1
|
Giordano I, Pasolli E, Mauriello G. Transcriptomic analysis reveals differential gene expression patterns of Lacticaseibacillus casei ATCC 393 in response to ultrasound stress. ULTRASONICS SONOCHEMISTRY 2024; 107:106939. [PMID: 38843696 PMCID: PMC11214525 DOI: 10.1016/j.ultsonch.2024.106939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/14/2024] [Accepted: 05/30/2024] [Indexed: 06/19/2024]
Abstract
In recent years, there has been a growing interest in modulating the performance of probiotic, mainly Lactic Acid Bacteria (LAB), in the field of probiotic food. Attenuation, induced by sub-lethal stresses, delays the probiotic metabolism, and induces a metabolic shift as survival strategy. In this paper, RNA sequencing was used to uncover the transcriptional regulation in Lacticaseibacillus casei ATCC 393 after ultrasound-induced attenuation. Six (T) and 8 (ST) min of sonication induced a significant differential expression of 742 and 409 genes, respectively. We identified 198 up-regulated and 321 down-regulated genes in T, and similarly 321 up-regulated and 249 down-regulated in ST. These results revealed a strong defensive response at 6 min, followed by adaptation at 8 min. Ultrasound attenuation modified the expression of genes related to a series of crucial biomolecular processes including membrane transport, carbohydrate and purine metabolism, phage-related genes, and translation. Specifically, genes encoding PTS transporters and genes involved in the glycolytic pathway and pyruvate metabolism were up-regulated, indicating an increased need for energy supply, as also suggested by an increase in the transcription of purine biosynthetic genes. Instead, protein translation, a high-energy process, was inhibited with the down-regulation of ribosomal protein biosynthetic genes. Moreover, phage-related genes were down-regulated suggesting a tight transcriptional control on DNA structure. The observed phenomena highlight the cell need of ATP to cope with the multiple ultrasound stresses and the activation of processes to stabilize and preserve the DNA structure. Our work demonstrates that ultrasound has remarkable effects on the tested strain and elucidates the involvement of different pathways in its defensive stress-response and in the modification of its phenotype.
Collapse
Affiliation(s)
- Irene Giordano
- Department of Agricultural Sciences, University of Naples Federico II, 80049 Naples, Italy
| | - Edoardo Pasolli
- Department of Agricultural Sciences, University of Naples Federico II, 80049 Naples, Italy
| | - Gianluigi Mauriello
- Department of Agricultural Sciences, University of Naples Federico II, 80049 Naples, Italy.
| |
Collapse
|
2
|
O’Connor PBF, Mahony J, Casey E, Baranov PV, van Sinderen D, Yordanova MM. Ribosome profiling reveals downregulation of UMP biosynthesis as the major early response to phage infection. Microbiol Spectr 2024; 12:e0398923. [PMID: 38451091 PMCID: PMC10986495 DOI: 10.1128/spectrum.03989-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/14/2024] [Indexed: 03/08/2024] Open
Abstract
Bacteria have evolved diverse defense mechanisms to counter bacteriophage attacks. Genetic programs activated upon infection characterize phage-host molecular interactions and ultimately determine the outcome of the infection. In this study, we applied ribosome profiling to monitor protein synthesis during the early stages of sk1 bacteriophage infection in Lactococcus cremoris. Our analysis revealed major changes in gene expression within 5 minutes of sk1 infection. Notably, we observed a specific and severe downregulation of several pyr operons which encode enzymes required for uridine monophosphate biosynthesis. Consistent with previous findings, this is likely an attempt of the host to starve the phage of nucleotides it requires for propagation. We also observed a gene expression response that we expect to benefit the phage. This included the upregulation of 40 ribosome proteins that likely increased the host's translational capacity, concurrent with a downregulation of genes that promote translational fidelity (lepA and raiA). In addition to the characterization of host-phage gene expression responses, the obtained ribosome profiling data enabled us to identify two putative recoding events as well as dozens of loci currently annotated as pseudogenes that are actively translated. Furthermore, our study elucidated alterations in the dynamics of the translation process, as indicated by time-dependent changes in the metagene profile, suggesting global shifts in translation rates upon infection. Additionally, we observed consistent modifications in the ribosome profiles of individual genes, which were apparent as early as 2 minutes post-infection. The study emphasizes our ability to capture rapid alterations of gene expression during phage infection through ribosome profiling. IMPORTANCE The ribosome profiling technology has provided invaluable insights for understanding cellular translation and eukaryotic viral infections. However, its potential for investigating host-phage interactions remains largely untapped. Here, we applied ribosome profiling to Lactococcus cremoris cultures infected with sk1, a major infectious agent in dairy fermentation processes. This revealed a profound downregulation of genes involved in pyrimidine nucleotide synthesis at an early stage of phage infection, suggesting an anti-phage program aimed at restricting nucleotide availability and, consequently, phage propagation. This is consistent with recent findings and contributes to our growing appreciation for the role of nucleotide limitation as an anti-viral strategy. In addition to capturing rapid alterations in gene expression levels, we identified translation occurring outside annotated regions, as well as signatures of non-standard translation mechanisms. The gene profiles revealed specific changes in ribosomal densities upon infection, reflecting alterations in the dynamics of the translation process.
Collapse
Affiliation(s)
- Patrick B. F. O’Connor
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
- EIRNA Bio, Bioinnovation Hub, Cork, Ireland
| | - Jennifer Mahony
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Eoghan Casey
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Pavel V. Baranov
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Douwe van Sinderen
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | |
Collapse
|
3
|
Chen S, He X, Qin Z, Li G, Wang W, Nai Z, Tian Y, Liu D, Jiang X. Loss in the Antibacterial Ability of a PyrR Gene Regulating Pyrimidine Biosynthesis after Using CRISPR/Cas9-Mediated Knockout for Metabolic Engineering in Lactobacillus casei. Microorganisms 2023; 11:2371. [PMID: 37894029 PMCID: PMC10609543 DOI: 10.3390/microorganisms11102371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 10/29/2023] Open
Abstract
Lactobacillus casei (L. casei) has four possible mechanisms: antimicrobial antagonism, competitional adhesion, immunoregulation, and the inhibition of bacterial toxins. To delineate the metabolic reactions of nucleotides from L. casei that are associated with mechanisms of inhibiting pathogens and immunoregulation, we report that a PyrR-deficient L. casei strain was constructed using the CRISPR-Cas9D10A tool. Furthermore, there were some changes in its basic biological characterization, such as its growth curve, auxotroph, and morphological damage. The metabolic profiles of the supernatant between the PyrR-deficient and wild strains revealed the regulation of the synthesis of genetic material and of certain targeting pathways and metabolites. In addition, the characteristics of the PyrR-deficient strain were significantly altered as it lost the ability to inhibit the growth of pathogens. Moreover, we identified PyrR-regulating pyrimidine biosynthesis, which further improved its internalization and colocalization with macrophages. Evidence shows that the PyrR gene is a key active component in L. casei supernatants for the regulation of pyrimidine biosynthesis against a wide range of pathogens.
Collapse
Affiliation(s)
- Shaojun Chen
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Xinmiao He
- Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture, Animal Husbandry Research Institute, Heilongjiang Academy of Agricultural Sciences, No. 368 Xuefu Road, Harbin 150086, China
| | - Ziliang Qin
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Gang Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Wentao Wang
- Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture, Animal Husbandry Research Institute, Heilongjiang Academy of Agricultural Sciences, No. 368 Xuefu Road, Harbin 150086, China
| | - Zida Nai
- College of Agriculture, Yanbian University, Yanji 133002, China
| | - Yaguang Tian
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Di Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture, Animal Husbandry Research Institute, Heilongjiang Academy of Agricultural Sciences, No. 368 Xuefu Road, Harbin 150086, China
| | - Xinpeng Jiang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
4
|
Charbonneau ARL, Taylor E, Mitchell CJ, Robinson C, Cain AK, Leigh JA, Maskell DJ, Waller AS. Identification of genes required for the fitness of Streptococcus equi subsp. equi in whole equine blood and hydrogen peroxide. Microb Genom 2020; 6:e000362. [PMID: 32228801 PMCID: PMC7276704 DOI: 10.1099/mgen.0.000362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 03/12/2020] [Indexed: 12/25/2022] Open
Abstract
The availability of next-generation sequencing techniques provides an unprecedented opportunity for the assignment of gene function. Streptococcus equi subspecies equi is the causative agent of strangles in horses, one of the most prevalent and important diseases of equids worldwide. However, the live attenuated vaccines that are utilized to control this disease cause adverse reactions in some animals. Here, we employ transposon-directed insertion-site sequencing (TraDIS) to identify genes that are required for the fitness of S. equi in whole equine blood or in the presence of H2O2 to model selective pressures exerted by the equine immune response during infection. We report the fitness values of 1503 and 1471 genes, representing 94.5 and 92.5 % of non-essential genes in S. equi, following incubation in whole blood and in the presence of H2O2, respectively. Of these genes, 36 and 15 were identified as being important to the fitness of S. equi in whole blood or H2O2, respectively, with 14 genes being important in both conditions. Allelic replacement mutants were generated to validate the fitness results. Our data identify genes that are important for S. equi to resist aspects of the immune response in vitro, which can be exploited for the development of safer live attenuated vaccines to prevent strangles.
