective, cross-sectional study was to examine the association between microbial diversity and function of the maternal microbiome with IGT while adjusting for confounding variables. We hypothesized that reduced maternal microbial diversity and increased gene abundance for insulin resistance function will be associated with IGT as defined by a value greater than 140 mg/dL on the glucose challenge test. In the examination of microbial composition between women with IGT and those with normal glucose tolerance (NGT), we found five taxa which were significantly different. Taxa higher in participants with impaired glucose tolerance were Ruminococcacea (p = 0.01), Schaalia turicensis (p<0.05), Oscillibacter (p = 0.03), Oscillospiraceae (p = 0.02), and Methanobrevibacter smithii (p = 0.04). When we further compare participants who have IGT by their pre-gravid BMI, five taxa are significantly different between the BMI groups, Enterobacteriaceae, Dialister micraerophilus, Campylobacter ureolyticus, Proteobacteria, Streptococcus Unclassified (species). All four metrics including the Shannon (p<0.00), Simpson (p<0.00), Inverse Simpson (p = 0.04), and Chao1 (p = 0.04), showed a significant difference in alpha diversity with increased values in the impaired glucose tolerance group. Our study highlights the important gastrointestinal microbiome changes in women with IGT during pregnancy. Understanding the role of the microbiome in regulating glucose tolerance during pregnancy helps clinicians and researchers to understand the importance of IGT as a marker for adverse maternal and neonatal outcomes.
Collapse
|
12
|
Pan X, Tang M, You J, Hao Y, Zhang X, Yang T, Rao Z. A Novel Method to Screen Strong Constitutive Promoters in Escherichia coli and Serratia marcescens for Industrial Applications. BIOLOGY 2022; 12:biology12010071. [PMID: 36671763 PMCID: PMC9855843 DOI: 10.3390/biology12010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/18/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023]
Abstract
Promoters serve as the switch of gene transcription, playing an important role in regulating gene expression and metabolites production. However, the approach to screening strong constitutive promoters in microorganisms is still limited. In this study, a novel method was designed to identify strong constitutive promoters in E. coli and S. marcescens based on random genomic interruption and fluorescence-activated cell sorting (FACS) technology. First, genomes of E. coli, Bacillus subtilis, and Corynebacterium glutamicum were randomly interrupted and inserted into the upstream of reporter gene gfp to construct three promoter libraries, and a potential strong constitutive promoter (PBS) suitable for E. coli was screened via FACS technology. Second, the core promoter sequence (PBS76) of the screened promoter was identified by sequence truncation. Third, a promoter library of PBS76 was constructed by installing degenerate bases via chemical synthesis for further improving its strength, and the intensity of the produced promoter PBS76-100 was 59.56 times higher than that of the promoter PBBa_J23118. Subsequently, promoters PBBa_J23118, PBS76, PBS76-50, PBS76-75, PBS76-85, and PBS76-100 with different strengths were applied to enhance the metabolic flux of L-valine synthesis, and the L-valine yield was significantly improved. Finally, a strong constitutive promoter suitable for S. marcescens was screened by a similar method and applied to enhance prodigiosin production by 34.81%. Taken together, the construction of a promoter library based on random genomic interruption was effective to screen the strong constitutive promoters for fine-tuning gene expression and reprogramming metabolic flux in various microorganisms.
Collapse
Affiliation(s)
- Xuewei Pan
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Mi Tang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jiajia You
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yanan Hao
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xian Zhang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Taowei Yang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Correspondence: ; Tel.: +86-510-85916881
| | - Zhiming Rao
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
13
|
Tolibia SEM, Pacheco AD, Balbuena SYG, Rocha J, López Y López VE. Engineering of global transcription factors in Bacillus, a genetic tool for increasing product yields: a bioprocess overview. World J Microbiol Biotechnol 2022; 39:12. [PMID: 36372802 DOI: 10.1007/s11274-022-03460-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/06/2022] [Indexed: 11/15/2022]
Abstract
Transcriptional factors are well studied in bacteria for their global interactions and the effects they produce at the phenotypic level. Particularly, Bacillus subtilis has been widely employed as a model Gram-positive microorganism used to characterize these network interactions. Bacillus species are currently used as efficient commercial microbial platforms to produce diverse metabolites such as extracellular enzymes, antibiotics, surfactants, industrial chemicals, heterologous proteins, among others. However, the pleiotropic effects caused by the genetic modification of specific genes that codify for global regulators (transcription factors) have not been implicated commonly from a bioprocess point of view. Recently, these strategies have attracted the attention in Bacillus species because they can have an application to increase production efficiency of certain commercial interest metabolites. In this review, we update the recent advances that involve this trend in the use of genetic engineering (mutations, deletion, or overexpression) performed to global regulators such as Spo0A, CcpA, CodY and AbrB, which can provide an advantage for the development or improvement of bioprocesses that involve Bacillus species as production platforms. Genetic networks, regulation pathways and their relationship to the development of growth stages are also discussed to correlate the interactions that occur between these regulators, which are important to consider for application in the improvement of commercial-interest metabolites. Reported yields from these products currently produced mostly under laboratory conditions and, in a lesser extent at bioreactor level, are also discussed to give valuable perspectives about their potential use and developmental level directed to process optimization at large-scale.
Collapse
Affiliation(s)
- Shirlley Elizabeth Martínez Tolibia
- Centro de Investigación en Biotecnología Aplicada del Instituto Politécnico Nacional, Carretera Estatal Santa Inés Tecuexcomac-Tepetitla, Km 1.5, C.P. 90700, Tepetitla de Lardizábal, Tlaxcala, Mexico
| | - Adrián Díaz Pacheco
- Unidad Profesional Interdisciplinaria de Ingeniería Campus Tlaxcala del Instituto Politécnico Nacional, CP 90000, Guillermo Valle, Tlaxcala, Mexico
| | - Sulem Yali Granados Balbuena
- Centro de Investigación en Biotecnología Aplicada del Instituto Politécnico Nacional, Carretera Estatal Santa Inés Tecuexcomac-Tepetitla, Km 1.5, C.P. 90700, Tepetitla de Lardizábal, Tlaxcala, Mexico
| | - Jorge Rocha
- CONACyT - Unidad Regional Hidalgo, Centro de Investigación en Alimentación y Desarrollo, A.C. Blvd. Santa Catarina, SN, C.P. 42163, San Agustín Tlaxiaca, Hidalgo, Mexico
| | - Víctor Eric López Y López
- Centro de Investigación en Biotecnología Aplicada del Instituto Politécnico Nacional, Carretera Estatal Santa Inés Tecuexcomac-Tepetitla, Km 1.5, C.P. 90700, Tepetitla de Lardizábal, Tlaxcala, Mexico.
| |
Collapse
|
14
|
Oliver Huidobro M, Tica J, Wachter GKA, Isalan M. Synthetic spatial patterning in bacteria: advances based on novel diffusible signals. Microb Biotechnol 2022; 15:1685-1694. [PMID: 34843638 PMCID: PMC9151330 DOI: 10.1111/1751-7915.13979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/14/2021] [Accepted: 11/14/2021] [Indexed: 12/22/2022] Open
Abstract
Engineering multicellular patterning may help in the understanding of some fundamental laws of pattern formation and thus may contribute to the field of developmental biology. Furthermore, advanced spatial control over gene expression may revolutionize fields such as medicine, through organoid or tissue engineering. To date, foundational advances in spatial synthetic biology have often been made in prokaryotes, using artificial gene circuits. In this review, engineered patterns are classified into four levels of increasing complexity, ranging from spatial systems with no diffusible signals to systems with complex multi-diffusor interactions. This classification highlights how the field was held back by a lack of diffusible components. Consequently, we provide a summary of both previously characterized and some new potential candidate small-molecule signals that can regulate gene expression in Escherichia coli. These diffusive signals will help synthetic biologists to successfully engineer increasingly intricate, robust and tuneable spatial structures.
Collapse
Affiliation(s)
| | - Jure Tica
- Department of Life SciencesImperial College LondonLondonSW7 2AZUK
| | | | - Mark Isalan
- Department of Life SciencesImperial College LondonLondonSW7 2AZUK
| |
Collapse
|
15
|
Clark AE, Adamson CC, Carothers KE, Roxas BAP, Viswanathan VK, Vedantam G. The Alternative Sigma Factor SigL Influences Clostridioides difficile Toxin Production, Sporulation, and Cell Surface Properties. Front Microbiol 2022; 13:871152. [PMID: 35633701 PMCID: PMC9130780 DOI: 10.3389/fmicb.2022.871152] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/06/2022] [Indexed: 12/18/2022] Open
Abstract
The alternative sigma factor SigL (Sigma-54) facilitates bacterial adaptation to the extracellular environment by modulating the expression of defined gene subsets. A homolog of the gene encoding SigL is conserved in the diarrheagenic pathogen Clostridioides difficile. To explore the contribution of SigL to C. difficile biology, we generated sigL-disruption mutants (sigL::erm) in strains belonging to two phylogenetically distinct lineages-the human-relevant Ribotype 027 (strain BI-1) and the veterinary-relevant Ribotype 078 (strain CDC1). Comparative proteomics analyses of mutants and isogenic parental strains revealed lineage-specific SigL regulons. Concomitantly, loss of SigL resulted in pleiotropic and distinct phenotypic alterations in the two strains. Sporulation kinetics, biofilm formation, and cell surface-associated phenotypes were altered in CDC1 sigL::erm relative to the isogenic parent strain but remained unchanged in BI-1 sigL::erm. In contrast, secreted toxin levels were significantly elevated only in the BI-1 sigL::erm mutant relative to its isogenic parent. We also engineered SigL overexpressing strains and observed enhanced biofilm formation in the CDC1 background, and reduced spore titers as well as dampened sporulation kinetics in both strains. Thus, we contend that SigL is a key, pleiotropic regulator that dynamically influences C. difficile's virulence factor landscape, and thereby, its interactions with host tissues and co-resident microbes.
