1
|
Higgins S, Gualdi S, Pinto-Carbó M, Eberl L. Copper resistance genes of Burkholderia cenocepacia H111 identified by transposon sequencing. ENVIRONMENTAL MICROBIOLOGY REPORTS 2020; 12:241-249. [PMID: 32090500 DOI: 10.1111/1758-2229.12828] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 02/18/2020] [Indexed: 06/10/2023]
Abstract
Copper is an essential element but in excess is highly toxic and therefore cytoplasmic levels must be tightly controlled. Member of the genus Burkholderia are highly resistant to various heavy metals and are often isolated from acidic soils where copper bioavailability is high. In this study, we employed transposon sequencing (Tn-Seq) to identify copper resistance genes in Burkholderia cenocepacia H111. We identified a copper efflux system that shares similarities with the plasmid-based copper detoxification systems found in Escherichia coli and Pseudomonas syringae. We also found that several of the identified resistance determinants are involved in maintaining the integrity of the cell envelope, suggesting that proteins located in the outer membrane and periplasmic space are particularly sensitive to copper stress. Given that several of the resistance genes are required for the repair and turnover of misfolded proteins, we suggest that copper toxicity is caused by protein damage rather than by oxidative stress.
Collapse
Affiliation(s)
- Steven Higgins
- Department of Plant and Microbial Biology, University of Zürich, Zürich, Switzerland
| | - Stefano Gualdi
- Department of Plant and Microbial Biology, University of Zürich, Zürich, Switzerland
| | - Marta Pinto-Carbó
- Department of Plant and Microbial Biology, University of Zürich, Zürich, Switzerland
| | - Leo Eberl
- Department of Plant and Microbial Biology, University of Zürich, Zürich, Switzerland
| |
Collapse
|
2
|
Brangulis K, Akopjana I, Kazaks A, Tars K. Crystal structure of the N-terminal domain of the major virulence factor BB0323 from the Lyme disease agent Borrelia burgdorferi. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2019; 75:825-830. [PMID: 31478905 DOI: 10.1107/s2059798319010751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 08/01/2019] [Indexed: 01/30/2023]
Abstract
Lyme disease is an infection caused by the spirochete Borrelia burgdorferi after it is transmitted to a mammalian organism during a tick blood meal. B. burgdorferi encodes at least 140 lipoproteins located on the outer or inner membrane, thus facing the surroundings or the periplasmic space, respectively. However, most of the predicted lipoproteins are of unknown function, and only a few proteins are known to be essential for the persistence and virulence of the pathogen. One such protein is the periplasmic BB0323, which is indispensable for B. burgdorferi to cause Lyme disease and the function of which is associated with cell fission and outer membrane integrity. After expression and transport to the periplasm, BB0323 is cleaved into C-terminal and N-terminal domains by the periplasmic serine protease BB0104. The resulting N-terminal domain is sufficient to ensure the survival of B. burgdorferi throughout the mouse-tick infection cycle. The crystal structure of the N-terminal domain of BB0323 was determined at 2.35 Å resolution. The overall fold of the protein belongs to the spectrin superfamily, with the characteristic interconnected triple-helical bundles known as spectrin repeats that function as linkers between different cell components in other organisms. Overall, the reported three-dimensional structure of the N-terminal domain of BB0323 not only reveals the molecular details of a protein that is essential for B. burgdorferi membrane integrity, cell fission and infectivity, but also suggests that spectrin repeats in bacteria are not limited to the EzrA proteins.
Collapse
Affiliation(s)
- Kalvis Brangulis
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k-1, Riga, LV-1067, Latvia
| | - Inara Akopjana
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k-1, Riga, LV-1067, Latvia
| | - Andris Kazaks
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k-1, Riga, LV-1067, Latvia
| | - Kaspars Tars
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k-1, Riga, LV-1067, Latvia
| |
Collapse
|
3
|
Duché D, Houot L. Similarities and Differences between Colicin and Filamentous Phage Uptake by Bacterial Cells. EcoSal Plus 2019; 8. [PMID: 30681066 PMCID: PMC11573288 DOI: 10.1128/ecosalplus.esp-0030-2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Indexed: 06/09/2023]
Abstract
Gram-negative bacteria have evolved a complex envelope to adapt and survive in a broad range of ecological niches. This physical barrier is the first line of defense against noxious compounds and viral particles called bacteriophages. Colicins are a family of bactericidal proteins produced by and toxic to Escherichia coli and closely related bacteria. Filamentous phages have a complex structure, composed of at least five capsid proteins assembled in a long thread-shaped particle, that protects the viral DNA. Despite their difference in size and complexity, group A colicins and filamentous phages both parasitize multiprotein complexes of their sensitive host for entry. They first bind to a receptor located at the surface of the target bacteria before specifically recruiting components of the Tol system to cross the outer membrane and find their way through the periplasm. The Tol system is thought to use the proton motive force of the inner membrane to maintain outer membrane integrity during the life cycle of the cell. This review describes the sequential docking mechanisms of group A colicins and filamentous phages during their uptake by their bacterial host, with a specific focus on the translocation step, promoted by interactions with the Tol system.
Collapse
Affiliation(s)
- Denis Duché
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, UMR7255, Institut de Microbiologie de la Méditerranée, Aix-Marseille Université-CNRS, 13402 Marseille, France
| | - Laetitia Houot
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, UMR7255, Institut de Microbiologie de la Méditerranée, Aix-Marseille Université- CNRS, 13402 Marseille, France
| |
Collapse
|
4
|
Liu X, Meiresonne NY, Bouhss A, den Blaauwen T. FtsW activity and lipid II synthesis are required for recruitment of MurJ to midcell during cell division in Escherichia coli. Mol Microbiol 2018; 109:855-884. [PMID: 30112777 DOI: 10.1111/mmi.14104] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2018] [Indexed: 12/28/2022]
Abstract
Peptidoglycan (PG) is the unique cell shape-determining component of the bacterial envelope, and is a key target for antibiotics. PG synthesis requires the transmembrane movement of the precursor lipid II, and MurJ has been shown to provide this activity in Escherichia coli. However, how MurJ functions in vivo has not been reported. Here we show that MurJ localizes both in the lateral membrane and at midcell, and is recruited to midcell simultaneously with late-localizing divisome proteins and proteins MraY and MurG. MurJ septal localization is dependent on the presence of a complete and active divisome, lipid II synthesis and PBP3/FtsW activities. Inactivation of MurJ, either directly by mutation or through binding with MTSES, did not affect the midcell localization of MurJ. Our study visualizes MurJ localization in vivo and reveals a possible mechanism of MurJ recruitment during cell division.
