1
|
Viola RE, Parungao GG, Blumenthal RM. A growth-based assay using fluorescent protein emission to screen for S-adenosylmethionine synthetase inhibitors. Drug Dev Res 2024; 85:e22122. [PMID: 37819020 DOI: 10.1002/ddr.22122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/07/2023] [Accepted: 10/02/2023] [Indexed: 10/13/2023]
Abstract
The use of cell growth-based assays to identify inhibitory compounds is straightforward and inexpensive, but is also inherently insensitive and somewhat nonspecific. To overcome these limitations and develop a sensitive, specific cell-based assay, two different approaches were combined. To address the sensitivity limitation, different fluorescent proteins have been introduced into a bacterial expression system to serve as growth reporters. To overcome the lack of specificity, these protein reporters have been incorporated into a plasmid in which they are paired with different orthologs of an essential target enzyme, in this case l-methionine S-adenosyltransferase (MAT, AdoMet synthetase). Screening compounds that serve as specific inhibitors will reduce the growth of only a subset of strains, because these strains are identical, except for which target ortholog they carry. Screening several such strains in parallel not only reveals potential inhibitors but the strains also serve as specificity controls for one another. The present study makes use of an existing Escherichia coli strain that carries a deletion of metK, the gene for MAT. Transformation with these plasmids leads to a complemented strain that no longer requires externally supplied S-adenosylmethionine for growth, but its growth is now dependent on the activity of the introduced MAT ortholog. The resulting fluorescent strains provide a platform to screen chemical compound libraries and identify species-selective inhibitors of AdoMet synthetases. A pilot study of several chemical libraries using this platform identified new lead compounds that are ortholog-selective inhibitors of this enzyme family, some of which target the protozoal human pathogen Cryptosporidium parvum.
Collapse
Affiliation(s)
- Ronald E Viola
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, Ohio, USA
| | - Gwenn G Parungao
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, Ohio, USA
| | - Robert M Blumenthal
- Department of Medical Microbiology and Immunology, and Program in Bioinformatics, University of Toledo Health Sciences Campus, Toledo, Ohio, USA
| |
Collapse
|
2
|
Stankevičius V, Gibas P, Masiulionytė B, Gasiulė L, Masevičius V, Klimašauskas S, Vilkaitis G. Selective chemical tracking of Dnmt1 catalytic activity in live cells. Mol Cell 2022; 82:1053-1065.e8. [PMID: 35245449 PMCID: PMC8901439 DOI: 10.1016/j.molcel.2022.02.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/04/2021] [Accepted: 02/01/2022] [Indexed: 12/24/2022]
Abstract
Enzymatic methylation of cytosine to 5-methylcytosine in DNA is a fundamental epigenetic mechanism involved in mammalian development and disease. DNA methylation is brought about by collective action of three AdoMet-dependent DNA methyltransferases, whose catalytic interactions and temporal interplay are poorly understood. We used structure-guided engineering of the Dnmt1 methyltransferase to enable catalytic transfer of azide tags onto DNA from a synthetic cofactor analog, Ado-6-azide, in vitro. We then CRISPR-edited the Dnmt1 locus in mouse embryonic stem cells to install the engineered codon, which, following pulse internalization of the Ado-6-azide cofactor by electroporation, permitted selective azide tagging of Dnmt1-specific genomic targets in cellulo. The deposited covalent tags were exploited as "click" handles for reading adjoining sequences and precise genomic mapping of the methylation sites. The proposed approach, Dnmt-TOP-seq, enables high-resolution temporal tracking of the Dnmt1 catalysis in mammalian cells, paving the way to selective studies of other methylation pathways in eukaryotic systems.
