1
|
Worthan SB, McCarthy RDP, Delaleau M, Stikeleather R, Bratton BP, Boudvillain M, Behringer MG. Evolution of pH-sensitive transcription termination in Escherichia coli during adaptation to repeated long-term starvation. Proc Natl Acad Sci U S A 2024; 121:e2405546121. [PMID: 39298488 PMCID: PMC11441560 DOI: 10.1073/pnas.2405546121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 08/19/2024] [Indexed: 09/21/2024] Open
Abstract
Fluctuating environments that consist of regular cycles of co-occurring stress are a common challenge faced by cellular populations. For a population to thrive in constantly changing conditions, an ability to coordinate a rapid cellular response is essential. Here, we identify a mutation conferring an arginine-to-histidine (Arg to His) substitution in the transcription terminator Rho. The rho R109H mutation frequently arose in Escherichia coli populations experimentally evolved under repeated long-term starvation conditions, during which the accumulation of metabolic waste followed by transfer into fresh media results in drastic environmental pH fluctuations associated with feast and famine. Metagenomic sequencing revealed that populations containing the rho mutation also possess putative loss-of-function mutations in ydcI, which encodes a recently characterized transcription factor associated with pH homeostasis. Genetic reconstructions of these mutations show that the rho allele confers plasticity via an alkaline-induced reduction of Rho function that, when found in tandem with a ΔydcI allele, leads to intracellular alkalization and genetic assimilation of Rho mutant function. We further identify Arg to His substitutions at analogous sites in rho alleles from species that regularly experience neutral to alkaline pH fluctuations in their environments. Our results suggest that Arg to His substitutions in Rho may serve to rapidly coordinate complex physiological responses through pH sensing and shed light on how cellular populations use environmental cues to coordinate rapid responses to complex, fluctuating environments.
Collapse
Affiliation(s)
- Sarah B. Worthan
- Department of Biological Sciences, Vanderbilt University, Nashville, TN37232
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN37232
- Vanderbilt Institute for Infection, Immunology and Inflammation, Nashville, TN37232
| | | | - Mildred Delaleau
- Centre de Biophysique Moléculaire, CNRS UPR4301, affiliated with Université d’Orléans, Orléans Cedex 245071, France
| | - Ryan Stikeleather
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ85281
| | - Benjamin P. Bratton
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN37232
- Vanderbilt Institute for Infection, Immunology and Inflammation, Nashville, TN37232
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN37232
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN37232
| | - Marc Boudvillain
- Centre de Biophysique Moléculaire, CNRS UPR4301, affiliated with Université d’Orléans, Orléans Cedex 245071, France
| | - Megan G. Behringer
- Department of Biological Sciences, Vanderbilt University, Nashville, TN37232
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN37232
- Vanderbilt Institute for Infection, Immunology and Inflammation, Nashville, TN37232
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN37232
| |
Collapse
|
2
|
Sharma R, Mishanina TV. A riboswitch-controlled TerC family transporter Alx tunes intracellular manganese concentration in Escherichia coli at alkaline pH. J Bacteriol 2024; 206:e0016824. [PMID: 38869303 PMCID: PMC11270866 DOI: 10.1128/jb.00168-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/11/2024] [Indexed: 06/14/2024] Open
Abstract
Cells use transition metal ions as structural components of biomolecules and cofactors in enzymatic reactions, making transition metal ions integral cellular components. Organisms optimize metal ion concentration to meet cellular needs by regulating the expression of proteins that import and export that metal ion, often in a metal ion concentration-dependent manner. One such regulation mechanism is via riboswitches, which are 5'-untranslated regions of an mRNA that undergo conformational changes to promote or inhibit the expression of the downstream gene, commonly in response to a ligand. The yybP-ykoY family of bacterial riboswitches shares a conserved aptamer domain that binds manganese ions (Mn2+). In Escherichia coli, the yybP-ykoY riboswitch precedes and regulates the expression of two different genes: mntP, which based on genetic evidence encodes an Mn2+ exporter, and alx, which encodes a putative metal ion transporter whose cognate ligand is currently in question. The expression of alx is upregulated by both elevated concentrations of Mn2+ and alkaline pH. With metal ion measurements and gene expression studies, we demonstrate that the alkalinization of media increases the cytoplasmic manganese pool, which, in turn, enhances alx expression. The Alx-mediated Mn2+ export prevents the toxic buildup of the cellular manganese, with the export activity maximal at alkaline pH. We pinpoint a set of acidic residues in the predicted transmembrane segments of Alx that play a critical role in Mn2+ export. We propose that Alx-mediated Mn2+ export serves as a primary protective mechanism that fine tunes the cytoplasmic manganese content, especially during alkaline stress.IMPORTANCEBacteria use clever ways to tune gene expression upon encountering certain environmental stresses, such as alkaline pH in parts of the human gut and high concentration of a transition metal ion manganese. One way by which bacteria regulate the expression of their genes is through the 5'-untranslated regions of messenger RNA called riboswitches that bind ligands to turn expression of genes on/off. In this work, we have investigated the roles and regulation of alx and mntP, the two genes in Escherichia coli regulated by the yybP-ykoY riboswitches, in alkaline pH and high concentration of Mn2+. This work highlights the intricate ways through which bacteria adapt to their surroundings, utilizing riboregulatory mechanisms to maintain Mn2+ levels amidst varying environmental factors.
Collapse
Affiliation(s)
- Ravish Sharma
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, USA
| | - Tatiana V. Mishanina
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
3
|
Bae SH, Sim MS, Jeong KJ, He D, Kwon I, Kim TW, Kim HU, Choi JI. Intracellular Flux Prediction of Recombinant Escherichia coli Producing Gamma-Aminobutyric Acid. J Microbiol Biotechnol 2024; 34:978-984. [PMID: 38379308 DOI: 10.4014/jmb.2312.12022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 02/22/2024]
Abstract
Genome-scale metabolic model (GEM) can be used to simulate cellular metabolic phenotypes under various environmental or genetic conditions. This study utilized the GEM to observe the internal metabolic fluxes of recombinant Escherichia coli producing gamma-aminobutyric acid (GABA). Recombinant E. coli was cultivated in a fermenter under three conditions: pH 7, pH 5, and additional succinic acids. External fluxes were calculated from cultivation results, and internal fluxes were calculated through flux optimization. Based on the internal flux analysis, glycolysis and pentose phosphate pathways were repressed under cultivation at pH 5, even though glutamate dehydrogenase increased GABA production. Notably, this repression was halted by adding succinic acid. Furthermore, proper sucA repression is a promising target for developing strains more capable of producing GABA.
Collapse
Affiliation(s)
- Sung Han Bae
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Myung Sub Sim
- Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Ki Jun Jeong
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Dan He
- College of Life Science and Agriculture Forestry, Qiqihar University, Qiqihar, 161006, Heilongjiang, China
| | - Inchan Kwon
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Tae Wan Kim
- Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Hyun Uk Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jong-Il Choi
- Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju, 61186, Republic of Korea
| |
Collapse
|
4
|
Worthan SB, McCarthy RDP, Delaleau M, Stikeleather R, Bratton BP, Boudvillain M, Behringer MG. Evolution of pH-sensitive transcription termination during adaptation to repeated long-term starvation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.01.582989. [PMID: 38464051 PMCID: PMC10925284 DOI: 10.1101/2024.03.01.582989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Fluctuating environments that consist of regular cycles of co-occurring stress are a common challenge faced by cellular populations. For a population to thrive in constantly changing conditions, an ability to coordinate a rapid cellular response is essential. Here, we identify a mutation conferring an arginine-to-histidine (Arg to His) substitution in the transcription terminator Rho. The rho R109H mutation frequently arose in E. coli populations experimentally evolved under repeated long-term starvation conditions, during which feast and famine result in drastic environmental pH fluctuations. Metagenomic sequencing revealed that populations containing the rho mutation also possess putative loss-of-function mutations in ydcI, which encodes a recently characterized transcription factor associated with pH homeostasis. Genetic reconstructions of these mutations show that the rho allele confers a plastic alkaline-induced reduction of Rho function that, when found in tandem with a ΔydcI allele, leads to intracellular alkalinization and genetic assimilation of Rho mutant function. We further identify Arg to His substitutions at analogous sites in rho alleles from species originating from fluctuating alkaline environments. Our results suggest that Arg to His substitutions in global regulators of gene expression can serve to rapidly coordinate complex responses through pH sensing and shed light on how cellular populations across the tree of life use environmental cues to coordinate rapid responses to complex, fluctuating environments.
Collapse
Affiliation(s)
- Sarah B Worthan
- Department of Biological Sciences, Vanderbilt University, Nashville, TN
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN
- Vanderbilt Institute for Infection, Immunology and Inflammation, Nashville, TN
| | | | - Mildred Delaleau
- Centre de Biophysique Moléculaire, CNRS UPR4301, affiliated with Université d'Orléans, rue Charles Sadron, 45071 Orléans cedex 2, France
| | - Ryan Stikeleather
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ
| | - Benjamin P Bratton
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN
- Vanderbilt Institute for Infection, Immunology and Inflammation, Nashville, TN
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN
| | - Marc Boudvillain
- Centre de Biophysique Moléculaire, CNRS UPR4301, affiliated with Université d'Orléans, rue Charles Sadron, 45071 Orléans cedex 2, France
| | - Megan G Behringer
- Department of Biological Sciences, Vanderbilt University, Nashville, TN
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN
- Vanderbilt Institute for Infection, Immunology and Inflammation, Nashville, TN
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ
| |
Collapse
|
5
|
Sun J, He X, LE Y, Al-Tohamy R, Ali SS. Potential applications of extremophilic bacteria in the bioremediation of extreme environments contaminated with heavy metals. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 352:120081. [PMID: 38237330 DOI: 10.1016/j.jenvman.2024.120081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/31/2023] [Accepted: 01/07/2024] [Indexed: 02/04/2024]
Abstract
Protecting the environment from harmful pollutants has become increasingly difficult in recent decades. The presence of heavy metal (HM) pollution poses a serious environmental hazard that requires intricate attention on a worldwide scale. Even at low concentrations, HMs have the potential to induce deleterious health effects in both humans and other living organisms. Therefore, various strategies have been proposed to address this issue, with extremophiles being a promising solution. Bacteria that exhibit resistance to metals are preferred for applications involving metal removal due to their capacity for rapid multiplication and growth. Extremophiles are a special group of microorganisms that are capable of surviving under extreme conditions such as extreme temperatures, pH levels, and high salt concentrations where other organisms cannot. Due to their unique enzymes and adaptive capabilities, extremophiles are well suited as catalysts for environmental biotechnology applications, including the bioremediation of HMs through various strategies. The mechanisms of resistance to HMs by extremophilic bacteria encompass: (i) metal exclusion by permeability barrier; (ii) extracellular metal sequestration by protein/chelator binding; (iii) intracellular sequestration of the metal by protein/chelator binding; (iv) enzymatic detoxification of a metal to a less toxic form; (v) active transport of HMs; (vi) passive tolerance; (vii) reduced metal sensitivity of cellular targets to metal ions; and (viii) morphological change of cells. This review provides comprehensive information on extremophilic bacteria and their potential roles for bioremediation, particularly in environments contaminated with HMs, which pose a threat due to their stability and persistence. Genetic engineering of extremophilic bacteria in stressed environments could help in the bioremediation of contaminated sites. Due to their unique characteristics, these organisms and their enzymes are expected to bridge the gap between biological and chemical industrial processes. However, the structure and biochemical properties of extremophilic bacteria, along with any possible long-term effects of their applications, need to be investigated further.
Collapse
Affiliation(s)
- Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Xing He
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Yilin LE
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Rania Al-Tohamy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Sameh S Ali
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China; Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| |
Collapse
|
6
|
Bhardwaj K, Kalita A, Verma N, Prakash A, Thakur R, Dutta D. Rho-dependent termination enables cellular pH homeostasis. J Bacteriol 2024; 206:e0035623. [PMID: 38169297 PMCID: PMC10810219 DOI: 10.1128/jb.00356-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024] Open
Abstract
The termination factor Rho, an ATP-dependent RNA translocase, preempts pervasive transcription processes, thereby rendering genome integrity in bacteria. Here, we show that the loss of Rho function raised the intracellular pH to >8.0 in Escherichia coli. The loss of Rho function upregulates tryptophanase-A (TnaA), an enzyme that catabolizes tryptophan to produce indole, pyruvate, and ammonia. We demonstrate that the enhanced TnaA function had produced the conjugate base ammonia, raising the cellular pH in the Rho-dependent termination defective strains. On the other hand, the constitutively overexpressed Rho lowered the cellular pH to about 6.2, independent of cellular ammonia levels. Since Rho overexpression may increase termination activities, the decrease in cellular pH could result from an excess H+ ion production during ATP hydrolysis by overproduced Rho. Furthermore, we performed in vivo termination assays to show that the efficiency of Rho-dependent termination was increased at both acidic and basic pH ranges. Given that the Rho level remained unchanged, the alkaline pH increases the termination efficiency by stimulating Rho's catalytic activity. We conducted the Rho-mediated RNA release assay from a stalled elongation complex to show an efficient RNA release at alkaline pH, compared to the neutral or acidic pH, that supports our in vivo observation. Whereas acidic pH appeared to increase the termination function by elevating the cellular level of Rho. This study is the first to link Rho function to the cellular pH homeostasis in bacteria. IMPORTANCE The current study shows that the loss or gain of Rho-dependent termination alkalizes or acidifies the cytoplasm, respectively. In the case of loss of Rho function, the tryptophanase-A enzyme is upregulated, and degrades tryptophan, producing ammonia to alkalize cytoplasm. We hypothesize that Rho overproduction by deleting its autoregulatory DNA portion increases termination function, causing excessive ATP hydrolysis to produce H+ ions and cytoplasmic acidification. Therefore, this study is the first to unravel a relationship between Rho function and intrinsic cellular pH homeostasis. Furthermore, the Rho level increases in the absence of autoregulation, causing cytoplasmic acidification. As intracellular pH plays a critical role in enzyme function, such a connection between Rho function and alkalization will have far-reaching implications for bacterial physiology.
