1
|
Sivaramalingam SS, Jothivel D, Govindarajan DK, Kadirvelu L, Sivaramakrishnan M, Chithiraiselvan DD, Kandaswamy K. Structural and functional insights of sortases and their interactions with antivirulence compounds. Curr Res Struct Biol 2024; 8:100152. [PMID: 38989133 PMCID: PMC11231552 DOI: 10.1016/j.crstbi.2024.100152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 05/18/2024] [Accepted: 06/11/2024] [Indexed: 07/12/2024] Open
Abstract
Sortase proteins play a crucial role as integral membrane proteins in anchoring bacterial surface proteins by recognizing them through a Cell-Wall Sorting (CWS) motif and cleaving them at specific sites before initiating pilus assembly. Both sortases and their substrate proteins are major virulence factors in numerous Gram-positive pathogens, making them attractive targets for antimicrobial intervention. Recognizing the significance of virulence proteins, a comprehensive exploration of their structural and functional characteristics is essential to enhance our understanding of pilus assembly in diverse Gram-positive bacteria. Therefore, this review article discusses the structural features of different classes of sortases and pilin proteins, primarily serving as substrates for sortase-assembled pili. Moreover, it thoroughly examines the molecular-level interactions between sortases and their inhibitors, providing insights from both structural and functional perspectives. In essence, this review article will provide a contemporary and complete understanding of both sortase pathways and various strategies to target them effectively to counteract the virulence.
Collapse
Affiliation(s)
- Sowmiya Sri Sivaramalingam
- Research Center for Excellence in Microscopy, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, 641049, Tamil Nadu, India
| | - Deepsikha Jothivel
- Research Center for Excellence in Microscopy, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, 641049, Tamil Nadu, India
| | - Deenadayalan Karaiyagowder Govindarajan
- Research Center for Excellence in Microscopy, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, 641049, Tamil Nadu, India
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore
| | - Lohita Kadirvelu
- Research Center for Excellence in Microscopy, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, 641049, Tamil Nadu, India
| | - Muthusaravanan Sivaramakrishnan
- Research Center for Excellence in Microscopy, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, 641049, Tamil Nadu, India
- Department of Biotechnology, Mepco Schlenk Engineering College, Tamil Nadu, India
| | - Dhivia Dharshika Chithiraiselvan
- Research Center for Excellence in Microscopy, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, 641049, Tamil Nadu, India
| | - Kumaravel Kandaswamy
- Research Center for Excellence in Microscopy, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, 641049, Tamil Nadu, India
| |
Collapse
|
2
|
Chahal G, Quintana-Hayashi MP, Gaytán MO, Benktander J, Padra M, King SJ, Linden SK. Streptococcus oralis Employs Multiple Mechanisms of Salivary Mucin Binding That Differ Between Strains. Front Cell Infect Microbiol 2022; 12:889711. [PMID: 35782137 PMCID: PMC9247193 DOI: 10.3389/fcimb.2022.889711] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/20/2022] [Indexed: 11/13/2022] Open
Abstract
Streptococcus oralis is an oral commensal and opportunistic pathogen that can enter the bloodstream and cause bacteremia and infective endocarditis. Here, we investigated the mechanisms of S. oralis binding to oral mucins using clinical isolates, isogenic mutants and glycoconjugates. S. oralis bound to both MUC5B and MUC7, with a higher level of binding to MUC7. Mass spectrometry identified 128 glycans on MUC5B, MUC7 and the salivary agglutinin (SAG). MUC7/SAG contained a higher relative abundance of Lewis type structures, including Lewis b/y, sialyl-Lewis a/x and α2,3-linked sialic acid, compared to MUC5B. S. oralis subsp. oralis binding to MUC5B and MUC7/SAG was inhibited by Lewis b and Lacto-N-tetraose glycoconjugates. In addition, S. oralis binding to MUC7/SAG was inhibited by sialyl Lewis x. Binding was not inhibited by Lacto-N-fucopentaose, H type 2 and Lewis x conjugates. These data suggest that three distinct carbohydrate binding specificities are involved in S. oralis subsp. oralis binding to oral mucins and that the mechanisms of binding MUC5B and MUC7 differ. Efficient binding of S. oralis subsp. oralis to MUC5B and MUC7 required the gene encoding sortase A, suggesting that the adhesin(s) are LPXTG-containing surface protein(s). Further investigation demonstrated that one of these adhesins is the sialic acid binding protein AsaA.
Collapse
Affiliation(s)
- Gurdeep Chahal
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | | | - Meztlli O. Gaytán
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children´s Hospital, Columbus, OH, United States
| | - John Benktander
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - Medea Padra
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - Samantha J. King
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children´s Hospital, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, United States
- Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
- *Correspondence: Sara K. Linden, ; Samantha J. King,
| | - Sara K. Linden
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
- *Correspondence: Sara K. Linden, ; Samantha J. King,
| |
Collapse
|
3
|
Cabezas A, Costas MJ, Canales J, Pinto RM, Rodrigues JR, Ribeiro JM, Cameselle JC. Enzyme Characterization of Pro-virulent SntA, a Cell Wall-Anchored Protein of Streptococcus suis, With Phosphodiesterase Activity on cyclic-di-AMP at a Level Suited to Limit the Innate Immune System. Front Microbiol 2022; 13:843068. [PMID: 35391727 PMCID: PMC8981391 DOI: 10.3389/fmicb.2022.843068] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 01/25/2022] [Indexed: 01/10/2023] Open
Abstract
Streptococcus suis and Streptococcus agalactiae evade the innate immune system of the infected host by mechanisms mediated by cell wall-anchored proteins: SntA and CdnP, respectively. The former has been reported to interfere with complement responses, and the latter dampens STING-dependent type-I interferon (IFN) response by hydrolysis of bacterial cyclic-di-AMP (c-di-AMP). Both proteins are homologous but, while CdnP has been studied as a phosphohydrolase, the enzyme activities of SntA have not been investigated. The core structure of SntA was expressed in Escherichia coli as a GST-tagged protein that, after affinity purification, was characterized as phosphohydrolase with a large series of substrates. This included 3′-nucleotides, 2′,3′-cyclic nucleotides, cyclic and linear dinucleotides, and a variety of phosphoanhydride or phosphodiester compounds, most of them previously considered as substrates of E. coli CpdB, a periplasmic protein homologous to SntA and CdnP. Catalytic efficiency was determined for each SntA substrate, either by dividing parameters kcat/KM obtained from saturation curves or directly from initial rates at low substrate concentrations when saturation curves could not be obtained. SntA is concluded to act as phosphohydrolase on two groups of substrates with efficiencies higher or lower than ≈ 105 M–1 s–1 (average value of the enzyme universe). The group with kcat/KM ≥ 105 M–1 s–1 (good substrates) includes 3′-nucleotides, 2′,3′-cyclic nucleotides, and linear and cyclic dinucleotides (notably c-di-AMP). Compounds showing efficiencies <104 M–1 s–1 are considered poor substrates. Compared with CpdB, SntA is more efficient with its good substrates and less efficient with its poor substrates; therefore, the specificity of SntA is more restrictive. The efficiency of the SntA activity on c-di-AMP is comparable with the activity of CdnP that dampens type-I IFN response, suggesting that this virulence mechanism is also functional in S. suis. SntA modeling revealed that Y530 and Y633 form a sandwich with the nitrogen base of nucleotidic ligands in the substrate-binding site. Mutants Y530A-SntA, Y633A-SntA, and Y530A+Y633A-SntA were obtained and kinetically characterized. For orientation toward the catalytic site, one tyrosine is enough, although this may depend on the substrate being attacked. On the other hand, both tyrosines are required for the efficient binding of good SntA substrates.
Collapse
Affiliation(s)
- Alicia Cabezas
- Grupo de Enzimología, Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Medicina y Ciencias de la Salud, Universidad de Extremadura, Badajoz, Spain
| | - María Jesús Costas
- Grupo de Enzimología, Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Medicina y Ciencias de la Salud, Universidad de Extremadura, Badajoz, Spain
| | - José Canales
- Grupo de Enzimología, Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Medicina y Ciencias de la Salud, Universidad de Extremadura, Badajoz, Spain
| | - Rosa María Pinto
- Grupo de Enzimología, Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Medicina y Ciencias de la Salud, Universidad de Extremadura, Badajoz, Spain
| | - Joaquim Rui Rodrigues
- Laboratório Associado Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Escola Superior de Tecnologia e Gestão, Instituto Politécnico de Leiria, Leiria, Portugal
| | - João Meireles Ribeiro
- Grupo de Enzimología, Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Medicina y Ciencias de la Salud, Universidad de Extremadura, Badajoz, Spain
| | - José Carlos Cameselle
- Grupo de Enzimología, Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Medicina y Ciencias de la Salud, Universidad de Extremadura, Badajoz, Spain
| |
Collapse
|
4
|
Bai Q, Ma J, Zhang Z, Zhong X, Pan Z, Zhu Y, Zhang Y, Wu Z, Liu G, Yao H. YSIRK-G/S-directed translocation is required for Streptococcus suis to deliver diverse cell wall anchoring effectors contributing to bacterial pathogenicity. Virulence 2021; 11:1539-1556. [PMID: 33138686 PMCID: PMC7644249 DOI: 10.1080/21505594.2020.1838740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The Streptococcus suis serotype 2 (SS2) is a significant zoonotic pathogen that is responsible for various swine diseases, even causing cytokine storms of Streptococcal toxic shock-like syndromes amongst human. Cell wall anchoring proteins with a C-terminal LPxTG are considered to play vital roles during SS2 infection; however, their exporting mechanism across cytoplasmic membranes has remained vague. This study found that YSIRK-G/S was involved in the exportation of LPxTG-anchoring virulence factors MRP and SspA in virulent SS2 strain ZY05719. The whole-genome analysis indicated that diverse LPxTG proteins fused with an N-terminal YSIRK-G/S motif are encoded in strain ZY05719. Two novel LPxTG proteins SspB and YzpA were verified to be exported via a putative transport system that was dependent on the YSIRK-G/S directed translocation, and portrayed vital functions during the infection of SS2 strain ZY05719. Instead of exhibiting an inactivation of C5a peptidase in SspB, another LPxTG protein with an N-terminal YSIRK-G/S motif from Streptococcus agalactiae was depicted to cleave the C5a component of the host complement. The consequent domain-architecture retrieval determined more than 10,000 SspB/YzpA like proteins that are extensively distributed in the Gram-positive bacteria, and most of them harbor diverse glycosyl hydrolase or peptidase domains within their middle regions, thus presenting their capability to interact with host cells. The said findings provide compelling evidence that LPxTG proteins with an N-terminal YSIRK-G/S motif are polymorphic effectors secreted by Gram-positive bacteria, which can be further proposed to define as cell wall anchoring effectors in a new subset.