Collapse
Affiliation(s)
- Andrew E. Clark
- School of Animal and Comparative Biomedical Sciences, Tucson, AZ, United States
| | - Chelsea C. Adamson
- School of Animal and Comparative Biomedical Sciences, Tucson, AZ, United States
| | | | | | - V. K. Viswanathan
- School of Animal and Comparative Biomedical Sciences, Tucson, AZ, United States
- Department of Immunobiology, University of Arizona, Tucson, AZ, United States
- BIO5 Institute for Collaborative Research, University of Arizona, Tucson, AZ, United States
| | - Gayatri Vedantam
- School of Animal and Comparative Biomedical Sciences, Tucson, AZ, United States
- Department of Immunobiology, University of Arizona, Tucson, AZ, United States
- BIO5 Institute for Collaborative Research, University of Arizona, Tucson, AZ, United States
- Southern Arizona VA Healthcare System, Tucson, AZ, United States
| |
Collapse
|
16
|
Li J, Lu J, Ma Z, Li J, Chen X, Diao M, Xie N. A Green Route for High-Yield Production of Tetramethylpyrazine From Non-Food Raw Materials. Front Bioeng Biotechnol 2022; 9:792023. [PMID: 35145961 PMCID: PMC8823705 DOI: 10.3389/fbioe.2021.792023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
2,3,5,6-Tetramethylpyrazine (TMP) is an active pharmaceutical ingredient originally isolated from Ligusticum wallichii for curing cardiovascular and cerebrovascular diseases and is widely used as a popular flavoring additive in the food industry. Hence, there is a great interest in developing new strategies to produce this high-value compound in an ecological and economical way. Herein, a cost-competitive combinational approach was proposed to accomplish green and high-efficiency production of TMP. First, microbial cell factories were constructed to produce acetoin (3-hydroxy-2-butanone, AC), an endogenous precursor of TMP, by introducing a biosynthesis pathway coupled with an intracellular NAD+ regeneration system to the wild-type Escherichia coli. To further improve the production of (R)-AC, the metabolic pathways of by-products were impaired or blocked stepwise by gene manipulation, resulting in 40.84 g/L (R)-AC with a high optical purity of 99.42% in shake flasks. Thereafter, an optimal strain designated GXASR11 was used to convert the hydrolysates of inexpensive feedstocks into (R)-AC and achieved a titer of 86.04 g/L within 48 h in a 5-L fermenter under optimized fermentation conditions. To the best of our knowledge, this is the highest (R)-AC production with high optical purity (≥98%) produced from non-food raw materials using recombinant E. coli. The supernatant of fermentation broth was mixed with diammonium phosphate (DAP) to make a total volume of 20 ml and transferred to a high-pressure microreactor. Finally, 56.72 g/L TMP was obtained in 3 h via the condensation reaction with a high conversion rate (85.30%) under optimal reaction conditions. These results demonstrated a green and sustainable approach to efficiently produce high-valued TMP, which realized value addition of low-cost renewables.
Collapse
Affiliation(s)
- Jing Li
- Life Science and Technology College, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, China
| | - Jian Lu
- Life Science and Technology College, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, China
| | - Zhilin Ma
- Life Science and Technology College, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, China
| | - Jianxiu Li
- State Key Laboratory of Non-food Biomass and Enzyme Technology, National Engineering Research Center for Non-food Biorefinery, Guangxi Biomass Engineering Technology Research Center, Guangxi Key Laboratory of Biorefinery, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Xianrui Chen
- State Key Laboratory of Non-food Biomass and Enzyme Technology, National Engineering Research Center for Non-food Biorefinery, Guangxi Biomass Engineering Technology Research Center, Guangxi Key Laboratory of Biorefinery, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Mengxue Diao
- State Key Laboratory of Non-food Biomass and Enzyme Technology, National Engineering Research Center for Non-food Biorefinery, Guangxi Biomass Engineering Technology Research Center, Guangxi Key Laboratory of Biorefinery, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Nengzhong Xie
- State Key Laboratory of Non-food Biomass and Enzyme Technology, National Engineering Research Center for Non-food Biorefinery, Guangxi Biomass Engineering Technology Research Center, Guangxi Key Laboratory of Biorefinery, Guangxi Academy of Sciences, Nanning, Guangxi, China
| |
Collapse
|
17
|
Moratti CF, Scott C, Coleman NV. Synthetic Biology Approaches to Hydrocarbon Biosensors: A Review. Front Bioeng Biotechnol 2022; 9:804234. [PMID: 35083206 PMCID: PMC8784404 DOI: 10.3389/fbioe.2021.804234] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/09/2021] [Indexed: 12/12/2022] Open
Abstract
Monooxygenases are a class of enzymes that facilitate the bacterial degradation of alkanes and alkenes. The regulatory components associated with monooxygenases are nature's own hydrocarbon sensors, and once functionally characterised, these components can be used to create rapid, inexpensive and sensitive biosensors for use in applications such as bioremediation and metabolic engineering. Many bacterial monooxygenases have been identified, yet the regulation of only a few of these have been investigated in detail. A wealth of genetic and functional diversity of regulatory enzymes and promoter elements still remains unexplored and unexploited, both in published genome sequences and in yet-to-be-cultured bacteria. In this review we examine in detail the current state of research on monooxygenase gene regulation, and on the development of transcription-factor-based microbial biosensors for detection of alkanes and alkenes. A new framework for the systematic characterisation of the underlying genetic components and for further development of biosensors is presented, and we identify focus areas that should be targeted to enable progression of more biosensor candidates to commercialisation and deployment in industry and in the environment.
Collapse
Affiliation(s)
- Claudia F. Moratti
- School of Life and Environmental Science, Faculty of Science, University of Sydney, Sydney, NSW, Australia
- CSIRO Synthetic Biology Future Science Platform, Canberra, ACT, Australia
| | - Colin Scott
- CSIRO Synthetic Biology Future Science Platform, Canberra, ACT, Australia
| | - Nicholas V. Coleman
- School of Life and Environmental Science, Faculty of Science, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
18
|
Machine learning uncovers independently regulated modules in the Bacillus subtilis transcriptome. Nat Commun 2020; 11:6338. [PMID: 33311500 PMCID: PMC7732839 DOI: 10.1038/s41467-020-20153-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 10/29/2020] [Indexed: 12/24/2022] Open
Abstract
The transcriptional regulatory network (TRN) of Bacillus subtilis coordinates cellular functions of fundamental interest, including metabolism, biofilm formation, and sporulation. Here, we use unsupervised machine learning to modularize the transcriptome and quantitatively describe regulatory activity under diverse conditions, creating an unbiased summary of gene expression. We obtain 83 independently modulated gene sets that explain most of the variance in expression and demonstrate that 76% of them represent the effects of known regulators. The TRN structure and its condition-dependent activity uncover putative or recently discovered roles for at least five regulons, such as a relationship between histidine utilization and quorum sensing. The TRN also facilitates quantification of population-level sporulation states. As this TRN covers the majority of the transcriptome and concisely characterizes the global expression state, it could inform research on nearly every aspect of transcriptional regulation in B. subtilis. The systems-level regulatory structure underlying gene expression in bacteria can be inferred using machine learning algorithms. Here we show this structure for Bacillus subtilis, present five hypotheses gleaned from it, and analyse the process of sporulation from its perspective.
Collapse
|
19
|
Hassan AA, dos Santos SC, Cooper VS, Sá-Correia I. Comparative Evolutionary Patterns of Burkholderia cenocepacia and B. multivorans During Chronic Co-infection of a Cystic Fibrosis Patient Lung. Front Microbiol 2020; 11:574626. [PMID: 33101250 PMCID: PMC7545829 DOI: 10.3389/fmicb.2020.574626] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 08/31/2020] [Indexed: 12/26/2022] Open
Abstract
During chronic respiratory infections of cystic fibrosis (CF) patients, bacteria adaptively evolve in response to the nutritional and immune environment as well as influence other infecting microbes. The present study was designed to gain insights into the genetic mechanisms underlying adaptation and diversification by the two most prevalent pathogenic species of the Burkholderia cepacia complex (Bcc), B. cenocepacia and B. multivorans. Herein, we study the evolution of both of these species during coinfection of a CF patient for 4.4 years using genome sequences of 9 B. multivorans and 11 B. cenocepacia. This co-infection spanned at least 3 years following initial infection by B. multivorans and ultimately ended in the patient's death by cepacia syndrome. Both species acquired several mutations with accumulation rates of 2.08 (B. cenocepacia) and 2.27 (B. multivorans) SNPs/year. Many of the mutated genes are associated with oxidative stress response, transition metal metabolism, defense mechanisms against antibiotics, and other metabolic alterations consistent with the idea that positive selection might be driven by the action of the host immune system, antibiotic therapy and low oxygen and iron concentrations. Two orthologous genes shared by B. cenocepacia and B. multivorans were found to be under strong selection and accumulated mutations associated with lineage diversification. One gene encodes a nucleotide sugar dehydratase involved in lipopolysaccharide O-antigen (OAg) biosynthesis (wbiI). The other gene encodes a putative two-component regulatory sensor kinase protein required to sense and adapt to oxidative- and heavy metal- inducing stresses. This study contributes to understanding of shared and species-specific evolutionary patterns of B. cenocepacia and B. multivorans evolving in the same CF lung environment.
Collapse
Affiliation(s)
- A. Amir Hassan
- iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Sandra C. dos Santos
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Vaughn S. Cooper
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Isabel Sá-Correia
- iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
20
|
Transcription in the acetoin catabolic pathway is regulated by AcoR and CcpA in Bacillus thuringiensis. Microbiol Res 2020; 235:126438. [PMID: 32088504 DOI: 10.1016/j.micres.2020.126438] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/11/2020] [Accepted: 02/11/2020] [Indexed: 01/04/2023]
Abstract
Acetoin (3-hydroxy-2-butanone) is an important physiological metabolic product in many microorganisms. Acetoin breakdown is catalyzed by the acetoin dehydrogenase enzyme system (AoDH ES), which is encoded by acoABCL operon. In this study, we analyzed transcription and regulation of the aco operon in Bacillus thuringiensis (Bt). RT-PCR analysis revealed that acoABCL forms one transcriptional unit. The Sigma 54 controlled consensus sequence was located 12 bp from the acoA transcriptional start site (TSS). β-galactosidase assay revealed that aco operon transcription is induced by acetoin, controlled by sigma 54, and positively regulated by AcoR. The HTH domain of AcoR recognized and specifically bound to a 13-bp inverted repeat region that participates in 30-bp fragment mapping 81 bp upstream of the acoA TSS. The GAF domain in AcoR represses enhancer transcriptional activity at the acoA promoter. Transcriptions of the aco operon and acoR were repressed by glucose via CcpA, and CcpA specifically bound to sequences within the acoR promoter fragment. In the acoABCL and acoR mutants, acetoin use was abolished, suggesting that the aco operon is essential for utilization of acetoin. The data presented here improve our understanding of the regulation of the aco gene cluster in bacteria.