Collapse
Affiliation(s)
- Amelia R. L. Charbonneau
- Animal Health Trust, Lanwades Park, Newmarket, Suffolk, UK
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Emma Taylor
- Animal Health Trust, Lanwades Park, Newmarket, Suffolk, UK
- School of Veterinary Medicine, University of Surrey, Guildford, UK
| | | | - Carl Robinson
- Animal Health Trust, Lanwades Park, Newmarket, Suffolk, UK
| | - Amy K. Cain
- Department of Molecular Sciences, Macquarie University, Sydney, Australia
| | - James A. Leigh
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Leicestershire, UK
| | - Duncan J. Maskell
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
- University of Melbourne, Victoria, Australia
| | | |
Collapse
|
5
|
Gaudu P, Yamamoto Y, Jensen PR, Hammer K, Lechardeur D, Gruss A. Genetics of Lactococci. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0035-2018. [PMID: 31298208 PMCID: PMC10957224 DOI: 10.1128/microbiolspec.gpp3-0035-2018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Indexed: 11/20/2022] Open
Abstract
Lactococcus lactis is the best characterized species among the lactococci, and among the most consumed food-fermenting bacteria worldwide. Thanks to their importance in industrialized food production, lactococci are among the lead bacteria understood for fundamental metabolic pathways that dictate growth and survival properties. Interestingly, lactococci belong to the Streptococcaceae family, which includes food, commensal and virulent species. As basic metabolic pathways (e.g., respiration, metal homeostasis, nucleotide metabolism) are now understood to underlie virulence, processes elucidated in lactococci could be important for understanding pathogen fitness and synergy between bacteria. This chapter highlights major findings in lactococci and related bacteria, and covers five themes: distinguishing features of lactococci, metabolic capacities including the less known respiration metabolism in Streptococcaceae, factors and pathways modulating stress response and fitness, interbacterial dialogue via metabolites, and novel applications in health and biotechnology.
Collapse
Affiliation(s)
| | - Yuji Yamamoto
- Laboratory of Cellular Microbiology, School of Veterinary Medicine, Kitasato University, Towada, 034-8628, Aomori Japan
| | - Peter Ruhdal Jensen
- National Food Institute, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Karin Hammer
- DTU Bioengineering, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | | | | |
Collapse
|
6
|
Aprianto R, Slager J, Holsappel S, Veening JW. High-resolution analysis of the pneumococcal transcriptome under a wide range of infection-relevant conditions. Nucleic Acids Res 2019; 46:9990-10006. [PMID: 30165663 PMCID: PMC6212715 DOI: 10.1093/nar/gky750] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 08/09/2018] [Indexed: 12/18/2022] Open
Abstract
Streptococcus pneumoniae is an opportunistic human pathogen that typically colonizes the nasopharyngeal passage and causes lethal disease in other host niches, such as the lung or the meninges. The expression and regulation of pneumococcal genes at different life-cycle stages, such as commensal or pathogenic, are not entirely understood. To chart the transcriptional responses of S. pneumoniae, we used RNA-seq to quantify the relative abundance of the transcriptome under 22 different infection-relevant conditions. The data demonstrated a high level of dynamic expression and, strikingly, all annotated pneumococcal genomic features were expressed in at least one of the studied conditions. By computing the correlation values of every pair of genes across all studied conditions, we created a co-expression matrix that provides valuable information on both operon structure and regulatory processes. The co-expression data are highly consistent with well-characterized operons and regulons, such as the PyrR, ComE and ComX regulons, and have allowed us to identify a new member of the competence regulon. Lastly, we created an interactive data center named PneumoExpress (https://veeninglab.com/pneumoexpress) that enables users to access the expression data as well as the co-expression matrix in an intuitive and efficient manner, providing a valuable resource to the pneumococcal research community.
Collapse
Affiliation(s)
- Rieza Aprianto
- Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, Centre for Synthetic Biology, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Jelle Slager
- Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, Centre for Synthetic Biology, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Siger Holsappel
- Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, Centre for Synthetic Biology, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Jan-Willem Veening
- Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, Centre for Synthetic Biology, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands.,Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| |
Collapse
|
7
|
Slager J, Aprianto R, Veening JW. Deep genome annotation of the opportunistic human pathogen Streptococcus pneumoniae D39. Nucleic Acids Res 2019; 46:9971-9989. [PMID: 30107613 PMCID: PMC6212727 DOI: 10.1093/nar/gky725] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 07/30/2018] [Indexed: 12/27/2022] Open
Abstract
A precise understanding of the genomic organization into transcriptional units and their regulation is essential for our comprehension of opportunistic human pathogens and how they cause disease. Using single-molecule real-time (PacBio) sequencing we unambiguously determined the genome sequence of Streptococcus pneumoniae strain D39 and revealed several inversions previously undetected by short-read sequencing. Significantly, a chromosomal inversion results in antigenic variation of PhtD, an important surface-exposed virulence factor. We generated a new genome annotation using automated tools, followed by manual curation, reflecting the current knowledge in the field. By combining sequence-driven terminator prediction, deep paired-end transcriptome sequencing and enrichment of primary transcripts by Cappable-Seq, we mapped 1015 transcriptional start sites and 748 termination sites. We show that the pneumococcal transcriptional landscape is complex and includes many secondary, antisense and internal promoters. Using this new genomic map, we identified several new small RNAs (sRNAs), RNA switches (including sixteen previously misidentified as sRNAs), and antisense RNAs. In total, we annotated 89 new protein-encoding genes, 34 sRNAs and 165 pseudogenes, bringing the S. pneumoniae D39 repertoire to 2146 genetic elements. We report operon structures and observed that 9% of operons are leaderless. The genome data are accessible in an online resource called PneumoBrowse (https://veeninglab.com/pneumobrowse) providing one of the most complete inventories of a bacterial genome to date. PneumoBrowse will accelerate pneumococcal research and the development of new prevention and treatment strategies.
Collapse
Affiliation(s)
- Jelle Slager
- Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, Centre for Synthetic Biology, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands
| | - Rieza Aprianto
- Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, Centre for Synthetic Biology, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands
| | - Jan-Willem Veening
- Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, Centre for Synthetic Biology, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands.,Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| |
Collapse
|
8
|
Marques Da Silva W, Oliveira LC, Soares SC, Sousa CS, Tavares GC, Resende CP, Pereira FL, Ghosh P, Figueiredo H, Azevedo V. Quantitative Proteomic Analysis of the Response of Probiotic Putative Lactococcus lactis NCDO 2118 Strain to Different Oxygen Availability Under Temperature Variation. Front Microbiol 2019; 10:759. [PMID: 31031733 PMCID: PMC6470185 DOI: 10.3389/fmicb.2019.00759] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 03/26/2019] [Indexed: 02/06/2023] Open
Abstract
Lactococcus lactis is a gram positive facultative anaerobe widely used in the dairy industry and human health. L. lactis subsp. lactis NCDO 2118 is a strain that exhibits anti-inflammatory and immunomodulatory properties. In this study, we applied a label-free shotgun proteomic approach to characterize and quantify the NCDO 2118 proteome in response to variations of temperature and oxygen bioavailability, which constitute the environmental conditions found by this bacterium during its passage through the host gastro-intestinal tract and in other industrial processes. From this proteomic analysis, a total of 1,284 non-redundant proteins of NCDO 2118 were characterized, which correspond to approximately 54% of its predicted proteome. Comparative proteomic analysis identified 149 and 136 proteins in anaerobic (30°C and 37°C) and non-aerated (30°C and 37°C) conditions, respectively. Our label-free proteomic analysis quantified a total of 1,239 proteins amongst which 161 proteins were statistically differentially expressed. Main differences were observed in cellular metabolism, stress response, transcription and proteins associated to cell wall. In addition, we identified six strain-specific proteins of NCDO 2118. Altogether, the results obtained in our study will help to improve the understanding about the factors related to both physiology and adaptive processes of L. lactis NCDO 2118 under changing environmental conditions.
Collapse
Affiliation(s)
- Wanderson Marques Da Silva
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Leticia Castro Oliveira
- Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triangulo Mineiro, Uberaba, Brazil
| | - Siomar Castro Soares
- Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triangulo Mineiro, Uberaba, Brazil
| | - Cassiana Severiano Sousa
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | - Felipe Luis Pereira
- AQUACEN, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Preetam Ghosh
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, United States
| | - Henrique Figueiredo
- AQUACEN, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Vasco Azevedo
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
9
|
Kok J, van Gijtenbeek LA, de Jong A, van der Meulen SB, Solopova A, Kuipers OP. The Evolution of gene regulation research in Lactococcus lactis. FEMS Microbiol Rev 2018; 41:S220-S243. [PMID: 28830093 DOI: 10.1093/femsre/fux028] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 06/15/2017] [Indexed: 11/12/2022] Open
Abstract
Lactococcus lactis is a major microbe. This lactic acid bacterium (LAB) is used worldwide in the production of safe, healthy, tasteful and nutritious milk fermentation products. Its huge industrial importance has led to an explosion of research on the organism, particularly since the early 1970s. The upsurge in the research on L. lactis coincided not accidentally with the advent of recombinant DNA technology in these years. The development of methods to take out and re-introduce DNA in L. lactis, to clone genes and to mutate the chromosome in a targeted way, to control (over)expression of proteins and, ultimately, the availability of the nucleotide sequence of its genome and the use of that information in transcriptomics and proteomics research have enabled to peek deep into the functioning of the organism. Among many other things, this has provided an unprecedented view of the major gene regulatory pathways involved in nitrogen and carbon metabolism and their overlap, and has led to the blossoming of the field of L. lactis systems biology. All of these advances have made L. lactis the paradigm of the LAB. This review will deal with the exciting path along which the research on the genetics of and gene regulation in L. lactis has trodden.