Collapse
Affiliation(s)
- Xiaolong Liu
- Bacterial Cell Biology, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - Nils Y Meiresonne
- Bacterial Cell Biology, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - Ahmed Bouhss
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette, France.,Laboratoire Structure-Activité des Biomolécules Normales et Pathologiques (SABNP), Univ Evry, INSERM U1204, Université Paris-Saclay, 91025, Evry, France
| | - Tanneke den Blaauwen
- Bacterial Cell Biology, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Tsang MJ, Yakhnina AA, Bernhardt TG. NlpD links cell wall remodeling and outer membrane invagination during cytokinesis in Escherichia coli. PLoS Genet 2017; 13:e1006888. [PMID: 28708841 PMCID: PMC5533458 DOI: 10.1371/journal.pgen.1006888] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 07/28/2017] [Accepted: 06/22/2017] [Indexed: 12/21/2022] Open
Abstract
Cytokinesis in gram-negative bacteria requires the constriction of all three cell envelope layers: the inner membrane (IM), the peptidoglycan (PG) cell wall and the outer membrane (OM). In order to avoid potentially lethal breaches in cell integrity, this dramatic reshaping of the cell surface requires tight coordination of the different envelope remodeling activities of the cytokinetic ring. However, the mechanisms responsible for this coordination remain poorly defined. One of the few characterized regulatory points in the envelope remodeling process is the activation of cell wall hydrolytic enzymes called amidases. These enzymes split cell wall material shared by developing daughter cells to facilitate their eventual separation. In Escherichia coli, amidase activity requires stimulation by one of two partially redundant activators: EnvC, which is associated with the IM, and NlpD, a lipoprotein anchored in the OM. Here, we investigate the regulation of amidase activation by NlpD. Structure-function analysis revealed that the OM localization of NlpD is critical for regulating its amidase activation activity. To identify additional factors involved in the NlpD cell separation pathway, we also developed a genetic screen using a flow cytometry-based enrichment procedure. This strategy allowed us to isolate mutants that form long chains of unseparated cells specifically when the redundant EnvC pathway is inactivated. The screen implicated the Tol-Pal system and YraP in NlpD activation. The Tol-Pal system is thought to promote OM invagination at the division site. YraP is a conserved protein of unknown function that we have identified as a new OM-localized component of the cytokinetic ring. Overall, our results support a model in which OM and PG remodeling events at the division site are coordinated in part through the coupling of NlpD activation with OM invagination.
Collapse
Affiliation(s)
- Mary-Jane Tsang
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Anastasiya A. Yakhnina
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Thomas G. Bernhardt
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
6
|
Ridley H, Lakey JH. Antibacterial toxin colicin N and phage protein G3p compete with TolB for a binding site on TolA. MICROBIOLOGY-SGM 2014; 161:503-15. [PMID: 25536997 PMCID: PMC4339652 DOI: 10.1099/mic.0.000024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Most colicins kill Escherichia coli cells by membrane pore formation or nuclease activity and, superficially, the mechanisms are similar: receptor binding, translocon recruitment, periplasmic receptor binding and membrane insertion. However, in detail, they employ a wide variety of molecular interactions that reveal a high degree of evolutionary diversification. Group A colicins bind to members of the TolQRAB complex in the periplasm and heterotrimeric complexes of colicin–TolA–TolB have been observed for both ColA and ColE9. ColN, the smallest and simplest pore-forming colicin, binds only to TolA and we show here that it uses the binding site normally used by TolB, effectively preventing formation of the larger complex used by other colicins. ColN binding to TolA was by β-strand addition with a KD of 1 µM compared with 40 µM for the TolA–TolB interaction. The β-strand addition and ColN activity could be abolished by single proline point mutations in TolA, which each removed one backbone hydrogen bond. By also blocking TolA–TolB binding these point mutations conferred a complete tol phenotype which destabilized the outer membrane, prevented both ColA and ColE9 activity, and abolished phage protein binding to TolA. These are the only point mutations known to have such pleiotropic effects and showed that the TolA–TolB β-strand addition is essential for Tol function. The formation of this simple binary ColN–TolA complex provided yet more evidence of a distinct translocation route for ColN and may help to explain the unique toxicity of its N-terminal domain.
Collapse
Affiliation(s)
- Helen Ridley
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Jeremy H Lakey
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
7
|
Santos TMA, Lin TY, Rajendran M, Anderson SM, Weibel DB. Polar localization of Escherichia coli chemoreceptors requires an intact Tol-Pal complex. Mol Microbiol 2014; 92:985-1004. [PMID: 24720726 DOI: 10.1111/mmi.12609] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2014] [Indexed: 11/29/2022]
Abstract
Subcellular biomolecular localization is critical for the metabolic and structural properties of the cell. The functional implications of the spatiotemporal distribution of protein complexes during the bacterial cell cycle have long been acknowledged; however, the molecular mechanisms for generating and maintaining their dynamic localization in bacteria are not completely understood. Here we demonstrate that the trans-envelope Tol-Pal complex, a widely conserved component of the cell envelope of Gram-negative bacteria, is required to maintain the polar positioning of chemoreceptor clusters in Escherichia coli. Localization of the chemoreceptors was independent of phospholipid composition of the membrane and the curvature of the cell wall. Instead, our data indicate that chemoreceptors interact with components of the Tol-Pal complex and that this interaction is required to polarly localize chemoreceptor clusters. We found that disruption of the Tol-Pal complex perturbs the polar localization of chemoreceptors, alters cell motility, and affects chemotaxis. We propose that the E. coli Tol-Pal complex restricts mobility of the chemoreceptor clusters at the cell poles and may be involved in regulatory mechanisms that co-ordinate cell division and segregation of the chemosensory machinery.
Collapse
Affiliation(s)
- Thiago M A Santos
- Department of Biochemistry, University of Wisconsin-Madison, 440 Henry Mall, Madison, WI, 53706, USA
| | | | | | | | | |
Collapse
|
8
|
Kim YC, Tarr AW, Penfold CN. Colicin import into E. coli cells: a model system for insights into the import mechanisms of bacteriocins. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1717-31. [PMID: 24746518 DOI: 10.1016/j.bbamcr.2014.04.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 04/04/2014] [Accepted: 04/06/2014] [Indexed: 01/03/2023]
Abstract
Bacteriocins are a diverse group of ribosomally synthesized protein antibiotics produced by most bacteria. They range from small lanthipeptides produced by lactic acid bacteria to much larger multi domain proteins of Gram negative bacteria such as the colicins from Escherichia coli. For activity bacteriocins must be released from the producing cell and then bind to the surface of a sensitive cell to instigate the import process leading to cell death. For over 50years, colicins have provided a working platform for elucidating the structure/function studies of bacteriocin import and modes of action. An understanding of the processes that contribute to the delivery of a colicin molecule across two lipid membranes of the cell envelope has advanced our knowledge of protein-protein interactions (PPI), protein-lipid interactions and the role of order-disorder transitions of protein domains pertinent to protein transport. In this review, we provide an overview of the arrangement of genes that controls the synthesis and release of the mature protein. We examine the uptake processes of colicins from initial binding and sequestration of binding partners to crossing of the outer membrane, and then discuss the translocation of colicins through the cell periplasm and across the inner membrane to their cytotoxic site of action. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.