Collapse
Affiliation(s)
- Qiankun Bai
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture , Nanjing, China.,Department of pathogenic diagnosis, OIE Reference Lab for Swine Streptococcosis , Nanjing, China
| | - Jiale Ma
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture , Nanjing, China.,Department of pathogenic diagnosis, OIE Reference Lab for Swine Streptococcosis , Nanjing, China
| | - Ze Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture , Nanjing, China.,Department of pathogenic diagnosis, OIE Reference Lab for Swine Streptococcosis , Nanjing, China
| | - Xiaojun Zhong
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture , Nanjing, China.,Department of pathogenic diagnosis, OIE Reference Lab for Swine Streptococcosis , Nanjing, China
| | - Zihao Pan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture , Nanjing, China.,Department of pathogenic diagnosis, OIE Reference Lab for Swine Streptococcosis , Nanjing, China
| | - Yinchu Zhu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture , Nanjing, China.,Department of pathogenic diagnosis, OIE Reference Lab for Swine Streptococcosis , Nanjing, China
| | - Yue Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture , Nanjing, China.,Department of pathogenic diagnosis, OIE Reference Lab for Swine Streptococcosis , Nanjing, China
| | - Zongfu Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture , Nanjing, China.,Department of pathogenic diagnosis, OIE Reference Lab for Swine Streptococcosis , Nanjing, China
| | - Guangjin Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture , Nanjing, China.,Department of pathogenic diagnosis, OIE Reference Lab for Swine Streptococcosis , Nanjing, China
| | - Huochun Yao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture , Nanjing, China.,Department of pathogenic diagnosis, OIE Reference Lab for Swine Streptococcosis , Nanjing, China
| |
Collapse
|
5
|
Susmitha A, Bajaj H, Madhavan Nampoothiri K. The divergent roles of sortase in the biology of Gram-positive bacteria. ACTA ACUST UNITED AC 2021; 7:100055. [PMID: 34195501 PMCID: PMC8225981 DOI: 10.1016/j.tcsw.2021.100055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/11/2021] [Accepted: 06/11/2021] [Indexed: 12/16/2022]
Abstract
The bacterial cell wall contains numerous surface-exposed proteins, which are covalently anchored and assembled by a sortase family of transpeptidase enzymes. The sortase are cysteine transpeptidases that catalyzes the covalent attachment of surface protein to the cell wall peptidoglycan. Among the reported six classes of sortases, each distinct class of sortase plays a unique biological role in anchoring a variety of surface proteins to the peptidoglycan of both pathogenic and non-pathogenic Gram-positive bacteria. Sortases not only exhibit virulence and pathogenesis properties to host cells, but also possess a significant role in gut retention and immunomodulation in probiotic microbes. The two main distinct functions are to attach proteins directly to the cell wall or assemble pili on the microbial surface. This review provides a compendium of the distribution of different classes of sortases present in both pathogenic and non-pathogenic Gram-positive bacteria and also the noteworthy role played by them in bacterial cell wall assembly which enables each microbe to effectively interact with its environment.
Collapse
Affiliation(s)
- Aliyath Susmitha
- Microbial Processes and Technology Division, CSIR - National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695019, Kerala, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Harsha Bajaj
- Microbial Processes and Technology Division, CSIR - National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695019, Kerala, India
| | - Kesavan Madhavan Nampoothiri
- Microbial Processes and Technology Division, CSIR - National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695019, Kerala, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
6
|
Guo G, Kong X, Wang Z, Li M, Tan Z, Zhang W. Evaluation of the immunogenicity and protective ability of a pili subunit, SBP2', of Streptococcus suis serotype 2. Res Vet Sci 2021; 137:201-207. [PMID: 34020335 DOI: 10.1016/j.rvsc.2021.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/30/2021] [Accepted: 05/12/2021] [Indexed: 01/08/2023]
Abstract
Streptococcus suis is an important zoonotic pathogen that leads to huge economic losses in the swine industry. Because of the enormous genetic and phenotypic diversity within S. suis, it is necessary to develop effective vaccines to control this zoonotic pathogen. SBP2' is a major pili subunit in S. suis that belongs to an srtBCD pili cluster and has already been reported to be associated with the pathogenesis of this bacterium. In this study, we aimed to evaluate the immunogenicity and protective ability of SBP2'. The rSBP2' protein was expressed by an Escherichia coli expression system and emulsified with Montanide ISA 201 adjuvant to prepare the subunit vaccine. Through active immune assays, the results showed that rSBP2' exhibited good immunogenicity and could protect mice from a lethal dose challenge. Additionally, the qRT-PCR data showed that the transcription levels of cytokines associated with systemic symptoms caused by S. suis were decreased, indicating that immunization with rSBP2' could protect the host from cytokine storms caused by S. suis. Furthermore, the passive immune assay showed that the humoral immunity induced by rSBP2' played an important role against S. suis infection. Taken together, SBP2' could provide proper immune protection against S. suis challenge and could be a candidate for S. suis subunit vaccine. The results of this study could provide new ideas for the development of effective vaccines against S. suis.
Collapse
Affiliation(s)
- Genglin Guo
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China; OIE Reference Lab for Swine Streptococcosis, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing, China.
| | - Xuewei Kong
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China; OIE Reference Lab for Swine Streptococcosis, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing, China
| | - Zhuohao Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China; OIE Reference Lab for Swine Streptococcosis, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing, China
| | - Min Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China; OIE Reference Lab for Swine Streptococcosis, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing, China
| | - Zhongming Tan
- NHC Key laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China.
| | - Wei Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China; OIE Reference Lab for Swine Streptococcosis, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing, China.
| |
Collapse
|
7
|
Hu P, Lv B, Yang K, Lu Z, Ma J. Discovery of myricetin as an inhibitor against Streptococcus mutans and an anti-adhesion approach to biofilm formation. Int J Med Microbiol 2021; 311:151512. [PMID: 33971542 DOI: 10.1016/j.ijmm.2021.151512] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 04/16/2021] [Accepted: 05/03/2021] [Indexed: 12/13/2022] Open
Abstract
Streptococcus mutans (S. mutans) are cariogenic microorganisms. Sortase A (SrtA) is a transpeptidase that attaches Pac to the cell surface. The biofilm formation of S. mutans is promoted by SrtA regulated Pac. Myricetin (Myr) has a variety of pharmacological properties, including inhibiting SrtA activity of Staphylococcus aureus. The purpose of this research was to investigate the inhibitory effect of Myr on SrtA of S. mutans and its subsequent influence on the biofilm formation. Here, Myr was discovered as a potent inhibitor of S. mutans SrtA, with an IC50 of 48.66 ± 1.48 μM, which was lower than the minimum inhibitory concentration (MIC) of 512 ug/mL. Additionally, immunoblot and biofilm assays demonstrated that Myr at a sub-MIC level could reduce adhesion and biofilm formation of S. mutans. The reduction of biofilm was possibly caused by the decreased amount of Pac on the cells' surface by releasing Pac into the medium via inhibiting SrtA activity. Molecular dynamics simulations and mutagenesis assays suggested that Met123, Ile191, and Arg213 of SrtA were pivotal for the interaction of SrtA and Myr. Our findings indicate that Myr is a promising candidate for the control of dental caries by modulating Pac-involved adhesive mechanisms without developing drug resistance to S.mutans.
Collapse
Affiliation(s)
- Ping Hu
- Center of Stomatology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, No. 1095, Jiefang Road, Wuhan, Hubei, People's Republic of China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Bibo Lv
- Pediatric Department of Stomatology, Affiliated Xiangyang Stomatological Hospital of Hubei University of Arts and Science, No. 6, Jianhua Road, Xiangyang, Hubei, People's Republic of China
| | - Kongxi Yang
- Center of Stomatology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, No. 1095, Jiefang Road, Wuhan, Hubei, People's Republic of China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Zimin Lu
- Department of Medicinal Chemistry, School of Pharmacy, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan, Hubei, 430030, People's Republic of China
| | - Jingzhi Ma
- Center of Stomatology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, No. 1095, Jiefang Road, Wuhan, Hubei, People's Republic of China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
8
|
Cabezas A, López-Villamizar I, Costas MJ, Cameselle JC, Ribeiro JM. Substrate Specificity of Chimeric Enzymes Formed by Interchange of the Catalytic and Specificity Domains of the 5 '-Nucleotidase UshA and the 3 '-Nucleotidase CpdB. Molecules 2021; 26:molecules26082307. [PMID: 33923386 PMCID: PMC8071527 DOI: 10.3390/molecules26082307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/31/2021] [Accepted: 04/13/2021] [Indexed: 11/16/2022] Open
Abstract
The 5′-nucleotidase UshA and the 3′-nucleotidase CpdB from Escherichia coli are broad-specificity phosphohydrolases with similar two-domain structures. Their N-terminal domains (UshA_Ndom and CpdB_Ndom) contain the catalytic site, and their C-terminal domains (UshA_Cdom and CpdB_Cdom) contain a substrate-binding site responsible for specificity. Both enzymes show only partial overlap in their substrate specificities. So, it was decided to investigate the catalytic behavior of chimeras bearing the UshA catalytic domain and the CpdB specificity domain, or vice versa. UshA_Ndom–CpdB_Cdom and CpdB_Ndom–UshA_Cdom were constructed and tested on substrates specific to UshA (5′-AMP, CDP-choline, UDP-glucose) or to CpdB (3′-AMP), as well as on 2′,3′-cAMP and on the common phosphodiester substrate bis-4-NPP (bis-4-nitrophenylphosphate). The chimeras did show neither 5′-nucleotidase nor 3′-nucleotidase activity. When compared to UshA, UshA_Ndom–CpdB_Cdom conserved high activity on bis-4-NPP, some on CDP-choline and UDP-glucose, and displayed activity on 2′,3′-cAMP. When compared to CpdB, CpdB_Ndom–UshA_Cdom conserved phosphodiesterase activities on 2′,3′-cAMP and bis-4-NPP, and gained activity on the phosphoanhydride CDP-choline. Therefore, the non-nucleotidase activities of UshA and CpdB are not fully dependent on the interplay between domains. The specificity domains may confer the chimeras some of the phosphodiester or phosphoanhydride selectivity displayed when associated with their native partners. Contrarily, the nucleotidase activity of UshA and CpdB depends strictly on the interplay between their native catalytic and specificity domains.
Collapse
Affiliation(s)
- Alicia Cabezas
- Grupo de Enzimología, Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Medicina y Ciencias de la Salud, Universidad de Extremadura, 06006 Badajoz, Spain; (A.C.); (I.L.-V.); (M.J.C.); (J.C.C.)
| | - Iralis López-Villamizar
- Grupo de Enzimología, Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Medicina y Ciencias de la Salud, Universidad de Extremadura, 06006 Badajoz, Spain; (A.C.); (I.L.-V.); (M.J.C.); (J.C.C.)
- Manlab, Diagnóstico Bioquímico y Genómico, Calle Marcelo Torcuato de Alvear 2263, 1122 Ciudad de Buenos Aires, Argentina
| | - María Jesús Costas
- Grupo de Enzimología, Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Medicina y Ciencias de la Salud, Universidad de Extremadura, 06006 Badajoz, Spain; (A.C.); (I.L.-V.); (M.J.C.); (J.C.C.)
| | - José Carlos Cameselle
- Grupo de Enzimología, Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Medicina y Ciencias de la Salud, Universidad de Extremadura, 06006 Badajoz, Spain; (A.C.); (I.L.-V.); (M.J.C.); (J.C.C.)
| | - João Meireles Ribeiro
- Grupo de Enzimología, Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Medicina y Ciencias de la Salud, Universidad de Extremadura, 06006 Badajoz, Spain; (A.C.); (I.L.-V.); (M.J.C.); (J.C.C.)