Collapse
Affiliation(s)
- Kanika Bhardwaj
- CSIR Institute of Microbial Technology, Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Arunima Kalita
- CSIR Institute of Microbial Technology, Chandigarh, India
| | - Neha Verma
- CSIR Institute of Microbial Technology, Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Anand Prakash
- CSIR Institute of Microbial Technology, Chandigarh, India
| | - Ruchika Thakur
- CSIR Institute of Microbial Technology, Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Dipak Dutta
- CSIR Institute of Microbial Technology, Chandigarh, India
| |
Collapse
|
7
|
Vazulka S, Schiavinato M, Tauer C, Wagenknecht M, Cserjan-Puschmann M, Striedner G. RNA-seq reveals multifaceted gene expression response to Fab production in Escherichia coli fed-batch processes with particular focus on ribosome stalling. Microb Cell Fact 2024; 23:14. [PMID: 38183013 PMCID: PMC10768439 DOI: 10.1186/s12934-023-02278-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/18/2023] [Indexed: 01/07/2024] Open
Abstract
BACKGROUND Escherichia coli is a cost-effective expression system for production of antibody fragments like Fabs. Various yield improvement strategies have been applied, however, Fabs remain challenging to produce. This study aimed to characterize the gene expression response of commonly used E. coli strains BL21(DE3) and HMS174(DE3) to periplasmic Fab expression using RNA sequencing (RNA-seq). Two Fabs, Fabx and FTN2, fused to a post-translational translocation signal sequence, were produced in carbon-limited fed-batch cultivations. RESULTS Production of Fabx impeded cell growth substantially stronger than FTN2 and yields of both Fabs differed considerably. The most noticeable, common changes in Fab-producing cells suggested by our RNA-seq data concern the cell envelope. The Cpx and Psp stress responses, both connected to inner membrane integrity, were activated, presumably by recombinant protein aggregation and impairment of the Sec translocon. The data additionally suggest changes in lipopolysaccharide synthesis, adjustment of membrane permeability, and peptidoglycan maturation and remodeling. Moreover, all Fab-producing strains showed depletion of Mg2+, indicated by activation of the PhoQP two-component signal transduction system during the early stage and sulfur and phosphate starvation during the later stage of the process. Furthermore, our data revealed ribosome stalling, caused by the Fabx amino acid sequence, as a contributor to low Fabx yields. Increased Fabx yields were obtained by a site-specific amino acid exchange replacing the stalling sequence. Contrary to expectations, cell growth was not impacted by presence or removal of the stalling sequence. Considering ribosome rescue is a conserved mechanism, the substantial differences observed in gene expression between BL21(DE3) and HMS174(DE3) in response to ribosome stalling on the recombinant mRNA were surprising. CONCLUSIONS Through characterization of the gene expression response to Fab production under industrially relevant cultivation conditions, we identified potential cell engineering targets. Thereby, we hope to enable rational approaches to improve cell fitness and Fab yields. Furthermore, we highlight ribosome stalling caused by the amino acid sequence of the recombinant protein as a possible challenge during recombinant protein production.
Collapse
Affiliation(s)
- Sophie Vazulka
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. Coli, Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria
| | - Matteo Schiavinato
- Department of Biotechnology, Institute of Computational Biology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria
| | - Christopher Tauer
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. Coli, Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria
| | - Martin Wagenknecht
- Boehringer Ingelheim RCV, GmbH & Co KG, Dr.-Boehringer-Gasse 5-11, A-1120, Vienna, Austria
| | - Monika Cserjan-Puschmann
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. Coli, Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria.
| | - Gerald Striedner
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. Coli, Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria
| |
Collapse
|
8
|
Schumacher K, Gelhausen R, Kion-Crosby W, Barquist L, Backofen R, Jung K. Ribosome profiling reveals the fine-tuned response of Escherichia coli to mild and severe acid stress. mSystems 2023; 8:e0103723. [PMID: 37909716 PMCID: PMC10746267 DOI: 10.1128/msystems.01037-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 11/03/2023] Open
Abstract
IMPORTANCE Bacteria react very differently to survive in acidic environments, such as the human gastrointestinal tract. Escherichia coli is one of the extremely acid-resistant bacteria and has a variety of acid-defense mechanisms. Here, we provide the first genome-wide overview of the adaptations of E. coli K-12 to mild and severe acid stress at both the transcriptional and translational levels. Using ribosome profiling and RNA sequencing, we uncover novel adaptations to different degrees of acidity, including previously hidden stress-induced small proteins and novel key transcription factors for acid defense, and report mRNAs with pH-dependent differential translation efficiency. In addition, we distinguish between acid-specific adaptations and general stress response mechanisms using denoising autoencoders. This workflow represents a powerful approach that takes advantage of next-generation sequencing techniques and machine learning to systematically analyze bacterial stress responses.
Collapse
Affiliation(s)
- Kilian Schumacher
- Faculty of Biology, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Rick Gelhausen
- Bioinformatics Group, Department of Computer Science, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Willow Kion-Crosby
- Helmholtz Institute for RNA-based Infection Research (HIRI)/Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
- University of Würzburg, Faculty of Medicine, Würzburg, Germany
| | - Lars Barquist
- Helmholtz Institute for RNA-based Infection Research (HIRI)/Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
- University of Würzburg, Faculty of Medicine, Würzburg, Germany
| | - Rolf Backofen
- Bioinformatics Group, Department of Computer Science, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Kirsten Jung
- Faculty of Biology, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| |
Collapse
|
9
|
Li K, Pang S, Li Z, Ding X, Gan Y, Gan Q, Fang S. House ammonia exposure causes alterations in microbiota, transcriptome, and metabolome of rabbits. Front Microbiol 2023; 14:1125195. [PMID: 37250049 PMCID: PMC10213413 DOI: 10.3389/fmicb.2023.1125195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/11/2023] [Indexed: 05/31/2023] Open
Abstract
Introduction Pollutant gas emissions in the current production system of the livestock industry have negative influences on environment as well as the health of farm staffs and animals. Although ammonia (NH3) is considered as the primary and harmful gas pollutant in the rabbit farm, less investigation has performed to determine the toxic effects of house ammonia exposure on rabbit in the commercial confined barn. Methods In this study, we performed multi-omics analysis on rabbits exposed to high and low concentration of house ammonia under similar environmental conditions to unravel the alterations in nasal and colonic microbiota, pulmonary and colonic gene expression, and muscular metabolic profile. Results and discussion The results showed that house ammonia exposure notably affected microbial structure, composition, and functional capacity in both nasal and colon, which may impact on local immune responses and inflammatory processes. Transcriptome analysis indicated that genes related to cell death (MCL1, TMBIM6, HSPB1, and CD74) and immune response (CDC42, LAMTOR5, VAMP8, and CTSB) were differentially expressed in the lung, and colonic genes associated with redox state (CAT, SELENBP1, GLUD1, and ALDH1A1) were significantly up-regulated. Several key differentially abundant metabolites such as L-glutamic acid, L-glutamine, L-ornithine, oxoglutaric acid, and isocitric acid were identified in muscle metabolome, which could denote house ammonia exposure perturbed amino acids, nucleotides, and energy metabolism. In addition, the widespread and strong inter-system interplay were uncovered in the integrative correlation network, and central features were confirmed by in vitro experiments. Our findings disclose the comprehensive evidence for the deleterious effects of house ammonia exposure on rabbit and provide valuable information for understanding the underlying impairment mechanisms.
Collapse
|
10
|
Sharma R, Mishanina TV. A riboswitch-controlled manganese exporter (Alx) tunes intracellular Mn 2+ concentration in E. coli at alkaline pH. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.07.539761. [PMID: 37214827 PMCID: PMC10197570 DOI: 10.1101/2023.05.07.539761] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Cells use transition metal ions as structural components of biomolecules and cofactors in enzymatic reactions, making transition metals vital cellular components. The buildup of a particular metal ion in certain stress conditions becomes harmful to the organism due to the misincorporation of the excess ion into biomolecules, resulting in perturbed enzymatic activity or metal-catalyzed formation of reactive oxygen species. Organisms optimize metal concentration by regulating the expression of proteins that import and export that metal, often in a metal concentration-dependent manner. One such regulation mechanism is via riboswitches, which are 5'-untranslated regions (UTR) of an mRNA that undergo conformational changes to promote or inhibit the expression of the downstream gene, commonly in response to a ligand. The yybP-ykoY family of bacterial riboswitches shares a conserved aptamer domain that binds manganese (Mn2+). In E. coli, the yybP-ykoY riboswitch precedes and regulates the expression of two genes: mntP, which based on extensive genetic evidence encodes an Mn2+ exporter, and alx, which encodes a putative metal ion transporter whose cognate ligand is currently in question. Expression of alx is upregulated by both elevated intracellular concentrations of Mn2+ and alkaline pH. With metal ion measurements and gene expression studies, we demonstrate that the alkalinization of media increases cytoplasmic Mn2+ content, which in turn enhances alx expression. Alx then exports excess Mn2+ to prevent toxic buildup of the metal inside the cell, with the export activity maximal at alkaline pH. Using mutational and complementation experiments, we pinpoint a set of acidic residues in the predicted transmembrane segments of Alx that play a crucial role in its Mn2+ export. We propose that Alx-mediated Mn2+ export provides a primary protective layer that fine-tunes the cytoplasmic Mn2+ levels, especially during alkaline stress.
Collapse
Affiliation(s)
- Ravish Sharma
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093
| | - Tatiana V. Mishanina
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093
| |
Collapse
|
11
|
Nie M, Li K, Li Z. β-Alanine Metabolism Leads to Increased Extracellular pH during the Heterotrophic Ammonia Oxidation of Pseudomonas putida Y-9. Microorganisms 2023; 11:microorganisms11020356. [PMID: 36838321 PMCID: PMC9963543 DOI: 10.3390/microorganisms11020356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 01/20/2023] [Accepted: 01/20/2023] [Indexed: 02/04/2023] Open
Abstract
The mechanisms underlying the increase in external pH caused by heterotrophic nitrification and aerobic denitrification microorganisms during ammonia oxidation were unclear. This work demonstrated that after culturing Pseudomonas putida Y-9 for 60 h in a medium with ammonium nitrogen as the sole nitrogen source at an initial pH of 7.20, the pH value increased to 9.21. GC-TOF-MS analysis was used to compare the significantly regulated metabolites and related metabolic pathways between different time points. The results showed that the consumption of H+ in the conversion of malonic acid to 3-hydroxypropionic acid in the β-alanine metabolic pathway was the main reason for the increase in pH. RT-qPCR confirmed that the functional gene ydfG dominated the consumption of H+. This study provides new research ideas for the change of external pH caused by bacterial metabolism and further expands the understanding of the interaction between bacteria and the environment.
Collapse
Affiliation(s)
- Ming Nie
- Chongqing Key Laboratory of Soil Multiscale Interfacial Process, College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Kaili Li
- School of Chemical Engineering, University of Queensland, Brisbane 4072, Australia
| | - Zhenlun Li
- Chongqing Key Laboratory of Soil Multiscale Interfacial Process, College of Resources and Environment, Southwest University, Chongqing 400716, China
- Correspondence: ; Tel.: +86-138-8337-2713
| |
Collapse
|
12
|
Naykodi A, Patankar SC, Thorat BN. Alkaliphiles for comprehensive utilization of red mud (bauxite residue)-an alkaline waste from the alumina refinery. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:9350-9368. [PMID: 36480139 DOI: 10.1007/s11356-022-24190-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 11/09/2022] [Indexed: 06/17/2023]
Abstract
The mining industry has powered the human endeavor to make life more innovative, flexible, and comfortable. However, it has also led to concerns due to the increasing amount of mining and associated industrial waste. Special attention is highly desired for its proper management and safe disposal in the environment. The problem has only augmented with the increase in the mining costs because of the investments needed for ecological remediation after the mining operation. It is pertinent that the targeted technologies need to be developed to utilize mining and associated industrial waste as a secondary resource to ensure sustainable mining operations. Every perceived waste is a valuable resource that is needed to be utilized to create additional value. In this review, the case of alkaline bauxite residue (red mud)-alumina refinery waste has been discussed at length. The highlight of the proposed work is to understand the importance of alkaliphile-assisted biomining-a sustainable alternative to conventional metal recovery processes. Along with the recovery of metals, pH reduction of red mud is possible through biomining, which ultimately paves the way for its complete utilization. The unique adaptation strategies of alkaliphiles make them more suitable for biomining of red mud through bioleaching, biosorption, and bioaccumulation, which have been discussed here. Furthermore, we have focused on the potential of the indigenous microflora of red mud for metal recovery in addition to its neutralization. The study of indigenous alkaliphiles from red mud, including its isolation and propagation, is crucial for the industrial-scale application of alkaliphile-based technology and has been emphasized.