Collapse
Affiliation(s)
- Jan Kok
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, the Netherlands
| | - Lieke A van Gijtenbeek
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, the Netherlands
| | - Anne de Jong
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, the Netherlands
| | - Sjoerd B van der Meulen
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, the Netherlands
| | - Ana Solopova
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, the Netherlands
| | - Oscar P Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, the Netherlands
| |
Collapse
|
10
|
Contribution of YthA, a PspC Family Transcriptional Regulator of Lactococcus lactis F44 Acid Tolerance and Nisin Yield: a Transcriptomic Approach. Appl Environ Microbiol 2018. [PMID: 29305506 DOI: 10.1128/aem.02483-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
Abstract
To overcome the adverse impacts of environmental stresses during growth, different adaptive regulation mechanisms can be activated in Lactococcus lactis In this study, the transcription levels of eight transcriptional regulators of L. lactis subsp. lactis F44 under acid stress were analyzed using quantitative reverse transcription-PCR. Eight gene-overexpressing strains were then constructed to examine their influences on acid-resistant capability. Overexpressing ythA, a PspC family transcriptional regulator, increased the survival rate by 3.2-fold compared to the control at the lethal pH 3.0 acid shock. Moreover, the nisin yield was increased by 45.50%. The ythA-overexpressing strain FythA appeared to have higher intracellular pH stability and nisin-resistant ability. Subsequently, transcriptome analysis revealed that the vast majority of genes associated with amino acid biosynthesis, including arginine, serine, phenylalanine, and tyrosine, were predominantly upregulated in FythA. Arginine biosynthesis (argG and argH), arginine deiminase pathway, and polar amino acid transport (ysfE and ysfF) were proposed to be the main regulation mechanisms of YthA. Furthermore, the transcription of genes associated with pyrimidine and exopolysaccharide biosynthesis were upregulated. The transcriptional levels of nisIPRKFEG genes were substantially higher in FythA, which directly contributed to the yield and resistance of nisin. Three potential DNA-binding sequences were predicted by computer analysis using the upstream regions of genes with prominent changes. This study showed that YthA could increase acid resistance and nisin yield and revealed a putative regulation mechanism of YthA.IMPORTANCE Nisin, produced by Lactococcus lactis subsp. lactis, is widely used as a safe food preservative. Acid stress becomes the primary restrictive factor of cell growth and nisin yield. In this research, we found that the transcriptional regulator YthA was conducive to enhancing the acid resistance of L. lactis F44. Overexpressing ythA could significantly improve the survival rate and nisin yield. The stability of intracellular pH and nisin resistance were also increased. Transcriptome analysis showed that nisin immunity and the biosynthesis of some amino acids, pyrimidine, and exopolysaccharides were enhanced in the engineered strain. This study elucidates the regulation mechanism of YthA and provides a novel strategy for constructing robust industrial L. lactis strains.
Collapse
|
11
|
Contribution of YthA, a PspC Family Transcriptional Regulator of Lactococcus lactis F44 Acid Tolerance and Nisin Yield: a Transcriptomic Approach. Appl Environ Microbiol 2018; 84:AEM.02483-17. [PMID: 29305506 DOI: 10.1128/aem.02483-17] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 12/22/2017] [Indexed: 11/20/2022] Open
Abstract
To overcome the adverse impacts of environmental stresses during growth, different adaptive regulation mechanisms can be activated in Lactococcus lactis In this study, the transcription levels of eight transcriptional regulators of L. lactis subsp. lactis F44 under acid stress were analyzed using quantitative reverse transcription-PCR. Eight gene-overexpressing strains were then constructed to examine their influences on acid-resistant capability. Overexpressing ythA, a PspC family transcriptional regulator, increased the survival rate by 3.2-fold compared to the control at the lethal pH 3.0 acid shock. Moreover, the nisin yield was increased by 45.50%. The ythA-overexpressing strain FythA appeared to have higher intracellular pH stability and nisin-resistant ability. Subsequently, transcriptome analysis revealed that the vast majority of genes associated with amino acid biosynthesis, including arginine, serine, phenylalanine, and tyrosine, were predominantly upregulated in FythA. Arginine biosynthesis (argG and argH), arginine deiminase pathway, and polar amino acid transport (ysfE and ysfF) were proposed to be the main regulation mechanisms of YthA. Furthermore, the transcription of genes associated with pyrimidine and exopolysaccharide biosynthesis were upregulated. The transcriptional levels of nisIPRKFEG genes were substantially higher in FythA, which directly contributed to the yield and resistance of nisin. Three potential DNA-binding sequences were predicted by computer analysis using the upstream regions of genes with prominent changes. This study showed that YthA could increase acid resistance and nisin yield and revealed a putative regulation mechanism of YthA.IMPORTANCE Nisin, produced by Lactococcus lactis subsp. lactis, is widely used as a safe food preservative. Acid stress becomes the primary restrictive factor of cell growth and nisin yield. In this research, we found that the transcriptional regulator YthA was conducive to enhancing the acid resistance of L. lactis F44. Overexpressing ythA could significantly improve the survival rate and nisin yield. The stability of intracellular pH and nisin resistance were also increased. Transcriptome analysis showed that nisin immunity and the biosynthesis of some amino acids, pyrimidine, and exopolysaccharides were enhanced in the engineered strain. This study elucidates the regulation mechanism of YthA and provides a novel strategy for constructing robust industrial L. lactis strains.
Collapse
|
12
|
Oliveira LC, Saraiva TDL, Silva WM, Pereira UP, Campos BC, Benevides LJ, Rocha FS, Figueiredo HCP, Azevedo V, Soares SC. Analyses of the probiotic property and stress resistance-related genes of Lactococcus lactis subsp. lactis NCDO 2118 through comparative genomics and in vitro assays. PLoS One 2017; 12:e0175116. [PMID: 28384209 PMCID: PMC5383145 DOI: 10.1371/journal.pone.0175116] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 03/21/2017] [Indexed: 11/19/2022] Open
Abstract
Lactococcus lactis subsp. lactis NCDO 2118 was recently reported to alleviate colitis symptoms via its anti-inflammatory and immunomodulatory activities, which are exerted by exported proteins that are not produced by L. lactis subsp. lactis IL1403. Here, we used in vitro and in silico approaches to characterize the genomic structure, the safety aspects, and the immunomodulatory activity of this strain. Through comparative genomics, we identified genomic islands, phage regions, bile salt and acid stress resistance genes, bacteriocins, adhesion-related and antibiotic resistance genes, and genes encoding proteins that are putatively secreted, expressed in vitro and absent from IL1403. The high degree of similarity between all Lactococcus suggests that the Symbiotic Islands commonly shared by both NCDO 2118 and KF147 may be responsible for their close relationship and their adaptation to plants. The predicted bacteriocins may play an important role against the invasion of competing strains. The genes related to the acid and bile salt stresses may play important roles in gastrointestinal tract survival, whereas the adhesion proteins are important for persistence in the gut, culminating in the competitive exclusion of other bacteria. Finally, the five secreted and expressed proteins may be important targets for studies of new anti-inflammatory and immunomodulatory proteins. Altogether, the analyses performed here highlight the potential use of this strain as a target for the future development of probiotic foods.
Collapse
Affiliation(s)
- Letícia C. Oliveira
- Laboratory of Cellular and Molecular Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte—MG, Brazil
| | - Tessália D. L. Saraiva
- Laboratory of Cellular and Molecular Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte—MG, Brazil
| | - Wanderson M. Silva
- Laboratory of Cellular and Molecular Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte—MG, Brazil
| | - Ulisses P. Pereira
- Department of Preventive Veterinary Medicine, State University of Londrina, Londrina—PR, Brazil
| | - Bruno C. Campos
- Laboratory of Cellular and Molecular Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte—MG, Brazil
| | - Leandro J. Benevides
- Laboratory of Cellular and Molecular Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte—MG, Brazil
| | - Flávia S. Rocha
- Laboratory of Cellular and Molecular Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte—MG, Brazil
| | - Henrique C. P. Figueiredo
- Official Laboratory of Fisheries Ministry—Veterinary School, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Vasco Azevedo
- Laboratory of Cellular and Molecular Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte—MG, Brazil
| | - Siomar C. Soares
- Laboratory of Cellular and Molecular Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte—MG, Brazil
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba—MG, Brazil
- * E-mail:
| |
Collapse
|
13
|
Phosphoribosyl Diphosphate (PRPP): Biosynthesis, Enzymology, Utilization, and Metabolic Significance. Microbiol Mol Biol Rev 2016; 81:81/1/e00040-16. [PMID: 28031352 DOI: 10.1128/mmbr.00040-16] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Phosphoribosyl diphosphate (PRPP) is an important intermediate in cellular metabolism. PRPP is synthesized by PRPP synthase, as follows: ribose 5-phosphate + ATP → PRPP + AMP. PRPP is ubiquitously found in living organisms and is used in substitution reactions with the formation of glycosidic bonds. PRPP is utilized in the biosynthesis of purine and pyrimidine nucleotides, the amino acids histidine and tryptophan, the cofactors NAD and tetrahydromethanopterin, arabinosyl monophosphodecaprenol, and certain aminoglycoside antibiotics. The participation of PRPP in each of these metabolic pathways is reviewed. Central to the metabolism of PRPP is PRPP synthase, which has been studied from all kingdoms of life by classical mechanistic procedures. The results of these analyses are unified with recent progress in molecular enzymology and the elucidation of the three-dimensional structures of PRPP synthases from eubacteria, archaea, and humans. The structures and mechanisms of catalysis of the five diphosphoryltransferases are compared, as are those of selected enzymes of diphosphoryl transfer, phosphoryl transfer, and nucleotidyl transfer reactions. PRPP is used as a substrate by a large number phosphoribosyltransferases. The protein structures and reaction mechanisms of these phosphoribosyltransferases vary and demonstrate the versatility of PRPP as an intermediate in cellular physiology. PRPP synthases appear to have originated from a phosphoribosyltransferase during evolution, as demonstrated by phylogenetic analysis. PRPP, furthermore, is an effector molecule of purine and pyrimidine nucleotide biosynthesis, either by binding to PurR or PyrR regulatory proteins or as an allosteric activator of carbamoylphosphate synthetase. Genetic analyses have disclosed a number of mutants altered in the PRPP synthase-specifying genes in humans as well as bacterial species.