- Correspondence:
| |
Collapse
|
9
|
López-Villamizar I, Cabezas A, Pinto RM, Canales J, Ribeiro JM, Rodrigues JR, Costas MJ, Cameselle JC. Molecular Dissection of Escherichia coli CpdB: Roles of the N Domain in Catalysis and Phosphate Inhibition, and of the C Domain in Substrate Specificity and Adenosine Inhibition. Int J Mol Sci 2021; 22:ijms22041977. [PMID: 33671286 PMCID: PMC7922932 DOI: 10.3390/ijms22041977] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/09/2021] [Accepted: 02/15/2021] [Indexed: 12/17/2022] Open
Abstract
CpdB is a 3′-nucleotidase/2′3′-cyclic nucleotide phosphodiesterase, active also with reasonable efficiency on cyclic dinucleotides like c-di-AMP (3′,5′-cyclic diadenosine monophosphate) and c-di-GMP (3′,5′-cyclic diadenosine monophosphate). These are regulators of bacterial physiology, but are also pathogen-associated molecular patterns recognized by STING to induce IFN-β response in infected hosts. The cpdB gene of Gram-negative and its homologs of gram-positive bacteria are virulence factors. Their protein products are extracytoplasmic enzymes (either periplasmic or cell–wall anchored) and can hydrolyze extracellular cyclic dinucleotides, thus reducing the innate immune responses of infected hosts. This makes CpdB(-like) enzymes potential targets for novel therapeutic strategies in infectious diseases, bringing about the necessity to gain insight into the molecular bases of their catalytic behavior. We have dissected the two-domain structure of Escherichia coli CpdB to study the role of its N-terminal and C-terminal domains (CpdB_Ndom and CpdB_Cdom). The specificity, kinetics and inhibitor sensitivity of point mutants of CpdB, and truncated proteins CpdB_Ndom and CpdB_Cdom were investigated. CpdB_Ndom contains the catalytic site, is inhibited by phosphate but not by adenosine, while CpdB_Cdom is inactive but contains a substrate-binding site that determines substrate specificity and adenosine inhibition of CpdB. Among CpdB substrates, 3′-AMP, cyclic dinucleotides and linear dinucleotides are strongly dependent on the CpdB_Cdom binding site for activity, as the isolated CpdB_Ndom showed much-diminished activity on them. In contrast, 2′,3′-cyclic mononucleotides and bis-4-nitrophenylphosphate were actively hydrolyzed by CpdB_Ndom, indicating that they are rather independent of the CpdB_Cdom binding site.
Collapse
Affiliation(s)
- Iralis López-Villamizar
- Grupo de Enzimología, Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Medicina, Universidad de Extremadura, 06006 Badajoz, Spain; (I.L.-V.); (A.C.); (R.M.P.); (J.C.); (J.M.R.); (M.J.C.)
| | - Alicia Cabezas
- Grupo de Enzimología, Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Medicina, Universidad de Extremadura, 06006 Badajoz, Spain; (I.L.-V.); (A.C.); (R.M.P.); (J.C.); (J.M.R.); (M.J.C.)
| | - Rosa María Pinto
- Grupo de Enzimología, Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Medicina, Universidad de Extremadura, 06006 Badajoz, Spain; (I.L.-V.); (A.C.); (R.M.P.); (J.C.); (J.M.R.); (M.J.C.)
| | - José Canales
- Grupo de Enzimología, Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Medicina, Universidad de Extremadura, 06006 Badajoz, Spain; (I.L.-V.); (A.C.); (R.M.P.); (J.C.); (J.M.R.); (M.J.C.)
| | - João Meireles Ribeiro
- Grupo de Enzimología, Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Medicina, Universidad de Extremadura, 06006 Badajoz, Spain; (I.L.-V.); (A.C.); (R.M.P.); (J.C.); (J.M.R.); (M.J.C.)
| | - Joaquim Rui Rodrigues
- Laboratório Associado LSRE-LCM, Escola Superior de Tecnologia e Gestão, Instituto Politécnico de Leiria, 2411-901 Leiria, Portugal;
| | - María Jesús Costas
- Grupo de Enzimología, Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Medicina, Universidad de Extremadura, 06006 Badajoz, Spain; (I.L.-V.); (A.C.); (R.M.P.); (J.C.); (J.M.R.); (M.J.C.)
| | - José Carlos Cameselle
- Grupo de Enzimología, Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Medicina, Universidad de Extremadura, 06006 Badajoz, Spain; (I.L.-V.); (A.C.); (R.M.P.); (J.C.); (J.M.R.); (M.J.C.)
- Correspondence: ; Tel.: +34-924-289-470
| |
Collapse
|
10
|
Zondervan NA, Martins Dos Santos VAP, Suarez-Diez M, Saccenti E. Phenotype and multi-omics comparison of Staphylococcus and Streptococcus uncovers pathogenic traits and predicts zoonotic potential. BMC Genomics 2021; 22:102. [PMID: 33541265 PMCID: PMC7860044 DOI: 10.1186/s12864-021-07388-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 01/13/2021] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Staphylococcus and Streptococcus species can cause many different diseases, ranging from mild skin infections to life-threatening necrotizing fasciitis. Both genera consist of commensal species that colonize the skin and nose of humans and animals, and of which some can display a pathogenic phenotype. RESULTS We compared 235 Staphylococcus and 315 Streptococcus genomes based on their protein domain content. We show the relationships between protein persistence and essentiality by integrating essentiality predictions from two metabolic models and essentiality measurements from six large-scale transposon mutagenesis experiments. We identified clusters of strains within species based on proteins associated to similar biological processes. We built Random Forest classifiers that predicted the zoonotic potential. Furthermore, we identified shared attributes between of Staphylococcus aureus and Streptococcus pyogenes that allow them to cause necrotizing fasciitis. CONCLUSIONS Differences observed in clustering of strains based on functional groups of proteins correlate with phenotypes such as host tropism, capability to infect multiple hosts and drug resistance. Our method provides a solid basis towards large-scale prediction of phenotypes based on genomic information.
Collapse
Affiliation(s)
- Niels A Zondervan
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708WE, Wageningen, Netherlands
| | - Vitor A P Martins Dos Santos
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708WE, Wageningen, Netherlands
- LifeGlimmer GmBH, Markelstraße 38, 12163, Berlin, Germany
| | - Maria Suarez-Diez
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708WE, Wageningen, Netherlands
| | - Edoardo Saccenti
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708WE, Wageningen, Netherlands.
| |
Collapse
|
11
|
Use of molecular homology model to identify inhibitors of Staphylococcus pseudintermedius sortase A. RESULTS IN CHEMISTRY 2021. [DOI: 10.1016/j.rechem.2021.100185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
12
|
Fischetti VA. Surface Proteins on Gram-Positive Bacteria. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0012-2018. [PMID: 31373270 PMCID: PMC6684298 DOI: 10.1128/microbiolspec.gpp3-0012-2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Indexed: 12/14/2022] Open
Abstract
Surface proteins are critical for the survival of gram-positive bacteria both in the environment and to establish an infection. Depending on the organism, their surface proteins are evolutionarily tailored to interact with specific ligands on their target surface, be it inanimate or animate. Most surface molecules on these organisms are covalently anchored to the peptidoglycan through an LPxTG motif found at the C-terminus. These surface molecules are generally modular with multiple binding or enzymatic domains designed for a specific survival function. For example, some molecules will bind serum proteins like fibronectin or fibrinogen in one domain and have a separate function in another domain. In addition, enzymes such as those responsible for the production of ATP may be generally found on some bacterial surfaces, but when or how they are used in the life of these bacteria is currently unknown. While surface proteins are required for pathogenicity but not viability, targeting the expression of these molecules on the bacterial surface would prevent infection but not death of the organism. Given that the number of different surface proteins could be in the range of two to three dozen, each with two or three separate functional domains (with hundreds to thousands of each protein on a given organism), exemplifies the complexity that exists on the bacterial surface. Because of their number, we could not adequately describe the characteristics of all surface proteins in this chapter. However, since the streptococcal M protein was one of the first gram-positive surface protein to be completely sequenced, and perhaps one of the best studied, we will use M protein as a model for surface proteins in general, pointing out differences with other surface molecules when necessary.
Collapse
Affiliation(s)
- Vincent A Fischetti
- Laboratory of Bacterial Pathogenesis and Immunology, Rockefeller University, New York, NY 10065
| |
Collapse
|
13
|
Xia X, Qin W, Zhu H, Wang X, Jiang J, Hu J. How Streptococcus suis serotype 2 attempts to avoid attack by host immune defenses. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2019; 52:516-525. [PMID: 30954397 DOI: 10.1016/j.jmii.2019.03.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 02/20/2019] [Accepted: 03/07/2019] [Indexed: 01/08/2023]
Abstract
Streptococcus suis (S. suis) type 2 (SS2) is an important zoonotic pathogen that causes swine streptococcosis, a widespread infectious disease that occurs in pig production areas worldwide and causes serious economic losses in the pork industry. Hosts recognize pathogen-associated molecular patterns (PAMPs) through pattern recognition receptors (PRRs) to activate both innate and acquired immune responses. However, S. suis has evolved multiple mechanisms to escape host defenses. Pathogenic proteins, such as enolase, double-component regulatory systems, factor H-combining proteins and other pathogenic and virulence factors, contribute to immune escape by evading host phagocytosis, reactive oxygen species (ROS), complement-mediated immune destruction, etc. SS2 can prevent neutrophil extracellular trap (NET) formation to avoid being trapped by porcine neutrophils and disintegrate host immunoglobulins via IgA1 hydrolases and IgM proteases. Currently, the pathogenesis of arthritis and meningitis caused by SS2 infection remains unclear, and further studies are necessary to elucidate it. Understanding immune evasion mechanisms after SS2 infection is important for developing high-efficiency vaccines and targeted drugs.
Collapse
Affiliation(s)
- Xiaojing Xia
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China; Postdoctoral Research Base, Henan Institute of Science and Technology, Xinxiang, China; Postdoctoral Research Station, Henan Agriculture University, Zhengzhou, China
| | - Wanhai Qin
- Amsterdam UMC, University of Amsterdam, Center for Experimental and Molecular Medicine, Amsterdam Infection & Immunity, Meibergdreef 9, 1105AZ Amsterdam, Netherlands
| | - Huili Zhu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Xin Wang
- College of Agriculture and Forestry Science, Linyi University, Linyi, China
| | - Jinqing Jiang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China.
| | - Jianhe Hu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China; Postdoctoral Research Base, Henan Institute of Science and Technology, Xinxiang, China.
| |
Collapse
|
14
|
Faulds-Pain A, Shaw HA, Terra VS, Kellner S, Brockmeier SL, Wren BW. The Streptococcos suis sortases SrtB and SrtF are essential for disease in pigs. MICROBIOLOGY-SGM 2018; 165:163-173. [PMID: 30543506 DOI: 10.1099/mic.0.000752] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The porcine pathogen Streptococcus suis colonizes the upper respiratory tracts of pigs, potentially causing septicaemia, meningitis and death, thus placing a severe burden on the agricultural industry worldwide. It is also a zoonotic pathogen that is known to cause systemic infections and meningitis in humans. Understanding how S. suis colonizes and interacts with its hosts is relevant for future strategies of drug and vaccine development. As with other Gram-positive bacteria, S. suis utilizes enzymes known as sortases to attach specific proteins bearing cell wall sorting signals to its surface, where they can play a role in host-pathogen interactions. The surface proteins of bacteria are often important in adhesion to and invasion of host cells. In this study, markerless in-frame deletion mutants of the housekeeping sortase srtA and the two pilus-associated sortases, srtB and srtF, were generated and their importance in S. suis infections was investigated. We found that all three of these sortases are essential to disease in pigs, concluding that their cognate-sorted proteins may also be useful in protecting pigs against infection.