Collapse
Affiliation(s)
- Ankita Naykodi
- Department of Biotechnology, Institute of Chemical Technology-IndianOil Odisha Campus, Bhubaneswar, 751013, Odisha, India
| | - Saurabh C Patankar
- Department of Chemical Engineering, Institute of Chemical Technology-IndianOil Odisha Campus, Bhubaneswar, 751013, Odisha, India
| | - Bhaskar N Thorat
- Department of Chemical Engineering, Institute of Chemical Technology, Mumbai, 400019, India.
| |
Collapse
|
13
|
Prado LCDS, Giacchetto Felice A, Rodrigues TCV, Tiwari S, Andrade BS, Kato RB, Oliveira CJF, Silva MV, Barh D, Azevedo VADC, Jaiswal AK, Soares SDC. New putative therapeutic targets against Serratia marcescens using reverse vaccinology and subtractive genomics. J Biomol Struct Dyn 2022; 40:10106-10121. [PMID: 34192477 DOI: 10.1080/07391102.2021.1942211] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The Gram-negative bacillus Serratia marcescens, a member of Enterobacteriaceae family, is an opportunistic nosocomial pathogen commonly found in hospital outbreaks that can cause infections in the urinary tract, bloodstream, central nervous system and pneumonia. Because S. marcescens strains are resistant to several antibiotics, it is critical the need for effective treatments, including new drugs and vaccines. Here, we applied reverse vaccinology and subtractive genomic approaches for the in silico prediction of potential vaccine and drug targets against 59 strains of S. marcescens. We found 759 core non-host homologous proteins, of which 87 are putative surface-exposed proteins, 183 secreted proteins, and 80 membrane proteins. From these proteins, we predicted seven candidates vaccine targets: a sn-glycerol-3-phosphate-binding periplasmic protein UgpB, a vitamin B12 TonB-dependent receptor, a ferrichrome porin FhuA, a divisome-associated lipoprotein YraP, a membrane-bound lytic murein transglycosylase A, a peptidoglycan lytic exotransglycosylase, and a DUF481 domain-containing protein. We also predicted two drug targets: a N(4)-acetylcytidine amidohydrolase, and a DUF1428 family protein. Using the molecular docking approach for each drug target, we identified and selected ZINC04259491 and ZINC04235390 molecules as the most favorable interactions with the target active site residues. Our findings may contribute to the development of vaccines and new drug targets against S. marcescens. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ligia Carolina da Silva Prado
- Inter-unit Post-Graduate Program in Bioinformatics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Andrei Giacchetto Felice
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba, MG, Brazil
| | - Thaís Cristina Vilela Rodrigues
- Inter-unit Post-Graduate Program in Bioinformatics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Sandeep Tiwari
- Inter-unit Post-Graduate Program in Bioinformatics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Bruno Silva Andrade
- Laboratory of Bioinformatics and Computational Chemistry, State University of Southwest of Bahia, Bahia, Brazil
| | - Rodrigo Bentes Kato
- Inter-unit Post-Graduate Program in Bioinformatics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Carlo José Freire Oliveira
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba, MG, Brazil
| | - Marcos Vinicius Silva
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba, MG, Brazil
| | - Debmalya Barh
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology, Nonakuri, West Bengal, India
| | - Vasco Ariston de Carvalho Azevedo
- Inter-unit Post-Graduate Program in Bioinformatics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Arun Kumar Jaiswal
- Inter-unit Post-Graduate Program in Bioinformatics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Siomar de Castro Soares
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba, MG, Brazil
| |
Collapse
|
14
|
Gevorgyan H, Khalatyan S, Vassilian A, Trchounian K. Metabolic pathways and ΔpH regulation in Escherichia coli during the fermentation of glucose and glycerol in the presence of formate at pH 6.5: the role of FhlA transcriptional activator. FEMS Microbiol Lett 2022; 369:6825452. [PMID: 36370455 DOI: 10.1093/femsle/fnac109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 10/08/2022] [Accepted: 11/10/2022] [Indexed: 11/14/2022] Open
Abstract
Escherichia coli is able to ferment mixed carbon sources and produce various fermentation end-products. In this study, the function of FhlA protein in the specific growth rate (µ), metabolism, regulation of ΔpH and proton ATPase activity was investigated. Reduced µ in fhlA mutant of ∼25% was shown, suggesting the role of FhlA in the growth process. The utilization rate of glycerol is decreased in fhlA ∼ 2 fold, depending on the oxidation-reduction potential values. Bacteria regulate the activity of hydrogenase enzymes during growth depending on the external pH, which manifests as a lack of hydrogen gas generation during glycerol utilization at pH values below 5.9. It is suggested that cells maintain ΔpH during the fermentative growth via formate-lactate-succinate exchange. The decrement of the value of pHin, but not of pHex in mutant cells, is regulating ΔpH and consequently proton motive force generation.
Collapse
Affiliation(s)
- Heghine Gevorgyan
- Department of Biochemistry, Microbiology and Biotechnology, Faculty of Biology, Yerevan State University, 0025 Yerevan, Armenia.,Scientific-Research Institute of Biology, Faculty of Biology, Yerevan State University, 0025 Yerevan, Armenia.,Microbial Biotechnologies and Biofuel Innovation Center, Yerevan State University, 0025 Yerevan, Armenia
| | - Satenik Khalatyan
- Department of Biochemistry, Microbiology and Biotechnology, Faculty of Biology, Yerevan State University, 0025 Yerevan, Armenia.,Microbial Biotechnologies and Biofuel Innovation Center, Yerevan State University, 0025 Yerevan, Armenia
| | - Anait Vassilian
- Scientific-Research Institute of Biology, Faculty of Biology, Yerevan State University, 0025 Yerevan, Armenia
| | - Karen Trchounian
- Department of Biochemistry, Microbiology and Biotechnology, Faculty of Biology, Yerevan State University, 0025 Yerevan, Armenia.,Scientific-Research Institute of Biology, Faculty of Biology, Yerevan State University, 0025 Yerevan, Armenia.,Microbial Biotechnologies and Biofuel Innovation Center, Yerevan State University, 0025 Yerevan, Armenia
| |
Collapse
|
15
|
White N, Sadeeshkumar H, Sun A, Sudarsan N, Breaker RR. Lithium-sensing riboswitch classes regulate expression of bacterial cation transporter genes. Sci Rep 2022; 12:19145. [PMID: 36352003 PMCID: PMC9646797 DOI: 10.1038/s41598-022-20695-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/16/2022] [Indexed: 11/10/2022] Open
Abstract
Lithium is rare in Earth's crust compared to the biologically relevant alkali metal cations sodium and potassium but can accumulate to toxic levels in some environments. We report the experimental validation of two distinct bacterial riboswitch classes that selectively activate gene expression in response to elevated Li+ concentrations. These RNAs commonly regulate the expression of nhaA genes coding for ion transporters that weakly discriminate between Na+ and Li+. Our findings demonstrated that the primary function of Li+ riboswitches and associated NhaA transporters is to prevent Li+ toxicity, particularly when bacteria are living at high pH. Additional riboswitch-associated genes revealed how some cells defend against the deleterious effects of Li+ in the biosphere, which might become more problematic as its industrial applications increase.
Collapse
Affiliation(s)
- Neil White
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, 06520-8103, USA
- Howard Hughes Medical Institute, Yale University, New Haven, CT, 06520-8103, USA
| | - Harini Sadeeshkumar
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, 06520-8103, USA
| | - Anna Sun
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, 06520-8103, USA
| | - Narasimhan Sudarsan
- Howard Hughes Medical Institute, Yale University, New Haven, CT, 06520-8103, USA
| | - Ronald R Breaker
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, 06520-8103, USA.
- Howard Hughes Medical Institute, Yale University, New Haven, CT, 06520-8103, USA.
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520-8103, USA.
| |
Collapse
|
16
|
Schwarz J, Schumacher K, Brameyer S, Jung K. Bacterial battle against acidity. FEMS Microbiol Rev 2022; 46:6652135. [PMID: 35906711 DOI: 10.1093/femsre/fuac037] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/11/2022] [Accepted: 07/27/2022] [Indexed: 01/09/2023] Open
Abstract
The Earth is home to environments characterized by low pH, including the gastrointestinal tract of vertebrates and large areas of acidic soil. Most bacteria are neutralophiles, but can survive fluctuations in pH. Herein, we review how Escherichia, Salmonella, Helicobacter, Brucella, and other acid-resistant Gram-negative bacteria adapt to acidic environments. We discuss the constitutive and inducible defense mechanisms that promote survival, including proton-consuming or ammonia-producing processes, cellular remodeling affecting membranes and chaperones, and chemotaxis. We provide insights into how Gram-negative bacteria sense environmental acidity using membrane-integrated and cytosolic pH sensors. Finally, we address in more detail the powerful proton-consuming decarboxylase systems by examining the phylogeny of their regulatory components and their collective functionality in a population.
Collapse
Affiliation(s)
- Julia Schwarz
- Faculty of Biology, Microbiology, Ludwig-Maximilians-University München, Großhaderner Str. 2-4, 82152 Martinsried, Germany
| | - Kilian Schumacher
- Faculty of Biology, Microbiology, Ludwig-Maximilians-University München, Großhaderner Str. 2-4, 82152 Martinsried, Germany
| | - Sophie Brameyer
- Faculty of Biology, Microbiology, Ludwig-Maximilians-University München, Großhaderner Str. 2-4, 82152 Martinsried, Germany
| | - Kirsten Jung
- Faculty of Biology, Microbiology, Ludwig-Maximilians-University München, Großhaderner Str. 2-4, 82152 Martinsried, Germany
| |
Collapse
|
17
|
Abstract
The two-component system CpxRA can sense environmental stresses and regulate transcription of a wide range of genes for the purpose of adaptation. Despite extensive research on this system, the identification of the CpxR regulon is not systematic or comprehensive. Herein, genome-wide screening was performed using a position-specific scoring matrix, resulting in the discovery of more than 10,000 putative CpxR binding sites, which provides an extensive and selective set of targets based on sequence. More than half of the candidate genes ultimately selected (73/97) were experimentally confirmed to be CpxR-regulated genes through experimental analysis. These genes are involved in various physiological functions, indicating that the CpxRA system regulates complex cellular processes. The study also found for the first time that the CpxR-regulated genes ydeE, xylE, alx, and galP contribute to Escherichia coli resistance to acid stress, whereas prlF, alx, casA, yacH, ydeE, sbmA, and ampH contribute to E. coli resistance to cationic antimicrobial peptide stress. Among these CpxR-regulated genes, ydeE and alx responded to both stressors. In a similar way, a cationic antimicrobial peptide is capable of directly activating the periplasmic domain of CpxA kinase in vitro, which is consistent with the CpxA response to acid stress. These results greatly expand our understanding of the CpxRA-dependent stress response network in E. coli. IMPORTANCE CpxRA system is found in many pathogens and plays an essential role in sensing environmental signals and transducing information inside cells for adaptation. It usually regulates expression of specific genes in response to different environmental stresses and is important for bacterial pathogenesis. However, systematically identifying CpxRA-regulated genes and elucidating the regulative role of CpxRA in bacteria responding to environmental stress remains challenging. This study discovered more than 10,000 putative CpxR binding sites based on sequence. This bioinformatics approach, combined with experimental assays, allowed the identification of many previously unknown CpxR-regulated genes. Among the novel 73 CpxRA-regulated genes identified in this study, the role of nine of them in contributing to E. coli resistance to acid or cationic antimicrobial peptide stress was studied. The potential correlation between these two environmental stress responses provides insight into the CpxRA-dependent stress response network. This also improves our understanding of environment-bacterium interaction and Gram-negative pathogenesis.