Collapse
Affiliation(s)
- Young Chan Kim
- School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham, NG7 2UH, UK
| | - Alexander W Tarr
- School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham, NG7 2UH, UK
| | - Christopher N Penfold
- School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham, NG7 2UH, UK.
| |
Collapse
|
9
|
Cai X, Lu J, Wu Z, Yang C, Xu H, Lin Z, Shen Y. Structure of Neisseria meningitidis lipoprotein GNA1162. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:362-8. [PMID: 23545639 PMCID: PMC3614158 DOI: 10.1107/s1744309113004417] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 02/14/2013] [Indexed: 12/15/2022]
Abstract
GNA1162, a predicted lipoprotein from Neisseria meningitidis, is a potential candidate for a universal vaccine against meningococcal disease caused by N. meningitidis serogroup B. Here, the crystal structure of GNA1162 at 1.89 Å resolution determined by single-wavelength anomalous dispersion (SAD) is reported. The structure of GNA1162 appears to be a dimer in the crystallographic asymmetric unit as well as in solution. The overall structure of the dimer indicates that each monomer inserts its C-terminal α5 helix into the hydrophobic groove of the other molecule. Moreover, the β4 strands of each monomer lie antiparallel to each other and interact through multiple main-chain hydrogen bonds. Through structural comparisons and operon predictions, it is hypothesized that GNA1162 is part of a transport system and assists in transport and reassembly. The crystal structure of GNA1162 sheds light on its possible function and provides potentially valuable information for the design of a vaccine against meningococcal disease.
Collapse
Affiliation(s)
- Xiangyu Cai
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, People’s Republic of China
- School of Medicine, Nankai University, Tianjin 300071, People’s Republic of China
- College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, People’s Republic of China
| | - Jing Lu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, People’s Republic of China
- College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, People’s Republic of China
| | - Zhenhua Wu
- Laboratory of Virology, National Vaccine and Serum Institute, No. 4 San Jian Fang Nan Li, Beijing 100024, People’s Republic of China
| | - Chunting Yang
- Laboratory of Virology, National Vaccine and Serum Institute, No. 4 San Jian Fang Nan Li, Beijing 100024, People’s Republic of China
| | - Honglin Xu
- College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, People’s Republic of China
- Laboratory of Virology, National Vaccine and Serum Institute, No. 4 San Jian Fang Nan Li, Beijing 100024, People’s Republic of China
| | - Zhijie Lin
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, People’s Republic of China
- College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, People’s Republic of China
| | - Yuequan Shen
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, People’s Republic of China
- College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, People’s Republic of China
| |
Collapse
|
10
|
Insight into the assembly mechanism in the supramolecular rings of the sodium-driven Vibrio flagellar motor from the structure of FlgT. Proc Natl Acad Sci U S A 2013; 110:6133-8. [PMID: 23530206 DOI: 10.1073/pnas.1222655110] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Flagellar motility is a key factor for bacterial survival and growth in fluctuating environments. The polar flagellum of a marine bacterium, Vibrio alginolyticus, is driven by sodium ion influx and rotates approximately six times faster than the proton-driven motor of Escherichia coli. The basal body of the sodium motor has two unique ring structures, the T ring and the H ring. These structures are essential for proper assembly of the stator unit into the basal body and to stabilize the motor. FlgT, which is a flagellar protein specific for Vibrio sp., is required to form and stabilize both ring structures. Here, we report the crystal structure of FlgT at 2.0-Å resolution. FlgT is composed of three domains, the N-terminal domain (FlgT-N), the middle domain (FlgT-M), and the C-terminal domain (FlgT-C). FlgT-M is similar to the N-terminal domain of TolB, and FlgT-C resembles the N-terminal domain of FliI and the α/β subunits of F1-ATPase. To elucidate the role of each domain, we prepared domain deletion mutants of FlgT and analyzed their effects on the basal-body ring formation. The results suggest that FlgT-N contributes to the construction of the H-ring structure, and FlgT-M mediates the T-ring association on the LP ring. FlgT-C is not essential but stabilizes the H-ring structure. On the basis of these results, we propose an assembly mechanism for the basal-body rings and the stator units of the sodium-driven flagellar motor.
Collapse
|
11
|
Colicin A binds to a novel binding site of TolA in the Escherichia coli periplasm. Biochem Soc Trans 2012; 40:1469-74. [DOI: 10.1042/bst20120239] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Colicins are protein antibiotics produced by Escherichia coli to kill closely related non-identical competing species. They have taken advantage of the promiscuity of several proteins in the cell envelope for entry into the bacterial cell. The Tol–Pal system comprises one such ensemble of periplasmic and membrane-associated interacting proteins that links the IM (inner membrane) and OM (outer membrane) and provides the cell with a structural scaffold for cell division and energy transduction. Central to the Tol–Pal system is the TolA hub protein which forms protein–protein interactions with all other members and also with extrinsic proteins such as colicins A, E1, E2–E9 and N, and the coat proteins of the Ff family of filamentous bacteriophages. In the present paper, we review the role of TolA in the translocation of colicin A through the recently determined crystal structure of the complex of TolA with a translocation domain peptide of ColA (TA53–107), we demonstrate that TA53–107 binds to TolA at a novel binding site and compare the interactions of TolA with other colicins that use the Tol–Pal system for cell entry substantiating further the role of TolA as a periplasmic hub protein.
Collapse
|
12
|
Li C, Zhang Y, Vankemmelbeke M, Hecht O, Aleanizy FS, Macdonald C, Moore GR, James R, Penfold CN. Structural evidence that colicin A protein binds to a novel binding site of TolA protein in Escherichia coli periplasm. J Biol Chem 2012; 287:19048-57. [PMID: 22493500 PMCID: PMC3365938 DOI: 10.1074/jbc.m112.342246] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The Tol assembly of proteins is an interacting network of proteins located in the Escherichia coli cell envelope that transduces energy and contributes to cell integrity. TolA is central to this network linking the inner and outer membranes by interactions with TolQ, TolR, TolB, and Pal. Group A colicins, such as ColA, parasitize the Tol network through interactions with TolA and/or TolB to facilitate translocation through the cell envelope to reach their cytotoxic site of action. We have determined the first structure of the C-terminal domain of TolA (TolAIII) bound to an N-terminal ColA polypeptide (TA53–107). The interface region of the TA53–107-TolAIII complex consists of polar contacts linking residues Arg-92 to Arg-96 of ColA with residues Leu-375–Pro-380 of TolA, which constitutes a β-strand addition commonly seen in more promiscuous protein-protein contacts. The interface region also includes three cation-π interactions (Tyr-58–Lys-368, Tyr-90–Lys-379, Phe-94–Lys-396), which have not been observed in any other colicin-Tol protein complex. Mutagenesis of the interface residues of ColA or TolA revealed that the effect on the interaction was cumulative; single mutations of either partner had no effect on ColA activity, whereas mutations of three or more residues significantly reduced ColA activity. Mutagenesis of the aromatic ring component of the cation-π interacting residues showed Tyr-58 of ColA to be essential for the stability of complex formation. TA53–107 binds on the opposite side of TolAIII to that used by g3p, ColN, or TolB, illustrating the flexible nature of TolA as a periplasmic hub protein.