Collapse
|
21
|
Nie X, Dong W, Yang C. Genomic reconstruction of σ 54 regulons in Clostridiales. BMC Genomics 2019; 20:565. [PMID: 31288763 PMCID: PMC6615313 DOI: 10.1186/s12864-019-5918-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 06/20/2019] [Indexed: 12/21/2022] Open
Abstract
Background The σ54 factor controls unique promoters and interacts with a specialized activator (enhancer binding proteins [EBP]) for transcription initiation. Although σ54 is present in many Clostridiales species that have great importance in human health and biotechnological applications, the cellular processes controlled by σ54 remain unknown. Results For systematic analysis of the regulatory functions of σ54, we performed comparative genomic reconstruction of transcriptional regulons of σ54 in 57 species from the Clostridiales order. The EBP-binding DNA motifs and regulated genes were identified for 263 EBPs that constitute 39 distinct groups. The reconstructed σ54 regulons contain the genes involved in fermentation and amino acid catabolism. The predicted σ54 binding sites in the genomes of Clostridiales spp. were verified by in vitro binding assays. To our knowledge, this is the first report about direct regulation of the Stickland reactions and butyrate and alcohols synthesis by σ54 and the respective EBPs. Considerable variations were demonstrated in the sizes and gene contents of reconstructed σ54 regulons between different Clostridiales species. It is proposed that σ54 controls butyrate and alcohols synthesis in solvent-producing species, regulates autotrophic metabolism in acetogenic species, and affects the toxin production in pathogenic species. Conclusions This study reveals previously unrecognized functions of σ54 and provides novel insights into the regulation of fermentation and amino acid metabolism in Clostridiales species, which could have potential applications in guiding the treatment and efficient utilization of these species. Electronic supplementary material The online version of this article (10.1186/s12864-019-5918-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaoqun Nie
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Wenyue Dong
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Chen Yang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
22
|
Tuttobene MR, Fernández-García L, Blasco L, Cribb P, Ambroa A, Müller GL, Fernández-Cuenca F, Bleriot I, Rodríguez RE, Barbosa BGV, Lopez-Rojas R, Trastoy R, López M, Bou G, Tomás M, Mussi MA. Quorum and Light Signals Modulate Acetoin/Butanediol Catabolism in Acinetobacter spp. Front Microbiol 2019; 10:1376. [PMID: 31281296 PMCID: PMC6595428 DOI: 10.3389/fmicb.2019.01376] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 06/03/2019] [Indexed: 12/25/2022] Open
Abstract
Acinetobacter spp. are found in all environments on Earth due to their extraordinary capacity to survive in the presence of physical and chemical stressors. In this study, we analyzed global gene expression in airborne Acinetobacter sp. strain 5-2Ac02 isolated from hospital environment in response to quorum network modulators and found that they induced the expression of genes of the acetoin/butanediol catabolism, volatile compounds shown to mediate interkingdom interactions. Interestingly, the acoN gene, annotated as a putative transcriptional regulator, was truncated in the downstream regulatory region of the induced acetoin/butanediol cluster in Acinetobacter sp. strain 5-2Ac02, and its functioning as a negative regulator of this cluster integrating quorum signals was confirmed in Acinetobacter baumannii ATCC 17978. Moreover, we show that the acetoin catabolism is also induced by light and provide insights into the light transduction mechanism by showing that the photoreceptor BlsA interacts with and antagonizes the functioning of AcoN in A. baumannii, integrating also a temperature signal. The data support a model in which BlsA interacts with and likely sequesters AcoN at this condition, relieving acetoin catabolic genes from repression, and leading to better growth under blue light. This photoregulation depends on temperature, occurring at 23°C but not at 30°C. BlsA is thus a dual regulator, modulating different transcriptional regulators in the dark but also under blue light, representing thus a novel concept. The overall data show that quorum modulators as well as light regulate the acetoin catabolic cluster, providing a better understanding of environmental as well as clinical bacteria.
Collapse
Affiliation(s)
- Marisel Romina Tuttobene
- Centro de Estudios Fotosintéticos y Bioquímicos de Rosario (CEFOBI-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Laura Fernández-García
- Microbiology Department-Biomedical Research Institute A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain
| | - Lucía Blasco
- Microbiology Department-Biomedical Research Institute A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain
| | - Pamela Cribb
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Rosario, Argentina
| | - Anton Ambroa
- Microbiology Department-Biomedical Research Institute A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain
| | - Gabriela Leticia Müller
- Centro de Estudios Fotosintéticos y Bioquímicos de Rosario (CEFOBI-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Felipe Fernández-Cuenca
- Clinical Unit for Infectious Diseases, Microbiology and Preventive Medicine, Hospital Universitario Virgen Macarena, Seville, Spain.,Department of Microbiology and Medicine, University of Seville, Seville, Spain.,Biomedicine Institute of Seville (IBIS), Seville, Spain
| | - Inés Bleriot
- Centro de Estudios Fotosintéticos y Bioquímicos de Rosario (CEFOBI-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | | | - Beatriz G V Barbosa
- Microbial Resistance Laboratory, Biological Sciences Institute, University of Pernambuco (UPE), Recife, Brazil
| | - Rafael Lopez-Rojas
- Clinical Unit for Infectious Diseases, Microbiology and Preventive Medicine, Hospital Universitario Virgen Macarena, Seville, Spain.,Department of Microbiology and Medicine, University of Seville, Seville, Spain.,Biomedicine Institute of Seville (IBIS), Seville, Spain
| | - Rocío Trastoy
- Microbiology Department-Biomedical Research Institute A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain
| | - María López
- Microbiology Department-Biomedical Research Institute A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain
| | - Germán Bou
- Centro de Estudios Fotosintéticos y Bioquímicos de Rosario (CEFOBI-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - María Tomás
- Microbiology Department-Biomedical Research Institute A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain
| | - María A Mussi
- Centro de Estudios Fotosintéticos y Bioquímicos de Rosario (CEFOBI-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| |
Collapse
|
23
|
Abstract
Bacterial biofilms are ubiquitous in natural environments and play an important role in many clinical, industrial, and ecological settings. Although much is known about the transcriptional regulatory networks that control biofilm formation in model bacteria such as Bacillus subtilis, very little is known about the role of metabolism in this complex developmental process. To address this important knowledge gap, we performed a time-resolved analysis of the metabolic changes associated with bacterial biofilm development in B. subtilis by combining metabolomic, transcriptomic, and proteomic analyses. Here, we report a widespread and dynamic remodeling of metabolism affecting central carbon metabolism, primary biosynthetic pathways, fermentation pathways, and secondary metabolism. This report serves as a unique hypothesis-generating resource for future studies on bacterial biofilm physiology. Outside the biofilm research area, this work should also prove relevant to any investigators interested in microbial physiology and metabolism. Biofilms are structured communities of tightly associated cells that constitute the predominant state of bacterial growth in natural and human-made environments. Although the core genetic circuitry that controls biofilm formation in model bacteria such as Bacillus subtilis has been well characterized, little is known about the role that metabolism plays in this complex developmental process. Here, we performed a time-resolved analysis of the metabolic changes associated with pellicle biofilm formation and development in B. subtilis by combining metabolomic, transcriptomic, and proteomic analyses. We report surprisingly widespread and dynamic remodeling of metabolism affecting central carbon metabolism, primary biosynthetic pathways, fermentation pathways, and secondary metabolism. Most of these metabolic alterations were hitherto unrecognized as biofilm associated. For example, we observed increased activity of the tricarboxylic acid (TCA) cycle during early biofilm growth, a shift from fatty acid biosynthesis to fatty acid degradation, reorganization of iron metabolism and transport, and a switch from acetate to acetoin fermentation. Close agreement between metabolomic, transcriptomic, and proteomic measurements indicated that remodeling of metabolism during biofilm development was largely controlled at the transcriptional level. Our results also provide insights into the transcription factors and regulatory networks involved in this complex metabolic remodeling. Following upon these results, we demonstrated that acetoin production via acetolactate synthase is essential for robust biofilm growth and has the dual role of conserving redox balance and maintaining extracellular pH. This report represents a comprehensive systems-level investigation of the metabolic remodeling occurring during B. subtilis biofilm development that will serve as a useful road map for future studies on biofilm physiology.
Collapse
|
24
|
Nadler F, Bracharz F, Kabisch J. CopySwitch- in vivo Optimization of Gene Copy Numbers for Heterologous Gene Expression in Bacillus subtilis. Front Bioeng Biotechnol 2019; 6:207. [PMID: 30671432 PMCID: PMC6331482 DOI: 10.3389/fbioe.2018.00207] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 12/13/2018] [Indexed: 11/13/2022] Open
Abstract
The Gram-positive bacterium Bacillus subtilis has long been used as a host for production and secretion of industrially relevant enzymes like amylases and proteases. It is imperative for optimal efficiency, to balance protein yield and correct folding. While there are numerous ways of doing so on protein or mRNA level, our approach aims for the underlying number of coding sequences. Gene copy numbers are an important tuning valve for the optimization of heterologous gene expression. While some genes are best expressed from many gene copies, for other genes, medium or even single copy numbers are the only way to avoid formation of inclusion bodies, toxic gene dosage effects or achieve desired levels for metabolic engineering. In order to provide a simple and robust method to address above-mentioned issues in the Gram-positive bacterium Bacillus subtilis, we have developed an automatable system for the tuning of heterologous gene expression based on the host's intrinsic natural competence and homologous recombination capabilities. Strains are transformed with a linearized, low copy number plasmid containing an antibiotic resistance marker and homology regions up- and downstream of the gene of interest. Said gene is copied onto the vector, rendering it circular and replicative and thus selectable. We could show an up to 3.6-fold higher gfp (green fluorescent protein) expression and up to 1.3-fold higher mPLC (mature phospholipase C) expression after successful transformation. Furthermore, the plasmid-borne gfp expression seems to be more stable, since over the whole cultivation period the share of fluorescent cells compared to all measured cells is consistently higher. A major benefit of this method is the ability to work with very large regions of interest, since all relevant steps are carried out in vivo and are thus far less prone to mechanical DNA damage.