Collapse
|
18
|
Fang Y, Stanford K, Yang X. Lactic Acid Resistance and Population Structure of Escherichia coli from Meat Processing Environment. Microbiol Spectr 2022; 10:e0135222. [PMID: 36194136 PMCID: PMC9602453 DOI: 10.1128/spectrum.01352-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 09/09/2022] [Indexed: 12/30/2022] Open
Abstract
To explore the effect of beef processing on Escherichia coli populations in relation to lactic acid resistance, this study investigated the links among acid response, phylogenetic structure, genome diversity, and genotypes associated with acid resistance of meat plant E. coli. Generic E. coli isolates (n = 700) were from carcasses, fabrication equipment, and beef products. Acid treatment was carried out in Luria-Bertani broth containing 5.5% lactic acid (pH 2.9). Log reductions of E. coli ranged from <0.5 to >5 log CFU/mL (median: 1.37 log). No difference in lactic acid resistance was observed between E. coli populations recovered before and after a processing step or antimicrobial interventions. E. coli from the preintervention carcasses were slightly more resistant than E. coli isolated from equipment, differing by <0.5 log unit. Acid-resistant E. coli (log reduction <1, n = 45) had a higher prevalence of genes related to energy metabolism (ydj, xap, ato) and oxidative stress (fec, ymjC) than the less resistant E. coli (log reduction >1, n = 133). The ydj and ato operons were abundant in E. coli from preintervention carcasses. In contrast, fec genes were abundant in E. coli from equipment surfaces. The preintervention E. coli contained phylogroups A and B1 in relatively equal proportions. Phylogroup B1 predominated (95%) in the population from equipment. Of note, E. coli collected after sanitation shared either the antigens of O8 or H21. Additionally, genome diversity decreased after chilling and equipment sanitation. Overall, beef processing did not select for E. coli resistant to lactic acid but shaped the population structure. IMPORTANCE Antimicrobial interventions have significantly reduced the microbial loads on carcasses/meat products; however, the wide use of chemical and physical biocides has raised concerns over their potential for selecting resistant populations in the beef processing environment. Phenotyping of acid resistance and whole-genome analysis described in this study demonstrated beef processing practices led to differences in acid resistance, genotype, and population structure between carcass- and equipment-associated E. coli but did not select for the acid-resistant population. Results indicate that genes coding for the metabolism of long-chain sugar acids (ydj) and short-chain fatty acids (ato) were more prevalent in carcass-associated than equipment-associated E. coli. These results suggest E. coli from carcasses and equipment surfaces have been exposed to different selective pressures. The findings improve our understanding of the microbial ecology of E. coli in food processing environments and in general.
Collapse
Affiliation(s)
- Yuan Fang
- Agriculture and Agri-Food Canada Lacombe Research and Development Centre, Lacombe, Alberta, Canada
| | - Kim Stanford
- University of Lethbridge, Lethbridge, Alberta, Canada
| | - Xianqin Yang
- Agriculture and Agri-Food Canada Lacombe Research and Development Centre, Lacombe, Alberta, Canada
| |
Collapse
|
19
|
White N, Sadeeshkumar H, Sun A, Sudarsan N, Breaker RR. Na + riboswitches regulate genes for diverse physiological processes in bacteria. Nat Chem Biol 2022; 18:878-885. [PMID: 35879547 PMCID: PMC9337991 DOI: 10.1038/s41589-022-01086-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 06/10/2022] [Indexed: 01/31/2023]
Abstract
Organisms presumably have mechanisms to monitor and physiologically adapt to changes in cellular Na+ concentrations. Only a single bacterial protein has previously been demonstrated to selectively sense Na+ and regulate gene expression. Here we report a riboswitch class, previously called the 'DUF1646 motif', whose members selectively sense Na+ and regulate the expression of genes relevant to sodium biology. Many proteins encoded by Na+-riboswitch-regulated genes are annotated as metal ion transporters, whereas others are involved in mitigating osmotic stress or harnessing Na+ gradients for ATP production. Na+ riboswitches exhibit dissociation constants in the low mM range, and strongly reject all other alkali and alkaline earth ions. Likewise, only Na+ triggers riboswitch-mediated transcription and gene expression changes. These findings reveal that some bacteria use Na+ riboswitches to monitor, adjust and exploit Na+ concentrations and gradients, and in some instances collaborate with c-di-AMP riboswitches to coordinate gene expression during osmotic stress.
Collapse
Affiliation(s)
- Neil White
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Howard Hughes Medical Institute, Yale University, New Haven, CT, USA
| | - Harini Sadeeshkumar
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Anna Sun
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | | | - Ronald R Breaker
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA.
- Howard Hughes Medical Institute, Yale University, New Haven, CT, USA.
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.
| |
Collapse
|
20
|
Barman A, Patra MM, Das Gupta SK. The respiratory lipoquinone, menaquinone, functions as an inducer of genes regulated by the Mycobacterium smegmatis repressor MSMEG_2295. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35575764 DOI: 10.1099/mic.0.001192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A previous study reported that the Mycobacterium smegmatis (Msm) protein MSMEG_2295 is a repressor controlling the expression of several genes, including that for MSMEG_5125, a putative isoprenoid binding protein belonging to the YceI family, and DinB2, a DNA damage repair enzyme. This repressor is encoded by the first gene of the operon that also expresses the gene for DinB2. Targeted inhibition of MSMEG_5125 using CRISPRi technology resulted in a significant loss of Msm's respiratory activity and viability. Since this protein has been predicted to be an isoprenoid binding protein, we suspected a role of menaquinones, which are isoprenoid naphthoquinones, in the observed phenomenon. Accordingly, we tested whether MSMEG_5125's deficiency-induced lethality could be reversed by adding menaquinone. The result was positive, implying cooperation between MSMEG_5125 and menaquinone in bringing about respiration. Inhibition of MSMEG_5125 expression led to the induction of MSMEG_0089 and 2296, two hallmark genes of the MSMEG_2295 regulon. This result suggests that when MSMEG_5125 becomes limiting, a feedback-loop derepresses the MSMEG_2295 regulon genes, including its own. Interestingly, menaquinone functioned as an inducer of MSMEG_5125, indicating that it is likely to mediate the feedback mechanism. This result also strengthens our hypothesis that the functions of menaquinone and MSMEG_5125 are interrelated. Menaquinone also induced the MSMEG_2295-controlled operon MSMEG_2295-2294 (dinB2) not induced following the inactivation of MSMEG_5125. Therefore, the activation mechanism of MSMEG_2295-regulated genes may not be the same for all, although derepression is likely to be a common feature. In vitro, menaquinone abolished MSMEG_2295's DNA binding activity by interacting with it, confirming its role as an inducer. Therefore, a menaquinone-MSMEG_5125-regulated gene expression circuit controls Msm respiration and possibly oxidative stress-induced DNA damage repair.
Collapse
Affiliation(s)
- Anik Barman
- Department of Microbiology, Bose Institute, P-1/12 C.I.T. Scheme VIIM, Kolkata 700054, India
| | - Madhu Manti Patra
- Department of Microbiology, Bose Institute, P-1/12 C.I.T. Scheme VIIM, Kolkata 700054, India
| | - Sujoy K Das Gupta
- Department of Microbiology, Bose Institute, P-1/12 C.I.T. Scheme VIIM, Kolkata 700054, India
| |
Collapse
|
21
|
Ijaq J, Chandra D, Ray MK, Jagannadham MV. Investigating the Functional Role of Hypothetical Proteins From an Antarctic Bacterium Pseudomonas sp. Lz4W: Emphasis on Identifying Proteins Involved in Cold Adaptation. Front Genet 2022; 13:825269. [PMID: 35360867 PMCID: PMC8963723 DOI: 10.3389/fgene.2022.825269] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/07/2022] [Indexed: 11/28/2022] Open
Abstract
Exploring the molecular mechanisms behind bacterial adaptation to extreme temperatures has potential biotechnological applications. In the present study, Pseudomonas sp. Lz4W, a Gram-negative psychrophilic bacterium adapted to survive in Antarctica, was selected to decipher the molecular mechanism underlying the cold adaptation. Proteome analysis of the isolates grown at 4°C was performed to identify the proteins and pathways that are responsible for the adaptation. However, many proteins from the expressed proteome were found to be hypothetical proteins (HPs), whose function is unknown. Investigating the functional roles of these proteins may provide additional information in the biological understanding of the bacterial cold adaptation. Thus, our study aimed to assign functions to these HPs and understand their role at the molecular level. We used a structured insilico workflow combining different bioinformatics tools and databases for functional annotation. Pseudomonas sp. Lz4W genome (CP017432, version 1) contains 4493 genes and 4412 coding sequences (CDS), of which 743 CDS were annotated as HPs. Of these, from the proteome analysis, 61 HPs were found to be expressed consistently at the protein level. The amino acid sequences of these 61 HPs were submitted to our workflow and we could successfully assign a function to 18 HPs. Most of these proteins were predicted to be involved in biological mechanisms of cold adaptations such as peptidoglycan metabolism, cell wall organization, ATP hydrolysis, outer membrane fluidity, catalysis, and others. This study provided a better understanding of the functional significance of HPs in cold adaptation of Pseudomonas sp. Lz4W. Our approach emphasizes the importance of addressing the “hypothetical protein problem” for a thorough understanding of mechanisms at the cellular level, as well as, provided the assessment of integrating proteomics methods with various annotation and curation approaches to characterize hypothetical or uncharacterized protein data. The MS proteomics data generated from this study has been deposited to the ProteomeXchange through PRIDE with the dataset identifier–PXD029741.
Collapse
Affiliation(s)
- Johny Ijaq
- Metabolomics Facility, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Deepika Chandra
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Malay Kumar Ray
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - M. V. Jagannadham
- Metabolomics Facility, School of Life Sciences, University of Hyderabad, Hyderabad, India
- *Correspondence: M. V. Jagannadham,
| |
Collapse
|
22
|
Kenneally C, Murphy CP, Sleator RD, Culligan EP. The Urinary Microbiome and Biological Therapeutics: Novel Therapies For Urinary Tract Infections. Microbiol Res 2022; 259:127010. [DOI: 10.1016/j.micres.2022.127010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 12/12/2022]
|
23
|
Lakshmi SA, Prasath KG, Tamilmuhilan K, Srivathsan A, Shafreen RMB, Kasthuri T, Pandian SK. Suppression of Thiol-Dependent Antioxidant System and Stress Response in Methicillin-Resistant Staphylococcus aureus by Docosanol: Explication Through Proteome Investigation. Mol Biotechnol 2022; 64:575-589. [PMID: 35018617 DOI: 10.1007/s12033-021-00434-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 12/01/2021] [Indexed: 11/28/2022]
Abstract
The present study was aimed to investigate the effect of docosanol on the protein expression profile of methicillin-resistant Staphylococcus aureus (MRSA). Thus, two-dimensional gel electrophoresis coupled with MALDI-TOF MS technique was utilized to identify the differentially regulated proteins in the presence of docosanol. A total of 947 protein spots were identified from the intracellular proteome of both control and docosanol treated samples among which 40 spots were differentially regulated with a fold change greater than 1.0. Prominently, the thiol-dependent antioxidant system and stress response proteins are downregulated in MRSA, which are critical for survival during oxidative stress. In particular, docosanol downregulated the expression of Tpx, AhpC, BshC, BrxA, and YceI with a fold change of 1.4 (p = 0.02), 1.4 (p = 0.01), 1.6 (p = 0.002), 4.9 (p = 0.02), and 1.4 (p = 0.02), respectively. In addition, docosanol reduced the expression of proteins involved in purine metabolic pathways, biofilm growth cycle, and virulence factor production. Altogether, these findings suggest that docosanol could efficiently target the antioxidant pathway by reducing the expression of bacillithiol and stress-associated proteins.
Collapse
Affiliation(s)
- Selvaraj Alagu Lakshmi
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, Tamil Nadu, 630003, India
| | - Krishnan Ganesh Prasath
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, Tamil Nadu, 630003, India
- Department of Biotechnology, Sri Venkateswara College of Engineering, Sriperumbudur, Tamil Nadu, 602117, India
| | - Kannapiran Tamilmuhilan
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, Tamil Nadu, 630003, India
| | - Adimoolam Srivathsan
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, Tamil Nadu, 630003, India
| | - Raja Mohamed Beema Shafreen
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, Tamil Nadu, 630003, India
- Department of Biotechnology, Dr. Umayal Ramanathan College for Women, Alagappapuram, Karaikudi, Tamil Nadu, 630003, India
| | - Thirupathi Kasthuri
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, Tamil Nadu, 630003, India
| | | |
Collapse
|
24
|
Rilstone V, Vignale L, Craddock J, Cushing A, Filion Y, Champagne P. The role of antibiotics and heavy metals on the development, promotion, and dissemination of antimicrobial resistance in drinking water biofilms. CHEMOSPHERE 2021; 282:131048. [PMID: 34470147 DOI: 10.1016/j.chemosphere.2021.131048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/23/2021] [Accepted: 05/26/2021] [Indexed: 06/13/2023]
Abstract
Antimicrobial resistance (AMR), as well as the development of biofilms in drinking water distribution systems (DWDSs), have become an increasing concern for public health and management. As bulk water travels from source to tap, it may accumulate contaminants of emerging concern (CECs) such as antibiotics and heavy metals. When these CECs and other selective pressures, such as disinfection, pipe material, temperature, pH, and nutrient availability interact with planktonic cells and, consequently, DWDS biofilms, AMR is promoted. The purpose of this review is to highlight the mechanisms by which AMR develops and is disseminated within DWDS biofilms. First, this review will lay a foundation by describing how DWDS biofilms form, as well as their basic intrinsic and acquired resistance mechanisms. Next, the selective pressures that further induce AMR in DWDS biofilms will be elaborated. Then, the pressures by which antibiotic and heavy metal CECs accumulate in DWDS biofilms, their individual resistance mechanisms, and co-selection are described and discussed. Finally, the known human health risks and current management strategies to mitigate AMR in DWDSs will be presented. Overall, this review provides critical connections between several biotic and abiotic factors that influence and induce AMR in DWDS biofilms. Implications are made regarding the importance of monitoring and managing the development, promotion, and dissemination of AMR in DWDS biofilms.