Collapse
Affiliation(s)
- Chan Li
- School of Molecular Medical Sciences, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Krachler AM, Sharma A, Cauldwell A, Papadakos G, Kleanthous C. TolA modulates the oligomeric status of YbgF in the bacterial periplasm. J Mol Biol 2010; 403:270-85. [PMID: 20816983 DOI: 10.1016/j.jmb.2010.08.050] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 08/18/2010] [Accepted: 08/26/2010] [Indexed: 10/19/2022]
Abstract
The trans-envelope Tol complex of Gram-negative bacteria is recruited to the septation apparatus during cell division where it is involved in stabilizing the outer membrane. The last gene in the tol operon, ybgF, is highly conserved, yet does not seem to be required for Tol function. We have addressed this anomaly by characterizing YbgF from Escherichia coli and its interaction with TolA, which, based on previous yeast two-hybrid data, is the only known physical link between YbgF and the Tol system. We show that the stable YbgF trimer undergoes a marked change in oligomeric state on binding TolA, forming a one-to-one complex with the Tol protein. Through a combination of pull-down assays, deletion analysis, and isothermal titration calorimetry, we map the TolA-YbgF interface to the C-terminal tetratricopeptide repeat domain of YbgF and 31 residues at the C-terminal end of TolA domain II (TolA(280-313)). We show that TolB, which binds TolA domain III close to the YbgF binding site, has no impact on the YbgF-TolA association. We also report the crystal structures of the two component domains of YbgF, the N-terminal coiled coil from E. coli YbgF, which forms a stable trimer and controls the oligomeric status of YbgF, and the monomeric tetratricopeptide repeat domain from Xanthomonas campestris YbgF, which is also able to trimerize. Although the coiled coil is not directly involved in TolA binding, we demonstrate that the regular hydrophilic patterning of its otherwise hydrophobic core is a prerequisite for the TolA-induced oligomeric-state transition of YbgF. We postulate that rather than YbgF affecting Tol function, it is the change in YbgF oligomeric status (with an accompanying change in its function) that likely explains the necessity for tight co-regulation of the ybgF and tol genes in Gram-negative bacteria.
Collapse
Affiliation(s)
- Anne Marie Krachler
- Department of Biology, University of York, Heslington, PO Box 373, York YO10 5YW, UK
| | | | | | | | | |
Collapse
|
14
|
The flagellar basal body-associated protein FlgT is essential for a novel ring structure in the sodium-driven Vibrio motor. J Bacteriol 2010; 192:5609-15. [PMID: 20729351 DOI: 10.1128/jb.00720-10] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Vibrio alginolyticus, the flagellar motor can rotate at a remarkably high speed, ca. three to four times faster than the Escherichia coli or Salmonella motor. Here, we found a Vibrio-specific protein, FlgT, in the purified flagellar basal body fraction. Defects of FlgT resulted in partial Fla⁻ and Mot⁻ phenotypes, suggesting that FlgT is involved in formation of the flagellar structure and generating flagellar rotation. Electron microscopic observation of the basal body of ΔflgT cells revealed a smaller LP ring structure compared to the wild type, and most of the T ring was lost. His₆-tagged FlgT could be coisolated with MotY, the T-ring component, suggesting that FlgT may interact with the T ring composed of MotX and MotY. From these lines of evidence, we conclude that FlgT associates with the basal body and is responsible to form an outer ring of the LP ring, named the H ring, which can be distinguished from the LP ring formed by FlgH and FlgI. Vibrio-specific structures, e.g., the T ring and H ring might contribute the more robust motor structure compared to that of E. coli and Salmonella.
Collapse
|
15
|
The caulobacter Tol-Pal complex is essential for outer membrane integrity and the positioning of a polar localization factor. J Bacteriol 2010; 192:4847-58. [PMID: 20693330 DOI: 10.1128/jb.00607-10] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cell division in Caulobacter crescentus involves constriction and fission of the inner membrane (IM) followed about 20 min later by fission of the outer membrane (OM) and daughter cell separation. In contrast to Escherichia coli, the Caulobacter Tol-Pal complex is essential. Cryo-electron microscopy images of the Caulobacter cell envelope exhibited outer membrane disruption, and cells failed to complete cell division in TolA, TolB, or Pal mutant strains. In wild-type cells, components of the Tol-Pal complex localize to the division plane in early predivisional cells and remain predominantly at the new pole of swarmer and stalked progeny upon completion of division. The Tol-Pal complex is required to maintain the position of the transmembrane TipN polar marker, and indirectly the PleC histidine kinase, at the cell pole, but it is not required for the polar maintenance of other transmembrane and membrane-associated polar proteins tested. Coimmunoprecipitation experiments show that both TolA and Pal interact directly or indirectly with TipN. We propose that disruption of the trans-envelope Tol-Pal complex releases TipN from its subcellular position. The Caulobacter Tol-Pal complex is thus a key component of cell envelope structure and function, mediating OM constriction at the final step of cell division as well as the positioning of a protein localization factor.
Collapse
|
16
|
Bonsor DA, Hecht O, Vankemmelbeke M, Sharma A, Krachler AM, Housden NG, Lilly KJ, James R, Moore GR, Kleanthous C. Allosteric beta-propeller signalling in TolB and its manipulation by translocating colicins. EMBO J 2009; 28:2846-57. [PMID: 19696740 PMCID: PMC2750012 DOI: 10.1038/emboj.2009.224] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Accepted: 07/13/2009] [Indexed: 01/09/2023] Open
Abstract
The Tol system is a five-protein assembly parasitized by colicins and bacteriophages that helps stabilize the Gram-negative outer membrane (OM). We show that allosteric signalling through the six-bladed beta-propeller protein TolB is central to Tol function in Escherichia coli and that this is subverted by colicins such as ColE9 to initiate their OM translocation. Protein-protein interactions with the TolB beta-propeller govern two conformational states that are adopted by the distal N-terminal 12 residues of TolB that bind TolA in the inner membrane. ColE9 promotes disorder of this 'TolA box' and recruitment of TolA. In contrast to ColE9, binding of the OM lipoprotein Pal to the same site induces conformational changes that sequester the TolA box to the TolB surface in which it exhibits little or no TolA binding. Our data suggest that Pal is an OFF switch for the Tol assembly, whereas colicins promote an ON state even though mimicking Pal. Comparison of the TolB mechanism to that of vertebrate guanine nucleotide exchange factor RCC1 suggests that allosteric signalling may be more prevalent in beta-propeller proteins than currently realized.