Collapse
|
14
|
Solopova A, Formosa-Dague C, Courtin P, Furlan S, Veiga P, Péchoux C, Armalyte J, Sadauskas M, Kok J, Hols P, Dufrêne YF, Kuipers OP, Chapot-Chartier MP, Kulakauskas S. Regulation of Cell Wall Plasticity by Nucleotide Metabolism in Lactococcus lactis. J Biol Chem 2016; 291:11323-36. [PMID: 27022026 DOI: 10.1074/jbc.m116.714303] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Indexed: 12/21/2022] Open
Abstract
To ensure optimal cell growth and separation and to adapt to environmental parameters, bacteria have to maintain a balance between cell wall (CW) rigidity and flexibility. This can be achieved by a concerted action of peptidoglycan (PG) hydrolases and PG-synthesizing/modifying enzymes. In a search for new regulatory mechanisms responsible for the maintenance of this equilibrium in Lactococcus lactis, we isolated mutants that are resistant to the PG hydrolase lysozyme. We found that 14% of the causative mutations were mapped in the guaA gene, the product of which is involved in purine metabolism. Genetic and transcriptional analyses combined with PG structure determination of the guaA mutant enabled us to reveal the pivotal role of the pyrB gene in the regulation of CW rigidity. Our results indicate that conversion of l-aspartate (l-Asp) to N-carbamoyl-l-aspartate by PyrB may reduce the amount of l-Asp available for PG synthesis and thus cause the appearance of Asp/Asn-less stem peptides in PG. Such stem peptides do not form PG cross-bridges, resulting in a decrease in PG cross-linking and, consequently, reduced PG thickness and rigidity. We hypothesize that the concurrent utilization of l-Asp for pyrimidine and PG synthesis may be part of the regulatory scheme, ensuring CW flexibility during exponential growth and rigidity in stationary phase. The fact that l-Asp availability is dependent on nucleotide metabolism, which is tightly regulated in accordance with the growth rate, provides L. lactis cells the means to ensure optimal CW plasticity without the need to control the expression of PG synthesis genes.
Collapse
Affiliation(s)
- Ana Solopova
- From the Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747AG Groningen, The Netherlands
| | - Cécile Formosa-Dague
- Institute of Life Sciences, Université catholique de Louvain, Croix du Sud 4-5, bte L7.07.06., B-1348 Louvain-la-Neuve, Belgium, and
| | | | | | | | - Christine Péchoux
- Génétique Animale et Biologie Intégrative, Institut National de la Recherche Agronomique, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | | | | | - Jan Kok
- From the Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747AG Groningen, The Netherlands
| | - Pascal Hols
- Institute of Life Sciences, Université catholique de Louvain, Croix du Sud 4-5, bte L7.07.06., B-1348 Louvain-la-Neuve, Belgium, and
| | - Yves F Dufrêne
- Institute of Life Sciences, Université catholique de Louvain, Croix du Sud 4-5, bte L7.07.06., B-1348 Louvain-la-Neuve, Belgium, and
| | - Oscar P Kuipers
- From the Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747AG Groningen, The Netherlands
| | | | | |
Collapse
|
15
|
Larsen N, Moslehi-Jenabian S, Werner BB, Jensen ML, Garrigues C, Vogensen FK, Jespersen L. Transcriptome analysis of Lactococcus lactis subsp. lactis during milk acidification as affected by dissolved oxygen and the redox potential. Int J Food Microbiol 2016; 226:5-12. [PMID: 27015296 DOI: 10.1016/j.ijfoodmicro.2016.03.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 01/13/2016] [Accepted: 03/04/2016] [Indexed: 11/30/2022]
Abstract
Performance of Lactococcus lactis as a starter culture in dairy fermentations depends on the levels of dissolved oxygen and the redox state of milk. In this study the microarray analysis was used to investigate the global gene expression of L. lactis subsp. lactis DSM20481(T) during milk acidification as affected by oxygen depletion and the decrease of redox potential. Fermentations were carried out at different initial levels of dissolved oxygen (dO2) obtained by milk sparging with oxygen (high dO2, 63%) or nitrogen (low dO2, 6%). Bacterial exposure to high initial oxygen resulted in overexpression of genes involved in detoxification of reactive oxygen species (ROS), oxidation-reduction processes, biosynthesis of trehalose and down-regulation of genes involved in purine nucleotide biosynthesis, indicating that several factors, among them trehalose and GTP, were implicated in bacterial adaptation to oxidative stress. Generally, transcriptional changes were more pronounced during fermentation of oxygen sparged milk. Genes up-regulated in response to oxygen depletion were implicated in biosynthesis and transport of pyrimidine nucleotides, branched chain amino acids and in arginine catabolic pathways; whereas genes involved in salvage of nucleotides and cysteine pathways were repressed. Expression pattern of genes involved in pyruvate metabolism indicated shifts towards mixed acid fermentation after oxygen depletion with production of specific end-products, depending on milk treatment. Differential expression of genes, involved in amino acid and pyruvate pathways, suggested that initial oxygen might influence the release of flavor compounds and, thereby, flavor development in dairy fermentations. The knowledge of molecular responses involved in adaptation of L. lactis to the shifts of redox state and pH during milk fermentations is important for the dairy industry to ensure better control of cheese production.
Collapse
Affiliation(s)
- Nadja Larsen
- Department of Food Science, Food Microbiology, University of Copenhagen, Rolighedsvej 26, DK-1958 Frederiksberg C, Denmark.
| | - Saloomeh Moslehi-Jenabian
- Department of Food Science, Food Microbiology, University of Copenhagen, Rolighedsvej 26, DK-1958 Frederiksberg C, Denmark
| | - Birgit Brøsted Werner
- Department of Food Science, Food Microbiology, University of Copenhagen, Rolighedsvej 26, DK-1958 Frederiksberg C, Denmark
| | | | | | - Finn Kvist Vogensen
- Department of Food Science, Food Microbiology, University of Copenhagen, Rolighedsvej 26, DK-1958 Frederiksberg C, Denmark
| | - Lene Jespersen
- Department of Food Science, Food Microbiology, University of Copenhagen, Rolighedsvej 26, DK-1958 Frederiksberg C, Denmark
| |
Collapse
|
16
|
Jendresen CB, Dimitrov P, Gautier L, Liu M, Martinussen J, Kilstrup M. Towards in vivo regulon kinetics: PurR activation by 5-phosphoribosyl-α-1-pyrophosphate during purine depletion in Lactococcus lactis. MICROBIOLOGY-SGM 2014; 160:1321-1331. [PMID: 24722907 DOI: 10.1099/mic.0.077933-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Short-term adaptation to changing environments relies on regulatory elements translating shifting metabolite concentrations into a specifically optimized transcriptome. So far the focus of analyses has been divided between regulatory elements identified in vivo and kinetic studies of small molecules interacting with the regulatory elements in vitro. Here we describe how in vivo regulon kinetics can describe a regulon through the effects of the metabolite controlling it, exemplified by temporal purine exhaustion in Lactococcus lactis. We deduced a causal relation between the pathway precursor 5-phosphoribosyl-α-1-pyrophosphate (PRPP) and individual mRNA levels, whereby unambiguous and homogeneous relations could be obtained for PurR regulated genes, thus linking a specific regulon to a specific metabolite. As PurR activates gene expression upon binding of PRPP, the pur mRNA curves reflect the in vivo kinetics of PurR PRPP binding and activation. The method singled out the xpt-pbuX operon as kinetically distinct, which was found to be caused by a guanine riboswitch whose regulation was overlaying the PurR regulation. Importantly, genes could be clustered according to regulatory mechanism and long-term consequences could be distinguished from transient changes--many of which would not be seen in a long-term adaptation to a new environment. The strategy outlined here can be adapted to analyse the individual effects of members from larger metabolomes in virtually any organism, for elucidating regulatory networks in vivo.
Collapse
Affiliation(s)
- Christian Bille Jendresen
- Metabolic Signaling and Regulation Group, DTU Systems Biology, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| | - Peter Dimitrov
- Metabolic Signaling and Regulation Group, DTU Systems Biology, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| | - Laurent Gautier
- Metabolic Signaling and Regulation Group, DTU Systems Biology, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| | - Meng Liu
- Metabolic Signaling and Regulation Group, DTU Systems Biology, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| | - Jan Martinussen
- Metabolic Signaling and Regulation Group, DTU Systems Biology, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| | - Mogens Kilstrup
- Metabolic Signaling and Regulation Group, DTU Systems Biology, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| |
Collapse
|
17
|
Akyol I. Proteomics analysis of the Flp regulon in Lactococcus lactis subsp. cremoris. Electrophoresis 2013; 34:2218-28. [PMID: 23712609 DOI: 10.1002/elps.201300002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 03/30/2013] [Accepted: 04/03/2013] [Indexed: 11/09/2022]
Abstract
Lactococcus lactis subsp. cremoris MG1363 genome sequence was completed and encodes two flp genes flpA and flpB. Research carried out has suggested that the flpB proteins are transcriptional regulators that respond to the environmental oxygen level. A variety of flp deletion mutant strains with single and double mutation were created. Wild-type (MG1363) and its flp(-) derivatives were compared by 2DE to identify changes in protein intensity under different aerobic/anaerobic growth conditions. In total, 416 ± 20 and 444 ± 32 protein spots were quantified from anaerobic and aerobic cells, respectively, on pH 4-7 gels. Forty-five protein spots that changed were excised from 2DE gel, digested with trypsin and identified from their MALDI-TOF MS Peptide Mass Fingerprint. A variety of proteins were affected by the flp mutations and oxygen level. Some proteins were controlled by FlpA and FlpB independently and some required both FlpA and B for regulation. The identified proteins that are regulated by the Flp proteins can be grouped by biochemical function. These groups are oxidative stress, electron transfer, sugars, cell wall, ABC transporters, arginine metabolism, and pyrimidine biosynthesis pathway.