Collapse
Affiliation(s)
- Victoria Rilstone
- Beaty Water Research Centre, Department of Civil Engineering, Union Street, Queen's University, Kingston, K7L 3Z6, Canada
| | - Leah Vignale
- Beaty Water Research Centre, Department of Civil Engineering, Union Street, Queen's University, Kingston, K7L 3Z6, Canada
| | - Justine Craddock
- Beaty Water Research Centre, Department of Civil Engineering, Union Street, Queen's University, Kingston, K7L 3Z6, Canada
| | - Alexandria Cushing
- Beaty Water Research Centre, Department of Civil Engineering, Union Street, Queen's University, Kingston, K7L 3Z6, Canada
| | - Yves Filion
- Beaty Water Research Centre, Department of Civil Engineering, Union Street, Queen's University, Kingston, K7L 3Z6, Canada.
| | - Pascale Champagne
- Beaty Water Research Centre, Department of Civil Engineering, Union Street, Queen's University, Kingston, K7L 3Z6, Canada; Institut National de la Recherche Scientifique (INRS), 490 rue de la Couronne, Québec City, Québec, G1K 9A9, Canada
| |
Collapse
|
25
|
Wang KH, Zheng DH, Yuan GQ, Lin W, Li QQ. A yceI Gene Involves in the Adaptation of Ralstonia solanacearum to Methyl Gallate and Other Stresses. Microorganisms 2021; 9:microorganisms9091982. [PMID: 34576877 PMCID: PMC8472277 DOI: 10.3390/microorganisms9091982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/10/2021] [Accepted: 09/14/2021] [Indexed: 11/16/2022] Open
Abstract
Ralstonia solanacearum is a plant-pathogenic bacterium causing plant bacterial wilt, and can be strongly inhibited by methyl gallate (MG). Our previous transcriptome sequencing of MG-treated R. solanacearum showed that the yceI gene AVT05_RS03545 of Rs-T02 was up-regulated significantly under MG stress. In this study, a deletion mutant (named DM3545) and an over-expression strain (named OE3545) for yceI were constructed to confirm this hypothesis. No significant difference was observed among the growth of wild-type strain, DM3545 and OE3545 strains without MG treatment. Mutant DM3545 showed a lower growth ability than that of the wild type and OE3545 strains under MG treatment, non-optimal temperature, or 1% NaCl. The ability of DM3545 for rhizosphere colonization was lower than that of the wild-type and OE3545 strains. The DM3545 strain showed substantially reduced virulence toward tomato plants than its wild-type and OE3545 counterpart. Moreover, DM3545 was more sensitive to MG in plants than the wild-type and OE3545 strains. These results suggest that YceI is involved in the adaptability of R. solanacearum to the presence of MG and the effect of other tested abiotic stresses. This protein is also possibly engaged in the virulence potential of R. solanacearum.
Collapse
Affiliation(s)
| | | | | | | | - Qi-Qin Li
- Correspondence: (D.-H.Z.); (Q.-Q.L.)
| |
Collapse
|
26
|
Pham DN, Kim CJ. A Novel Two-stage pH Control Strategy for the Production of 5-Aminolevulinic Acid Using Recombinant Streptomyces coelicolor. BIOTECHNOL BIOPROC E 2021. [DOI: 10.1007/s12257-020-0376-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
Rahman AZA, Adzahan NM, Zakaria Z, Mayaki AM. Antibacterial effect of acidic ionized water on horse wounds bacterial isolates. Vet World 2021; 14:1128-1132. [PMID: 34220113 PMCID: PMC8243685 DOI: 10.14202/vetworld.2021.1128-1132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/25/2021] [Indexed: 11/16/2022] Open
Abstract
Background and Aim Horse wounds can be easily infected with bacteria depending on the nature of its cause such as laceration, abrasion, or puncture as well as the nature of its environment. Various treatments are available in managing open wounds, including the usage of topical antibiotics and antiseptics. However, antibiotic resistance has been a major concern attributed with chronic wound infection. The aim of this study was to test the efficacy of ionized water at different pH against the growth of common bacteria from horse wounds. Materials and Methods Ten swab samples from equine infected wounds were collected and bacteria isolation and identification were performed. The antibacterial effect of the ionized water of pH 2.5, 4.5, 7.0, and 11.5 was tested on Staphylococcus aureus, Staphylococcus pseudintermedius, Staphylococcus intermedius, Escherichia coli, Pantoea agglomerans, and Klebsiella pneumoniae. The time-kill profiles of the ionized waters were determined at time 0, 2, 4, 6, and 8 h. Results Ionized water of pH 2.5 and 4.5 showed antibacterial activity against S. aureus, S. pseudintermedius, and S. intermedius with significant (p>0.05) reduction in colony-forming unit/mL within 2-8 h. The degree of bactericidal effect of the acidic ionized water differs between the species with S. intermedius more susceptible. However, there was no antibacterial effect at pH 2.5, 4.5, 7.0, and 11.5 on the Gram-negative bacteria tested. Conclusion Ionized water of pH 2.5 and 4.5 is effective in minimizing the growth of Gram-positive bacteria; thus it could be of clinical importance as an antiseptic for surface wound lavage in horses.
Collapse
Affiliation(s)
- Afiqah Zafirah Abdul Rahman
- Department of Farm and Exotic Animal Medicine and Surgery, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.,Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.,Department of Veterinary Medicine, Faculty of Veterinary Medicine, Usmanu Danfodiyo University, Sokoto, PMB2346, City Campus, Sokoto, Nigeria
| | - Noraniza Mohd Adzahan
- Department of Farm and Exotic Animal Medicine and Surgery, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Zunita Zakaria
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Abubakar Musa Mayaki
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, Usmanu Danfodiyo University, Sokoto, PMB2346, City Campus, Sokoto, Nigeria
| |
Collapse
|
28
|
Zhu T, Wang Z, McMullen LM, Raivio T, Simpson DJ, Gänzle MG. Contribution of the Locus of Heat Resistance to Growth and Survival of Escherichia coli at Alkaline pH and at Alkaline pH in the Presence of Chlorine. Microorganisms 2021; 9:701. [PMID: 33800639 PMCID: PMC8067161 DOI: 10.3390/microorganisms9040701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/15/2022] Open
Abstract
The locus of heat resistance (LHR) confers resistance to extreme heat, chlorine and oxidative stress in Escherichia coli. This study aimed to determine the function of the LHR in maintaining bacterial cell envelope homeostasis, the regulation of the genes comprising the LHR and the contribution of the LHR to alkaline pH response. The presence of the LHR did not affect the activity of the Cpx two-component regulatory system in E. coli, which was measured to quantify cell envelope stress. The LHR did not alter E. coli MG1655 growth rate in the range of pH 6.9 to 9.2. However, RT-qPCR results indicated that the expression of the LHR was elevated at pH 8.0 when CpxR was absent. The LHR did not improve survival of E. coli MG1655 at extreme alkaline pH (pH = 11.0 to 11.2) but improved survival at pH 11.0 in the presence of chlorine. Therefore, we conclude that the LHR confers resistance to extreme alkaline pH in the presence of oxidizing agents. Resistance to alkaline pH is regulated by an endogenous mechanism, including the Cpx envelope stress response, whereas the LHR confers resistance to extreme alkaline pH only in the presence of additional stress such as chlorine.
Collapse
Affiliation(s)
- Tongbo Zhu
- Department of Agricultural, Food and Nutritional Science, 4-10 Ag/For Centre, University of Alberta, Edmonton, AB T6G 2P5, Canada; (T.Z.); (Z.W.); (L.M.M.); (D.J.S.)
| | - Zhiying Wang
- Department of Agricultural, Food and Nutritional Science, 4-10 Ag/For Centre, University of Alberta, Edmonton, AB T6G 2P5, Canada; (T.Z.); (Z.W.); (L.M.M.); (D.J.S.)
| | - Lynn M. McMullen
- Department of Agricultural, Food and Nutritional Science, 4-10 Ag/For Centre, University of Alberta, Edmonton, AB T6G 2P5, Canada; (T.Z.); (Z.W.); (L.M.M.); (D.J.S.)
| | - Tracy Raivio
- Department of Biological Science, University of Alberta, Edmonton, AB T6G 2E9, Canada;
| | - David J. Simpson
- Department of Agricultural, Food and Nutritional Science, 4-10 Ag/For Centre, University of Alberta, Edmonton, AB T6G 2P5, Canada; (T.Z.); (Z.W.); (L.M.M.); (D.J.S.)
| | - Michael G. Gänzle
- Department of Agricultural, Food and Nutritional Science, 4-10 Ag/For Centre, University of Alberta, Edmonton, AB T6G 2P5, Canada; (T.Z.); (Z.W.); (L.M.M.); (D.J.S.)
| |
Collapse
|
29
|
Sulphate-Reducing Bacteria’s Response to Extreme pH Environments and the Effect of Their Activities on Microbial Corrosion. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11052201] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Sulphate-reducing bacteria (SRB) are dominant species causing corrosion of various types of materials. However, they also play a beneficial role in bioremediation due to their tolerance of extreme pH conditions. The application of sulphate-reducing bacteria (SRB) in bioremediation and control methods for microbiologically influenced corrosion (MIC) in extreme pH environments requires an understanding of the microbial activities in these conditions. Recent studies have found that in order to survive and grow in high alkaline/acidic condition, SRB have developed several strategies to combat the environmental challenges. The strategies mainly include maintaining pH homeostasis in the cytoplasm and adjusting metabolic activities leading to changes in environmental pH. The change in pH of the environment and microbial activities in such conditions can have a significant impact on the microbial corrosion of materials. These bacteria strategies to combat extreme pH environments and their effect on microbial corrosion are presented and discussed.
Collapse
|
30
|
Scheel RA, Ho T, Kageyama Y, Masisak J, McKenney S, Lundgren BR, Nomura CT. Optimizing a Fed-Batch High-Density Fermentation Process for Medium Chain-Length Poly(3-Hydroxyalkanoates) in Escherichia coli. Front Bioeng Biotechnol 2021; 9:618259. [PMID: 33718339 PMCID: PMC7953831 DOI: 10.3389/fbioe.2021.618259] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/08/2021] [Indexed: 11/15/2022] Open
Abstract
Production of medium chain-length poly(3-hydroxyalkanoates) [PHA] polymers with tightly defined compositions is an important area of research to expand the application and improve the properties of these promising biobased and biodegradable materials. PHA polymers with homopolymeric or defined compositions exhibit attractive material properties such as increased flexibility and elasticity relative to poly(3-hydroxybutyrate) [PHB]; however, these polymers are difficult to biosynthesize in native PHA-producing organisms, and there is a paucity of research toward developing high-density cultivation methods while retaining compositional control. In this study, we developed and optimized a fed-batch fermentation process in a stirred tank reactor, beginning with the biosynthesis of poly(3-hydroxydecanoate) [PHD] from decanoic acid by β-oxidation deficient recombinant Escherichia coli LSBJ using glucose as a co-substrate solely for growth. Bacteria were cultured in two stages, a biomass accumulation stage (37°C, pH 7.0) with glucose as the primary carbon source and a PHA biosynthesis stage (30°C, pH 8.0) with co-feeding of glucose and a fatty acid. Through iterative optimizations of semi-defined media composition and glucose feed rate, 6.0 g of decanoic acid was converted to PHD with an 87.5% molar yield (4.54 g L-1). Stepwise increases in the amount of decanoic acid fed during the fermentation correlated with an increase in PHD, resulting in a final decanoic acid feed of 25 g converted to PHD at a yield of 89.4% (20.1 g L-1, 0.42 g L-1 h-1), at which point foaming became uncontrollable. Hexanoic acid, octanoic acid, 10-undecenoic acid, and 10-bromodecanoic acid were all individually supplemented at 20 g each and successfully polymerized with yields ranging from 66.8 to 99.0% (9.24 to 18.2 g L-1). Using this bioreactor strategy, co-fatty acid feeds of octanoic acid/decanoic acid and octanoic acid/10-azidodecanoic acid (8:2 mol ratio each) resulted in the production of their respective copolymers at nearly the same ratio and at high yield, demonstrating that these methods can be used to control PHA copolymer composition.