Collapse
Affiliation(s)
| | - Oliver Hecht
- Centre for Molecular and Structural Biochemistry, School of Chemical Sciences and Pharmacy, University of East Anglia, Norwich, UK
| | - Mireille Vankemmelbeke
- School of Molecular Medical Sciences, Institute of Infection, Inflammation and Immunity, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, UK
| | - Amit Sharma
- Department of Biology, University of York, York, UK
| | | | | | | | - Richard James
- School of Molecular Medical Sciences, Institute of Infection, Inflammation and Immunity, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, UK
| | - Geoffrey R Moore
- Centre for Molecular and Structural Biochemistry, School of Chemical Sciences and Pharmacy, University of East Anglia, Norwich, UK
| | - Colin Kleanthous
- Department of Biology, University of York, York, UK,Department of Biology (Area 10), University of York, Heslington, PO Box 373, York, YO10 5YW, UK. Tel.: +44 0 1904 328820; Fax: +44 0 1904 328825; E-mail:
| |
Collapse
|
17
|
Zhang Y, Li C, Vankemmelbeke MN, Bardelang P, Paoli M, Penfold CN, James R. The crystal structure of the TolB box of colicin A in complex with TolB reveals important differences in the recruitment of the common TolB translocation portal used by group A colicins. Mol Microbiol 2009; 75:623-36. [PMID: 19627502 PMCID: PMC2821528 DOI: 10.1111/j.1365-2958.2009.06808.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Interaction of the TolB box of Group A colicins with the TolB protein in the periplasm of Escherichia coli cells promotes transport of the cytotoxic domain of the colicin across the cell envelope. The crystal structure of a complex between a 107-residue peptide (TA1–107) of the translocation domain of colicin A (ColA) and TolB identified the TolB box as a 12-residue peptide that folded into a distorted hairpin within a central canyon of the β-propeller domain of TolB. Comparison of this structure with that of the colicin E9 (ColE9) TolB box–TolB complex, together with site-directed mutagenesis of the ColA TolB box residues, revealed important differences in the interaction of the two TolB boxes with an overlapping binding site on TolB. Substitution of the TolB box residues of ColA with those of ColE9 conferred the ability to competitively recruit TolB from Pal but reduced the biological activity of the mutant ColA. This datum explains (i) the difference in binding affinities of ColA and ColE9 with TolB, and (ii) the inability of ColA, unlike ColE9, to competitively recruit TolB from Pal, allowing an understanding of how these two colicins interact in a different way with a common translocation portal in E. coli cells.
Collapse
Affiliation(s)
- Ying Zhang
- Institute of Infection, Immunity and Inflammation, School of Molecular Medical Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | | | | | | | | | | | | |
Collapse
|
18
|
Godlewska R, Wiśniewska K, Pietras Z, Jagusztyn-Krynicka EK. Peptidoglycan-associated lipoprotein (Pal) of Gram-negative bacteria: function, structure, role in pathogenesis and potential application in immunoprophylaxis. FEMS Microbiol Lett 2009; 298:1-11. [PMID: 19519769 DOI: 10.1111/j.1574-6968.2009.01659.x] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The protein Pal (peptidoglycan-associated lipoprotein) is anchored in the outer membrane (OM) of Gram-negative bacteria and interacts with Tol proteins. Tol-Pal proteins form two complexes: the first is composed of three inner membrane Tol proteins (TolA, TolQ and TolR); the second consists of the TolB and Pal proteins linked to the cell's OM. These complexes interact with one another forming a multiprotein membrane-spanning system. It has recently been demonstrated that Pal is essential for bacterial survival and pathogenesis, although its role in virulence has not been clearly defined. This review summarizes the available data concerning the structure and function of Pal and its role in pathogenesis.
Collapse
Affiliation(s)
- Renata Godlewska
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | | | | | | |
Collapse
|
19
|
Vankemmelbeke M, Zhang Y, Moore GR, Kleanthous C, Penfold CN, James R. Energy-dependent immunity protein release during tol-dependent nuclease colicin translocation. J Biol Chem 2009; 284:18932-41. [PMID: 19458090 PMCID: PMC2707214 DOI: 10.1074/jbc.m806149200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Nuclease colicins bind their target receptor in the outer membrane of sensitive cells in the form of a high affinity complex with their cognate immunity proteins. Upon cell entry the immunity protein is lost from the complex by means that are poorly understood. We have developed a sensitive fluorescence assay that has enabled us to study the molecular requirements for immunity protein release. Nuclease colicins use members of the tol operon for their translocation across the outer membrane. We have demonstrated that the amino-terminal 80 residues of the colicin E9 molecule, which is the region that interacts with TolB, are essential for immunity protein release. Using tol deletion strains we analyzed the cellular components necessary for immunity protein release and found that in addition to a requirement for tolB, the tolA deletion strain was most affected. Complementation studies showed that the mutation H22A, within the transmembrane segment of TolA, abolishes immunity protein release. Investigation of the energy requirements demonstrated that the proton motive force of the cytoplasmic membrane is critical. Taken together these results demonstrate for the first time a clear energy requirement for the uptake of a nuclease colicin complex and suggest that energy transduced from the cytoplasmic membrane to the outer membrane by TolA could be the driving force for immunity protein release and concomitant translocation of the nuclease domain.
Collapse
Affiliation(s)
- Mireille Vankemmelbeke
- School of Molecular Medical Sciences and Institute of Infection, Immunity, and Inflammation, Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom.
| | | | | | | | | | | |
Collapse
|
20
|
Hecht O, Ridley H, Lakey JH, Moore GR. A Common Interaction for the Entry of Colicin N and Filamentous Phage into Escherichia coli. J Mol Biol 2009; 388:880-93. [DOI: 10.1016/j.jmb.2009.03.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Revised: 03/06/2009] [Accepted: 03/06/2009] [Indexed: 10/21/2022]
|
21
|
Colicins exploit native disorder to gain cell entry: a hitchhiker's guide to translocation. Biochem Soc Trans 2008; 36:1409-13. [DOI: 10.1042/bst0361409] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The translocation of protein toxins into a cell relies on a myriad of protein–protein interactions. One such group of toxins are enzymatic E colicins, protein antibiotics produced by Escherichia coli in times of stress. These proteins subvert ordinary nutrient uptake mechanisms to enter the cell and unleash nuclease activity. We, and others, have previously shown that uptake of ColE9 (colicin E9) is dependent on engagement of the OM (outer membrane) receptors BtuB and OmpF as well as recruitment of the periplasmic protein TolB, forming a large supramolecular complex. Intriguingly, colicins bind TolB using a natively disordered region to mimic the interaction of TolB with Pal (peptidoglycan-associated lipoprotein). This is thought to trigger OM instability and prime the system for translocation. Here, we review key interactions in the assembly of this ‘colicin translocon’ and discuss the key role disorder plays in achieving uptake.