Collapse
Affiliation(s)
- Ismail Akyol
- Department of Agricultural Biotechnology, Faculty of Agriculture, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey.
| |
Collapse
|
18
|
Picard F, Milhem H, Loubière P, Laurent B, Cocaign-Bousquet M, Girbal L. Bacterial translational regulations: high diversity between all mRNAs and major role in gene expression. BMC Genomics 2012; 13:528. [PMID: 23036066 PMCID: PMC3543184 DOI: 10.1186/1471-2164-13-528] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 09/25/2012] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND In bacteria, the weak correlations at the genome scale between mRNA and protein levels suggest that not all mRNAs are translated with the same efficiency. To experimentally explore mRNA translational level regulation at the systemic level, the detailed translational status (translatome) of all mRNAs was measured in the model bacterium Lactococcus lactis in exponential phase growth. RESULTS Results demonstrated that only part of the entire population of each mRNA species was engaged in translation. For transcripts involved in translation, the polysome size reached a maximum of 18 ribosomes. The fraction of mRNA engaged in translation (ribosome occupancy) and ribosome density were not constant for all genes. This high degree of variability was analyzed by bioinformatics and statistical modeling in order to identify general rules of translational regulation. For most of the genes, the ribosome density was lower than the maximum value revealing major control of translation by initiation. Gene function was a major translational regulatory determinant. Both ribosome occupancy and ribosome density were particularly high for transcriptional regulators, demonstrating the positive role of translational regulation in the coordination of transcriptional networks. mRNA stability was a negative regulatory factor of ribosome occupancy and ribosome density, suggesting antagonistic regulation of translation and mRNA stability. Furthermore, ribosome occupancy was identified as a key component of intracellular protein levels underlining the importance of translational regulation. CONCLUSIONS We have determined, for the first time in a bacterium, the detailed translational status for all mRNAs present in the cell. We have demonstrated experimentally the high diversity of translational states allowing individual gene differentiation and the importance of translation-level regulation in the complex process linking gene expression to protein synthesis.
Collapse
Affiliation(s)
- Flora Picard
- Université de Toulouse; INSA, UPS, INP; LISBP, 135 Avenue de Rangueil, Toulouse, F-31077, France
| | | | | | | | | | | |
Collapse
|
19
|
de Jong A, Pietersma H, Cordes M, Kuipers OP, Kok J. PePPER: a webserver for prediction of prokaryote promoter elements and regulons. BMC Genomics 2012; 13:299. [PMID: 22747501 PMCID: PMC3472324 DOI: 10.1186/1471-2164-13-299] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 04/13/2012] [Indexed: 11/29/2022] Open
Abstract
Background Accurate prediction of DNA motifs that are targets of RNA polymerases, sigma factors and transcription factors (TFs) in prokaryotes is a difficult mission mainly due to as yet undiscovered features in DNA sequences or structures in promoter regions. Improved prediction and comparison algorithms are currently available for identifying transcription factor binding sites (TFBSs) and their accompanying TFs and regulon members. Results We here extend the current databases of TFs, TFBSs and regulons with our knowledge on Lactococcus lactis and developed a webserver for prediction, mining and visualization of prokaryote promoter elements and regulons via a novel concept. This new approach includes an all-in-one method of data mining for TFs, TFBSs, promoters, and regulons for any bacterial genome via a user-friendly webserver. We demonstrate the power of this method by mining WalRK regulons in Lactococci and Streptococci and, vice versa, use L. lactis regulon data (CodY) to mine closely related species. Conclusions The PePPER webserver offers, besides the all-in-one analysis method, a toolbox for mining for regulons, promoters and TFBSs and accommodates a new L. lactis regulon database in addition to already existing regulon data. Identification of putative regulons and full annotation of intergenic regions in any bacterial genome on the basis of existing knowledge on a related organism can now be performed by biologists and it can be done for a wide range of regulons. On the basis of the PePPER output, biologist can design experiments to further verify the existence and extent of the proposed regulons. The PePPER webserver is freely accessible at http://pepper.molgenrug.nl.
Collapse
Affiliation(s)
- Anne de Jong
- Department of Molecular Genetics, University of Groningen, Groningen Biomolecular Sciences and Biotechnology Institute, 9747 AG Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
20
|
Dressaire C, Redon E, Gitton C, Loubière P, Monnet V, Cocaign-Bousquet M. Investigation of the adaptation of Lactococcus lactis to isoleucine starvation integrating dynamic transcriptome and proteome information. Microb Cell Fact 2011; 10 Suppl 1:S18. [PMID: 21995707 PMCID: PMC3236307 DOI: 10.1186/1475-2859-10-s1-s18] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Background Amino acid assimilation is crucial for bacteria and this is particularly true for Lactic Acid Bacteria (LAB) that are generally auxotroph for amino acids. The global response of the LAB model Lactococcus lactis ssp. lactis was characterized during progressive isoleucine starvation in batch culture using a chemically defined medium in which isoleucine concentration was fixed so as to become the sole limiting nutriment. Dynamic analyses were performed using transcriptomic and proteomic approaches and the results were analysed conjointly with fermentation kinetic data. Results The response was first deduced from transcriptomic analysis and corroborated by proteomic results. It occurred progressively and could be divided into three major mechanisms: (i) a global down-regulation of processes linked to bacterial growth and catabolism (transcription, translation, carbon metabolism and transport, pyrimidine and fatty acid metabolism), (ii) a specific positive response related to the limiting nutrient (activation of pathways of carbon or nitrogen metabolism and leading to isoleucine supply) and (iii) an unexpected oxidative stress response (positive regulation of aerobic metabolism, electron transport, thioredoxin metabolism and pyruvate dehydrogenase). The involvement of various regulatory mechanisms during this adaptation was analysed on the basis of transcriptomic data comparisons. The global regulator CodY seemed specifically dedicated to the regulation of isoleucine supply. Other regulations were massively related to growth rate and stringent response. Conclusion This integrative biology approach provided an overview of the metabolic pathways involved during isoleucine starvation and their regulations. It has extended significantly the physiological understanding of the metabolism of L. lactis ssp. lactis. The approach can be generalised to other conditions and will contribute significantly to the identification of the biological processes involved in complex regulatory networks of micro-organisms.
Collapse
Affiliation(s)
- Clémentine Dressaire
- Université de Toulouse; INSA, UPS, INP; LISBP, 135 Avenue de Rangueil, F-31077 Toulouse, France
| | | | | | | | | | | |
Collapse
|
21
|
Martinussen J, Sørensen C, Jendresen CB, Kilstrup M. Two nucleoside transporters in Lactococcus lactis with different substrate specificities. MICROBIOLOGY-SGM 2010; 156:3148-3157. [PMID: 20595258 DOI: 10.1099/mic.0.039818-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In an alternative to biosynthesis of nucleotides, most organisms are capable of exploiting exogenous nucleotide sources. In order to do so, the nucleotide precursors must pass the membrane, which requires the presence of transporters. Normally, phosphorylated compounds are not subject to transport, and the utilization of nucleotides is dependent on exogenous phosphatases. The composition of transporters with specificity for purine and pyrimidine nucleosides and nucleobases is subject to variation. The ability of Lactococcus lactis to transport different nucleosides across the cell membrane was characterized at both genetic and physiological level, using mutagenesis and by measuring the growth and uptake of nucleosides in the different mutants supplemented with different nucleosides. Two high affinity transporters were identified: BmpA-NupABC was shown to be an ABC transporter with the ability to actively transport all common nucleosides, whereas UriP was shown to be responsible for the uptake of only uridine and deoxyuridine. Interestingly, the four genes encoding the ABC transporter were found at different positions on the chromosome. The bmpA gene was separated from the nupABC operon by 60 kb. Moreover, bmpA was subject to regulation by purine availability, whereas the nupABC operon was constitutively expressed.
Collapse
Affiliation(s)
- Jan Martinussen
- Center for Systems Microbiology, DTU-Systems Biology, Building 301, Technical University of Denmark, DK-2800 Kgs Lyngby, Denmark
| | - Claus Sørensen
- Center for Systems Microbiology, DTU-Systems Biology, Building 301, Technical University of Denmark, DK-2800 Kgs Lyngby, Denmark
| | - Christian Bille Jendresen
- Center for Systems Microbiology, DTU-Systems Biology, Building 301, Technical University of Denmark, DK-2800 Kgs Lyngby, Denmark
| | - Mogens Kilstrup
- Center for Systems Microbiology, DTU-Systems Biology, Building 301, Technical University of Denmark, DK-2800 Kgs Lyngby, Denmark
| |
Collapse
|
22
|
Karatza P, Frillingos S. Cloning and functional characterization of two bacterial members of the NAT/NCS2 family inEscherichia coli. Mol Membr Biol 2009; 22:251-61. [PMID: 16096267 DOI: 10.1080/09687860500092927] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The coding potential of the genome of E. coli K-12 includes YgfO and YicE, two members of the evolutionarily conserved NAT/NCS2 transporter family that are highly homologous to each other (45% residue identity) and closely related to UapA of Aspergillus nidulans, a most extensively studied microbial member of this family. YgfO and yicE were cloned from the genome, over-expressed extrachromosomally and assayed for uptake of [(3)H]xanthine and other nucleobases, in E. coli K-12, under conditions of negligible activity of the corresponding endogenous systems. Alternative, essentially equivalent functional versions of YgfO and YicE were engineered by C-terminal tagging with an epitope from the E. coli lactose permease and a biotin-acceptor domain from Klebsiella pneumoniae. Both YgfO and YicE were shown to be present in the plasma membrane of E. coli and function as specific, high-affinity transporters for xanthine (K(m) 4.2-4.6 microM for YgfO, or 2.9-3.8 microM for YicE), in a proton motive force-dependent manner; they display no detectable transport of uracil, hypoxanthine, or uric acid at external concentrations of up to 0.1 mM. Both YgfO and YicE are inefficient in recognizing uric acid or xanthine analogues modified at position 8 of the purine ring (8-methylxanthine, 8-azaxanthine, oxypurinol, allopurinol), which distinguishes them from their fungal homologues UapA and Xut1.