Collapse
Affiliation(s)
- Alexandra Faulds-Pain
- 1Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Helen Alexandra Shaw
- 1Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK.,‡Present address: National Institute for Biological Standards and Control (NIBSC), South Mimms, Potters Bar, EN6 3QG, UK
| | - Vanessa Sofia Terra
- 1Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Steven Kellner
- 2USDA, ARS, National Animal Disease Center, 1920 Dayton Avenue, Ames, Iowa 50010, USA
| | - Susan L Brockmeier
- 2USDA, ARS, National Animal Disease Center, 1920 Dayton Avenue, Ames, Iowa 50010, USA
| | - Brendan W Wren
- 1Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| |
Collapse
|
15
|
Wan Y, Zhang S, Li L, Chen H, Zhou R. Characterization of a novel streptococcal heme-binding protein SntA and its interaction with host antioxidant protein AOP2. Microb Pathog 2017; 111:145-155. [DOI: 10.1016/j.micpath.2017.08.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/03/2017] [Accepted: 08/16/2017] [Indexed: 01/14/2023]
|
16
|
Binding of Human Fibrinogen to MRP Enhances Streptococcus suis Survival in Host Blood in a αXβ2 Integrin-dependent Manner. Sci Rep 2016; 6:26966. [PMID: 27231021 PMCID: PMC4882601 DOI: 10.1038/srep26966] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 05/11/2016] [Indexed: 12/11/2022] Open
Abstract
The Gram-positive bacterium Streptococcus suis serotype 2 (S. suis 2), an important zoonotic pathogen, induces strong systemic infections in humans; sepsis and meningitis are the most common clinical manifestations and are often accompanied by bacteremia. However, the mechanisms of S. suis 2 survival in human blood are not well understood. In our previous study, we identified muramidase-released protein (MRP), a novel human fibrinogen (hFg)-binding protein (FBP) in S. suis 2 that is an important epidemic infection marker with an unknown mechanism in pathogenesis. The present study demonstrates that the N-terminus of MRP (a.a. 283–721) binds to both the Aα and Bβ chains of the D fragment of hFg. Strikingly, the hFg-MRP interaction improved the survival of S. suis 2 in human blood and led to the aggregation and exhaustion of polymorphonuclear neutrophils (PMNs) via an αXβ2 integrin-dependent mechanism. Other Fg-binding proteins, such as M1 (GAS) and FOG (GGS), also induced PMNs aggregation; however, the mechanisms of these FBP-hFg complexes in the evasion of PMN-mediated innate immunity remain unclear. MRP is conserved across highly virulent strains in Europe and Asia, and these data shed new light on the function of MRP in S. suis pathogenesis.
Collapse
|
17
|
Si L, Li P, Liu X, Luo L. Chinese herb medicine against Sortase A catalyzed transformations, a key role in gram-positive bacterial infection progress. J Enzyme Inhib Med Chem 2016; 31:184-196. [PMID: 27162091 DOI: 10.1080/14756366.2016.1178639] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Many Gram-positive bacteria can anchor their surface proteins to the cell wall peptidoglycan covalently by a common mechanism with Sortase A (SrtA), thus escaping from the host's identification of immune cells. SrtA can complete this anchoring process by cleaving LPXTG motif conserved among these surface proteins and thus these proteins anchor on the cell wall. Moreover, those SrtA mutants lose this capability to anchor these relative proteins, with these bacteria no longer infectious. Therefore, SrtA inhibitors can be promising anti-infective agents to cure bacterial infections. Chinese herb medicines (CHMs) (chosen from Science Citation Index) have exhibited inhibition on SrtA of Gram-positive pathogens irreversibly or reversibly. In general, CHMs are likely to have important long-term impact as new antibacterial compounds and sought after by academia and the pharmaceutical industry. This review mainly focuses on SrtA inhibitors from CHMs and the potential inhibiting mechanism related to chemical structures of compounds in CHMs.
Collapse
Affiliation(s)
- Lifang Si
- a School of Bioscience & Bioengineering, South China University of Technology, Guangzhou University Town , Panyu , Guangzhou , China
| | - Pan Li
- a School of Bioscience & Bioengineering, South China University of Technology, Guangzhou University Town , Panyu , Guangzhou , China
| | - Xiong Liu
- a School of Bioscience & Bioengineering, South China University of Technology, Guangzhou University Town , Panyu , Guangzhou , China
| | - Lixin Luo
- a School of Bioscience & Bioengineering, South China University of Technology, Guangzhou University Town , Panyu , Guangzhou , China
| |
Collapse
|
18
|
Fléchard M, Gilot P. Physiological impact of transposable elements encoding DDE transposases in the environmental adaptation of Streptococcus agalactiae. Microbiology (Reading) 2014; 160:1298-1315. [DOI: 10.1099/mic.0.077628-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
We have referenced and described Streptococcus agalactiae transposable elements encoding DDE transposases. These elements belonged to nine families of insertion sequences (ISs) and to a family of conjugative transposons (TnGBSs). An overview of the physiological impact of the insertion of all these elements is provided. DDE-transposable elements affect S. agalactiae in a number of aspects of its capability to adapt to various environments and modulate the expression of several virulence genes, the scpB–lmB genomic region and the genes involved in capsule expression and haemolysin transport being the targets of several different mobile elements. The referenced mobile elements modify S. agalactiae behaviour by transferring new gene(s) to its genome, by modifying the expression of neighbouring genes at the integration site or by promoting genomic rearrangements. Transposition of some of these elements occurs in vivo, suggesting that by dynamically regulating some adaptation and/or virulence genes, they improve the ability of S. agalactiae to reach different niches within its host and ensure the ‘success’ of the infectious process.
Collapse
Affiliation(s)
- Maud Fléchard
- Biochimie et Génétique Moléculaire Bactérienne, Institut des Sciences de la Vie, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Philippe Gilot
- INRA, UMR1282 Infectiologie et Santé Publique, F-37380 Nouzilly, France
- Université de Tours, UMR1282 Infectiologie et Santé Publique, Bactéries et Risque Materno-Foetal, F-37032 Tours, France
| |
Collapse
|
19
|
Kouki A, Pieters RJ, Nilsson UJ, Loimaranta V, Finne J, Haataja S. Bacterial Adhesion of Streptococcus suis to Host Cells and Its Inhibition by Carbohydrate Ligands. BIOLOGY 2013; 2:918-35. [PMID: 24833053 PMCID: PMC3960878 DOI: 10.3390/biology2030918] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 05/22/2013] [Accepted: 05/22/2013] [Indexed: 11/16/2022]
Abstract
Streptococcus suis is a Gram-positive bacterium, which causes sepsis and meningitis in pigs and humans. This review examines the role of known S. suis virulence factors in adhesion and S. suis carbohydrate-based adhesion mechanisms, as well as the inhibition of S. suis adhesion by anti-adhesion compounds in in vitro assays. Carbohydrate-binding specificities of S. suis have been identified, and these studies have shown that many strains recognize Galα1-4Gal-containing oligosaccharides present in host glycolipids. In the era of increasing antibiotic resistance, new means to treat infections are needed. Since microbial adhesion to carbohydrates is important to establish disease, compounds blocking adhesion could be an alternative to antibiotics. The use of oligosaccharides as drugs is generally hampered by their relatively low affinity (micromolar) to compete with multivalent binding to host receptors. However, screening of a library of chemically modified Galα1-4Gal derivatives has identified compounds that inhibit S. suis adhesion in nanomolar range. Also, design of multivalent Galα1-4Gal-containing dendrimers has resulted in a significant increase of the inhibitory potency of the disaccharide. The S. suis adhesin binding to Galα1-4Gal-oligosaccharides, Streptococcal adhesin P (SadP), was recently identified. It has a Galα1-4Gal-binding N-terminal domain and a C-terminal LPNTG-motif for cell wall anchoring. The carbohydrate-binding domain has no homology to E. coli P fimbrial adhesin, which suggests that these Gram-positive and Gram-negative bacterial adhesins recognizing the same receptor have evolved by convergent evolution. SadP adhesin may represent a promising target for the design of anti-adhesion ligands for the prevention and treatment of S. suis infections.
Collapse
Affiliation(s)
- Annika Kouki
- Department of Medical Biochemistry and Genetics, University of Turku, Kiinamyllynkatu 10, Turku FI-20520, Finland.
| | - Roland J Pieters
- Department of Medicinal Chemistry and Chemical Biology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, P.O. Box 80082, Utrecht 3508 TB, The Netherlands.
| | - Ulf J Nilsson
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, POB 124, Lund SE-22100, Sweden.
| | - Vuokko Loimaranta
- Department of Medical Biochemistry and Genetics, University of Turku, Kiinamyllynkatu 10, Turku FI-20520, Finland.
| | - Jukka Finne
- Department of Biosciences, Division of Biochemistry and Biotechnology, University of Helsinki, P.O.B. 56, Helsinki FI-00014, Finland.
| | - Sauli Haataja
- Department of Medical Biochemistry and Genetics, University of Turku, Kiinamyllynkatu 10, Turku FI-20520, Finland.
| |
Collapse
|
20
|
Hsueh KJ, Lee JW, Hou SM, Chen HS, Chang TC, Chu CY. Evaluation on a Streptococcus suis vaccine using recombinant sao-l protein manufactured by bioreactors as the antigen in pigs. Transbound Emerg Dis 2013; 61:e35-43. [PMID: 23489297 DOI: 10.1111/tbed.12067] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Indexed: 01/03/2023]
Abstract
Streptococcus suis (S. suis) can be classified into 33 serotypes based on the structure of capsular polysaccharides. Recent research indicated that a new surface protein designated as Sao (surface antigen one) reacts with 30 serotypes of convalescent-phase sera during S. suis infections, which makes Sao a good potential antigen for developing S. suis vaccines. The objectives of this study were to produce recombinant Sao-L protein (rSao-L) from a strain of S. suis serotype 2 by a prokaryotic expression system in bioreactors and to use rSao-L as the antigen for a S. suis vaccine in mouse and swine models. The antibody titres in mice and pigs immunized with rSao-L were significantly (P < 0.05) increased. After challenge with live S. suis serotype 1 bacteria, the anatomical lesions in pigs immunized with rSao-L were reduced by 60%. These data indicated that immunization with rSao-L can confer cross-serotype protection against S. suis. Moreover, percentages of CD8(+) and CD4(+) /CD8(+) double-positive T cells in immunized pigs were significantly higher than those of the control group (P < 0.01). Using bioreactors to produce rSao-L as the antigen for S. suis vaccines may broaden protective efficacy and reduce production costs.
Collapse
Affiliation(s)
- K-J Hsueh
- Graduate Institute of Animal Vaccine Technology, National Pingtung University of Science and Technology, Pintung, Taiwan; Department of Veterinary Medicine, National Pingtung University of Science and Technology, Pintung, Taiwan
| | | | | | | | | | | |
Collapse
|
21
|
Tang Y, Wu W, Zhang X, Lu Z, Chen J, Fang W. Catabolite control protein A of Streptococcus suis type 2 contributes to sugar metabolism and virulence. J Microbiol 2012; 50:994-1002. [PMID: 23274986 DOI: 10.1007/s12275-012-2035-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 08/21/2012] [Indexed: 10/27/2022]
Abstract
Catabolite control protein A (CcpA) is the major transcriptional regulator in carbon catabolite repression in several Gram-positive bacteria. We attempted to characterize the role of a CcpA homologue of Streptococcus suis type 2 in sugar metabolism and virulence. Addition of glucose or sucrose to the defined medium significantly reduced the activity of raffinose-inducible α-galactosidase, cellobiose-inducible β-glucosidase, and maltose-inducible α-glucosidase of the wild-type strain by about 9, 4, and 2-3 fold, respectively. Deletion of ccpA substantially derepressed the effects of repressing sugars on α-galactosidase or β-glucosidase activity. The ccpA deletion mutant showed reduced expression of virulence genes sly and eno (P<0.05), decreased adhesion to and invasion into endothelial cells (P<0.05), and attenuated virulence to mice with significant reduction of death rate and bacterial burden in organs, as compared to the wild-type strain. Both the in vitro and in vivo defect phenotypes were reversible by ccpA complementation. Thus, this study shows that CcpA of S. suis type 2 plays an important role in carbon catabolite repression and virulence.