Collapse
|
22
|
Weitzel AC, Larsen RA. Differential complementation of ÎtolA Escherichia coliby aYersinia enterocoliticaTolA homologue. FEMS Microbiol Lett 2008; 282:81-8. [DOI: 10.1111/j.1574-6968.2008.01115.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
23
|
Den Blaauwen T, de Pedro MA, Nguyen-Distèche M, Ayala JA. Morphogenesis of rod-shaped sacculi. FEMS Microbiol Rev 2008; 32:321-44. [DOI: 10.1111/j.1574-6976.2007.00090.x] [Citation(s) in RCA: 235] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
24
|
Parsons LM, Grishaev A, Bax A. The periplasmic domain of TolR from Haemophilus influenzae forms a dimer with a large hydrophobic groove: NMR solution structure and comparison to SAXS data. Biochemistry 2008; 47:3131-42. [PMID: 18269247 DOI: 10.1021/bi702283x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
TolR is a part of the Pal/Tol system which forms a five-member, membrane-spanning, multiprotein complex that is conserved in Gram-negative bacteria. The Pal/Tol system helps to maintain the integrity of the outer membrane and has been proposed to be involved in several other cellular processes including cell division. Obtaining the structure of TolR is of interest not only to help explain the many proposed functions of the Pal/Tol system but also to gain an understanding of the TolR homologues ExbD and MotB and to provide more targets for antibacterial treatments. In addition, the structure may provide insights into how colicins and bacteriophages are able to enter the cell. Here we report the solution structure of the homodimeric periplasmic domain of TolR from Haemophilus influenzae, determined with conventional, NOE-based NMR spectroscopy, supplemented by extensive residual dipolar coupling measurements. A novel method for assembling the dimer from small-angle X-ray scattering data confirms the NMR-derived structure. To facilitate NMR spectral analysis, a TolR construct containing residues 59-130 of the 139-residue protein was created. The periplasmic domain of TolR forms a C 2-symmetric dimer consisting of a strongly curved eight-stranded beta-sheet, generating a large deep groove on one side, while four helices cover the other face of the sheet. The structure of the TolR dimer together with data from the literature suggests how the periplasmic domain of TolR is most likely oriented relative to the cytoplasmic membrane and how it may interact with other components of the Pal/Tol system, particularly TolQ.
Collapse
Affiliation(s)
- Lisa M Parsons
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 5 Memorial Drive, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
25
|
Gerding MA, Ogata Y, Pecora ND, Niki H, de Boer PAJ. The trans-envelope Tol-Pal complex is part of the cell division machinery and required for proper outer-membrane invagination during cell constriction in E. coli. Mol Microbiol 2007; 63:1008-25. [PMID: 17233825 PMCID: PMC4428343 DOI: 10.1111/j.1365-2958.2006.05571.x] [Citation(s) in RCA: 263] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fission of bacterial cells involves the co-ordinated invagination of the envelope layers. Invagination of the cytoplasmic membrane (IM) and peptidoglycan (PG) layer is likely driven by the septal ring organelle. Invagination of the outer membrane (OM) in Gram-negative species is thought to occur passively via its tethering to the underlying PG layer with generally distributed PG-binding OM (lipo)proteins. The Tol-Pal system is energized by proton motive force and is well conserved in Gram-negative bacteria. It consists of five proteins that can connect the OM to both the PG and IM layers via protein-PG and protein-protein interactions. Although the system is needed to maintain full OM integrity, and for class A colicins and filamentous phages to enter cells, its precise role has remained unclear. We show that all five components accumulate at constriction sites in Escherichia coli and that mutants lacking an intact system suffer delayed OM invagination and contain large OM blebs at constriction sites and cell poles. We propose that Tol-Pal constitutes a dynamic subcomplex of the division apparatus in Gram-negative bacteria that consumes energy to establish transient trans-envelope connections at/near the septal ring to draw the OM onto the invaginating PG and IM layers during constriction.
Collapse
Affiliation(s)
- Matthew A. Gerding
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Yasuyuki Ogata
- Radioisotope Center, Genetic Strains Research Center, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Nicole D. Pecora
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Hironori Niki
- Radioisotope Center, Genetic Strains Research Center, National Institute of Genetics, Mishima, Shizuoka, Japan
- Microbial Genetics Laboratory, Genetic Strains Research Center, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Piet A. J. de Boer
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- For correspondence. ; Tel. (+1) 216 368 1697; Fax (+1) 216 368 3055
| |
Collapse
|
26
|
Cascales E, Buchanan SK, Duché D, Kleanthous C, Lloubès R, Postle K, Riley M, Slatin S, Cavard D. Colicin biology. Microbiol Mol Biol Rev 2007; 71:158-229. [PMID: 17347522 PMCID: PMC1847374 DOI: 10.1128/mmbr.00036-06] [Citation(s) in RCA: 798] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Colicins are proteins produced by and toxic for some strains of Escherichia coli. They are produced by strains of E. coli carrying a colicinogenic plasmid that bears the genetic determinants for colicin synthesis, immunity, and release. Insights gained into each fundamental aspect of their biology are presented: their synthesis, which is under SOS regulation; their release into the extracellular medium, which involves the colicin lysis protein; and their uptake mechanisms and modes of action. Colicins are organized into three domains, each one involved in a different step of the process of killing sensitive bacteria. The structures of some colicins are known at the atomic level and are discussed. Colicins exert their lethal action by first binding to specific receptors, which are outer membrane proteins used for the entry of specific nutrients. They are then translocated through the outer membrane and transit through the periplasm by either the Tol or the TonB system. The components of each system are known, and their implication in the functioning of the system is described. Colicins then reach their lethal target and act either by forming a voltage-dependent channel into the inner membrane or by using their endonuclease activity on DNA, rRNA, or tRNA. The mechanisms of inhibition by specific and cognate immunity proteins are presented. Finally, the use of colicins as laboratory or biotechnological tools and their mode of evolution are discussed.
Collapse
Affiliation(s)
- Eric Cascales
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires,Institut de Biologie Structurale et Microbiologie, Centre National de la Recherche Scientifique, UPR 9027, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Karlsson F, Malmborg-Hager AC, Borrebaeck CAK. Escherichia coliTolA tolerates multiple amino-acid substitutions as revealed by screening randomized variants for membrane integrity and phage receptor function. FEMS Microbiol Lett 2006; 259:81-8. [PMID: 16684106 DOI: 10.1111/j.1574-6968.2006.00256.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Escherichia coli TolA is a cytoplasmic membrane protein required for outer membrane integrity and the translocation of F-specific filamentous (Ff) bacteriophage DNA. Both phage infection and membrane integrity depend on several TolA interactions, e.g. those of the TolA C-terminal domain (TolAIII). Membrane integrity involves interaction with two host proteins and phage translocation requires direct interaction with the N-terminal domain (N1) of Ff phage protein g3p. Although cocrystallization of TolAIII and N1g3p has identified several contact points, it is still uncertain which residues are selectively involved in the different TolA functions. Thus, four different limited substitution libraries of TolA were created, targeting contacts at positions 415-420. These libraries were introduced into the tolA strain K17DE3tolA/F(+) and several variants, containing complementing, multiple amino-acid substitutions, were identified. However, most randomized variants did not complement the tolA strain K17DE3tolA/F(+). The TolA variants that restored sensitivity to phage infection displayed a considerable sequence variation, while the few variants that restored tolerance to detergent were from the same library. A comparison of the generated residue variation and natural variation, suggests that structural dependence overrides contact residue dependence. Thus, library screening can be efficient in identifying TolA variants with different functionally associated characteristics.