Collapse
Affiliation(s)
- Ryan A. Scheel
- Department of Chemistry, State University of New York College of Environmental Science and Forestry, Syracuse, NY, United States
| | - Truong Ho
- Department of Chemistry, State University of New York College of Environmental Science and Forestry, Syracuse, NY, United States
| | - Yuki Kageyama
- Department of Chemistry, State University of New York College of Environmental Science and Forestry, Syracuse, NY, United States
- Division of Applied Chemistry, Department of Engineering, Hokkaido University, Sapporo, Japan
| | - Jessica Masisak
- Department of Chemistry, State University of New York College of Environmental Science and Forestry, Syracuse, NY, United States
| | - Seamus McKenney
- Department of Chemistry, State University of New York College of Environmental Science and Forestry, Syracuse, NY, United States
| | - Benjamin R. Lundgren
- Department of Chemistry, State University of New York College of Environmental Science and Forestry, Syracuse, NY, United States
| | - Christopher T. Nomura
- Department of Chemistry, State University of New York College of Environmental Science and Forestry, Syracuse, NY, United States
- Department of Biological Sciences, College of Science, University of Idaho, Moscow, ID, United States
| |
Collapse
|
31
|
Wang P, Li RQ, Wang L, Yang WT, Zou QH, Xiao D. Proteomic Analyses of Acinetobacter baumannii Clinical Isolates to Identify Drug Resistant Mechanism. Front Cell Infect Microbiol 2021; 11:625430. [PMID: 33718272 PMCID: PMC7943614 DOI: 10.3389/fcimb.2021.625430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/11/2021] [Indexed: 12/25/2022] Open
Abstract
Acinetobacter baumannii is one of the main causes of nosocomial infections. Increasing numbers of multidrug-resistant Acinetobacter baumannii cases have been reported in recent years, but its antibiotic resistance mechanism remains unclear. We studied 9 multidrug-resistant (MDR) and 10 drug-susceptible Acinetobacter baumannii clinical isolates using Label free, TMT labeling approach and glycoproteomics analysis to identify proteins related to drug resistance. Our results showed that 164 proteins exhibited different expressions between MDR and drug-susceptible isolates. These differential proteins can be classified into six groups: a. proteins related to antibiotic resistance, b. membrane proteins, membrane transporters and proteins related to membrane formation, c. Stress response-related proteins, d. proteins related to gene expression and protein translation, e. metabolism-related proteins, f. proteins with unknown function or other functions containing biofilm formation and virulence. In addition, we verified seven proteins at the transcription level in eight clinical isolates by using quantitative RT-PCR. Results showed that four of the selected proteins have positive correlations with the protein level. This study provided an insight into the mechanism of antibiotic resistance of multidrug-resistant Acinetobacter baumannii.
Collapse
Affiliation(s)
- Ping Wang
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Ren-Qing Li
- Institute for Control of Infectious Diseases and Endemic Diseases, Beijing Center for Disease Prevention and Control, Beijing, China
| | - Lei Wang
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wen-Tao Yang
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Qing-Hua Zou
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Di Xiao
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
32
|
Yu L, Zhang S, Xu Y, Mi X, Xing T, Li J, Zhang L, Gao F, Jiang Y. Acid resistance of E. coli O157:H7 and O26:H11 exposure to lactic acid revealed by transcriptomic analysis. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
33
|
Aguilar F, Ekramzadeh K, Scheper T, Beutel S. Whole-Cell Production of Patchouli Oil Sesquiterpenes in Escherichia coli: Metabolic Engineering and Fermentation Optimization in Solid-Liquid Phase Partitioning Cultivation. ACS OMEGA 2020; 5:32436-32446. [PMID: 33376881 PMCID: PMC7758989 DOI: 10.1021/acsomega.0c04590] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/25/2020] [Indexed: 05/27/2023]
Abstract
Patchouli oil is a major ingredient in perfumery, granting a dark-woody scent due to its main constituent (-)-patchoulol. The growing demand for patchouli oil has raised interest in the development of a biotechnological process to assure a reliable supply. Herein, we report the production of patchouli oil sesquiterpenes by metabolically engineered Escherichia coli strains, using solid-liquid phase partitioning cultivation. The (-)-patchoulol production was possible using the endogenous methylerythritol phosphate pathway and overexpressing a (-)-patchoulol synthase isoform from Pogostemon cablin but at low titers. To improve the (-)-patchoulol production, the exogenous mevalonate pathway was overexpressed in the multi-plasmid PTS + Mev strain, which increased the (-)-patchoulol titer 5-fold. Fermentation was improved further by evaluating several defined media, and optimizing the pH and temperature of culture broth, enhancing the (-)-patchoulol titer 3-fold. To augment the (-)-patchoulol recovery from fermentation, the solid-liquid phase partitioning cultivation was analyzed by screening polymeric adsorbers, where the Diaion HP20 adsorber demonstrated the highest (-)-patchoulol recovery from all tests. Fermentation was scaled-up to fed-batch bioreactors, reaching a (-)-patchoulol titer of 40.2 mg L-1 and productivity of 20.1 mg L-1 d-1. The terpene profile and aroma produced from the PTS + Mev strain were similar to the patchouli oil, comprising (-)-patchoulol as the main product, and α-bulnesene, trans-β-caryophyllene, β-patchoulene, and guaia-5,11-diene as side products. This investigation represents the first study of (-)-patchoulol production in E. coli by solid-liquid phase partitioning cultivation, which provides new insights for the development of sustainable bioprocesses for the microbial production of fragrant terpenes.
Collapse
Affiliation(s)
- Francisco Aguilar
- Institute of Technical Chemistry, Leibniz University of Hannover, Callinstr. 5, 30167 Hannover, Germany
| | - Kimia Ekramzadeh
- Institute of Technical Chemistry, Leibniz University of Hannover, Callinstr. 5, 30167 Hannover, Germany
| | - Thomas Scheper
- Institute of Technical Chemistry, Leibniz University of Hannover, Callinstr. 5, 30167 Hannover, Germany
| | - Sascha Beutel
- Institute of Technical Chemistry, Leibniz University of Hannover, Callinstr. 5, 30167 Hannover, Germany
| |
Collapse
|
34
|
Transcriptome changes and polymyxin resistance of acid-adapted Escherichia coli O157:H7 ATCC 43889. Gut Pathog 2020; 12:52. [PMID: 33292490 PMCID: PMC7709258 DOI: 10.1186/s13099-020-00390-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/18/2020] [Indexed: 12/25/2022] Open
Abstract
Background Acid treatment is commonly used for controlling or killing pathogenic microorganisms on medical devices and environments; however, inadequate acid treatment may cause acid tolerance response (ATR) and offer cross-protection against environmental stresses, including antimicrobials. This study aimed to characterise an Escherichia coli strain that can survive in the acidic gastrointestinal environment. Results We developed an acid-tolerant E. coli O157:H7 ATCC 43889 (ATCC 43889) strain that can survive at pH 2.75 via cell adaptation in low pH conditions. We also performed RNA sequencing and qRT-PCR to compare differentially expressed transcripts between acid-adapted and non-adapted cells. Genes related to stress resistance, including kdpA and bshA were upregulated in the acid-adapted ATCC 43889 strain. Furthermore, the polymyxin resistance gene arnA was upregulated in the acid-adapted cells, and resistance against polymyxin B and colistin (polymyxin E) was observed. As polymyxins are important antibiotics, effective against multidrug-resistant gram-negative bacterial infections, the emergence of polymyxin resistance in acid-adapted E. coli is a serious public health concern. Conclusion The transcriptomic and phenotypic changes analysed in this study during the adaptation of E. coli to acid environments can provide useful information for developing intervention technologies and mitigating the risk associated with the emergence and spread of antimicrobial resistance.
Collapse
|
35
|
Jeong SW, Choi YJ. Extremophilic Microorganisms for the Treatment of Toxic Pollutants in the Environment. Molecules 2020; 25:E4916. [PMID: 33114255 PMCID: PMC7660605 DOI: 10.3390/molecules25214916] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 12/13/2022] Open
Abstract
As concerns about the substantial effect of various hazardous toxic pollutants on the environment and public health are increasing, the development of effective and sustainable treatment methods is urgently needed. In particular, the remediation of toxic components such as radioactive waste, toxic heavy metals, and other harmful substances under extreme conditions is quite difficult due to their restricted accessibility. Thus, novel treatment methods for the removal of toxic pollutants using extremophilic microorganisms that can thrive under extreme conditions have been investigated during the past several decades. In this review, recent trends in bioremediation using extremophilic microorganisms and related approaches to develop them are reviewed, with relevant examples and perspectives.
Collapse
Affiliation(s)
| | - Yong Jun Choi
- School of Environmental Engineering, University of Seoul, Seoul 02504, Korea;
| |
Collapse
|
36
|
Wang D, Zheng Y, Wei L, Wei N, Fan X, Huang S, Xiao Q. A signal-amplified whole-cell biosensor for sensitive detection of Hg 2+ based on Hg 2+-enhanced reporter module. J Environ Sci (China) 2020; 96:93-98. [PMID: 32819703 DOI: 10.1016/j.jes.2020.03.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 06/11/2023]
Abstract
A signal-amplified mercury sensing biosensor with desired sensitivity was developed through firstly using the GFP mutant with fluorescence increasing response towards Hg2+ as the reporter module. The developed biosensor showed response for Hg2+ in a relatively wide range of 1-10,000 nmol/L, and the detection limit was improved one or two orders of magnitude in comparison with most metal-sensing biosensors in similar constructs. In addition, the biosensor could distinguish Hg2+ easily from multiple metal ions and displayed strong adaptability to extensive pH conditions (pH 4.0-10.0). More importantly, the developed biosensor was able to provide an initial assessment of Hg2+ spiked in the environmental water with the recoveries between 85.70% and 112.50%. The signal-amplified strategy performed by the modified reporter module will be widely applicable to many other whole-cell biosensors, meeting the practical requirements with sufficient sensing performance.
Collapse
Affiliation(s)
- Dan Wang
- College of Chemistry and Materials, Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, China.
| | - Yanan Zheng
- College of Chemistry and Materials, Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, China
| | - Liudan Wei
- College of Chemistry and Materials, Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, China
| | - Na Wei
- College of Chemistry and Materials, Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, China
| | - Xiaosu Fan
- Experimental Center of College of Agriculture, Guangxi University, Nanning 530005, China
| | - Shan Huang
- College of Chemistry and Materials, Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, China
| | - Qi Xiao
- College of Chemistry and Materials, Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, China.
| |
Collapse
|
37
|
Evasion of MAIT cell recognition by the African Salmonella Typhimurium ST313 pathovar that causes invasive disease. Proc Natl Acad Sci U S A 2020; 117:20717-20728. [PMID: 32788367 PMCID: PMC7456131 DOI: 10.1073/pnas.2007472117] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are innate T lymphocytes activated by bacteria that produce vitamin B2 metabolites. Mouse models of infection have demonstrated a role for MAIT cells in antimicrobial defense. However, proposed protective roles of MAIT cells in human infections remain unproven and clinical conditions associated with selective absence of MAIT cells have not been identified. We report that typhoidal and nontyphoidal Salmonella enterica strains activate MAIT cells. However, S. Typhimurium sequence type 313 (ST313) lineage 2 strains, which are responsible for the burden of multidrug-resistant nontyphoidal invasive disease in Africa, escape MAIT cell recognition through overexpression of ribB This bacterial gene encodes the 4-dihydroxy-2-butanone-4-phosphate synthase enzyme of the riboflavin biosynthetic pathway. The MAIT cell-specific phenotype did not extend to other innate lymphocytes. We propose that ribB overexpression is an evolved trait that facilitates evasion from immune recognition by MAIT cells and contributes to the invasive pathogenesis of S. Typhimurium ST313 lineage 2.
Collapse
|
38
|
Local and Universal Action: The Paradoxes of Indole Signalling in Bacteria. Trends Microbiol 2020; 28:566-577. [PMID: 32544443 DOI: 10.1016/j.tim.2020.02.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/05/2020] [Accepted: 02/25/2020] [Indexed: 02/06/2023]
Abstract
Indole is a signalling molecule produced by many bacterial species and involved in intraspecies, interspecies, and interkingdom signalling. Despite the increasing volume of research published in this area, many aspects of indole signalling remain enigmatic. There is disagreement over the mechanism of indole import and export and no clearly defined target through which its effects are exerted. Progress is hindered further by the confused and sometimes contradictory body of indole research literature. We explore the reasons behind this lack of consistency and speculate whether the discovery of a new, pulse mode of indole signalling, together with a move away from the idea of a conventional protein target, might help to overcome these problems and enable the field to move forward.
Collapse
|
39
|
Rahmani A, Mathien C, Bidault A, Le Goïc N, Paillard C, Pichereau V. External pH modulation during the growth of Vibrio tapetis, the aetiological agent of brown ring disease. J Appl Microbiol 2020; 129:3-16. [PMID: 32395854 DOI: 10.1111/jam.14699] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/04/2020] [Accepted: 05/04/2020] [Indexed: 02/05/2023]
Abstract
AIMS Brown ring disease (BRD) is an infection of the Manila clam Ruditapes philippinarum due to the pathogen Vibrio tapetis. During BRD, clams are facing immunodepression and shell biomineralization alteration. In this paper, we studied the role of pH on the growth of the pathogen and formulated hypothesis on the establishment of BRD by V. tapetis. METHODS AND RESULTS In this study, we monitored the evolution of pH during the growth of V. tapetis in a range of pH and temperatures. We also measured the pH of Manila clam haemolymph and extrapallial fluids (EPFs) during infection by V. tapetis. We highlighted that V. tapetis modulates the external pH during its growth, to a value of 7·70. During the development of BRD, V. tapetis also influences EPFs and haemolymph pH in vitro in the first hours of exposure and in vivo after 3 days of infection. CONCLUSIONS Our experiments have shown a close interaction between V. tapetis CECT4600, a pathogen of Manila clam that induces BRD, and the pH of different compartments of the animals during infection. These results indicate that the bacterium, through a direct mechanism or as a consequence of physiological changes encountered in the animal during infection, is able to interfere with the pH of Manila clam fluids. This pH modification might promote the infection process or at least create an imbalance within the animal that would favour its persistence. This last hypothesis should be tested in future experiment. SIGNIFICANCE AND IMPACT OF THE STUDY This study is the first observation of pH modifications in the context of BRD and might orient future research on the fine mechanisms of pH modulation associated with BRD.