Collapse
Affiliation(s)
- Yulong Tang
- Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou 310058, PR China
| | | | | | | | | | | |
Collapse
|
22
|
Oxaran V, Ledue-Clier F, Dieye Y, Herry JM, Péchoux C, Meylheuc T, Briandet R, Juillard V, Piard JC. Pilus biogenesis in Lactococcus lactis: molecular characterization and role in aggregation and biofilm formation. PLoS One 2012; 7:e50989. [PMID: 23236417 PMCID: PMC3516528 DOI: 10.1371/journal.pone.0050989] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2012] [Accepted: 10/29/2012] [Indexed: 02/07/2023] Open
Abstract
The genome of Lactococcus lactis strain IL1403 harbors a putative pilus biogenesis cluster consisting of a sortase C gene flanked by 3 LPxTG protein encoding genes (yhgD, yhgE, and yhhB), called here pil. However, pili were not detected under standard growth conditions. Over-expression of the pil operon resulted in production and display of pili on the surface of lactococci. Functional analysis of the pilus biogenesis machinery indicated that the pilus shaft is formed by oligomers of the YhgE pilin, that the pilus cap is formed by the YhgD pilin and that YhhB is the basal pilin allowing the tethering of the pilus fibers to the cell wall. Oligomerization of pilin subunits was catalyzed by sortase C while anchoring of pili to the cell wall was mediated by sortase A. Piliated L. lactis cells exhibited an auto-aggregation phenotype in liquid cultures, which was attributed to the polymerization of major pilin, YhgE. The piliated lactococci formed thicker, more aerial biofilms compared to those produced by non-piliated bacteria. This phenotype was attributed to oligomers of YhgE. This study provides the first dissection of the pilus biogenesis machinery in a non-pathogenic Gram-positive bacterium. Analysis of natural lactococci isolates from clinical and vegetal environments showed pili production under standard growth conditions. The identification of functional pili in lactococci suggests that the changes they promote in aggregation and biofilm formation may be important for the natural lifestyle as well as for applications in which these bacteria are used.
Collapse
Affiliation(s)
- Virginie Oxaran
- INRA, UMR1319 Micalis, Domaine de Vilvert, Jouy-en-Josas, France
- Agro ParisTech, UMR 1319 Micalis, Jouy-en-Josas, France
| | - Florence Ledue-Clier
- INRA, UMR1319 Micalis, Domaine de Vilvert, Jouy-en-Josas, France
- Agro ParisTech, UMR 1319 Micalis, Jouy-en-Josas, France
| | - Yakhya Dieye
- INRA, UMR1319 Micalis, Domaine de Vilvert, Jouy-en-Josas, France
- Agro ParisTech, UMR 1319 Micalis, Jouy-en-Josas, France
| | - Jean-Marie Herry
- INRA, UMR1319 Micalis, Domaine de Vilvert, Jouy-en-Josas, France
- Agro ParisTech, UMR 1319 Micalis, Jouy-en-Josas, France
| | | | - Thierry Meylheuc
- INRA, UMR1319 Micalis, Domaine de Vilvert, Jouy-en-Josas, France
- Agro ParisTech, UMR 1319 Micalis, Jouy-en-Josas, France
| | - Romain Briandet
- INRA, UMR1319 Micalis, Domaine de Vilvert, Jouy-en-Josas, France
- Agro ParisTech, UMR 1319 Micalis, Jouy-en-Josas, France
| | - Vincent Juillard
- INRA, UMR1319 Micalis, Domaine de Vilvert, Jouy-en-Josas, France
- Agro ParisTech, UMR 1319 Micalis, Jouy-en-Josas, France
| | - Jean-Christophe Piard
- INRA, UMR1319 Micalis, Domaine de Vilvert, Jouy-en-Josas, France
- Agro ParisTech, UMR 1319 Micalis, Jouy-en-Josas, France
- * E-mail:
| |
Collapse
|
23
|
Cole JN, Henningham A, Gillen CM, Ramachandran V, Walker MJ. Human pathogenic streptococcal proteomics and vaccine development. Proteomics Clin Appl 2012; 2:387-410. [PMID: 21136841 DOI: 10.1002/prca.200780048] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Gram-positive streptococci are non-motile, chain-forming bacteria commonly found in the normal oral and bowel flora of warm-blooded animals. Over the past decade, a proteomic approach combining 2-DE and MS has been used to systematically map the cellular, surface-associated and secreted proteins of human pathogenic streptococcal species. The public availability of complete streptococcal genomic sequences and the amalgamation of proteomic, genomic and bioinformatic technologies have recently facilitated the identification of novel streptococcal vaccine candidate antigens and therapeutic agents. The objective of this review is to examine the constituents of the streptococcal cell wall and secreted proteome, the mechanisms of transport of surface and secreted proteins, and describe the current methodologies employed for the identification of novel surface-displayed proteins and potential vaccine antigens.
Collapse
Affiliation(s)
- Jason N Cole
- School of Biological Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| | | | | | | | | |
Collapse
|
24
|
Inactivation of the sodA gene of Streptococcus suis type 2 encoding superoxide dismutase leads to reduced virulence to mice. Vet Microbiol 2012; 158:360-6. [DOI: 10.1016/j.vetmic.2012.02.028] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2012] [Revised: 02/19/2012] [Accepted: 02/20/2012] [Indexed: 12/23/2022]
|
25
|
Fittipaldi N, Segura M, Grenier D, Gottschalk M. Virulence factors involved in the pathogenesis of the infection caused by the swine pathogen and zoonotic agent Streptococcus suis. Future Microbiol 2012; 7:259-79. [PMID: 22324994 DOI: 10.2217/fmb.11.149] [Citation(s) in RCA: 312] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Streptococcus suis is a major swine pathogen responsible for important economic losses to the swine industry worldwide. It is also an emerging zoonotic agent of meningitis and streptococcal toxic shock-like syndrome. Since the recent recognition of the high prevalence of S. suis human disease in southeast and east Asia, the interest of the scientific community in this pathogen has significantly increased. In the last few years, as a direct consequence of these intensified research efforts, large amounts of data on putative virulence factors have appeared in the literature. Although the presence of some proposed virulence factors does not necessarily define a S. suis strain as being virulent, several cell-associated or secreted factors are clearly important for the pathogenesis of the S. suis infection. In order to cause disease, S. suis must colonize the host, breach epithelial barriers, reach and survive in the bloodstream, invade different organs, and cause exaggerated inflammation. In this review, we discuss the potential contribution of different described S. suis virulence factors at each step of the pathogenesis of the infection. Finally, we briefly discuss other described virulence factors, virulence factor candidates and virulence markers for which a precise role at specific steps of the pathogenesis of the S. suis infection has not yet been clearly established.
Collapse
Affiliation(s)
- Nahuel Fittipaldi
- Groupe de Recherche sur les Maladies Infectieuses du Porc & Centre de Recherche en Infectiologie Porcine, Faculté de médecine vétérinaire, Université de Montréal, 3200 rue Sicotte, CP5000, St-Hyacinthe, Quebec, J2S 7C6, Canada
| | | | | | | |
Collapse
|
26
|
Fhb, a novel factor H-binding surface protein, contributes to the antiphagocytic ability and virulence of Streptococcus suis. Infect Immun 2012; 80:2402-13. [PMID: 22526676 DOI: 10.1128/iai.06294-11] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Streptococcus suis serotype 2 is a Gram-positive bacterium that causes sepsis and meningitis in piglets and humans. The mechanisms of S. suis serotype 2 invasive disease are not well understood. The surface proteins of pathogens usually play important roles in infection and bacterium-host interactions. Here, we identified a novel surface protein that contributed significantly to the virulence of S. suis serotype 2 in a piglet infection model. This protein showed little similarity to other reported proteins and exhibited strong binding activity to human factor H (hFH). It was designated Fhb (factor H-binding protein). The fhb genes found in S. suis serotypes 1, 2, 4, 7, and 9 exhibited molecular polymorphism. Fhb possessed two proline-rich repeat sequences and XPZ domains, and one repeat sequence exhibited a high homology to Bac, an IgA-binding protein of Streptococcus agalactiae. Evidence strongly indicated that fhb-deficient mutants had diminished phagocytosis resistance in bactericidal assays. In addition, Fhb plays important roles in complement-mediated immunity by interacting with hFH. These findings indicated that Fhb is a crucial surface protein contributing to the virulence of S. suis, with important functions in evading innate immune defenses by interaction with host complement regulatory factor hFH.
Collapse
|
27
|
Kouki A, Haataja S, Loimaranta V, Pulliainen AT, Nilsson UJ, Finne J. Identification of a novel streptococcal adhesin P (SadP) protein recognizing galactosyl-α1-4-galactose-containing glycoconjugates: convergent evolution of bacterial pathogens to binding of the same host receptor. J Biol Chem 2011; 286:38854-64. [PMID: 21908601 DOI: 10.1074/jbc.m111.260992] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacterial adhesion is often a prerequisite for infection, and host cell surface carbohydrates play a major role as adhesion receptors. Streptococci are a leading cause of infectious diseases. However, only few carbohydrate-specific streptococcal adhesins are known. Streptococcus suis is an important pig pathogen and a zoonotic agent causing meningitis in pigs and humans. In this study, we have identified an adhesin that mediates the binding of S. suis to galactosyl-α1-4-galactose (Galα1-4Gal)-containing host receptors. A functionally unknown S. suis cell wall protein (SSU0253), designated here as SadP (streptococcal adhesin P), was identified using a Galα1-4Gal-containing affinity matrix and LC-ESI mass spectrometry. Although the function of the protein was not previously known, it was recently identified as an immunogenic cell wall protein in a proteomic study. Insertional inactivation of the sadP gene abolished S. suis Galα1-4Gal-dependent binding. The adhesin gene sadP was cloned and expressed in Escherichia coli. Characterization of its binding specificity showed that SadP recognizes Galα1-4Gal-oligosaccharides and binds its natural glycolipid receptor, GbO(3) (CD77). The N terminus of SadP was shown to contain a Galα1-Gal-binding site and not to have apparent sequence similarity to other bacterial adhesins, including the E. coli P fimbrial adhesins, or to E. coli verotoxin or Pseudomonas aeruginosa lectin I also recognizing the same Galα1-4Gal disaccharide. The SadP and E. coli P adhesins represent a unique example of convergent evolution toward binding to the same host receptor structure.