Collapse
Affiliation(s)
- Florian Nadler
- Computer-Aided Synthetic Biology, Institute of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Felix Bracharz
- Computer-Aided Synthetic Biology, Institute of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Johannes Kabisch
- Computer-Aided Synthetic Biology, Institute of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| |
Collapse
|
25
|
Coelho RV, de Avila E Silva S, Echeverrigaray S, Delamare APL. Bacillus subtilis promoter sequences data set for promoter prediction in Gram-positive bacteria. Data Brief 2018; 19:264-270. [PMID: 29892645 PMCID: PMC5993011 DOI: 10.1016/j.dib.2018.05.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/02/2018] [Accepted: 05/07/2018] [Indexed: 11/28/2022] Open
Abstract
This paper presents a prediction of Bacillus subtilis promoters using a Support Vector Machine system. In the literature, there is a lack of information on Gram-positive bacterial promoter sequences compared to Gram-negative bacteria. Promoter sequence identification is essential for studying gene expression. Initially, we collected the B. subtilis genome sequence from the NCBI database, and promoters were identified by their sigma factors in the DBTBS database. We then grouped the promoters according to 15 factors in 2 domains, corresponding to sigma 54 and sigma 70 of Gram-negative bacteria. Based on these data we developed a script in Python to search for promoters in the B. subtilis genome. After processing the data, we obtained 767 promoter sequences for B. subtilis, most of which were recognized by sigma SigA. To validate the data we found, we developed a software package called BacSVM+, which receives promoters as input and returns the best combination of parameters in a LibSVM library to predict promoter regions in the bacteria used in the simulation. All data gathered as well as the BacSVM+ software is available for download at http://bacpp.bioinfoucs.com/rafael/Sigmas.zip.
Collapse
Affiliation(s)
- Rafael Vieira Coelho
- Rio Grande do Sul Federal Institute of Education, Science and Technology (IFRS), Farroupilha Campus, Farroupilha, RS, Brazil
| | | | - Sergio Echeverrigaray
- Biotechnology Institute, University of Caxias do Sul (UCS), Caxias do Sul, RS, Brazil
| | | |
Collapse
|
26
|
Shu CC, Wang D, Guo J, Song JM, Chen SW, Chen LL, Gao JX. Analyzing AbrB-Knockout Effects through Genome and Transcriptome Sequencing of Bacillus licheniformis DW2. Front Microbiol 2018; 9:307. [PMID: 29599755 PMCID: PMC5863516 DOI: 10.3389/fmicb.2018.00307] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 02/09/2018] [Indexed: 11/13/2022] Open
Abstract
As an industrial bacterium, Bacillus licheniformis DW2 produces bacitracin which is an important antibiotic for many pathogenic microorganisms. Our previous study showed AbrB-knockout could significantly increase the production of bacitracin. Accordingly, it was meaningful to understand its genome features, expression differences between wild and AbrB-knockout (ΔAbrB) strains, and the regulation of bacitracin biosynthesis. Here, we sequenced, de novo assembled and annotated its genome, and also sequenced the transcriptomes in three growth phases. The genome of DW2 contained a DNA molecule of 4,468,952 bp with 45.93% GC content and 4,717 protein coding genes. The transcriptome reads were mapped to the assembled genome, and obtained 4,102∼4,536 expressed genes from different samples. We investigated transcription changes in B. licheniformis DW2 and showed that ΔAbrB caused hundreds of genes up-regulation and down-regulation in different growth phases. We identified a complete bacitracin synthetase gene cluster, including the location and length of bacABC, bcrABC, and bacT, as well as their arrangement. The gene cluster bcrABC were significantly up-regulated in ΔAbrB strain, which supported the hypothesis in previous study of bcrABC transporting bacitracin out of the cell to avoid self-intoxication, and was consistent with the previous experimental result that ΔAbrB could yield more bacitracin. This study provided a high quality reference genome for B. licheniformis DW2, and the transcriptome data depicted global alterations across two strains and three phases offered an understanding of AbrB regulation and bacitracin biosynthesis through gene expression.
Collapse
Affiliation(s)
- Cheng-Cheng Shu
- Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Dong Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jing Guo
- Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Jia-Ming Song
- Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Shou-Wen Chen
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ling-Ling Chen
- Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Jun-Xiang Gao
- Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
27
|
Ma W, Liu Y, Shin HD, Li J, Chen J, Du G, Liu L. Metabolic engineering of carbon overflow metabolism of Bacillus subtilis for improved N-acetyl-glucosamine production. BIORESOURCE TECHNOLOGY 2018; 250:642-649. [PMID: 29220808 DOI: 10.1016/j.biortech.2017.10.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/02/2017] [Accepted: 10/04/2017] [Indexed: 05/09/2023]
Abstract
Bacillus subtilis is widely used as cell factories for the production of important industrial biochemicals. Although many studies have demonstrated the effects of organic acidic byproducts, such as acetate, on microbial fermentation, little is known about the effects of blocking the neutral byproduct overflow, such as acetoin, on bioproduction. In this study, we focused on the influences of modulating overflow metabolism on the production of N-acetyl-d-glucosamine (GlcNAc) in engineered B. subtilis. We found that acetoin overflow competes with GlcNAc production, and blocking acetoin overflow increased GlcNAc titer and yield by 1.38- and 1.39-fold, reaching 48.9 g/L and 0.32 g GlcNAc/g glucose, respectively. Further blocking acetate overflow inhibited cell growth and GlcNAc production may be induced by inhibiting glucose uptake. Taken together, our results show that blocking acetoin overflow is a promising strategy for enhancing GlcNAc production. The strategies developed in this work may be useful for engineering strains of B. subtilis for producing other important biochemicals.
Collapse
Affiliation(s)
- Wenlong Ma
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Hyun-Dong Shin
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta 30332, USA
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jian Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China.
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
28
|
Schultz D, Schlüter R, Gerth U, Lalk M. Metabolic Perturbations in a Bacillus subtilis clpP Mutant during Glucose Starvation. Metabolites 2017; 7:metabo7040063. [PMID: 29186773 PMCID: PMC5746743 DOI: 10.3390/metabo7040063] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 11/19/2017] [Accepted: 11/21/2017] [Indexed: 11/17/2022] Open
Abstract
Proteolysis is essential for all living organisms to maintain the protein homeostasis and to adapt to changing environmental conditions. ClpP is the main protease in Bacillus subtilis, and forms complexes with different Clp ATPases. These complexes play crucial roles during heat stress, but also in sporulation or cell morphology. Especially enzymes of cell wall-, amino acid-, and nucleic acid biosynthesis are known substrates of the protease ClpP during glucose starvation. The aim of this study was to analyze the influence of a clpP mutation on the metabolism in different growth phases and to search for putative new ClpP substrates. Therefore, B. subtilis 168 cells and an isogenic ∆clpP mutant were cultivated in a chemical defined medium, and the metabolome was analyzed by a combination of 1H-NMR, HPLC-MS, and GC-MS. Additionally, the cell morphology was investigated by electron microscopy. The clpP mutant showed higher levels of most glycolytic metabolites, the intermediates of the citric acid cycle, amino acids, and peptidoglycan precursors when compared to the wild-type. A strong secretion of overflow metabolites could be detected in the exo-metabolome of the clpP mutant. Furthermore, a massive increase was observed for the teichoic acid metabolite CDP-glycerol in combination with a swelling of the cell wall. Our results show a recognizable correlation between the metabolome and the corresponding proteome data of B. subtilisclpP mutant. Moreover, our results suggest an influence of ClpP on Tag proteins that are responsible for teichoic acids biosynthesis.