Collapse
Affiliation(s)
- A Rahmani
- Univ Brest, CNRS, IRD, Ifremer, UMR 6539 LEMAR, Plouzané, France
| | - C Mathien
- Univ Brest, CNRS, IRD, Ifremer, UMR 6539 LEMAR, Plouzané, France
| | - A Bidault
- Univ Brest, CNRS, IRD, Ifremer, UMR 6539 LEMAR, Plouzané, France
| | - N Le Goïc
- Univ Brest, CNRS, IRD, Ifremer, UMR 6539 LEMAR, Plouzané, France
| | - C Paillard
- Univ Brest, CNRS, IRD, Ifremer, UMR 6539 LEMAR, Plouzané, France
| | - V Pichereau
- Univ Brest, CNRS, IRD, Ifremer, UMR 6539 LEMAR, Plouzané, France
| |
Collapse
|
40
|
Wang P, Meng X, Li J, Chen Y, Zhang D, Zhong H, Xia P, Cui L, Zhu G, Wang H. Transcriptome profiling of avian pathogenic Escherichia coli and the mouse microvascular endothelial cell line bEnd.3 during interaction. PeerJ 2020; 8:e9172. [PMID: 32509459 PMCID: PMC7246031 DOI: 10.7717/peerj.9172] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 04/21/2020] [Indexed: 12/20/2022] Open
Abstract
Background Avian pathogenic Escherichia coli (APEC), an important extraintestinal pathogenic E. coli, causes colibacillosis, an acute and mostly systemic disease involving multiple organ lesions such as meningitis. Meningitis-causing APEC can invade the host central nervous system by crossing the blood–brain barrier (BBB), which is a critical step in the development of meningitis. However, the bacteria-host interaction mechanism in this process remains unclear. Methods In this study, we examined E. coli and bEnd.3 cells transcriptomes during infection and mock infection to investigate the global transcriptional changes in both organisms using RNA sequencing approach. Results When APEC infected the bEnd.3 cells, several significant changes in the expression of genes related to cell junctional complexes, extracellular matrix degradation, actin cytoskeleton rearrangement, immune activation and the inflammatory response in bEnd.3 cells were observed as compared to the mock infection group. Thus, the immune activation of bEnd.3 cells indicated that APEC infection activated host defenses. Furthermore, APEC may exploit cell junction degradation to invade the BBB. In addition, amino acid metabolism and energy metabolism related genes were downregulated and the protein export pathway related genes were upregulated in APEC cultured with bEnd.3 cells, compared to that in control. Thus, APEC may encounter starvation and express virulence factors during incubation with bEnd.3 cells. Conclusion This study provides a comprehensive overview of transcriptomic changes that occur during APEC infection of bEnd.3 cells, and offers insights into the bacterial invasion strategies and the subsequent host defense mechanism.
Collapse
Affiliation(s)
- Peili Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| | - Xia Meng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| | - Jianji Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| | - Yanfei Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| | - Dong Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| | - Haoran Zhong
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| | - Pengpeng Xia
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| | - Luying Cui
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| | - Guoqiang Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| | - Heng Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| |
Collapse
|
41
|
Fan G, Zhu Y, Fu Z, Sun B, Teng C, Yang R, Li X. Optimization of fermentation conditions for the production of recombinant feruloyl esterase from Burkholderia pyrrocinia B1213. 3 Biotech 2020; 10:216. [PMID: 32355590 DOI: 10.1007/s13205-020-02198-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/07/2020] [Indexed: 11/29/2022] Open
Abstract
Statistical experimental designs were used to optimize conditions for recombinant Burkholderia pyrrocinia feruloyl esterase (BpFae) production in bacteria under lactose induction. After optimization by single factor design, Plackett-Burman design, steepest ascent design and the response surface method, the optimal conditions for BpFae production were: 6 g/L lactose, pH 5.5, pre-induced period 5 h, 23 °C, shaker rotational speed of 240 rpm, medium volume of 50 mL/250 mL, inoculum size 0.2% (v/v), and a post-induced period of 32 h in a Luria-Bertani culture. The produced BpFae activity was 7.43 U/mL, which is 2.92 times higher than that obtained under optimal conditions using IPTG as the inducer. BpFae activity was 4.82 U/mL in a 5 L fermenter under the abovementioned optimal conditions. BpFae produced a small amount of ethyl acetate but had no effect on the synthesis of other important esters in Baijiu. The results underpin further investigations into BpFae characterization and potential applications.
Collapse
Affiliation(s)
- Guangsen Fan
- 1Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), No 11 Fucheng Street, Haidian District, Beijing, 100048 China
- 2School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, 100048 China
- 3Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing, 100048 China
| | - Yuting Zhu
- 1Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), No 11 Fucheng Street, Haidian District, Beijing, 100048 China
| | - Zhilei Fu
- 1Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), No 11 Fucheng Street, Haidian District, Beijing, 100048 China
- 2School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, 100048 China
| | - Baoguo Sun
- 1Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), No 11 Fucheng Street, Haidian District, Beijing, 100048 China
- 2School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, 100048 China
- 3Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing, 100048 China
| | - Chao Teng
- 1Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), No 11 Fucheng Street, Haidian District, Beijing, 100048 China
- 2School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, 100048 China
- 3Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing, 100048 China
| | - Ran Yang
- 2School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, 100048 China
| | - Xiuting Li
- 1Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), No 11 Fucheng Street, Haidian District, Beijing, 100048 China
- 2School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, 100048 China
- 3Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing, 100048 China
| |
Collapse
|
42
|
Yang B, Song H, An D, Zhang D, Raza SHA, Wang G, Shan X, Qian A, Kang Y, Wang C. Functional Analysis of preA in Aeromonas veronii TH0426 Reveals a Key Role in the Regulation of Virulence and Resistance to Oxidative Stress. Int J Mol Sci 2019; 21:ijms21010098. [PMID: 31877791 PMCID: PMC6981600 DOI: 10.3390/ijms21010098] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/14/2019] [Accepted: 12/18/2019] [Indexed: 01/12/2023] Open
Abstract
Aeromonas veronii is one of the main pathogens causing freshwater fish sepsis and ulcer syndrome. This bacterium has caused serious economic losses in the aquaculture industry worldwide, and it has become an important zoonotic and aquatic agent. However, little is known about the molecular mechanism of pathogenesis of A. veronii. In this study, we first constructed an unmarked mutant strain (ΔpreA) by generating an in-frame deletion of the preA gene, which encodes a periplasmic binding protein, to investigate its role in A. veronii TH0426. Our results showed that the motility and biofilm formation ability of ΔpreA were similar to those of the wild-type strain. However, the adhesion and invasion ability in epithelioma papulosum cyprini (EPC) cells were significantly enhanced (2.0-fold). Furthermore, the median lethal dose (LD50) of ΔpreA was 7.6-fold higher than that of the wild-type strain, which illustrates that the virulence of the mutant was significantly enhanced. This finding is also supported by the cytotoxicity test results, which showed that the toxicity of ΔpreA to EPC cells was enhanced 1.3-fold relative to the wild type. Conversely, tolerance test results showed that oxidative stress resistance of ΔpreA decreased 5.9-fold compared to with the wild-type strain. The results suggest that preA may negatively regulate the virulence of A. veronii TH0426 through the regulation of resistance to oxidative stress. These insights will help to further elucidate the function of preA and understand the pathogenesis of A. veronii.
Collapse
Affiliation(s)
- Bintong Yang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (B.Y.); (H.S.); (D.A.); (D.Z.); (G.W.); (X.S.); (A.Q.)
- College of Life Science, Changchun Sci-Tech University, Shuangyang District, Changchun 130600, China
| | - Haichao Song
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (B.Y.); (H.S.); (D.A.); (D.Z.); (G.W.); (X.S.); (A.Q.)
| | - Dingjie An
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (B.Y.); (H.S.); (D.A.); (D.Z.); (G.W.); (X.S.); (A.Q.)
| | - Dongxing Zhang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (B.Y.); (H.S.); (D.A.); (D.Z.); (G.W.); (X.S.); (A.Q.)
| | | | - Guiqin Wang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (B.Y.); (H.S.); (D.A.); (D.Z.); (G.W.); (X.S.); (A.Q.)
| | - Xiaofeng Shan
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (B.Y.); (H.S.); (D.A.); (D.Z.); (G.W.); (X.S.); (A.Q.)
| | - Aidong Qian
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (B.Y.); (H.S.); (D.A.); (D.Z.); (G.W.); (X.S.); (A.Q.)
| | - Yuanhuan Kang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (B.Y.); (H.S.); (D.A.); (D.Z.); (G.W.); (X.S.); (A.Q.)
- Correspondence: (Y.K.); (C.W.); Tel.: +86-0431-84533426 (Y.K. & C.W.)
| | - Chunfeng Wang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (B.Y.); (H.S.); (D.A.); (D.Z.); (G.W.); (X.S.); (A.Q.)
- Correspondence: (Y.K.); (C.W.); Tel.: +86-0431-84533426 (Y.K. & C.W.)
| |
Collapse
|
43
|
Zhao C, Fang H, Wang J, Zhang S, Zhao X, Li Z, Lin C, Shen Z, Cheng L. Application of fermentation process control to increase l-tryptophan production in Escherichia coli. Biotechnol Prog 2019; 36:e2944. [PMID: 31804750 DOI: 10.1002/btpr.2944] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 11/04/2019] [Accepted: 11/26/2019] [Indexed: 11/11/2022]
Abstract
In this study, process engineering and process control were applied to increase the production of l-tryptophan using Escherichia coli Dmtr/pta-Y. Different dissolved oxygen (DO) and pH control strategies were applied in l-tryptophan production. DO and pH were maintained at [20% (0-20 hr); 30% (20-40 hr)] and [7.0 (0-20 hr), 6.5 (20-40 hr)], respectively, which increased l-tryptophan production, glucose conversion percentage [g (l-tryptophan)/g (glucose)], and transcription levels of key genes for tryptophan biosynthesis and tryptophan biosynthesis flux, and decreased the accumulation of acetate and transcription levels of genes related to acetate synthesis and acetate synthesis flux. Using E. coli Dmtr/pta-Y with optimized DO [20% (0-20 hr); 30% (20-40 hr)] and pH [7.0 (0-20 hr), 6.5 (20-40 hr)] values, the highest l-tryptophan production (52.57 g/L) and glucose conversion percentage (20.15%) were obtained. The l-tryptophan production was increased by 26.58%, the glucose conversion percentage was increased by 22.64%, and the flux of tryptophan biosynthesis was increased to 21.5% compared with different conditions for DO [50% (0-20 hr), 20% (20-40 hr)] and pH [7.0].
Collapse
Affiliation(s)
- Chunguang Zhao
- Key Laboratory of Fermentation Engineering, Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, China.,School of Agriculture, Ningxia University, Ningxia Eppen Biotech Co., Ltd, Yinchuan, China
| | - Haitian Fang
- School of Agriculture, Ningxia University, Ningxia Eppen Biotech Co., Ltd, Yinchuan, China
| | - Jing Wang
- Key Laboratory of Fermentation Engineering, Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, China.,Department of Critical Care Medicine, Affiliated Hospital of Binzhou Medical University, Binzhou, China
| | - Shasha Zhang
- Key Laboratory of Fermentation Engineering, Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, China
| | - Xiubao Zhao
- Key Laboratory of Fermentation Engineering, Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, China
| | - Zengliang Li
- Shandong Research Center of High Cell Density Fermentation and Efficient Expression Technology, Shandong Lvdu Bio-science and Technology Co., Ltd, Binzhou, China
| | - Chuwen Lin
- Key Laboratory of Fermentation Engineering, Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, China.,Shandong Research Center of High Cell Density Fermentation and Efficient Expression Technology, Shandong Lvdu Bio-science and Technology Co., Ltd, Binzhou, China
| | - Zhiqiang Shen
- Key Laboratory of Fermentation Engineering, Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, China.,Shandong Research Center of High Cell Density Fermentation and Efficient Expression Technology, Shandong Lvdu Bio-science and Technology Co., Ltd, Binzhou, China
| | - Likun Cheng
- Key Laboratory of Fermentation Engineering, Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, China.,Shandong Research Center of High Cell Density Fermentation and Efficient Expression Technology, Shandong Lvdu Bio-science and Technology Co., Ltd, Binzhou, China
| |
Collapse
|
44
|
Recent advances of pH homeostasis mechanisms in Corynebacterium glutamicum. World J Microbiol Biotechnol 2019; 35:192. [PMID: 31773365 DOI: 10.1007/s11274-019-2770-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/13/2019] [Indexed: 12/31/2022]
Abstract
Corynebacterium glutamicum is generally regarded as a safe microorganism, and widely used in the large-scale production of various amino acids and organic acids, such as L-glutamate, L-lysine and succinic acid. During the process of industrial fermentation, C. glutamicum is usually exposed to varying environmental stresses, such as variations in pH, salinity, temperature, and osmolality. Among them, pH fluctuations are regarded as one of the most frequent environmental stresses in microbial fermentation. In this review, we summarize the current knowledge of pH homeostasis mechanisms adopted by C. glutamicum for coping with low acidic pH and high alkaline pH stresses. Facing with low pH environments, C. glutamicum develops a variety of strategies to maintain intracellular pH homeostasis, such as lowering intracellular reactive oxygen species, the improvement of potassium transport, the regulation of mycothiol-related pathways, as well as the repression of sulfur assimilation. While during alkaline pH stresses, the Mrp-type Na+/H+ antiporters are shown to play a dominant role in conferring C. glutamicum cells resistance to alkaline pH. Furthermore, we also discuss the general strategies and prospects on metabolic engineering of C. glutamicum to improve alkaline or acid resistance.