Collapse
|
28
|
Pommier S, Gavioli M, Cascales E, Lloubès R. Tol-dependent macromolecule import through the Escherichia coli cell envelope requires the presence of an exposed TolA binding motif. J Bacteriol 2005; 187:7526-34. [PMID: 16237036 PMCID: PMC1272985 DOI: 10.1128/jb.187.21.7526-7534.2005] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Tol-Pal proteins of the cell envelope of Escherichia coli are required for maintaining outer membrane integrity. This system forms protein complexes in which TolA plays a central role by providing a bridge between the inner and outer membranes via its interaction with the Pal lipoprotein. The Tol proteins are parasitized by filamentous bacteriophages and group A colicins. The N-terminal domain of the Ff phage g3p protein and the translocation domains of colicins interact directly with TolA during the processes of import through the cell envelope. Recently, a four-amino-acid sequence in Pal has been shown to be involved in Pal's interaction with TolA. A similar motif is also present in the sequence of two TolA partners, g3p and colicin A. Here, a mutational study was conducted to define the function of these motifs in the binding activity and import process of TolA. The various domains were produced and exported to the bacterial periplasm, and their cellular effects were analyzed. Cells producing the g3p domain were tolerant to colicins and filamentous phages and had destabilized outer membranes, while g3p deleted of three residues in the motif was affected in TolA binding and had no effect on cell integrity or colicin or phage import. A conserved Tyr residue in the colicin A translocation domain was involved in TolA binding and colicin A import. Furthermore, in vivo and in vitro coprecipitation analyses demonstrated that colicin A and g3p N-terminal domains compete for binding to TolA.
Collapse
Affiliation(s)
- Stéphanie Pommier
- Institut de Biologie Structurale et de Microbiologie, CNRS, UPR 9027, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | | | | | | |
Collapse
|
29
|
Dubuisson JF, Vianney A, Hugouvieux-Cotte-Pattat N, Lazzaroni JC. Tol-Pal proteins are critical cell envelope components of Erwinia chrysanthemi affecting cell morphology and virulence. MICROBIOLOGY (READING, ENGLAND) 2005; 151:3337-3347. [PMID: 16207916 DOI: 10.1099/mic.0.28237-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The tol-pal genes are necessary for maintaining the outer-membrane integrity of Gram-negative bacteria. These genes were first described in Escherichia coli, and more recently in several other species. They are involved in the pathogenesis of E. coli, Haemophilus ducreyi, Vibrio cholerae and Salmonella enterica. The role of the tol-pal genes in bacterial pathogenesis was investigated in the phytopathogenic enterobacterium Erwinia chrysanthemi, assuming that this organism might be a good model for such a study. The whole Er. chrysanthemi tol-pal region was characterized. Tol-Pal proteins, except TolA, showed high identity scores with their E. coli homologues. Er. chrysanthemi mutants were constructed by introducing a uidA-kan cassette in the ybgC, tolQ, tolA, tolB, pal and ybgF genes. All the mutants were hypersensitive to bile salts. Mutations in tolQ, tolA, tolB and pal were deleterious for the bacteria, which required high concentrations of sugars or osmoprotectants for their viability. Consistent with this observation, they were greatly impaired in their cell morphology and division, which was evidenced by observations of cell filaments, spherical forms, membrane blebbing and mislocalized bacterial septa. Moreover, tol-pal mutants showed a reduced virulence in a potato tuber model and on chicory leaves. This could be explained by a combination of impaired phenotypes in the tol-pal mutants, such as reduced growth and motility and a decreased production of pectate lyases, the major virulence factor of Er. chrysanthemi.
Collapse
Affiliation(s)
- Jean-François Dubuisson
- Unité de Microbiologie et Génétique, UMR 5122 CNRS-INSA-UCBL, Université Claude Bernard Lyon I, bât. André Lwoff, 69622 Villeurbanne Cedex, France
| | - Anne Vianney
- Unité de Microbiologie et Génétique, UMR 5122 CNRS-INSA-UCBL, Université Claude Bernard Lyon I, bât. André Lwoff, 69622 Villeurbanne Cedex, France
| | - Nicole Hugouvieux-Cotte-Pattat
- Unité de Microbiologie et Génétique, UMR 5122 CNRS-INSA-UCBL, Université Claude Bernard Lyon I, bât. André Lwoff, 69622 Villeurbanne Cedex, France
| | - Jean Claude Lazzaroni
- Unité de Microbiologie et Génétique, UMR 5122 CNRS-INSA-UCBL, Université Claude Bernard Lyon I, bât. André Lwoff, 69622 Villeurbanne Cedex, France
| |
Collapse
|
30
|
Edwards MT, Rison SCG, Stoker NG, Wernisch L. A universally applicable method of operon map prediction on minimally annotated genomes using conserved genomic context. Nucleic Acids Res 2005; 33:3253-62. [PMID: 15942028 PMCID: PMC1143694 DOI: 10.1093/nar/gki634] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2004] [Revised: 09/27/2004] [Accepted: 05/16/2005] [Indexed: 11/15/2022] Open
Abstract
An important step in understanding the regulation of a prokaryotic genome is the generation of its transcription unit map. The current strongest operon predictor depends on the distributions of intergenic distances (IGD) separating adjacent genes within and between operons. Unfortunately, experimental data on these distance distributions are limited to Escherichia coli and Bacillus subtilis. We suggest a new graph algorithmic approach based on comparative genomics to identify clusters of conserved genes independent of IGD and conservation of gene order. As a consequence, distance distributions of operon pairs for any arbitrary prokaryotic genome can be inferred. For E.coli, the algorithm predicts 854 conserved adjacent pairs with a precision of 85%. The IGD distribution for these pairs is virtually identical to the E.coli operon pair distribution. Statistical analysis of the predicted pair IGD distribution allows estimation of a genome-specific operon IGD cut-off, obviating the requirement for a training set in IGD-based operon prediction. We apply the method to a representative set of eight genomes, and show that these genome-specific IGD distributions differ considerably from each other and from the distribution in E.coli.