Collapse
Affiliation(s)
- Annika Kouki
- Department of Medical Biochemistry and Genetics, University of Turku, Kiinamyllynkatu 10, Turku FI-20520, Finland
| | | | | | | | | | | |
Collapse
|
28
|
Goh YJ, Goin C, O'Flaherty S, Altermann E, Hutkins R. Specialized adaptation of a lactic acid bacterium to the milk environment: the comparative genomics of Streptococcus thermophilus LMD-9. Microb Cell Fact 2011; 10 Suppl 1:S22. [PMID: 21995282 PMCID: PMC3231929 DOI: 10.1186/1475-2859-10-s1-s22] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Background Streptococcus thermophilus represents the only species among the streptococci that has “Generally Regarded As Safe” status and that plays an economically important role in the fermentation of yogurt and cheeses. We conducted comparative genome analysis of S. thermophilus LMD-9 to identify unique gene features as well as features that contribute to its adaptation to the dairy environment. In addition, we investigated the transcriptome response of LMD-9 during growth in milk in the presence of Lactobacillus delbrueckii ssp. bulgaricus, a companion culture in yogurt fermentation, and during lytic bacteriophage infection. Results The S. thermophilus LMD-9 genome is comprised of a 1.8 Mbp circular chromosome (39.1% GC; 1,834 predicted open reading frames) and two small cryptic plasmids. Genome comparison with the previously sequenced LMG 18311 and CNRZ1066 strains revealed 114 kb of LMD-9 specific chromosomal region, including genes that encode for histidine biosynthetic pathway, a cell surface proteinase, various host defense mechanisms and a phage remnant. Interestingly, also unique to LMD-9 are genes encoding for a putative mucus-binding protein, a peptide transporter, and exopolysaccharide biosynthetic proteins that have close orthologs in human intestinal microorganisms. LMD-9 harbors a large number of pseudogenes (13% of ORFeome), indicating that like LMG 18311 and CNRZ1066, LMD-9 has also undergone major reductive evolution, with the loss of carbohydrate metabolic genes and virulence genes found in their streptococcal counterparts. Functional genome distribution analysis of ORFeomes among streptococci showed that all three S. thermophilus strains formed a distinct functional cluster, further establishing their specialized adaptation to the nutrient-rich milk niche. An upregulation of CRISPR1 expression in LMD-9 during lytic bacteriophage DT1 infection suggests its protective role against phage invasion. When co-cultured with L. bulgaricus, LMD-9 overexpressed genes involved in amino acid transport and metabolism as well as DNA replication. Conclusions The genome of S. thermophilus LMD-9 is shaped by its domestication in the dairy environment, with gene features that conferred rapid growth in milk, stress response mechanisms and host defense systems that are relevant to its industrial applications. The presence of a unique exopolysaccharide gene cluster and cell surface protein orthologs commonly associated with probiotic functionality revealed potential probiotic applications of LMD-9.
Collapse
Affiliation(s)
- Yong Jun Goh
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska 68583, USA
| | | | | | | | | |
Collapse
|
29
|
Wu Z, Li M, Wang C, Li J, Lu N, Zhang R, Jiang Y, Yang R, Liu C, Liao H, Gao GF, Tang J, Zhu B. Probing genomic diversity and evolution of Streptococcus suis serotype 2 by NimbleGen tiling arrays. BMC Genomics 2011; 12:219. [PMID: 21554741 PMCID: PMC3118785 DOI: 10.1186/1471-2164-12-219] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 05/10/2011] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Our previous studies revealed that a new disease form of streptococcal toxic shock syndrome (STSS) is associated with specific Streptococcus suis serotype 2 (SS2) strains. To achieve a better understanding of the pathogenicity and evolution of SS2 at the whole-genome level, comparative genomic analysis of 18 SS2 strains, selected on the basis of virulence and geographic origin, was performed using NimbleGen tiling arrays. RESULTS Our results demonstrate that SS2 isolates have highly divergent genomes. The 89K pathogenicity island (PAI), which has been previously recognized as unique to the Chinese epidemic strains causing STSS, was partially included in some other virulent and avirulent strains. The ABC-type transport systems, encoded by 89K, were hypothesized to greatly contribute to the catastrophic features of STSS. Moreover, we identified many polymorphisms in genes encoding candidate or known virulence factors, such as PlcR, lipase, sortases, the pilus-associated proteins, and the response regulator RevS and CtsR. On the basis of analysis of regions of differences (RDs) across the entire genome for the 18 selected SS2 strains, a model of microevolution for these strains is proposed, which provides clues into Streptococcus pathogenicity and evolution. CONCLUSIONS Our deep comparative genomic analysis of the 89K PAI present in the genome of SS2 strains revealed details into how some virulent strains acquired genes that may contribute to STSS, which may lead to better environmental monitoring of epidemic SS2 strains.
Collapse
Affiliation(s)
- Zuowei Wu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Takamatsu D. [Diversity and virulence factors of Streptococcus suis ]. Nihon Saikingaku Zasshi 2011; 66:7-21. [PMID: 21498962 DOI: 10.3412/jsb.66.7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Daisuke Takamatsu
- Research Team for Bacterial/Parasitic Diseases, National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856
| |
Collapse
|
31
|
Abstract
Streptococcus suis is an important zoonotic agent leading to a variety of diseases in swine and can be transmitted to human beings upon close contact. Here, we report the complete genome sequence of S. suis serotype 14 strain JS14 which was isolated from a diseased pig in Jiangsu Province, China.
Collapse
|
32
|
Abstract
Lactococcus lactis IL1403 harbors a putative sortase A (SrtA) and 11 putative sortase substrates that carry the canonical LPXTG signature of such substrates. We report here on the functionality of SrtA to anchor five LPXTG substrates to the cell wall, thus suggesting that SrtA is the housekeeping sortase in L. lactis IL1403.
Collapse
|
33
|
Hu Q, Liu P, Yu Z, Zhao G, Li J, Teng L, Zhou M, Bei W, Chen H, Jin M. Identification of a cell wall-associated subtilisin-like serine protease involved in the pathogenesis of Streptococcus suis serotype 2. Microb Pathog 2010; 48:103-9. [DOI: 10.1016/j.micpath.2009.11.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Revised: 10/18/2009] [Accepted: 11/18/2009] [Indexed: 12/25/2022]
|
34
|
Bonifait L, de la Cruz Dominguez-Punaro M, Vaillancourt K, Bart C, Slater J, Frenette M, Gottschalk M, Grenier D. The cell envelope subtilisin-like proteinase is a virulence determinant for Streptococcus suis. BMC Microbiol 2010; 10:42. [PMID: 20146817 PMCID: PMC2832634 DOI: 10.1186/1471-2180-10-42] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Accepted: 02/10/2010] [Indexed: 12/30/2022] Open
Abstract
Background Streptococcus suis is a major swine pathogen and zoonotic agent that mainly causes septicemia, meningitis, and endocarditis. It has recently been suggested that proteinases produced by S. suis (serotype 2) are potential virulence determinants. In the present study, we screened a S. suis mutant library created by the insertion of Tn917 transposon in order to isolate a mutant deficient in a cell surface proteinase. We characterized the gene and assessed the proteinase for its potential as a virulence factor. Results Two mutants (G6G and M3G) possessing a single Tn917 insertion were isolated. The affected gene coded for a protein (SSU0757) that shared a high degree of identity with Streptococccus thermophilus PrtS (95.9%) and, to a lesser extent, with Streptococcus agalactiae CspA (49.5%), which are cell surface serine proteinases. The SSU0757 protein had a calculated molecular mass of 169.6 kDa and contained the catalytic triad characteristic of subtilisin family proteinases: motif I (Asp200), motif II (His239), and motif III (Ser568). SSU0757 also had the Gram-positive cell wall anchoring motif (Leu-Pro-X-Thr-Gly) at the carboxy-terminus, which was followed by a hydrophobic domain. All the S. suis isolates tested, which belonged to different serotypes, possessed the gene encoding the SSU0757 protein. The two mutants devoid of subtilisin-like proteinase activity had longer generation times and were more susceptible to killing by whole blood than the wild-type parent strain P1/7. The virulence of the G6G and M3G mutants was compared to the wild-type strain in the CD1 mouse model. Significant differences in mortality rates were noted between the P1/7 group and the M3G and G6G groups (p < 0.001). Conclusion In summary, we identified a gene coding for a cell surface subtilisin-like serine proteinase that is widely distributed in S. suis. Evidences were brought for the involvement of this proteinase in S. suis virulence.
Collapse
Affiliation(s)
- Laetitia Bonifait
- Groupe de Recherche en Ecologie Buccale, Faculté de Médecine Dentaire, Université Laval, Quebec City, Quebec, Canada
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Hilleringmann M, Ringler P, Müller SA, De Angelis G, Rappuoli R, Ferlenghi I, Engel A. Molecular architecture of Streptococcus pneumoniae TIGR4 pili. EMBO J 2010; 28:3921-30. [PMID: 19942854 DOI: 10.1038/emboj.2009.360] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Accepted: 11/06/2009] [Indexed: 01/16/2023] Open
Abstract
Although the pili of Gram-positive bacteria are putative virulence factors, little is known about their structure. Here we describe the molecular architecture of pilus-1 of Streptococcus pneumoniae, which is a major cause of morbidity and mortality worldwide. One major (RrgB) and two minor components (RrgA and RrgC) assemble into the pilus. Results from TEM and scanning transmission EM show that the native pili are approximately 6 nm wide, flexible filaments that can be over 1 microm long. They are formed by a single string of RrgB monomers and have a polarity defined by nose-like protrusions. These protrusions correlate to the shape of monomeric RrgB-His, which like RrgA-His and RrgC-His has an elongated, multi-domain structure. RrgA and RrgC are only present at the opposite ends of the pilus shaft, compatible with their putative roles as adhesin and anchor to the cell wall surface, respectively. Our structural analyses provide the first direct experimental evidence that the native S. pneumoniae pilus shaft is composed exclusively of covalently linked monomeric RrgB subunits oriented head-to-tail.
Collapse
|
36
|
Fittipaldi N, Takamatsu D, Domínguez-Punaro MDLC, Lecours MP, Montpetit D, Osaki M, Sekizaki T, Gottschalk M. Mutations in the gene encoding the ancillary pilin subunit of the Streptococcus suis srtF cluster result in pili formed by the major subunit only. PLoS One 2010; 5:e8426. [PMID: 20052283 PMCID: PMC2797073 DOI: 10.1371/journal.pone.0008426] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Accepted: 12/01/2009] [Indexed: 01/03/2023] Open
Abstract
Pili have been shown to contribute to the virulence of different Gram-positive pathogenic species. Among other critical steps of bacterial pathogenesis, these structures participate in adherence to host cells, colonization and systemic virulence. Recently, the presence of at least four discrete gene clusters encoding putative pili has been revealed in the major swine pathogen and emerging zoonotic agent Streptococcus suis. However, pili production by this species has not yet been demonstrated. In this study, we investigated the functionality of one of these pili clusters, known as the srtF pilus cluster, by the construction of mutant strains for each of the four genes of the cluster as well as by the generation of antibodies against the putative pilin subunits. Results revealed that the S. suis serotype 2 strain P1/7, as well as several other highly virulent invasive S. suis serotype 2 isolates express pili from this cluster. However, in most cases tested, and as a result of nonsense mutations at the 5′ end of the gene encoding the minor pilin subunit (a putative adhesin), pili were formed by the major pilin subunit only. We then evaluated the role these pili play in S. suis virulence. Abolishment of the expression of srtF cluster-encoded pili did not result in impaired interactions of S. suis with porcine brain microvascular endothelial cells. Furthermore, non-piliated mutants were as virulent as the wild type strain when evaluated in a murine model of S. suis sepsis. Our results show that srtF cluster-encoded, S. suis pili are atypical compared to other Gram-positive pili. In addition, since the highly virulent strains under investigation are unlikely to produce other pili, our results suggest that pili might be dispensable for critical steps of the S. suis pathogenesis of infection.