Collapse
Affiliation(s)
- Panayiota Karatza
- Laboratory of Biological Chemistry, University of Ioannina Medical School, Ioannina 45110, Greece
| | | |
Collapse
|
23
|
Arioli S, Monnet C, Guglielmetti S, Mora D. Carbamoylphosphate synthetase activity is essential for the optimal growth of Streptococcus thermophilus in milk. J Appl Microbiol 2009; 107:348-54. [PMID: 19302299 DOI: 10.1111/j.1365-2672.2009.04213.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIM The aim of the study was to study the role of carbon dioxide metabolism in Streptococcus thermophilus through investigation of the phenotype of a carbamoylphosphate synthetase-negative mutant. METHODS AND RESULTS The effect of carbon dioxide on the nutritional requirements of Strep. thermophilus DSM20617(T) and its derivative, carbamoylphosphate synthetase-negative mutant A17(DeltacarB), was investigated by cultivating the strain in a chemically defined medium under diverse gas compositions and in milk. The results obtained revealed that CO(2) depletion or carB gene inactivation determined the auxotrophy of Strep. thermophilus for l-arginine and uracil. In addition, the parent strain grew faster than the mutant, even when milk was supplemented with uracil or arginine. CONCLUSIONS Milk growth experiments underlined that carbamoylphosphate synthetase activity was essential for the optimal growth of Strep. thermophilus in milk. SIGNIFICANCE AND IMPACT OF THE STUDY The study of the carbon dioxide metabolism in Strep. thermophilus revealed new insights with regard to the metabolism of this species, which could be useful for the optimization of dairy fermentation processes.
Collapse
Affiliation(s)
- S Arioli
- Department of Food Science and Microbiology, University of Milan, Milan, Italy.
| | | | | | | |
Collapse
|
24
|
Hansen SW, Martinussen J. Strains ofLactococcus lactiswith a partial pyrimidine requirement show sensitivity toward aspartic acid. ACTA ACUST UNITED AC 2009. [DOI: 10.1051/dst/2009001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
25
|
AbiV, a novel antiphage abortive infection mechanism on the chromosome of Lactococcus lactis subsp. cremoris MG1363. Appl Environ Microbiol 2008; 74:6528-37. [PMID: 18776030 DOI: 10.1128/aem.00780-08] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Insertional mutagenesis with pGhost9::ISS1 resulted in independent insertions in a 350-bp region of the chromosome of Lactococcus lactis subsp. cremoris MG1363 that conferred phage resistance to the integrants. The orientation and location of the insertions suggested that the phage resistance phenotype was caused by a chromosomal gene turned on by a promoter from the inserted construct. Reverse transcription-PCR analysis confirmed that there were higher levels of transcription of a downstream open reading frame (ORF) in the phage-resistant integrants than in the phage-sensitive strain L. lactis MG1363. This gene was also found to confer phage resistance to L. lactis MG1363 when it was cloned into an expression vector. A subsequent frameshift mutation in the ORF completely eliminated the phage resistance phenotype, confirming that the ORF was necessary for phage resistance. This ORF provided resistance against virulent lactococcal phages belonging to the 936 and c2 species with an efficiency of plaquing of 10(-4), but it did not protect against members of the P335 species. A high level of expression of the ORF did not affect the cellular growth rate. Assays for phage adsorption, DNA ejection, restriction/modification activity, plaque size, phage DNA replication, and cell survival showed that the ORF encoded an abortive infection (Abi) mechanism. Sequence analysis revealed a deduced protein consisting of 201 amino acids which, in its native state, probably forms a dimer in the cytosol. Similarity searches revealed no homology to other phage resistance mechanisms, and thus, this novel Abi mechanism was designated AbiV. The mode of action of AbiV is unknown, but the activity of AbiV prevented cleavage of the replicated phage DNA of 936-like phages.
Collapse
|
26
|
Regulation of pyrimidine biosynthetic gene expression in bacteria: repression without repressors. Microbiol Mol Biol Rev 2008; 72:266-300, table of contents. [PMID: 18535147 DOI: 10.1128/mmbr.00001-08] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
SUMMARY DNA-binding repressor proteins that govern transcription initiation in response to end products generally regulate bacterial biosynthetic genes, but this is rarely true for the pyrimidine biosynthetic (pyr) genes. Instead, bacterial pyr gene regulation generally involves mechanisms that rely only on regulatory sequences embedded in the leader region of the operon, which cause premature transcription termination or translation inhibition in response to nucleotide signals. Studies with Escherichia coli and Bacillus subtilis pyr genes reveal a variety of regulatory mechanisms. Transcription attenuation via UTP-sensitive coupled transcription and translation regulates expression of the pyrBI and pyrE operons in enteric bacteria, whereas nucleotide effects on binding of the PyrR protein to pyr mRNA attenuation sites control pyr operon expression in most gram-positive bacteria. Nucleotide-sensitive reiterative transcription underlies regulation of other pyr genes. With the E. coli pyrBI, carAB, codBA, and upp-uraA operons, UTP-sensitive reiterative transcription within the initially transcribed region (ITR) leads to nonproductive transcription initiation. CTP-sensitive reiterative transcription in the pyrG ITRs of gram-positive bacteria, which involves the addition of G residues, results in the formation of an antiterminator RNA hairpin and suppression of transcription attenuation. Some mechanisms involve regulation of translation rather than transcription. Expression of the pyrC and pyrD operons of enteric bacteria is controlled by nucleotide-sensitive transcription start switching that produces transcripts with different potentials for translation. In Mycobacterium smegmatis and other bacteria, PyrR modulates translation of pyr genes by binding to their ribosome binding site. Evidence supporting these conclusions, generalizations for other bacteria, and prospects for future research are presented.
Collapse
|
27
|
Transcriptome analysis of the Lactococcus lactis ArgR and AhrC regulons. Appl Environ Microbiol 2008; 74:4768-71. [PMID: 18539789 DOI: 10.1128/aem.00117-08] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In previous studies, we have shown that direct protein-protein interaction between the two regulators ArgR and AhrC in Lactococcus lactis is required for arginine-dependent repression of the biosynthetic argC promoter and the activation of the catabolic arcA promoter. Here, we establish the global ArgR and AhrC regulons by transcriptome analyses and show that both regulators are dedicated to the control of arginine metabolism in L. lactis.
Collapse
|
28
|
Transcriptome analysis of Lactococcus lactis in coculture with Saccharomyces cerevisiae. Appl Environ Microbiol 2007; 74:485-94. [PMID: 17993564 DOI: 10.1128/aem.01531-07] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The study of microbial interactions in mixed cultures remains an important conceptual and methodological challenge for which transcriptome analysis could prove to be the essential method for improving our understanding. However, the use of whole-genome DNA chips is often restricted to the pure culture of the species for which the chips were designed. In this study, massive cross-hybridization was observed between the foreign cDNA and the specific Lactococcus lactis DNA chip. A very simple method is proposed to considerably decrease this nonspecific hybridization, consisting of adding the microbial partner's DNA. A correlation was established between the resulting cross-hybridization and the phylogenetic distance between the microbial partners. The response of L. lactis to the presence of Saccharomyces cerevisiae was analyzed during the exponential growth phase in fermentors under defined growth conditions. Although no differences between growth kinetics were observed for the pure and the mixed cultures of L. lactis, the mRNA levels of 158 genes were significantly modified. More particularly, a strong reorientation of pyrimidine metabolism was observed when L. lactis was grown in mixed cultures. These changes in transcript abundance were demonstrated to be regulated by the ethanol produced by the yeast and were confirmed by an independent method (quantitative reverse transcription-PCR).
Collapse
|
29
|
Defoor E, Kryger MB, Martinussen J. The orotate transporter encoded by oroP from Lactococcus lactis is required for orotate utilization and has utility as a food-grade selectable marker. Microbiology (Reading) 2007; 153:3645-3659. [DOI: 10.1099/mic.0.2007/005959-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Els Defoor
- Center for Systems Microbiology, BioCentrum-DTU, Building 301, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Maj-Britt Kryger
- Center for Systems Microbiology, BioCentrum-DTU, Building 301, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Jan Martinussen
- Center for Systems Microbiology, BioCentrum-DTU, Building 301, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
30
|
Fields CJ, Switzer RL. Regulation of pyr gene expression in Mycobacterium smegmatis by PyrR-dependent translational repression. J Bacteriol 2007; 189:6236-45. [PMID: 17601781 PMCID: PMC1951914 DOI: 10.1128/jb.00803-07] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Regulation of pyrimidine biosynthetic (pyr) genes by a transcription attenuation mechanism that is mediated by the PyrR mRNA-binding regulatory protein has been demonstrated for numerous gram-positive bacteria. Mycobacterial genomes specify pyrR genes and contain obvious PyrR-binding sequences in the initially transcribed regions of their pyr operons, but transcription antiterminator and attenuation terminator sequences are absent from their pyr 5' leader regions. This work demonstrates that repression of pyr operon expression in Mycobacterium smegmatis by exogenous uracil requires the pyrR gene and the pyr leader RNA sequence for binding of PyrR. Plasmids containing the M. smegmatis pyr promoter-leader region translationally fused to lacZ also displayed pyrR-dependent repression, but transcriptional fusions of the same sequences to a lacZ gene that retained the lacZ ribosome-binding site were not regulated by PyrR plus uracil. We propose that PyrR regulates pyr expression in M. smegmatis, other mycobacteria, and probably in numerous other bacteria by a translational repression mechanism in which nucleotide-regulated binding of PyrR occludes the first ribosome-binding site of the pyr operon.