Collapse
Affiliation(s)
- Daniel Schultz
- Institute of Biochemistry, University of Greifswald, 17487 Greifswald, Germany;
| | - Rabea Schlüter
- Imaging Center of the Department of Biology, University of Greifswald, 17487 Greifswald, Germany;
| | - Ulf Gerth
- Institute of Microbiology, University of Greifswald, 17487 Greifswald, Germany;
| | - Michael Lalk
- Institute of Biochemistry, University of Greifswald, 17487 Greifswald, Germany;
| |
Collapse
|
29
|
Spontaneous quorum sensing mutation modulates electroactivity of Pseudomonas aeruginosa PA14. Bioelectrochemistry 2017; 117:1-8. [DOI: 10.1016/j.bioelechem.2017.04.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/28/2017] [Accepted: 04/28/2017] [Indexed: 02/06/2023]
|
30
|
Dhali D, Coutte F, Arias AA, Auger S, Bidnenko V, Chataigné G, Lalk M, Niehren J, de Sousa J, Versari C, Jacques P. Genetic engineering of the branched fatty acid metabolic pathway ofBacillus subtilisfor the overproduction of surfactin C14isoform. Biotechnol J 2017; 12. [DOI: 10.1002/biot.201600574] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/13/2017] [Accepted: 03/31/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Debarun Dhali
- University Lille, INRA, ISA, University Artois, University Littoral Côte d'Opale; EA 7394 - ICV - Institut Charles Viollette; Lille France
| | - François Coutte
- University Lille, INRA, ISA, University Artois, University Littoral Côte d'Opale; EA 7394 - ICV - Institut Charles Viollette; Lille France
| | - Anthony Argüelles Arias
- MiPI, TERRA Research Centre, Gembloux Agro-Bio Tech; University of Liege; Passage des Déportés; Gembloux Belgium
| | - Sandrine Auger
- Micalis Institute, INRA, AgroParisTech; University Paris-Saclay; Jouy-en-Josas France
| | - Vladimir Bidnenko
- Micalis Institute, INRA, AgroParisTech; University Paris-Saclay; Jouy-en-Josas France
| | - Gabrielle Chataigné
- University Lille, INRA, ISA, University Artois, University Littoral Côte d'Opale; EA 7394 - ICV - Institut Charles Viollette; Lille France
| | - Michael Lalk
- Ernst-Moritz-Arndt-University Greifswald; Institute of Biochemistry; Greifswald Germany
| | - Joachim Niehren
- University Lille; BioComputing Team, CRIStAL Lab (CNRS UMR9189); Villeneuve d'Ascq France
- Inria Lille; Villeneuve d'Ascq France
| | - Joana de Sousa
- Ernst-Moritz-Arndt-University Greifswald; Institute of Biochemistry; Greifswald Germany
| | - Cristian Versari
- University Lille; BioComputing Team, CRIStAL Lab (CNRS UMR9189); Villeneuve d'Ascq France
| | - Philippe Jacques
- University Lille, INRA, ISA, University Artois, University Littoral Côte d'Opale; EA 7394 - ICV - Institut Charles Viollette; Lille France
- MiPI, TERRA Research Centre, Gembloux Agro-Bio Tech; University of Liege; Passage des Déportés; Gembloux Belgium
| |
Collapse
|
31
|
Strain- and Substrate-Dependent Redox Mediator and Electricity Production by Pseudomonas aeruginosa. Appl Environ Microbiol 2016; 82:5026-38. [PMID: 27287325 DOI: 10.1128/aem.01342-16] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 06/08/2016] [Indexed: 01/06/2023] Open
Abstract
UNLABELLED Pseudomonas aeruginosa is an important, thriving member of microbial communities of microbial bioelectrochemical systems (BES) through the production of versatile phenazine redox mediators. Pure culture experiments with a model strain revealed synergistic interactions of P. aeruginosa with fermenting microorganisms whereby the synergism was mediated through the shared fermentation product 2,3-butanediol. Our work here shows that the behavior and efficiency of P. aeruginosa in mediated current production is strongly dependent on the strain of P. aeruginosa We compared levels of phenazine production by the previously investigated model strain P. aeruginosa PA14, the alternative model strain P. aeruginosa PAO1, and the BES isolate Pseudomonas sp. strain KRP1 with glucose and the fermentation products 2,3-butanediol and ethanol as carbon substrates. We found significant differences in substrate-dependent phenazine production and resulting anodic current generation for the three strains, with the BES isolate KRP1 being overall the best current producer and showing the highest electrochemical activity with glucose as a substrate (19 μA cm(-2) with ∼150 μg ml(-1) phenazine carboxylic acid as a redox mediator). Surprisingly, P. aeruginosa PAO1 showed very low phenazine production and electrochemical activity under all tested conditions. IMPORTANCE Microbial fuel cells and other microbial bioelectrochemical systems hold great promise for environmental technologies such as wastewater treatment and bioremediation. While there is much emphasis on the development of materials and devices to realize such systems, the investigation and a deeper understanding of the underlying microbiology and ecology are lagging behind. Physiological investigations focus on microorganisms exhibiting direct electron transfer in pure culture systems. Meanwhile, mediated electron transfer with natural redox compounds produced by, for example, Pseudomonas aeruginosa might enable an entire microbial community to access a solid electrode as an alternative electron acceptor. To better understand the ecological relationships between mediator producers and mediator utilizers, we here present a comparison of the phenazine-dependent electroactivities of three Pseudomonas strains. This work forms the foundation for more complex coculture investigations of mediated electron transfer in microbial fuel cells.
Collapse
|
32
|
Peng Q, Liu C, Wang B, Yang M, Wu J, Zhang J, Song F. Sox transcription in sarcosine utilization is controlled by Sigma(54) and SoxR in Bacillus thuringiensis HD73. Sci Rep 2016; 6:29141. [PMID: 27404799 PMCID: PMC4941409 DOI: 10.1038/srep29141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 06/10/2016] [Indexed: 12/04/2022] Open
Abstract
Sarcosine oxidase catalyzes the oxidative demethylation of sarcosine to yield glycine, formaldehyde, and hydrogen peroxide. In this study, we analyzed the transcription and regulation of the sox locus, including the sarcosine oxidase-encoding genes in Bacillus thuringiensis (Bt). RT-PCR analysis revealed that the sox locus forms two opposing transcriptional units: soxB (soxB/E/F/G/H/I) and soxR (soxR/C/D/A). The typical −12/−24 consensus sequence was located 15 bp and 12 bp from the transcriptional start site (TSS) of soxB and soxC, respectively. Promoter-lacZ fusion assays showed that the soxB promoter is controlled by the Sigma54 factor and is activated by the Sigma54-dependent transcriptional regulator SoxR. SoxR also inhibits its own expression. Expression from the PsoxCR promoter, which is responsible for the transcription of soxC, soxD, and soxA, is Sigma54-dependent and requires SoxR. An 11-bp inverted repeat sequence was identified as SoxR binding site upstream of the soxB TSS. Purified SoxR specifically bound a DNA fragment containing this region. Mutation or deletion of this sequence abolished the transcriptional activities of soxB and soxC. Thus, SoxR binds to the same sequence to activate the transcription of soxB and soxC. Sarcosine utilization was abolished in soxB and soxR mutants, suggesting that the sox locus is essential for sarcosine utilization.
Collapse
Affiliation(s)
- Qi Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chunxia Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bo Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.,College of Life Sciences, Northeast Agriculture University, Harbin, China
| | - Min Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianbo Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jie Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fuping Song
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
33
|
Lundgren BR, Connolly MP, Choudhary P, Brookins-Little TS, Chatterjee S, Raina R, Nomura CT. Defining the Metabolic Functions and Roles in Virulence of the rpoN1 and rpoN2 Genes in Ralstonia solanacearum GMI1000. PLoS One 2015; 10:e0144852. [PMID: 26659655 PMCID: PMC4676750 DOI: 10.1371/journal.pone.0144852] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 11/24/2015] [Indexed: 11/18/2022] Open
Abstract
The alternative sigma factor RpoN is a unique regulator found among bacteria. It controls numerous processes that range from basic metabolism to more complex functions such as motility and nitrogen fixation. Our current understanding of RpoN function is largely derived from studies on prototypical bacteria such as Escherichia coli. Bacillus subtilis and Pseudomonas putida. Although the extent and necessity of RpoN-dependent functions differ radically between these model organisms, each bacterium depends on a single chromosomal rpoN gene to meet the cellular demands of RpoN regulation. The bacterium Ralstonia solanacearum is often recognized for being the causative agent of wilt disease in crops, including banana, peanut and potato. However, this plant pathogen is also one of the few bacterial species whose genome possesses dual rpoN genes. To determine if the rpoN genes in this bacterium are genetically redundant and interchangeable, we constructed and characterized ΔrpoN1, ΔrpoN2 and ΔrpoN1 ΔrpoN2 mutants of R. solanacearum GMI1000. It was found that growth on a small range of metabolites, including dicarboxylates, ethanol, nitrate, ornithine, proline and xanthine, were dependent on only the rpoN1 gene. Furthermore, the rpoN1 gene was required for wilt disease on tomato whereas rpoN2 had no observable role in virulence or metabolism in R. solanacearum GMI1000. Interestingly, plasmid-based expression of rpoN2 did not fully rescue the metabolic deficiencies of the ΔrpoN1 mutants; full recovery was specific to rpoN1. In comparison, only rpoN2 was able to genetically complement a ΔrpoN E. coli mutant. These results demonstrate that the RpoN1 and RpoN2 proteins are not functionally equivalent or interchangeable in R. solanacearum GMI1000.
Collapse
Affiliation(s)
- Benjamin R. Lundgren
- Department of Chemistry, State University of New York–College of Environmental Science and Forestry, Syracuse, New York, United States of America
| | - Morgan P. Connolly
- Department of Chemistry, State University of New York–College of Environmental Science and Forestry, Syracuse, New York, United States of America
| | - Pratibha Choudhary
- Department of Biology, Syracuse University, Syracuse, New York, United States of America
| | - Tiffany S. Brookins-Little
- Department of Chemistry, State University of New York–College of Environmental Science and Forestry, Syracuse, New York, United States of America
| | - Snigdha Chatterjee
- Department of Biology, Syracuse University, Syracuse, New York, United States of America
| | - Ramesh Raina
- Department of Biology, Syracuse University, Syracuse, New York, United States of America
| | - Christopher T. Nomura
- Department of Chemistry, State University of New York–College of Environmental Science and Forestry, Syracuse, New York, United States of America
- Center for Applied Microbiology, State University of New York–College of Environmental Science and Forestry, Syracuse, New York, United States of America
- * E-mail:
| |
Collapse
|
34
|
Gu F, Chen Y, Fang Y, Wu G, Tan L. Contribution of Bacillus Isolates to the Flavor Profiles of Vanilla Beans Assessed through Aroma Analysis and Chemometrics. Molecules 2015; 20:18422-36. [PMID: 26473810 PMCID: PMC6331939 DOI: 10.3390/molecules201018422] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 09/11/2015] [Accepted: 09/17/2015] [Indexed: 11/16/2022] Open
Abstract
Colonizing Bacillus in vanilla (Vanilla planifolia Andrews) beans is involved in glucovanillin hydrolysis and vanillin formation during conventional curing. The flavor profiles of vanilla beans under Bacillus-assisted curing were analyzed through gas chromatography-mass spectrometry, electronic nose, and quantitative sensory analysis. The flavor profiles were analytically compared among the vanilla beans under Bacillus-assisted curing, conventional curing, and non-microorganism-assisted curing. Vanilla beans added with Bacillus vanillea XY18 and Bacillus subtilis XY20 contained higher vanillin (3.58% ± 0.05% and 3.48% ± 0.10%, respectively) than vanilla beans that underwent non-microorganism-assisted curing and conventional curing (3.09% ± 0.14% and 3.21% ± 0.15%, respectively). Forty-two volatiles were identified from endogenous vanilla metabolism. Five other compounds were identified from exogenous Bacillus metabolism. Electronic nose data confirmed that vanilla flavors produced through the different curing processes were easily distinguished. Quantitative sensory analysis confirmed that Bacillus-assisted curing increased vanillin production without generating any unpleasant sensory attribute. Partial least squares regression further provided a correlation model of different measurements. Overall, we comparatively analyzed the flavor profiles of vanilla beans under Bacillus-assisted curing, indirectly demonstrated the mechanism of vanilla flavor formation by microbes.