Collapse
Affiliation(s)
- Martin T Edwards
- School of Crystallography, Birkbeck College London WC1E 7HX, UK.
| | | | | | | |
Collapse
|
31
|
Anderluh G, Gökçe I, Lakey JH. A Natively Unfolded Toxin Domain Uses Its Receptor as a Folding Template. J Biol Chem 2004; 279:22002-9. [PMID: 15004032 DOI: 10.1074/jbc.m313603200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Natively unfolded proteins range from molten globules to disordered coils. They are abundant in eukaryotic genomes and commonly involved in molecular interactions. The essential N-terminal translocation domains of colicin toxins from Escherichia coli are disordered bacterial proteins that bind at least one protein of the Tol or Ton family. The colicin N translocation domain (ColN-(1-90)), which binds to the C-terminal domain of TolA (TolA-(296-421)), shows a disordered far-UV CD spectrum, no near-UV CD signal, and non-cooperative thermal unfolding. As expected, TolA-(296-421) displays both secondary structure in far-UV CD and tertiary structure in near-UV CD. Furthermore it shows a cooperative unfolding transition at 65 degrees C. CD spectra of the 1:1 complex show both increased secondary structure and colicin N-specific near-UV CD signals. A new cooperative thermal transition at 35 degrees C is followed by the unchanged unfolding behavior of TolA-(296-421). Fluorescence and surface plasmon resonance confirm that the new unfolding transition accompanies dissociation of ColN-(1-90). Hence upon binding the disordered structure of ColN-(1-90) converts to a cooperatively folded domain without altering the TolA-(296-421) structure.
Collapse
Affiliation(s)
- Gregor Anderluh
- School of Cell and Molecular Biosciences, University of Newcastle upon Tyne, Framlington Place, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | | | | |
Collapse
|
32
|
Cascales E, Lloubès R. Deletion analyses of the peptidoglycan-associated lipoprotein Pal reveals three independent binding sequences including a TolA box. Mol Microbiol 2003; 51:873-85. [PMID: 14731286 DOI: 10.1046/j.1365-2958.2003.03881.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Tol-Pal system of the Escherichia coli cell envelope is composed of five proteins. TolQ, TolR and TolA form a complex in the inner membrane, whereas TolB is a periplasmic protein interacting with Pal, the peptidoglycan-associated lipoprotein anchored to the outer membrane. This system is required for outer membrane integrity and has been shown to form a trans-envelope bridge linking inner and outer membranes. The TolA-Pal interaction plays an important role in the function of this system and has been found to depend on the proton motive force and the TolQ and TolR proteins. The Pal lipoprotein interacts with many components, such as TolA, TolB, OmpA, the major lipoprotein and the murein layer. In this study, six pal deletions were constructed. The analyses of the resulting Pal protein functions and interactions defined an N-terminal region of 40 residues, which can be deleted without any cell-damaging effect, and three independent regions required for its interaction with TolA, OmpA and TolB or the peptidoglycan. The analyses of the integrity of the cells producing the various Pal lipoproteins revealed strong outer membrane destabilization only when binding regions were deleted. Furthermore, a conserved polypeptide sequence located downstream of the peptidoglycan binding motif of Pal was required for the TolA-Pal interaction and for the maintenance of outer membrane stability.
Collapse
Affiliation(s)
- Eric Cascales
- Laboratoire d'Ingéniérie des Systèmes Macromoléculaires, Institut de Biologie Structurale et de Microbiologie, CNRS, UPR 9027, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | | |
Collapse
|
33
|
Zhai YF, Heijne W, Saier MH. Molecular modeling of the bacterial outer membrane receptor energizer, ExbBD/TonB, based on homology with the flagellar motor, MotAB. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1614:201-10. [PMID: 12896813 DOI: 10.1016/s0005-2736(03)00176-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The MotA/MotB proteins serve as the motor that drives bacterial flagellar rotation in response to the proton motive force (pmf). They have been shown to comprise a transmembrane proton pathway. The ExbB/ExbD/TonB protein complex serves to energize transport of iron siderophores and vitamin B12 across the outer membrane of the Gram-negative bacterial cell using the pmf. These two protein complexes have the same topology and are homologous. Based on molecular data for the MotA/MotB proteins, we propose simple three-dimensional channel structures for both MotA/MotB and ExbB/ExbD/TonB using modeling methods. Features of the derived channels are discussed, and two possible proton transfer pathways for the ExbBD/TonB system are proposed. These analyses provide a guide for molecular studies aimed at elucidating the mechanism by which chemiosmotic energy can be transferred either between two adjacent membranes to energize outer membrane transport or to the bacterial flagellum to generate torque.
Collapse
Affiliation(s)
- Yu Feng Zhai
- Division of Biological Sciences 0116, University of California at San Diego, 9500 Gilam Drive, La Jolla, CA 92093-0116, USA
| | | | | |
Collapse
|
34
|
Llamas MA, Rodríguez-Herva JJ, Hancock REW, Bitter W, Tommassen J, Ramos JL. Role of Pseudomonas putida tol-oprL gene products in uptake of solutes through the cytoplasmic membrane. J Bacteriol 2003; 185:4707-16. [PMID: 12896989 PMCID: PMC166457 DOI: 10.1128/jb.185.16.4707-4716.2003] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Proteins of the Tol-Pal (Tol-OprL) system play a key role in the maintenance of outer membrane integrity and cell morphology in gram-negative bacteria. Here we describe an additional role for this system in the transport of various carbon sources across the cytoplasmic membrane. Growth of Pseudomonas putida tol-oprL mutant strains in minimal medium with glycerol, fructose, or arginine was impaired, and the growth rate with succinate, proline, or sucrose as the carbon source was lower than the growth rate of the parental strain. Assays with radiolabeled substrates revealed that the rates of uptake of these compounds by mutant cells were lower than the rates of uptake by the wild-type strain. The pattern and amount of outer membrane protein in the P. putida tol-oprL mutants were not changed, suggesting that the transport defect was not in the outer membrane. Consistently, the uptake of radiolabeled glucose and glycerol in spheroplasts was defective in the P. putida tol-oprL mutant strains, suggesting that there was a defect at the cytoplasmic membrane level. Generation of a proton motive force appeared to be unaffected in these mutants. To rule out the possibility that the uptake defect was due to a lack of specific transporter proteins, the PutP symporter was overproduced, but this overproduction did not enhance proline uptake in the tol-oprL mutants. These results suggest that the Tol-OprL system is necessary for appropriate functioning of certain uptake systems at the level of the cytoplasmic membrane.
Collapse
Affiliation(s)
- María A Llamas
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain
| | | | | | | | | | | |
Collapse
|
35
|
Lazzaroni JC, Dubuisson JF, Vianney A. The Tol proteins of Escherichia coli and their involvement in the translocation of group A colicins. Biochimie 2002; 84:391-7. [PMID: 12423782 DOI: 10.1016/s0300-9084(02)01419-0] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The Tol proteins are involved in outer membrane stability of Gram-negative bacteria. The TolQRA proteins form a complex in the inner membrane while TolB and Pal interact near the outer membrane. These two complexes are transiently connected by an energy-dependent interaction between Pal and TolA. The Tol proteins have been parasitized by group A colicins for their translocation through the cell envelope. Recent advances in the structure and energetics of the Tol system, as well as the interactions between the N-terminal translocation domain of colicins and the Tol proteins are presented.
Collapse
Affiliation(s)
- Jean-Claude Lazzaroni
- Unité de Microbiologie et Génétique, UMR5122 CNRS-INSA, Université Lyon-1, bâtiment André-Lwoff, 10, rue Dubois, 69622 Villeurbanne cedex, France.
| | | | | |
Collapse
|