Collapse
Affiliation(s)
- Christopher J Fields
- Department of Biochemistry, University of Illinois, 600 South Mathews, Urbana, IL 61801, USA
| | | |
Collapse
|
31
|
Arsène-Ploetze F, Nicoloff H, Kammerer B, Martinussen J, Bringel F. Uracil salvage pathway in Lactobacillus plantarum: Transcription and genetic studies. J Bacteriol 2006; 188:4777-86. [PMID: 16788187 PMCID: PMC1483017 DOI: 10.1128/jb.00195-06] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The uracil salvage pathway in Lactobacillus plantarum was demonstrated to be dependent on the upp-pyrP gene cluster. PyrP was the only high-affinity uracil transporter since a pyrP mutant no longer incorporated low concentrations of radioactively labeled uracil and had increased resistance to the toxic uracil analogue 5-fluorouracil. The upp gene encoded a uracil phosphoribosyltransferase (UPRT) enzyme catalyzing the conversion of uracil and 5-phosphoribosyl-alpha-1-pyrophosphate to UMP and pyrophosphate. Analysis of mutants revealed that UPRT is a major cell supplier of UMP synthesized from uracil provided by preformed nucleic acid degradation. In a mutant selection study, seven independent upp mutants were isolated and all were found to excrete low amounts of pyrimidines to the growth medium. Pyrimidine-dependent transcription regulation of the biosynthetic pyrimidine pyrR1-B-C-Aa1-Ab1-D-F-E operon was impaired in the upp mutants. Despite the fact that upp and pyrP are positioned next to each other on the chromosome, they are not cotranscribed. Whereas pyrP is expressed as a monocistronic message, the upp gene is part of the lp_2376-glyA-upp operon. The lp_2376 gene encodes a putative protein that belongs to the conserved protein family of translation modulators such as Sua5, YciO, and YrdC. The glyA gene encodes a putative hydroxymethyltransferase involved in C1 unit charging of tetrahydrofolate, which is required in the biosynthesis of thymidylate, pantothenate, and purines. Unlike upp transcription, pyrP transcription is regulated by exogenous pyrimidine availability, most likely by the same mechanism of transcription attenuation as that of the pyr operon.
Collapse
Affiliation(s)
- Florence Arsène-Ploetze
- UMR7156, Université Louis Pasteur/CNRS, Génétique Moléculaire, Génomique, Microbiologie, 28 rue Goethe, F-67083 Strasbourg, France
| | | | | | | | | |
Collapse
|
32
|
Kilstrup M, Hammer K, Ruhdal Jensen P, Martinussen J. Nucleotide metabolism and its control in lactic acid bacteria. FEMS Microbiol Rev 2005. [DOI: 10.1016/j.fmrre.2005.04.006] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
33
|
Kok J, Buist G, Zomer AL, van Hijum SA, Kuipers OP. Comparative and functional genomics of lactococci. FEMS Microbiol Rev 2005. [DOI: 10.1016/j.fmrre.2005.04.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
34
|
Nicoloff H, Elagöz A, Arsène-Ploetze F, Kammerer B, Martinussen J, Bringel F. Repression of the pyr operon in Lactobacillus plantarum prevents its ability to grow at low carbon dioxide levels. J Bacteriol 2005; 187:2093-104. [PMID: 15743958 PMCID: PMC1064029 DOI: 10.1128/jb.187.6.2093-2104.2005] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Carbamoyl phosphate is a precursor for both arginine and pyrimidine biosynthesis. In Lactobacillus plantarum, carbamoyl phosphate is synthesized from glutamine, ATP, and carbon dioxide by two sets of identified genes encoding carbamoyl phosphate synthase (CPS). The expression of the carAB operon (encoding CPS-A) responds to arginine availability, whereas pyrAaAb (encoding CPS-P) is part of the pyrR1BCAaAbDFE operon coding for the de novo pyrimidine pathway repressed by exogenous uracil. The pyr operon is regulated by transcription attenuation mediated by a trans-acting repressor that binds to the pyr mRNA attenuation site in response to intracellular UMP/phosphoribosyl pyrophosphate pools. Intracellular pyrimidine triphosphate nucleoside pools were lower in mutant FB335 (carAB deletion) harboring only CPS-P than in the wild-type strain harboring both CPS-A and CPS-P. Thus, CPS-P activity is the limiting step in pyrimidine synthesis. FB335 is unable to grow in the presence of uracil due to a lack of sufficient carbamoyl phosphate required for arginine biosynthesis. Forty independent spontaneous FB335-derived mutants that have lost regulation of the pyr operon were readily obtained by their ability to grow in the presence of uracil and absence of arginine; 26 harbored mutations in the pyrR1-pyrB loci. One was a prototroph with a deletion of both pyrR1 and the transcription attenuation site that resulted in large amounts of excreted pyrimidine nucleotides and increased intracellular UTP and CTP pools compared to wild-type levels. Low pyrimidine-independent expression of the pyr operon was obtained by antiterminator site-directed mutagenesis. The resulting AE1023 strain had reduced UTP and CTP pools and had the phenotype of a high-CO2-requiring auxotroph, since it was able to synthesize sufficient arginine and pyrimidines only in CO2-enriched air. Therefore, growth inhibition without CO2 enrichment may be due to low carbamoyl phosphate pools from lack of CPS activity.
Collapse
Affiliation(s)
- Hervé Nicoloff
- Laboratoire de Dynamique, Evolution et Expression de Génomes de Microorganismes, Université Louis Pasteur/CNRS FRE 2326, 28 rue Goethe, F-67083 Strasbourg, France
| | | | | | | | | | | |
Collapse
|
35
|
Jørgensen CM, Hammer K, Jensen PR, Martinussen J. Expression of the pyrG gene determines the pool sizes of CTP and dCTP in Lactococcus lactis. ACTA ACUST UNITED AC 2004; 271:2438-45. [PMID: 15182359 DOI: 10.1111/j.1432-1033.2004.04168.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The pyrG gene from Lactococcus lactis encodes CTP synthase (EC 6.4.3.2), an enzyme converting UTP to CTP. A series of strains were constructed with different levels of pyrG expression by insertion of synthetic constitutive promoters with different strengths in front of pyrG. These strains expressed pyrG levels in a range from 3 to 665% relative to the wild-type expression level. Decreasing the level of CTP synthase to 43% had no effect on the growth rate, showing that the capacity of CTP synthase in the cell is in excess in a wild-type strain. We then studied how pyrG expression affected the intracellular pool sizes of nucleotides and the correlation between pyrG expression and nucleotide pool sizes was quantified using metabolic control analysis in terms of inherent control coefficients. At the wild-type expression level, CTP synthase had full control of the CTP concentration with a concentration control coefficient close to one and a negative concentration control coefficient of -0.28 for the UTP concentration. Additionally, a concentration control coefficient of 0.49 was calculated for the dCTP concentration. Implications for the homeostasis of nucleotide pools are discussed.
Collapse
Affiliation(s)
- Casper M Jørgensen
- Bacterial Physiology and Genetics, BioCentrum-DTU, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | | | | | |
Collapse
|
36
|
Jørgensen CM, Hammer K, Martinussen J. CTP limitation increases expression of CTP synthase in Lactococcus lactis. J Bacteriol 2003; 185:6562-74. [PMID: 14594829 PMCID: PMC262100 DOI: 10.1128/jb.185.22.6562-6574.2003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CTP synthase is encoded by the pyrG gene and catalyzes the conversion of UTP to CTP. A Lactococcus lactis pyrG mutant with a cytidine requirement was constructed, in which beta-galactosidase activity in a pyrG-lacLM transcriptional fusion was used to monitor gene expression of pyrG. A 10-fold decrease in the CTP pool induced by cytidine limitation was found to immediately increase expression of the L. lactis pyrG gene. The final level of expression of pyrG is 37-fold higher than the uninduced level. CTP limitation has pronounced effects on central cellular metabolism, and both RNA and protein syntheses are inhibited. Expression of pyrG responds only to the cellular level of CTP, since expression of pyrG has no correlation to alterations in UTP, GTP, and ATP pool sizes. In the untranslated pyrG leader sequence a potential terminator structure can be identified, and this structure is required for regulation of the pyrG gene. It is possible to fold the pyrG leader in an alternative structure that would prevent the formation of the terminator. We suggest a model for pyrG regulation in L. lactis, and probably in other gram-positive bacteria as well, in which pyrG expression is directly dependent on the CTP concentration through an attenuator mechanism. At normal CTP concentrations a terminator is preferentially formed in the pyrG leader, thereby reducing expression of CTP synthase. At low CTP concentrations the RNA polymerase pauses at a stretch of C residues in the pyrG leader, thereby allowing an antiterminator to form and transcription to proceed. This model therefore does not include any trans-acting protein for sensing the CTP concentration as previously proposed for Bacillus subtilis.