Collapse
Affiliation(s)
- Nahuel Fittipaldi
- Groupe de Recherche sur les Maladies Infectieuses du Porc and Centre de Recherche en Infectiologie Porcine, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Canada
| | - Daisuke Takamatsu
- Research Team for Bacterial/Parasitic Diseases, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - María de la Cruz Domínguez-Punaro
- Groupe de Recherche sur les Maladies Infectieuses du Porc and Centre de Recherche en Infectiologie Porcine, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Canada
| | - Marie-Pier Lecours
- Groupe de Recherche sur les Maladies Infectieuses du Porc and Centre de Recherche en Infectiologie Porcine, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Canada
| | - Diane Montpetit
- Centre de Recherche et de Développement sur les Aliments, Agriculture et Agroalimentaire Canada, St-Hyacinthe, Canada
| | - Makoto Osaki
- Research Team for Bacterial/Parasitic Diseases, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Tsutomu Sekizaki
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Marcelo Gottschalk
- Groupe de Recherche sur les Maladies Infectieuses du Porc and Centre de Recherche en Infectiologie Porcine, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Canada
- * E-mail:
| |
Collapse
|
37
|
Okahashi N, Nakata M, Sakurai A, Terao Y, Hoshino T, Yamaguchi M, Isoda R, Sumitomo T, Nakano K, Kawabata S, Ooshima T. Pili of oral Streptococcus sanguinis bind to fibronectin and contribute to cell adhesion. Biochem Biophys Res Commun 2009; 391:1192-6. [PMID: 20004645 DOI: 10.1016/j.bbrc.2009.12.029] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Accepted: 12/05/2009] [Indexed: 12/26/2022]
Abstract
Streptococcus sanguinis is a predominant bacterium in the human oral cavity and occasionally causes infective endocarditis. We identified a unique cell surface polymeric structure named pili in this species and investigated its functions in regard to its potential virulence. Pili of S. sanguinis strain SK36 were shown to be composed of three distinctive pilus proteins (PilA, PilB, and PilC), and a pili-deficient mutant demonstrated reduced bacterial adherence to HeLa and human oral epithelial cells. PilC showed a binding ability to fibronectin, suggesting that pili are involved in colonization by this species. In addition, ATCC10556, a standard S. sanguinis strain, was unable to produce pili due to defective pilus genes, which indicates a diversity of pilus expression among various S. sanguinis strains.
Collapse
Affiliation(s)
- Nobuo Okahashi
- Department of Oral Frontier Biology, Graduate School of Dentistry, Osaka University, 1-8 Yamadaoka, Suita-Osaka 565-0871, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Zhang XH, He KW, Duan ZT, Zhou JM, Yu ZY, Ni YX, Lu CP. Identification and characterization of inosine 5-monophosphate dehydrogenase in Streptococcus suis type 2. Microb Pathog 2009; 47:267-73. [DOI: 10.1016/j.micpath.2009.09.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Revised: 08/31/2009] [Accepted: 09/01/2009] [Indexed: 11/28/2022]
|
39
|
Holden MTG, Hauser H, Sanders M, Ngo TH, Cherevach I, Cronin A, Goodhead I, Mungall K, Quail MA, Price C, Rabbinowitsch E, Sharp S, Croucher NJ, Chieu TB, Mai NTH, Diep TS, Chinh NT, Kehoe M, Leigh JA, Ward PN, Dowson CG, Whatmore AM, Chanter N, Iversen P, Gottschalk M, Slater JD, Smith HE, Spratt BG, Xu J, Ye C, Bentley S, Barrell BG, Schultsz C, Maskell DJ, Parkhill J. Rapid evolution of virulence and drug resistance in the emerging zoonotic pathogen Streptococcus suis. PLoS One 2009; 4:e6072. [PMID: 19603075 PMCID: PMC2705793 DOI: 10.1371/journal.pone.0006072] [Citation(s) in RCA: 193] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Accepted: 04/22/2009] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Streptococcus suis is a zoonotic pathogen that infects pigs and can occasionally cause serious infections in humans. S. suis infections occur sporadically in human Europe and North America, but a recent major outbreak has been described in China with high levels of mortality. The mechanisms of S. suis pathogenesis in humans and pigs are poorly understood. METHODOLOGY/PRINCIPAL FINDINGS The sequencing of whole genomes of S. suis isolates provides opportunities to investigate the genetic basis of infection. Here we describe whole genome sequences of three S. suis strains from the same lineage: one from European pigs, and two from human cases from China and Vietnam. Comparative genomic analysis was used to investigate the variability of these strains. S. suis is phylogenetically distinct from other Streptococcus species for which genome sequences are currently available. Accordingly, approximately 40% of the approximately 2 Mb genome is unique in comparison to other Streptococcus species. Finer genomic comparisons within the species showed a high level of sequence conservation; virtually all of the genome is common to the S. suis strains. The only exceptions are three approximately 90 kb regions, present in the two isolates from humans, composed of integrative conjugative elements and transposons. Carried in these regions are coding sequences associated with drug resistance. In addition, small-scale sequence variation has generated pseudogenes in putative virulence and colonization factors. CONCLUSIONS/SIGNIFICANCE The genomic inventories of genetically related S. suis strains, isolated from distinct hosts and diseases, exhibit high levels of conservation. However, the genomes provide evidence that horizontal gene transfer has contributed to the evolution of drug resistance.
Collapse
Affiliation(s)
- Matthew T G Holden
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Surface-associated and secreted factors ofStreptococcus suisin epidemiology, pathogenesis and vaccine development. Anim Health Res Rev 2009; 10:65-83. [DOI: 10.1017/s146625230999003x] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
AbstractStreptococcus suisis an invasive porcine pathogen associated with meningitis, arthritis, bronchopneumonia and other diseases. The pathogen constitutes a major health problem in the swine industry worldwide. Furthermore,S. suisis an important zoonotic agent causing meningitis and other diseases in humans exposed to pigs or pork. Current knowledge on pathogenesis is limited, despite the enormous amount of data generated by ‘omics’ research. Accordingly, immunprophylaxis (in pigs) is hampered by lack of a cross-protective vaccine against virulent strains of this diverse species. This review focuses on bacterial factors, both surface-associated and secreted ones, which are considered to contribute toS. suisinteraction(s) with host factors and cells. Factors are presented with respect to (i) their identification and features, (ii) their distribution amongS. suisand (iii) their significance for virulence, immune response and vaccination. This review also shows the enormous progress made in research onS. suisover the last few years, and it emphasizes the numerous challenging questions remaining to be answered in the future.
Collapse
|
41
|
Takamatsu D, Nishino H, Ishiji T, Ishii J, Osaki M, Fittipaldi N, Gottschalk M, Tharavichitkul P, Takai S, Sekizaki T. Genetic organization and preferential distribution of putative pilus gene clusters in Streptococcus suis. Vet Microbiol 2009; 138:132-9. [PMID: 19303725 DOI: 10.1016/j.vetmic.2009.02.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Revised: 02/11/2009] [Accepted: 02/16/2009] [Indexed: 11/30/2022]
Abstract
Recent analyses of Streptococcus suis isolates using multilocus sequence typing (MLST) suggested the importance of sequence type (ST) 1 and ST27 complexes for animal hygiene and public health. In this study, to investigate whether pilus-associated genes in S. suis can be used as novel genetic markers for important clonal groups, we examined the correlation between STs and putative pilus-associated gene profiles in S. suis. Genomic searches using sequenced genomes and sequence data determined in several isolates revealed the presence of at least four distinct putative pilus gene clusters in S. suis (srtBCD, srtE, srtF, and srtG clusters). On the basis of the presence or absence of genes in the four clusters, 108 S. suis isolates from various origins were classified into 12 genotypes (genotypes A-L). Genotypes A and B, which possessed srtBCD plus srtF clusters and srtF plus srtG clusters, respectively, were the most common in isolates from diseased pigs and humans, and 29.9% and 59.8% of the isolates belonged to genotypes A and B, respectively. In contrast, only 4.8% and 28.6% of isolates from healthy carriers were genotypes A and B, respectively. MLST analysis showed the associations of genotypes A and B with ST1 and ST27 complexes, respectively. In addition, srtBCD and srtG clusters were preferentially distributed to ST1 and ST27 complex members, respectively. These results suggest that profiling of selected pilus-associated genes could be used as an easy screening method to monitor isolates important for S. suis infection.
Collapse
Affiliation(s)
- Daisuke Takamatsu
- Research Team for Bacterial/Parasitic Diseases, National Institute of Animal Health, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Vanier G, Fittipaldi N, Slater JD, de la Cruz Domínguez-Punaro M, Rycroft AN, Segura M, Maskell DJ, Gottschalk M. New putative virulence factors of Streptococcus suis involved in invasion of porcine brain microvascular endothelial cells. Microb Pathog 2009; 46:13-20. [PMID: 18984036 DOI: 10.1016/j.micpath.2008.10.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Revised: 09/27/2008] [Accepted: 10/02/2008] [Indexed: 11/17/2022]
Affiliation(s)
- Ghyslaine Vanier
- Groupe de Recherche sur les Maladies Infectieuses du Porc (GREMIP) and Centre de Recherche en Infectiologie Porcine (CRIP), Faculté de médecine vétérinaire, Université de Montréal, 3200 rue Sicotte, Saint-Hyacinthe, Québec, Canada J2S 2M2
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Fälker S, Nelson AL, Morfeldt E, Jonas K, Hultenby K, Ries J, Melefors O, Normark S, Henriques-Normark B. Sortase-mediated assembly and surface topology of adhesive pneumococcal pili. Mol Microbiol 2008; 70:595-607. [PMID: 18761697 PMCID: PMC2680257 DOI: 10.1111/j.1365-2958.2008.06396.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The rlrA genetic islet encodes an extracellular pilus in the Gram-positive pathogen Streptococcus pneumoniae. Of the three genes for structural subunits, rrgB encodes the major pilin, while rrgA and rrgC encode ancillary pilin subunits decorating the pilus shaft and tip. Deletion of all three pilus-associated sortase genes, srtB, srtC and srtD, completely prevents pilus biogenesis. Expression of srtB alone is sufficient to covalently associate RrgB subunits to one another as well as linking the RrgA adhesin and the RrgC subunit into the polymer. The active-site cysteine residue of SrtB (Cys 177) is crucial for incorporating RrgC, even when the two other sortase genes are expressed. SrtC is redundant to SrtB in permitting RrgB polymerization, and in linking RrgA to the RrgB filament, but SrtC is insufficient to incorporate RrgC. In contrast, expression of srtD alone fails to mediate RrgB polymerization, and a srtD mutant assembles heterotrimeric pilus indistinguishable from wild type. Topological studies demonstrate that pilus antigens are localized to symmetric foci at the cell surface in the presence of all three sortases. This symmetric focal presentation is abrogated in the absence of either srtB or srtD, while deletion of srtC had no effect. In addition, strains expressing srtB alone or srtC alone also displayed disrupted antigen localization, despite polymerizing subunits. Our data suggest that both SrtB and SrtC act as pilus subunit polymerases, with SrtB processing all three pilus subunit proteins, while SrtC only RrgB and RrgA. In contrast, SrtD does not act as a pilus subunit polymerase, but instead is required for wild-type focal presentation of the pilus at the cell surface.