Collapse
Affiliation(s)
- Fenglin Gu
- Spice and Beverage Research Institute, CATAS, Wanning 571533, Hainan, China.
| | - Yonggan Chen
- Spice and Beverage Research Institute, CATAS, Wanning 571533, Hainan, China.
- College of Bioscience and Technology, Qiongzhou University, Sanya 572022, Hainan, China.
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| | - Yiming Fang
- Spice and Beverage Research Institute, CATAS, Wanning 571533, Hainan, China.
| | - Guiping Wu
- Spice and Beverage Research Institute, CATAS, Wanning 571533, Hainan, China.
| | - Lehe Tan
- Spice and Beverage Research Institute, CATAS, Wanning 571533, Hainan, China.
| |
Collapse
|
35
|
Kumpfmüller J, Methling K, Fang L, Pfeifer BA, Lalk M, Schweder T. Production of the polyketide 6-deoxyerythronolide B in the heterologous host Bacillus subtilis. Appl Microbiol Biotechnol 2015; 100:1209-1220. [PMID: 26432460 PMCID: PMC4717160 DOI: 10.1007/s00253-015-6990-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 08/28/2015] [Accepted: 09/06/2015] [Indexed: 01/26/2023]
Abstract
Polyketides, such as erythromycin, are complex natural products with diverse therapeutic applications. They are synthesized by multi-modular megaenzymes, so-called polyketide synthases (PKSs). The macrolide core of erythromycin, 6-deoxyerythronolide B (6dEB), is produced by the deoxyerythronolide B synthase (DEBS) that consists of three proteins each with a size of 330–370 kDa. We cloned and investigated the expression of the corresponding gene cluster from Saccharopolyspora erythraea, which comprises more than 30 kb, in Bacillus subtilis. It is shown that the DEBS genes are functionally expressed in B. subtilis when the native eryAI–III operon was separated into three individual expression cassettes with optimized ribosomal binding sites. A synthesis of 6dEB could be detected by using the acetoin-inducible acoA promoter and a fed-batch simulating EnBase-cultivation strategy. B. subtilis was capable of the secretion of 6dEB into the medium. In order to improve the 6dEB production, several genomic modifications of this production strain were tested. This included the knockout of the native secondary metabolite clusters of B. subtilis for the synthesis of surfactin (26 kb), bacillaene (76 kb), and plipastatin (38 kb). It is revealed that the deletion of the prpBD operon, responsible for propionyl-CoA utilization, resulted in a significant increase of the 6dEB product yield when exogenous propionate is provided. Although the presented B. subtilis 6dEB production strain is not competitive with established Escherichia coli 6dEB production strains, the results of this study indicate that B. subtilis is a suitable heterologous host for the secretory production of a complex polyketide.
Collapse
Affiliation(s)
- Jana Kumpfmüller
- Pharmaceutical Biotechnology, Institute of Pharmacy, Ernst-Moritz-Arndt-University, Felix-Hausdorff-Str. 3, 17489, Greifswald, Germany
- Present Address: Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, HKI, Beutenbergstr. 11a, 07745, Jena, Germany
| | - Karen Methling
- Institute of Biochemistry, Ernst-Moritz-Arndt-University, Felix-Hausdorff-Str. 4, 17489, Greifswald, Germany
| | - Lei Fang
- Department of Chemical and Biological Engineering, State University of New York at Buffalo, 904 Furnas Hall, Buffalo, NY, 14260-4200, USA
| | - Blaine A Pfeifer
- Department of Chemical and Biological Engineering, State University of New York at Buffalo, 904 Furnas Hall, Buffalo, NY, 14260-4200, USA
| | - Michael Lalk
- Institute of Biochemistry, Ernst-Moritz-Arndt-University, Felix-Hausdorff-Str. 4, 17489, Greifswald, Germany
| | - Thomas Schweder
- Pharmaceutical Biotechnology, Institute of Pharmacy, Ernst-Moritz-Arndt-University, Felix-Hausdorff-Str. 3, 17489, Greifswald, Germany.
| |
Collapse
|
36
|
Hayashi S, Itoh K, Suyama K. Genes of Bacillus subtilis 168 that Support Growth of the Cyanobacterium, Synechococcus leopoliensis CCAP1405/1 on Agar Media. MICROBIAL ECOLOGY 2015; 70:849-852. [PMID: 25875741 DOI: 10.1007/s00248-015-0610-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Accepted: 03/25/2015] [Indexed: 06/04/2023]
Abstract
Synechococcus leopoliensis CCAP1405/1 cannot grow on common solid media; however, the strain can grow when co-cultured with Bacillus subtilis 168. Gene-disruptant strains of B. subtilis 168 by pMUTINs at the following sites lost the ability to support the growth of S. leopoliensis CCAP1405/1 on agar media: yxeO and yufO (transporter), yxdK (histidine kinase), sdhC (succinate dehydrogenase), yvgQR (sulfite reductase), acoB (acetoin dehydrogenase), yusE (thioredoxin), yrdA (function unknown). Involvement of the assimilatory sulfate reduction pathway was the suggested reason for loss of the function.
Collapse
Affiliation(s)
- Shohei Hayashi
- Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane, 690-8504, Japan
| | - Kazuhito Itoh
- Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane, 690-8504, Japan.
| | - Kousuke Suyama
- Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane, 690-8504, Japan
| |
Collapse
|
37
|
Hayrapetyan H, Tempelaars M, Nierop Groot M, Abee T. Bacillus cereus ATCC 14579 RpoN (Sigma 54) Is a Pleiotropic Regulator of Growth, Carbohydrate Metabolism, Motility, Biofilm Formation and Toxin Production. PLoS One 2015; 10:e0134872. [PMID: 26241851 PMCID: PMC4524646 DOI: 10.1371/journal.pone.0134872] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 07/14/2015] [Indexed: 12/16/2022] Open
Abstract
Sigma 54 is a transcriptional regulator predicted to play a role in physical interaction of bacteria with their environment, including virulence and biofilm formation. In order to study the role of Sigma 54 in Bacillus cereus, a comparative transcriptome and phenotypic study was performed using B. cereus ATCC 14579 WT, a markerless rpoN deletion mutant, and its complemented strain. The mutant was impaired in many different cellular functions including low temperature and anaerobic growth, carbohydrate metabolism, sporulation and toxin production. Additionally, the mutant showed lack of motility and biofilm formation at air-liquid interphase, and this correlated with absence of flagella, as flagella staining showed only WT and complemented strain to be highly flagellated. Comparative transcriptome analysis of cells harvested at selected time points during growth in aerated and static conditions in BHI revealed large differences in gene expression associated with loss of phenotypes, including significant down regulation of genes in the mutant encoding enzymes involved in degradation of branched chain amino acids, carbohydrate transport and metabolism, flagella synthesis and virulence factors. Our study provides evidence for a pleiotropic role of Sigma 54 in B. cereus supporting its adaptive response and survival in a range of conditions and environments.
Collapse
Affiliation(s)
- Hasmik Hayrapetyan
- Laboratory of Food Microbiology, Bornse Weilanden 9, 6708 WG Wageningen University, Wageningen, The Netherlands
- Top Institute of Food and Nutrition (TIFN), Nieuwe Kanaal 9A, 6709 PA, Wageningen, The Netherlands
| | - Marcel Tempelaars
- Laboratory of Food Microbiology, Bornse Weilanden 9, 6708 WG Wageningen University, Wageningen, The Netherlands
- Top Institute of Food and Nutrition (TIFN), Nieuwe Kanaal 9A, 6709 PA, Wageningen, The Netherlands
| | - Masja Nierop Groot
- Top Institute of Food and Nutrition (TIFN), Nieuwe Kanaal 9A, 6709 PA, Wageningen, The Netherlands
- Food and Biobased research, Wageningen UR, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands
| | - Tjakko Abee
- Laboratory of Food Microbiology, Bornse Weilanden 9, 6708 WG Wageningen University, Wageningen, The Netherlands
- Top Institute of Food and Nutrition (TIFN), Nieuwe Kanaal 9A, 6709 PA, Wageningen, The Netherlands
- * E-mail:
| |
Collapse
|
38
|
Peng Q, Wang G, Liu G, Zhang J, Song F. Identification of metabolism pathways directly regulated by sigma(54) factor in Bacillus thuringiensis. Front Microbiol 2015; 6:407. [PMID: 26029175 PMCID: PMC4428206 DOI: 10.3389/fmicb.2015.00407] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 04/19/2015] [Indexed: 11/13/2022] Open
Abstract
Sigma(54) (σ(54)) regulates nitrogen and carbon utilization in bacteria. Promoters that are σ(54)-dependent are highly conserved and contain short sequences located at the -24 and -12 positions upstream of the transcription initiation site. σ(54) requires regulatory proteins known as bacterial enhancer-binding proteins (bEBPs) to activate gene transcription. We show that σ(54) regulates the capacity to grow on various nitrogen sources using a Bacillus thuringiensis HD73 mutant lacking the sigL gene encoding σ(54) (ΔsigL). A 2-fold-change cutoff and a false discovery rate cutoff of P < 0.05 were used to analyze the DNA microarray data, which revealed 255 genes that were downregulated and 121 that were upregulated in the ΔsigL mutant relative to the wild-type HD73 strain. The σ(54) regulon (stationary phase) was characterized by DNA microarray, bioinformatics, and functional assay; 16 operons containing 47 genes were identified whose promoter regions contain the conserved -12/-24 element and whose transcriptional activities were abolished or reduced in the ΔsigL mutant. Eight σ(54)-dependent transcriptional bEBPs were found in the Bt HD73 genome, and they regulated nine σ(54)-dependent promoters. The metabolic pathways activated by σ(54) in this process have yet to be identified in Bacillus thuringiensis; nonetheless, the present analysis of the σ(54) regulon provides a better understanding of the physiological roles of σ factors in bacteria.