Collapse
Affiliation(s)
- Casper Møller Jørgensen
- Bacterial Physiology and Genetics, BioCentrum-DTU, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | | | | |
Collapse
|
37
|
Martinussen J, Wadskov-Hansen SLL, Hammer K. Two nucleoside uptake systems in Lactococcus lactis: competition between purine nucleosides and cytidine allows for modulation of intracellular nucleotide pools. J Bacteriol 2003; 185:1503-8. [PMID: 12591866 PMCID: PMC148060 DOI: 10.1128/jb.185.5.1503-1508.2003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A method for measuring internal nucleoside triphosphate pools of lactococci was optimized and validated. This method is based on extraction of (33)P-labeled nucleotides with formic acid and evaluation by two-dimensional chromatography with a phosphate buffer system for the first dimension and with an H(3)BO(3)-LiOH buffer for separation in the second dimension. We report here the sizes of the ribo- and deoxyribonucleotide pools in laboratory strain MG1363 during growth in a defined medium. We found that purine- and pyrimidine-requiring strains may be used to establish physiological conditions in batch fermentations with altered nucleotide pools and growth rates by addition of nucleosides in different combinations. Addition of cytidine together with inosine to a purine-requiring strain leads to a reduction in the internal purine nucleotide pools and a decreased growth rate. This effect was not seen if cytidine was replaced by uridine. A similar effect was observed if cytidine and inosine were added to a pyrimidine-requiring strain; the UTP pool size was significantly decreased, and the growth rate was reduced. To explain the observed inhibition, the nucleoside transport systems in Lactococcus lactis were investigated by measuring the uptake of radioactively labeled nucleosides. The K(m) for for inosine, cytidine, and uridine was determined to be in the micromolar range. Furthermore, it was found that cytidine and inosine are competitive inhibitors of each other, whereas no competition was found between uridine and either cytidine or inosine. These findings suggest that there are two different high-affinity nucleoside transporters, one system responsible for uridine uptake and another system responsible for the uptake of all purine nucleosides and cytidine.
Collapse
Affiliation(s)
- Jan Martinussen
- Microbial Physiology and Genetics, Biocentrum-DTU, Technical University of Denmark, DK-2800 Lyngby, Denmark.
| | | | | |
Collapse
|
38
|
Abstract
Starter cultures for fermented foods are today developed mainly by design rather than by screening. The design principles are based on knowledge of bacterial metabolism and physiology as well as on the interaction with the food product. In the genomics era, we will obtain a wealth of data making design on a rational basis even simpler. The design tools available are food grade tools for genetic, metabolic and protein engineering and an increased use of laboratory automation and high throughput screening methods. The large body of new data will influence the future patterns of regulation. It is currently difficult to predict in what direction the future regulatory requirements will influence innovation in the food industry. It can either become a promoting force for the practical use of biotechnology to make better and safer products, or it can be limiting the use of starter cultures to a few strains with official approval. Successful cultures based on modern technology is expected to be launched in the areas of: probiotics, bioprotection, general improvement of yield and performance for the existing culture market and probably the introduction of cultures for fermenting other food products. A scientific basis for dramatic innovations that could transform the culture industry is currently being established.
Collapse
|
39
|
MacGregor BJ, Brüchert V, Fleischer S, Amann R. Isolation of small-subunit rRNA for stable isotopic characterization. Environ Microbiol 2002; 4:451-64. [PMID: 12153586 DOI: 10.1046/j.1462-2920.2002.00324.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Small-subunit ribosomal RNA (SSU rRNA) has several characteristics making it a good candidate biomarker compound: it is found in bacteria, archaea and eukaryotes; it is quickly degraded extracellularly, hence SSU rRNA extracted from a sample probably derives from the currently active population; it includes both conserved and variable regions, allowing the design of capture probes at various levels of phylogenetic discrimination; and rRNA sequences from uncultured species can be classified by comparison with the large and growing public database. Here we present a method for isolation of specific classes of rRNAs from mixtures of total RNA, employing biotin-labelled oligonucleotide probes and streptavidin-coated paramagnetic beads. We also show that the stable carbon isotope composition of Escherichia coli total RNA and SSU rRNA reflects that of the growth substrate for cells grown on LB, M9 glucose and M9 acetate media. SSU rRNA is therefore a promising biomarker for following the flow of carbon, and potentially nitrogen, in natural microbial populations. Some possible applications are discussed.
Collapse
|
40
|
Thia-Toong TL, Roovers M, Durbecq V, Gigot D, Glansdorff N, Charlier D. Genes of de novo pyrimidine biosynthesis from the hyperthermoacidophilic crenarchaeote Sulfolobus acidocaldarius: novel organization in a bipolar operon. J Bacteriol 2002; 184:4430-41. [PMID: 12142413 PMCID: PMC135248 DOI: 10.1128/jb.184.16.4430-4441.2002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2002] [Accepted: 05/31/2002] [Indexed: 11/20/2022] Open
Abstract
Sequencing a 8,519-bp segment of the Sulfolobus acidocaldarius genome revealed the existence of a tightly packed bipolar pyrimidine gene cluster encoding the enzymes of de novo UMP synthesis. The G+C content of 35.3% is comparable to that of the entire genome, but intergenic regions exhibit a considerably lower percentage of strong base pairs. Coding regions harbor the classical excess of purines on the coding strand, whereas intergenic regions do not show this bias. Reverse transcription-PCR and primer extension experiments demonstrated the existence of two polycistronic messengers, pyrEF-orf8 and pyrBI-orf1-pyrCD-orf2-orf3-orf4, initiated from a pair of divergent and partially overlapping promoters. The gene order and the grouping in two wings of a bipolar operon constitute a novel organization of pyr genes that also occurs in the recently determined genome sequences of Sulfolobus solfataricus P2 and Sulfolobus tokodaii strain 7; the configuration appears therefore characteristic of Sulfolobus. The quasi-leaderless pyrE and pyrB genes do not bear a Shine-Dalgarno sequence, whereas the initiation codon of promoter-distal genes is preceded at an appropriate distance by a sequence complementary to the 3' end of 16S rRNA. The polycistronic nature of the pyr messengers and the existence of numerous overlaps between contiguous open reading frames suggests the existence of translational coupling. pyrB transcription was shown to be approximately twofold repressed in the presence of uracil. The mechanism underlying this modulation is as yet unknown, but it appears to be of a type different from the various attenuation-like mechanisms that regulate pyrB transcription in bacteria. In contrast, the pyrE-pyrB promoter/control region harbors direct repeats and imperfect palindromes reminiscent of target sites for the binding of a hypothetical regulatory protein(s).
Collapse
Affiliation(s)
- Thia-Lin Thia-Toong
- Erfelijkheidsleer en Microbiologie, Vrije Universiteit Brussel, B-1070 Brussels, Belgium
| | | | | | | | | | | |
Collapse
|
41
|
Bonner ER, D'Elia JN, Billips BK, Switzer RL. Molecular recognition of pyr mRNA by the Bacillus subtilis attenuation regulatory protein PyrR. Nucleic Acids Res 2001; 29:4851-65. [PMID: 11726695 PMCID: PMC96680 DOI: 10.1093/nar/29.23.4851] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The pyrimidine nucleotide biosynthesis (pyr) operon in Bacillus subtilis is regulated by transcriptional attenuation. The PyrR protein binds in a uridine nucleotide-dependent manner to three attenuation sites at the 5'-end of pyr mRNA. PyrR binds an RNA-binding loop, allowing a terminator hairpin to form and repressing the downstream genes. The binding of PyrR to defined RNA molecules was characterized by a gel mobility shift assay. Titration indicated that PyrR binds RNA in an equimolar ratio. PyrR bound more tightly to the binding loops from the second (BL2 RNA) and third (BL3 RNA) attenuation sites than to the binding loop from the first (BL1 RNA) attenuation site. PyrR bound BL2 RNA 4-5-fold tighter in the presence of saturating UMP or UDP and 150- fold tighter with saturating UTP, suggesting that UTP is the more important co-regulator. The minimal RNA that bound tightly to PyrR was 28 nt long. Thirty-one structural variants of BL2 RNA were tested for PyrR binding affinity. Two highly conserved regions of the RNA, the terminal loop and top of the upper stem and a purine-rich internal bulge and the base pairs below it, were crucial for tight binding. Conserved elements of RNA secondary structure were also required for tight binding. PyrR protected conserved areas of the binding loop in hydroxyl radical footprinting experiments. PyrR likely recognizes conserved RNA sequences, but only if they are properly positioned in the correct secondary structure.
Collapse
Affiliation(s)
- E R Bonner
- Department of Biochemistry, University of Illinois, 600 South Mathews Avenue, Urbana, IL 61801, USA
| | | | | | | |
Collapse
|
42
|
Wadskov-Hansen SL, Willemoës M, Martinussen J, Hammer K, Neuhard J, Larsen S. Cloning and verification of the Lactococcus lactis pyrG gene and characterization of the gene product, CTP synthase. J Biol Chem 2001; 276:38002-9. [PMID: 11500486 DOI: 10.1074/jbc.m100531200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The pyrG gene of Lactococcus lactis subsp. cremoris, encoding CTP synthase, has been cloned and sequenced. It is flanked upstream by an open reading frame showing homology to several aminotransferases and downstream by an open reading frame of unknown function. L. lactis strains harboring disrupted pyrG alleles were constructed. These mutants required cytidine for growth, proving that in L. lactis, the pyrG product is the only enzyme responsible for the amination of UTP to CTP. In contrast to the situation in Escherichia coli, an L. lactis pyrG mutant could be constructed in the presence of a functional cdd gene encoding cytidine deaminase. A characterization of the enzyme revealed similar properties as found for CTP synthases from other organisms. However, unlike the majority of CTP synthases the lactococcal enzyme can convert dUTP to dCTP, although a half saturation concentration of 0.6 mm for dUTP makes it unlikely that this reaction plays a significant physiological role. As for other CTP synthases, the oligomeric structure of the lactococcal enzyme was found to be a tetramer, but unlike most of the other previously characterized enzymes, the tetramer was very stable even at dilute enzyme concentrations.
Collapse
Affiliation(s)
- S L Wadskov-Hansen
- Department of Microbiology, Technical University of Denmark, Building 301, DK-2800 Lyngby, Denmark
| | | | | | | | | | | |
Collapse
|