Collapse
|
45
|
Engineered cells for selective detection and remediation of Hg2+ based on transcription factor MerR regulated cell surface displayed systems. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.107289] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
46
|
Wang D, Zheng Y, Fan X, Xu L, Pang T, Liu T, Liang L, Huang S, Xiao Q. Visual detection of Hg 2+ by manipulation of pyocyanin biosynthesis through the Hg 2+-dependent transcriptional activator MerR in microbial cells. J Biosci Bioeng 2019; 129:223-228. [PMID: 31492609 DOI: 10.1016/j.jbiosc.2019.08.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/09/2019] [Accepted: 08/10/2019] [Indexed: 01/16/2023]
Abstract
Mercury pollution has always been a huge threat to human health due to its significant toxicity. Thus, it's the continuing goal to obtain new mercury detection techniques that are cost-effective, operational stable, performance efficient, and applicable to the environmental and biological milieus. In this research, the soluble pigment pyocyanin with anti-bacterial and anti-fungal activities, the biosynthesis pathway of which was engineered under the regulation of Hg2+-dependent transcriptional activator MerR, was firstly used as the visual detection signal in the whole-cell biosensor. The engineered biosensor displayed optical sensing window and a good linearity for Hg2+ in the range of 25-1000 nM, and the detection limit could reach as low as 10 nM. It permitted on-site detection of bioavailable Hg2+ with extraordinary selectivity and could resist the interferences of extra metal ions. What's more, the developed biosensor performed function well in a wide pH range (pH 4-10) as well as the environmental water. By fully imitating and utilizing the biosystems from nature, the engineered colorimetric biosensor has great economic and performance advantages over most chemosensors as well as whole-cell biosensors in the practical application of detecting Hg2+ in the contaminated aquatic systems.
Collapse
Affiliation(s)
- Dan Wang
- College of Chemistry and Materials, Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, PR China.
| | - Yanan Zheng
- College of Chemistry and Materials, Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, PR China
| | - Xiaosu Fan
- Experimental Center of College of Agriculture, Guangxi University, Nanning 530005, PR China
| | - Lina Xu
- Institute of Chemical Industry of Forestry Products, CAF, Nanjing 210042, PR China
| | - Ting Pang
- College of Chemistry and Materials, Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, PR China
| | - Ting Liu
- College of Chemistry and Materials, Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, PR China
| | - Legui Liang
- College of Chemistry and Materials, Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, PR China
| | - Shan Huang
- College of Chemistry and Materials, Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, PR China
| | - Qi Xiao
- College of Chemistry and Materials, Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, PR China
| |
Collapse
|
47
|
Tang A, Caballero AR, Marquart ME, Bierdeman MA, O'Callaghan RJ. Mechanism of Pseudomonas aeruginosa Small Protease (PASP), a Corneal Virulence Factor. Invest Ophthalmol Vis Sci 2019; 59:5993-6002. [PMID: 30572344 PMCID: PMC6306078 DOI: 10.1167/iovs.18-25834] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Pseudomonas aeruginosa is the leading cause of contact lens-associated bacterial keratitis. Secreted bacterial proteases have a key role in keratitis, including the P. aeruginosa small protease (PASP), a proven corneal virulence factor. We investigated the mechanism of PASP and its importance to corneal toxicity. Methods PASP, a serine protease, was tested for activity on various substrates. The catalytic triad of PASP was sought by bioinformatic analysis and site-directed mutagenesis. All mutant constructs were expressed in a P. aeruginosa PASP-deficient strain; the resulting proteins were purified using ion-exchange, gel filtration, or affinity chromatography; and the proteolytic activity was assessed by gelatin zymography and a fluorometric assay. The purified PASP proteins with single amino acid changes were injected into rabbit corneas to determine their pathological effects. Results PASP substrates were cleaved at arginine or lysine residues. Alanine substitution of PASP residues Asp-29, His-34, or Ser-47 eliminated protease activity, whereas PASP with substitution for Ser-59 (control) retained activity. Computer modeling and Western blot analysis indicated that formation of a catalytic triad required dimer formation, and zymography demonstrated the protease activity of the homodimer, but not the monomer. PASP with the Ser-47 mutation, but not with the control mutation, lacked corneal toxicity, indicating the importance of protease activity. Conclusions PASP is a secreted serine protease that can cleave proteins at arginine or lysine residues and PASP activity requires dimer or larger aggregates to create a functional active site. Most importantly, proteolytic PASP molecules demonstrated highly significant toxicity for the rabbit cornea.
Collapse
Affiliation(s)
- Aihua Tang
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Armando R Caballero
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Mary E Marquart
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Michael A Bierdeman
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Richard J O'Callaghan
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi, United States
| |
Collapse
|
48
|
Zare H, Mir Mohammad Sadeghi H, Akbari V. Optimization of Fermentation Conditions for Reteplase Expression by Escherichia coli Using Response Surface Methodology. Avicenna J Med Biotechnol 2019; 11:162-168. [PMID: 31057718 PMCID: PMC6490408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 08/27/2018] [Indexed: 10/31/2022] Open
Abstract
BACKGROUND Expression of heterologous proteins at large scale is often a challenging job due to plasmid instability, accumulation of acetate and oxidative damage in bioreactors. Therefore, it is necessary to optimize parameters influencing cell growth and expression of recombinant protein. METHODS In the present study, the optimal culture conditions for expression of reteplase by Escherichia coli (E. coli) BL21 (DE3) in a bench-top bioreactor was determined. Response Surface Methodology (RSM) based on Box-Behnken design was used to evaluate the effect of three variables (i.e., temperature, shaking speed and pH) and their interactions with cellular growth and protein production. The obtained data were analyzed by Design Expert software. RESULTS Based on results of 15 experiments, a response surface quadratic model was developed which was used to explain the relation between production of reteplase and three investigated variables. The high value of "R-Squared" (0.9894) and F-value of 51.99 confirmed the accuracy of this model. According to the developed model, the optimum fermentation conditions for reteplase expression were temperature of 32°C, shaking speed of 210 rpm, and pH of 8.4. This predicted condition was applied for the production of reteplase in the bioreactor leading to a protein yield of 188 mg/l. CONCLUSION Our results indicate the significant role of culture conditions (e.g., pH, temperature and oxygen supply) in protein expression at large scale and confirm the need for optimization. The proposed strategy here can also be applied to experimental set-up of optimization for fermentation of other proteins.
Collapse
Affiliation(s)
- Hamze Zare
- Department of Pharmaceutical Biotechnology and Isfahan Pharmaceutical Research Center, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamid Mir Mohammad Sadeghi
- Department of Pharmaceutical Biotechnology and Isfahan Pharmaceutical Research Center, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Vajihe Akbari
- Department of Pharmaceutical Biotechnology and Isfahan Pharmaceutical Research Center, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
49
|
Chylewska A, Ogryzek M, Makowski M. Modern Approach to Medical Diagnostics - the Use of Separation Techniques in Microorganisms Detection. Curr Med Chem 2019; 26:121-165. [DOI: 10.2174/0929867324666171023164813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 04/20/2017] [Accepted: 05/20/2016] [Indexed: 11/22/2022]
Abstract
Background:Analytical chemistry and biotechnology as an interdisciplinary fields of science have been developed during many years and are experiencing significant growth, to cover a wide range of microorganisms separation techniques and methods, utilized for medical therapeutic and diagnostic purposes. Currently scientific reports contribute by introducing electrophoretical and immunological methods and formation of devices applied in food protection (avoiding epidemiological diseases) and healthcare (safety ensuring in hospitals).Methods:Electrophoretic as well as nucleic-acid-based or specific immunological methods have contributed tremendously to the advance of analyses in recent three decades, particularly in relation to bacteria, viruses and fungi identifications, especially in medical in vitro diagnostics, as well as in environmental or food protection.Results:The paper presents the pathogen detection competitiveness of these methods against conventional ones, which are still too time consuming and also labor intensive. The review is presented in several parts following the current trends in improved pathogens separation and detection methods and their subsequent use in medical diagnosis.Discussion:Part one, consists of elemental knowledge about microorganisms as an introduction to their characterization: descriptions of divisions, sizes, membranes (cells) components. Second section includes the development, new technological and practical solution descriptions used in electrophoretical procedures during microbes analyses, with special attention paid to bio-samples analyses like blood, urine, lymph or wastewater. Third part covers biomolecular areas that have created a basis needed to identify the progress, limitations and challenges of nucleic-acid-based and immunological techniques discussed to emphasize the advantages of new separative techniques in selective fractionating of microorganisms.
Collapse
Affiliation(s)
- Agnieszka Chylewska
- Laboratory of Intermolecular Interactions, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80- 308 Gdansk, Poland
| | - Małgorzata Ogryzek
- Laboratory of Intermolecular Interactions, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80- 308 Gdansk, Poland
| | - Mariusz Makowski
- Laboratory of Intermolecular Interactions, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80- 308 Gdansk, Poland
| |
Collapse
|
50
|
Cystic Fibrosis-Associated Stenotrophomonas maltophilia Strain-Specific Adaptations and Responses to pH. J Bacteriol 2019; 201:JB.00478-18. [PMID: 30642989 PMCID: PMC6416904 DOI: 10.1128/jb.00478-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 01/08/2019] [Indexed: 01/22/2023] Open
Abstract
Understanding bacterial responses to physiological conditions is an important priority for combating opportunistic infections. The majority of CF patients succumb to inflammation and necrosis in the airways, arising from chronic infection due to ineffective mucociliary clearance. Steep pH gradients characterize the CF airways but are not often incorporated in standard microbiology culture conditions. Stenotrophomonas maltophilia is a prevalent CF opportunistic pathogen also found in many disparate environments, yet this bacterium’s contribution to CF lung damage and its response to changing environmental factors remain largely understudied. Here, we show that pH impacts the physiology and antibiotic susceptibility of S. maltophilia, with implications for the development of relevant in vitro models and assessment of antibiotic sensitivity. The airway fluids of cystic fibrosis (CF) patients contain local pH gradients and are more acidic than those of healthy individuals. pH is a critical factor that is often overlooked in studies seeking to recapitulate the infection microenvironment. We sought to determine the impact of pH on the physiology of a ubiqituous yet understudied microbe, Stenotrophomonas maltophilia. Phylogenomics was first used to reconstruct evolutionary relationships between 74 strains of S. maltophilia (59 from CF patients). Neither the core genome (2,158 genes) nor the accessory genome (11,978 genes) distinguish the CF and non-CF isolates; however, strains from similar isolation sources grouped into the same subclades. We grew two human and six CF S. maltophilia isolates from different subclades at a range of pH values and observed impaired growth and altered antibiotic tolerances at pH 5. Transcriptomes revealed increased expression of both antibiotic resistance and DNA repair genes in acidic conditions. Although the gene expression profiles of S. maltophilia in lab cultures and CF sputum were distinct, we found that the same genes associated with low pH were also expressed during infection, and the higher pH cultures were more similar to sputum metatranscriptomes. Our findings suggest that S. maltophilia is not well adapted to acidity and may cope with low pH by expressing stress response genes and colonizing less acidic microenvironments. As a whole, our study underlines the impact of microenvironments on bacterial colonization and adaptation in CF infections. IMPORTANCE Understanding bacterial responses to physiological conditions is an important priority for combating opportunistic infections. The majority of CF patients succumb to inflammation and necrosis in the airways, arising from chronic infection due to ineffective mucociliary clearance. Steep pH gradients characterize the CF airways but are not often incorporated in standard microbiology culture conditions. Stenotrophomonas maltophilia is a prevalent CF opportunistic pathogen also found in many disparate environments, yet this bacterium’s contribution to CF lung damage and its response to changing environmental factors remain largely understudied. Here, we show that pH impacts the physiology and antibiotic susceptibility of S. maltophilia, with implications for the development of relevant in vitro models and assessment of antibiotic sensitivity.
Collapse
|