Collapse
Affiliation(s)
- Qi Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences Beijing, China
| | - Guannan Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences Beijing, China
| | - Guiming Liu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences Beijing, China
| | - Jie Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences Beijing, China
| | - Fuping Song
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences Beijing, China
| |
Collapse
|
39
|
Meyer H, Weidmann H, Mäder U, Hecker M, Völker U, Lalk M. A time resolved metabolomics study: the influence of different carbon sources during growth and starvation of Bacillus subtilis. MOLECULAR BIOSYSTEMS 2015; 10:1812-23. [PMID: 24727859 DOI: 10.1039/c4mb00112e] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In its natural environment, the soil, the Gram-positive model bacterium Bacillus subtilis frequently encounters nutrient limitation and other stress factors. Efficient adaptation mechanisms are necessary to cope with this wide range of environmental challenges. The ability to utilize diverse carbon sources represents a key adaptation process that allows B. subtilis to thrive in its natural habitat. To gain a comprehensive insight into the metabolism of B. subtilis, global metabolite analyses were performed during growth with glucose alone or glucose with either malate, fumarate or citrate as carbon/energy sources. Furthermore, to achieve a comprehensive coverage of a wide range of chemically different metabolites, complementary GC-MS, LC-MS and (1)H-NMR analyses were applied. This study reveals that the availability of different carbon sources results in different extracellular metabolite profiles whereas a regulated intracellular metabolite equilibrium was observed. In addition, the typical energy-starvation induced activation of the general stress sigma factor σ(B) was only observed upon entry into the stationary phase with glucose or glucose and malate as carbon sources.
Collapse
Affiliation(s)
- Hanna Meyer
- Institute of Biochemistry, Ernst-Moritz-Arndt-University Greifswald, Felix-Hausdorff-Strasse 4, 17487 Greifswald, Germany.
| | | | | | | | | | | |
Collapse
|
40
|
Voigt B, Schroeter R, Schweder T, Jürgen B, Albrecht D, van Dijl JM, Maurer KH, Hecker M. A proteomic view of cell physiology of the industrial workhorse Bacillus licheniformis. J Biotechnol 2014; 191:139-49. [DOI: 10.1016/j.jbiotec.2014.06.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 05/26/2014] [Accepted: 06/03/2014] [Indexed: 11/16/2022]
|
41
|
Zobel S, Kumpfmüller J, Süssmuth RD, Schweder T. Bacillus subtilis as heterologous host for the secretory production of the non-ribosomal cyclodepsipeptide enniatin. Appl Microbiol Biotechnol 2014; 99:681-91. [PMID: 25398283 PMCID: PMC4306738 DOI: 10.1007/s00253-014-6199-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 10/28/2014] [Accepted: 10/29/2014] [Indexed: 01/11/2023]
Abstract
The heterologous expression of genes or gene clusters in microbial hosts, followed by metabolic engineering of biosynthetic pathways, is key to access industrially and pharmaceutically relevant compounds in an economically affordable and sustainable manner. Therefore, platforms need to be developed, which provide tools for the controlled synthesis of bioactive compounds. The Gram-positive bacterium Bacillus subtilis is a promising candidate for such applications, as it is generally regarded as a safe production host, its physiology is well investigated and a variety of tools is available for its genetic manipulation. Furthermore, this industrially relevant bacterium provides a high secretory potential not only for enzymes but also for primary and secondary metabolites. In this study, we present the first heterologous expression of an eukaryotic non-ribosomal peptide synthetase gene (esyn) coding for the biosynthesis of the small molecule enniatin in B. subtilis. Enniatin is a pharmaceutically used cyclodepsipeptide for treatment of topical bacterial and fungal infections. We generated various enniatin-producing B. subtilis strains, allowing for either single chromosomal or plasmid-based multi-copy expression of the esyn cluster under the control of an acetoin-inducible promoter system. Optimization of cultivation conditions, combined with modifications of the genetic background and multi-copy plasmid-based esyn expression, resulted in a secretory production of enniatin B. This work presents B. subtilis as a suitable host for the expression of heterologous eukaryotic non-ribosomal peptide synthetases (NRPS) clusters.
Collapse
Affiliation(s)
- Sophia Zobel
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 124, 10623 Berlin, Germany
| | - Jana Kumpfmüller
- Institut für Pharmazie, Ernst-Moritz-Arndt-Universität, Felix-Hausdorff-Strasse 3, 17489 Greifswald, Germany
| | - Roderich D. Süssmuth
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 124, 10623 Berlin, Germany
| | - Thomas Schweder
- Institut für Pharmazie, Ernst-Moritz-Arndt-Universität, Felix-Hausdorff-Strasse 3, 17489 Greifswald, Germany
| |
Collapse
|
42
|
Deng C, Peng Q, Song F, Lereclus D. Regulation of cry gene expression in Bacillus thuringiensis. Toxins (Basel) 2014; 6:2194-209. [PMID: 25055802 PMCID: PMC4113751 DOI: 10.3390/toxins6072194] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 07/11/2014] [Accepted: 07/15/2014] [Indexed: 02/02/2023] Open
Abstract
Bacillus thuringiensis differs from the closely related Bacillus cereus group species by its ability to produce crystalline inclusions. The production of these crystals mainly results from the expression of the cry genes, from the stability of their transcripts and from the synthesis, accumulation and crystallization of large amounts of insecticidal Cry proteins. This process normally coincides with sporulation and is regulated by various factors operating at the transcriptional, post-transcriptional, metabolic and post-translational levels.
Collapse
Affiliation(s)
- Chao Deng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Qi Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Fuping Song
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Didier Lereclus
- INRA, UMR1319 Micalis, La Minière, Guyancourt 78280, France.
| |
Collapse
|
43
|
Transcription of the lysine-2,3-aminomutase gene in the kam locus of Bacillus thuringiensis subsp. kurstaki HD73 is controlled by both σ54 and σK factors. J Bacteriol 2014; 196:2934-43. [PMID: 24914178 DOI: 10.1128/jb.01675-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lysine 2,3-aminomutase (KAM; EC 5.4.3.2) catalyzes the interconversion of l-lysine and l-β-lysine. The transcription and regulation of the kam locus, including lysine-2,3-aminomutase-encoding genes, in Bacillus thuringiensis were analyzed in this study. Reverse transcription-PCR (RT-PCR) analysis revealed that this locus forms two operons: yodT (yodT-yodS-yodR-yodQ-yodP-kamR) and kamA (kamA-yokU-yozE). The transcriptional start sites (TSSs) of the kamA gene were determined using 5' rapid amplification of cDNA ends (RACE). A typical -12/-24 σ(54) binding site was identified in the promoter PkamA, which is located upstream of the kamA gene TSS. A β-galactosidase assay showed that PkamA, which directs the transcription of the kamA operon, is controlled by the σ(54) factor and is activated through the σ(54)-dependent transcriptional regulator KamR. The kamA operon is also controlled by σ(K) and regulated by the GerE protein in the late stage of sporulation. kamR and kamA mutants were prepared by homologous recombination to examine the role of the kam locus. The results showed that the sporulation rate in B. thuringiensis HD(ΔkamR) was slightly decreased compared to that in HD73, whereas that in HD(ΔkamA) was similar to that in HD73. This means that other genes regulated by KamR are important for sporulation.
Collapse
|
44
|
Qi G, Kang Y, Li L, Xiao A, Zhang S, Wen Z, Xu D, Chen S. Deletion of meso-2,3-butanediol dehydrogenase gene budC for enhanced D-2,3-butanediol production in Bacillus licheniformis. BIOTECHNOLOGY FOR BIOFUELS 2014; 7:16. [PMID: 24475980 PMCID: PMC3909405 DOI: 10.1186/1754-6834-7-16] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 01/14/2014] [Indexed: 05/03/2023]
Abstract
BACKGROUND D-2,3-butanediol has many industrial applications such as chiral reagents, solvents, anti-freeze agents, and low freezing point fuels. Traditional D-2,3-butanediol producing microorganisms, such as Klebsiella pneumonia and K. xoytoca, are pathogenic and not capable of producing D-2,3-butanediol at high optical purity. Bacillus licheniformis is a potential 2,3-butanediol producer but the wild type strain (WX-02) produces a mix of D- and meso-type isomers. BudC in B. licheniformis is annotated as 2,3-butanediol dehydrogenase or acetoin reductase, but no pervious experiment was performed to verify this hypothesis. RESULTS We developed a genetically modified strain of B. licheniformis (WX-02 ΔbudC) as a D-2,3-butanediol producer with high optimal purity. A marker-less gene deletion protocol based on a temperature sensitive knock-out plasmid T2-Ori was used to knock out the budC gene in B. licheniformis WX-02. The budC knock-out strain successfully abolished meso-2,3-butanediol production with enhanced D-2,3-butanediol production. No meso-BDH activity was detectable in cells of this strain. On the other hand, the complementary strain restored the characteristics of wild strain, and produced meso-2,3-butanediol and possessed meso-BDH activity. All of these data suggested that budC encoded the major meso-BDH catalyzing the reversible reaction from acetoin to meso-2,3-butanediol in B. licheniformis. The budC knock-out strain produced D-2,3-butanediol isomer only with a high yield of 30.76 g/L and a productivity of 1.28 g/L-h. CONCLUSIONS We confirmed the hypothesis that budC gene is responsible to reversibly transfer acetoin to meso-2,3-butanediol in B. licheniformis. A mutant strain of B. licheniformis with depleted budC gene was successfully developed and produced high level of the D-2,3-butanediol with high optimal purity.