Collapse
Affiliation(s)
- Stefan Fälker
- Department of Bacteriology, Swedish Institute for Infectious Disease Control, SE-171 82 Solna, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Wang C, Li M, Feng Y, Zheng F, Dong Y, Pan X, Cheng G, Dong R, Hu D, Feng X, Ge J, Liu D, Wang J, Cao M, Hu F, Tang J. The involvement of sortase A in high virulence of STSS-causing Streptococcus suis serotype 2. Arch Microbiol 2008; 191:23-33. [DOI: 10.1007/s00203-008-0425-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Revised: 06/16/2008] [Accepted: 07/30/2008] [Indexed: 02/08/2023]
|
45
|
Bentley ML, Lamb EC, McCafferty DG. Mutagenesis studies of substrate recognition and catalysis in the sortase A transpeptidase from Staphylococcus aureus. J Biol Chem 2008; 283:14762-71. [PMID: 18375951 PMCID: PMC2386945 DOI: 10.1074/jbc.m800974200] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Revised: 03/24/2008] [Indexed: 12/25/2022] Open
Abstract
The Staphylococcus aureus transpeptidase sortase A (SrtA) is responsible for anchoring a range of virulence- and colonization-associated proteins to the cell wall. SrtA recognizes substrates that contain a C-terminal LPXTG motif. This sequence is cleaved following the threonine, and an amide bond is formed between the threonine and the pentaglycine cross-bridge of branched lipid II. Previous studies have implicated the beta6/beta7 loop region of SrtA in LPXTG recognition but have not systematically characterized this domain. To better understand the individual roles of the residues within this loop, we performed alanine-scanning mutagenesis. Val-168 and Leu-169 were found to be important for substrate recognition, and Glu-171 was also found to be important, consistent with its hypothesized role as a Ca(2+)-binding residue. Gly-167 and Asp-170 were dispensable for catalysis, as was Gln-172. The role of Arg-197 in SrtA has been the subject of much debate. To explore its role in catalysis, we used native chemical ligation to generate semi-synthetic SrtA in which we replaced Arg-197 with citrulline, a non-ionizable analog. This change resulted in a decrease of <3-fold in k(cat)/K(m), indicating that Arg-197 utilizes a hydrogen bond, rather than an electrostatic interaction. Our results are consistent with a model for LPXTG recognition wherein the Leu-Pro sequence is recognized primarily by hydrophobic contacts with SrtA Val-168 and Leu-169, as well as a hydrogen bond from Arg-197. This model contradicts the previously proposed mechanism of binding predicted by the x-ray crystal structure of SrtA.
Collapse
Affiliation(s)
- Matthew L Bentley
- Department of Biochemistry and Biophysics and the Johnson Research Foundation, The University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
46
|
Feng Y, Zheng F, Pan X, Sun W, Wang C, Dong Y, Ju AP, Ge J, Liu D, Liu C, Yan J, Tang J, Gao GF. Existence and characterization of allelic variants of Sao, a newly identified surface protein from Streptococcus suis. FEMS Microbiol Lett 2007; 275:80-8. [PMID: 17854470 PMCID: PMC7110054 DOI: 10.1111/j.1574-6968.2007.00859.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Surface antigen one (Sao) is a newly identified protein from the major zoonotic pathogen, Streptococcus suis. In search of functional proteins related to the pathogenesis of Chinese S. suis 2 (SS2), unexpectedly, a variant of Sao protein was obtained. To test its prevalence in S. suis, PCR assay was adopted to address the coding genes systematically. It was found that there are three allelic variants of sao gene, namely sao-S, sao-M, and sao-L based on the different lengths of the genes (approximately 1.5, approximately 1.7, and approximately 2.0 kb, respectively). These differences were determined to be caused by heterogeneity within the number of C-terminal repeat sequences (R), which had been seen as a pathogenicity-related domain in the plant pathogen, Xanthomonas oryzae. Two variants (sao-M and sao-L) were only found in SS2. All three variant proteins were prepared in vitro and their biochemical and biophysical properties were characterized. A soluble form of Sao-M protein was then used as a capture antigen to develop an enzyme-linked immunosorbent assay method to detect antibodies against SS2 in convalescent pig sera. Taken together, the results exhibit the properties of Sao proteins and provide an efficient Sao-M-based method for monitoring SS2 infection.
Collapse
Affiliation(s)
- Youjun Feng
- Center for Molecular Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Graduate University, Chinese Academy of Sciences, Beijing, China
| | - Feng Zheng
- Department of Epidemiology, Research Institute for Medicine of Nanjing Command, Nanjing, China
| | - Xiuzhen Pan
- Department of Epidemiology, Research Institute for Medicine of Nanjing Command, Nanjing, China
| | - Wen Sun
- Department of Epidemiology, Research Institute for Medicine of Nanjing Command, Nanjing, China
| | - Changjun Wang
- Department of Epidemiology, Research Institute for Medicine of Nanjing Command, Nanjing, China
| | - Yaqing Dong
- Department of Epidemiology, Research Institute for Medicine of Nanjing Command, Nanjing, China
| | - Ai-ping Ju
- Department of Epidemiology, Research Institute for Medicine of Nanjing Command, Nanjing, China
| | - Junchao Ge
- Department of Epidemiology, Research Institute for Medicine of Nanjing Command, Nanjing, China
| | - Di Liu
- Center for Molecular Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Cuihua Liu
- Center for Molecular Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jinghua Yan
- Center for Molecular Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jiaqi Tang
- Department of Epidemiology, Research Institute for Medicine of Nanjing Command, Nanjing, China
| | - George F. Gao
- Center for Molecular Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Correspondence: George F. Gao, Center for Molecular Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China. Tel.: +86 10 62552530; fax: +86 10 62521882; e-mail:
| |
Collapse
|
47
|
Wirawan RE, Swanson KM, Kleffmann T, Jack RW, Tagg JR. Uberolysin: a novel cyclic bacteriocin produced by Streptococcus uberis. MICROBIOLOGY-SGM 2007; 153:1619-1630. [PMID: 17464077 DOI: 10.1099/mic.0.2006/005967-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Streptococcus uberis is commonly found in the environment and in association with various bovine body sites and is a major cause of bovine mastitis. Moreover, S. uberis is known to produce a variety of bacteriocin-like inhibitory substances, antimicrobial agents that generally inhibit closely related bacterial species. In this respect, S. uberis strain 42 has previously been shown to produce a novel nisin variant named nisin U. This paper reports that, in addition to nisin U, S. uberis strain 42 produces a second bacteriocin that induces the lysis of metabolically active, susceptible target bacteria and which has therefore been named uberolysin. Isolation of the native active antimicrobial agent revealed that uberolysin is a 7048 Da peptide that is refractory to sequence analysis by Edman degradation. Transposon mutagenesis was used to generate a uberolysin-negative mutant of S. uberis 42 and sequencing of DNA flanking the insertion site revealed, in addition to the structural gene (ublA), several open reading frames likely to be involved in post-translational modification, transport and producer self-protection (immunity), and possibly in regulation of the biosynthetic gene cluster. In addition, a pair of direct repeats that may be involved in bacteriocin acquisition were identified; indeed, ublA could be identified in 18 % of tested S. uberis strains. Enzymic hydrolysis of uberolysin was used to confirm that ublA does indeed encode the precursor of uberolysin, that an unusually short leader sequence of only six amino acids is cleaved during processing of the mature peptide and that uberolysin is post-translationally covalently modified to form a head-to-tail monocycle. Thus, uberolysin is a unique cyclic bacteriocin, belonging to the same family of bacteriocins as enterocin AS-48 and circularin A.
Collapse
Affiliation(s)
- Ruth E Wirawan
- Department of Microbiology and Immunology, Otago School of Medical Sciences, University of Otago, PO Box 56, Dunedin, New Zealand
| | - Kara M Swanson
- Department of Microbiology and Immunology, Otago School of Medical Sciences, University of Otago, PO Box 56, Dunedin, New Zealand
| | - Torsten Kleffmann
- Centre for Protein Research (Department of Biochemistry), Otago School of Medical Sciences, University of Otago, PO Box 56, Dunedin, New Zealand
| | - Ralph W Jack
- Department of Microbiology and Immunology, Otago School of Medical Sciences, University of Otago, PO Box 56, Dunedin, New Zealand
| | - John R Tagg
- Department of Microbiology and Immunology, Otago School of Medical Sciences, University of Otago, PO Box 56, Dunedin, New Zealand
| |
Collapse
|
48
|
Mujahid S, Pechan T, Wang C. Improved solubilization of surface proteins fromListeria monocytogenes for 2-DE. Electrophoresis 2007; 28:3998-4007. [DOI: 10.1002/elps.200600858] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
49
|
Gottschalk M, Segura M, Xu J. Streptococcus suis infections in humans: the Chinese experience and the situation in North America. Anim Health Res Rev 2007; 8:29-45. [PMID: 17692141 DOI: 10.1017/s1466252307001247] [Citation(s) in RCA: 247] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Infections caused by Streptococcus suis are considered a global problem in the swine industry. In this animal species, S. suis is associated with septicemia, meningitis, endocarditis, arthritis and, occasionally, other infections. Moreover, it is an agent of zoonosis that afflicts people in close contact with infected pigs or pork-derived products. Although sporadic cases of S. suis infection in humans have been reported, a large outbreak due to S. suis serotype 2 emerged in the summer of 2005 in Sichuan, China. A similar outbreak was observed in another Chinese province in 1998. Symptoms reported in these two outbreaks include high fever, malaise, nausea and vomiting, followed by nervous symptoms, subcutaneous hemorrhage, septic shock and coma in severe cases. The increased severity of S. suis infections in humans, such as a shorter incubation time, more rapid disease progression and higher rate of mortality, underscores the critical need to better understand the factors associated with pathogenesis of S. suis infection. From the 35 capsular serotypes currently known, serotype 2 is considered the most virulent and frequently isolated in both swine and humans. Here, we review the epidemiological, clinical and immunopathological features of S. suis infection in humans.
Collapse
Affiliation(s)
- Marcelo Gottschalk
- Centre de Recherche en Infectiologie Porcine (CRIP), Faculté de Médecine Vétérinaire, Université de Montréal, 3200 rue Sicotte, St-Hyacinthe, Québec, J2S 2M2, Canada.
| | | | | |
Collapse
|
50
|
Fittipaldi N, Gottschalk M, Vanier G, Daigle F, Harel J. Use of selective capture of transcribed sequences to identify genes preferentially expressed by Streptococcus suis upon interaction with porcine brain microvascular endothelial cells. Appl Environ Microbiol 2007; 73:4359-64. [PMID: 17483264 PMCID: PMC1932796 DOI: 10.1128/aem.00258-07] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
By using the selective capture of transcribed sequences (SCOTS) approach, we identified 28 genes preferentially expressed by the major swine pathogen and zoonotic agent Streptococcus suis upon interaction with porcine brain microvascular endothelial cells. Several of these genes may be considered new S. suis candidate virulence factors. Results from this study demonstrate the suitability of SCOTS for the elucidation of gene expression in streptococcal species and may contribute to a better understanding of the pathogenesis of S. suis infections.
Collapse
Affiliation(s)
- Nahuel Fittipaldi
- GREMIP, Faculté de Médecine Vétérinaire, Université de Montréal, CP 5000, St-Hyacinthe, Quebec, Canada
| | | | | | | | | |
Collapse
|