Collapse
Affiliation(s)
- Gaofu Qi
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanfang Kang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lu Li
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Aifang Xiao
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shumeng Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhiyou Wen
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, USA
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Dihong Xu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shouwen Chen
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
45
|
Molecular characterization of an NADPH-dependent acetoin reductase/2,3-butanediol dehydrogenase from Clostridium beijerinckii NCIMB 8052. Appl Environ Microbiol 2014; 80:2011-20. [PMID: 24441158 DOI: 10.1128/aem.04007-13] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Acetoin reductase is an important enzyme for the fermentative production of 2,3-butanediol, a chemical compound with a very broad industrial use. Here, we report on the discovery and characterization of an acetoin reductase from Clostridium beijerinckii NCIMB 8052. An in silico screen of the C. beijerinckii genome revealed eight potential acetoin reductases. One of them (CBEI_1464) showed substantial acetoin reductase activity after expression in Escherichia coli. The purified enzyme (C. beijerinckii acetoin reductase [Cb-ACR]) was found to exist predominantly as a homodimer. In addition to acetoin (or 2,3-butanediol), other secondary alcohols and corresponding ketones were converted as well, provided that another electronegative group was attached to the adjacent C-3 carbon. Optimal activity was at pH 6.5 (reduction) and 9.5 (oxidation) and around 68°C. Cb-ACR accepts both NADH and NADPH as electron donors; however, unlike closely related enzymes, NADPH is preferred (Km, 32 μM). Cb-ACR was compared to characterized close homologs, all belonging to the "threonine dehydrogenase and related Zn-dependent dehydrogenases" (COG1063). Metal analysis confirmed the presence of 2 Zn(2+) atoms. To gain insight into the substrate and cofactor specificity, a structural model was constructed. The catalytic zinc atom is likely coordinated by Cys37, His70, and Glu71, while the structural zinc site is probably composed of Cys100, Cys103, Cys106, and Cys114. Residues determining NADP specificity were predicted as well. The physiological role of Cb-ACR in C. beijerinckii is discussed.
Collapse
|
46
|
Wiegand S, Voigt B, Albrecht D, Bongaerts J, Evers S, Hecker M, Daniel R, Liesegang H. Fermentation stage-dependent adaptations of Bacillus licheniformis during enzyme production. Microb Cell Fact 2013; 12:120. [PMID: 24313996 PMCID: PMC3878961 DOI: 10.1186/1475-2859-12-120] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 12/01/2013] [Indexed: 11/10/2022] Open
Abstract
Background Industrial fermentations can generally be described as dynamic biotransformation processes in which microorganisms convert energy rich substrates into a desired product. The knowledge of active physiological pathways, reflected by corresponding gene activities, allows the identification of beneficial or disadvantageous performances of the microbial host. Whole transcriptome RNA-Seq is a powerful tool to accomplish in-depth quantification of these gene activities, since the low background noise and the absence of an upper limit of quantification allow the detection of transcripts with high dynamic ranges. Such data enable the identification of potential bottlenecks and futile energetic cycles, which in turn can lead to targets for rational approaches to productivity improvement. Here we present an overview of the dynamics of gene activity during an industrial-oriented fermentation process with Bacillus licheniformis, an important industrial enzyme producer. Thereby, valuable insights which help to understand the complex interactions during such processes are provided. Results Whole transcriptome RNA-Seq has been performed to study the gene expression at five selected growth stages of an industrial-oriented protease production process employing a germination deficient derivative of B. licheniformis DSM13. Since a significant amount of genes in Bacillus strains are regulated posttranscriptionally, the generated data have been confirmed by 2D gel-based proteomics. Regulatory events affecting the coordinated activity of hundreds of genes have been analyzed. The data enabled the identification of genes involved in the adaptations to changing environmental conditions during the fermentation process. A special focus of the analyses was on genes contributing to central carbon metabolism, amino acid transport and metabolism, starvation and stress responses and protein secretion. Genes contributing to lantibiotics production and Tat-dependent protein secretion have been pointed out as potential optimization targets. Conclusions The presented data give unprecedented insights into the complex adaptations of bacterial production strains to the changing physiological demands during an industrial-oriented fermentation. These are, to our knowledge, the first publicly available data that document quantifiable transcriptional responses of the commonly employed production strain B. licheniformis to changing conditions over the course of a typical fermentation process in such extensive depth.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Heiko Liesegang
- Department of Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Institut für Mikrobiologie und Genetik, Norddeutsches Zentrum für Mikrobielle Genomforschung, Georg-August-Universität Göttingen, Grisebachstr, 8, D-37077 Göttingen, Germany.
| |
Collapse
|
47
|
Aklujkar M, Haveman SA, DiDonato R, Chertkov O, Han CS, Land ML, Brown P, Lovley DR. The genome of Pelobacter carbinolicus reveals surprising metabolic capabilities and physiological features. BMC Genomics 2012; 13:690. [PMID: 23227809 PMCID: PMC3543383 DOI: 10.1186/1471-2164-13-690] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 11/22/2012] [Indexed: 11/24/2022] Open
Abstract
Background The bacterium Pelobacter carbinolicus is able to grow by fermentation, syntrophic hydrogen/formate transfer, or electron transfer to sulfur from short-chain alcohols, hydrogen or formate; it does not oxidize acetate and is not known to ferment any sugars or grow autotrophically. The genome of P. carbinolicus was sequenced in order to understand its metabolic capabilities and physiological features in comparison with its relatives, acetate-oxidizing Geobacter species. Results Pathways were predicted for catabolism of known substrates: 2,3-butanediol, acetoin, glycerol, 1,2-ethanediol, ethanolamine, choline and ethanol. Multiple isozymes of 2,3-butanediol dehydrogenase, ATP synthase and [FeFe]-hydrogenase were differentiated and assigned roles according to their structural properties and genomic contexts. The absence of asparagine synthetase and the presence of a mutant tRNA for asparagine encoded among RNA-active enzymes suggest that P. carbinolicus may make asparaginyl-tRNA in a novel way. Catabolic glutamate dehydrogenases were discovered, implying that the tricarboxylic acid (TCA) cycle can function catabolically. A phosphotransferase system for uptake of sugars was discovered, along with enzymes that function in 2,3-butanediol production. Pyruvate:ferredoxin/flavodoxin oxidoreductase was identified as a potential bottleneck in both the supply of oxaloacetate for oxidation of acetate by the TCA cycle and the connection of glycolysis to production of ethanol. The P. carbinolicus genome was found to encode autotransporters and various appendages, including three proteins with similarity to the geopilin of electroconductive nanowires. Conclusions Several surprising metabolic capabilities and physiological features were predicted from the genome of P. carbinolicus, suggesting that it is more versatile than anticipated.
Collapse
Affiliation(s)
- Muktak Aklujkar
- University of Massachusetts Amherst, Amherst, MA 01003, USA.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Cabrera-Valladares N, Martínez LM, Flores N, Hernández-Chávez G, Martínez A, Bolívar F, Gosset G. Physiologic Consequences of Glucose Transport and Phosphoenolpyruvate Node Modifications inBacillus subtilis168. J Mol Microbiol Biotechnol 2012; 22:177-97. [DOI: 10.1159/000339973] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
49
|
Identification of the regulator gene responsible for the acetone-responsive expression of the binuclear iron monooxygenase gene cluster in mycobacteria. J Bacteriol 2011; 193:5817-23. [PMID: 21856847 DOI: 10.1128/jb.05525-11] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mimABCD gene cluster encodes the binuclear iron monooxygenase that oxidizes propane and phenol in Mycobacterium smegmatis strain MC2 155 and Mycobacterium goodii strain 12523. Interestingly, expression of the mimABCD gene cluster is induced by acetone. In this study, we investigated the regulator gene responsible for this acetone-responsive expression. In the genome sequence of M. smegmatis strain MC2 155, the mimABCD gene cluster is preceded by a gene designated mimR, which is divergently transcribed. Sequence analysis revealed that MimR exhibits amino acid similarity with the NtrC family of transcriptional activators, including AcxR and AcoR, which are involved in acetone and acetoin metabolism, respectively. Unexpectedly, many homologs of the mimR gene were also found in the sequenced genomes of actinomycetes. A plasmid carrying a transcriptional fusion of the intergenic region between the mimR and mimA genes with a promoterless green fluorescent protein (GFP) gene was constructed and introduced into M. smegmatis strain MC2 155. Using a GFP reporter system, we confirmed by deletion and complementation analyses that the mimR gene product is the positive regulator of the mimABCD gene cluster expression that is responsive to acetone. M. goodii strain 12523 also utilized the same regulatory system as M. smegmatis strain MC2 155. Although transcriptional activators of the NtrC family generally control transcription using the σ(54) factor, a gene encoding the σ(54) factor was absent from the genome sequence of M. smegmatis strain MC2 155. These results suggest the presence of a novel regulatory system in actinomycetes, including mycobacteria.
Collapse
|
50
|
The Bacillus subtilis GntR family repressor YtrA responds to cell wall antibiotics. J Bacteriol 2011; 193:5793-801. [PMID: 21856850 DOI: 10.1128/jb.05862-11] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The transglycosylation step of cell wall synthesis is a prime antibiotic target because it is essential and specific to bacteria. Two antibiotics, ramoplanin and moenomycin, target this step by binding to the substrate lipid II and the transglycosylase enzyme, respectively. Here, we compare the ramoplanin and moenomycin stimulons in the Gram-positive model organism Bacillus subtilis. Ramoplanin strongly induces the LiaRS two-component regulatory system, while moenomycin almost exclusively induces genes that are part of the regulon of the extracytoplasmic function (ECF) σ factor σ(M). Ramoplanin additionally induces the ytrABCDEF and ywoBCD operons, which are not part of a previously characterized antibiotic-responsive regulon. Cluster analysis reveals that these two operons are selectively induced by a subset of cell wall antibiotics that inhibit lipid II function or recycling. Repression of both operons requires YtrA, which recognizes an inverted repeat in front of its own operon and in front of ywoB. These results suggest that YtrA is an additional regulator of cell envelope stress responses.
Collapse
|