Collapse
Affiliation(s)
- Vaidotas Stankevičius
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius 10257, Lithuania
| | - Povilas Gibas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius 10257, Lithuania
| | - Bernadeta Masiulionytė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius 10257, Lithuania
| | - Liepa Gasiulė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius 10257, Lithuania
| | - Viktoras Masevičius
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius 10257, Lithuania; Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Vilnius 03225, Lithuania
| | - Saulius Klimašauskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius 10257, Lithuania.
| | - Giedrius Vilkaitis
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius 10257, Lithuania.
| |
Collapse
|
3
|
Kim JY, Loo EPI, Pang TY, Lercher M, Frommer WB, Wudick MM. Cellular export of sugars and amino acids: role in feeding other cells and organisms. PLANT PHYSIOLOGY 2021; 187:1893-1914. [PMID: 34015139 PMCID: PMC8644676 DOI: 10.1093/plphys/kiab228] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/29/2021] [Indexed: 05/20/2023]
Abstract
Sucrose, hexoses, and raffinose play key roles in the plant metabolism. Sucrose and raffinose, produced by photosynthesis, are translocated from leaves to flowers, developing seeds and roots. Translocation occurs in the sieve elements or sieve tubes of angiosperms. But how is sucrose loaded into and unloaded from the sieve elements? There seem to be two principal routes: one through plasmodesmata and one via the apoplasm. The best-studied transporters are the H+/SUCROSE TRANSPORTERs (SUTs) in the sieve element-companion cell complex. Sucrose is delivered to SUTs by SWEET sugar uniporters that release these key metabolites into the apoplasmic space. The H+/amino acid permeases and the UmamiT amino acid transporters are hypothesized to play analogous roles as the SUT-SWEET pair to transport amino acids. SWEETs and UmamiTs also act in many other important processes-for example, seed filling, nectar secretion, and pollen nutrition. We present information on cell type-specific enrichment of SWEET and UmamiT family members and propose several members to play redundant roles in the efflux of sucrose and amino acids across different cell types in the leaf. Pathogens hijack SWEETs and thus represent a major susceptibility of the plant. Here, we provide an update on the status of research on intercellular and long-distance translocation of key metabolites such as sucrose and amino acids, communication of the plants with the root microbiota via root exudates, discuss the existence of transporters for other important metabolites and provide potential perspectives that may direct future research activities.
Collapse
Affiliation(s)
- Ji-Yun Kim
- Institute for Molecular Physiology and Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Eliza P -I Loo
- Institute for Molecular Physiology and Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Tin Yau Pang
- Institute for Computer Science and Department of Biology, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Martin Lercher
- Institute for Computer Science and Department of Biology, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Wolf B Frommer
- Institute for Molecular Physiology and Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Michael M Wudick
- Institute for Molecular Physiology and Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
- Author for communication:
| |
Collapse
|
4
|
Danchin A, Sekowska A, You C. One-carbon metabolism, folate, zinc and translation. Microb Biotechnol 2020; 13:899-925. [PMID: 32153134 PMCID: PMC7264889 DOI: 10.1111/1751-7915.13550] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 02/17/2020] [Indexed: 12/16/2022] Open
Abstract
The translation process, central to life, is tightly connected to the one-carbon (1-C) metabolism via a plethora of macromolecule modifications and specific effectors. Using manual genome annotations and putting together a variety of experimental studies, we explore here the possible reasons of this critical interaction, likely to have originated during the earliest steps of the birth of the first cells. Methionine, S-adenosylmethionine and tetrahydrofolate dominate this interaction. Yet, 1-C metabolism is unlikely to be a simple frozen accident of primaeval conditions. Reactive 1-C species (ROCS) are buffered by the translation machinery in a way tightly associated with the metabolism of iron-sulfur clusters, zinc and potassium availability, possibly coupling carbon metabolism to nitrogen metabolism. In this process, the highly modified position 34 of tRNA molecules plays a critical role. Overall, this metabolic integration may serve both as a protection against the deleterious formation of excess carbon under various growth transitions or environmental unbalanced conditions and as a regulator of zinc homeostasis, while regulating input of prosthetic groups into nascent proteins. This knowledge should be taken into account in metabolic engineering.
Collapse
Affiliation(s)
- Antoine Danchin
- AMAbiotics SASInstitut Cochin24 rue du Faubourg Saint‐Jacques75014ParisFrance
- School of Biomedical SciencesLi Ka Shing Faculty of MedicineThe University of Hong KongS.A.R. Hong KongChina
| | - Agnieszka Sekowska
- AMAbiotics SASInstitut Cochin24 rue du Faubourg Saint‐Jacques75014ParisFrance
| | - Conghui You
- Shenzhen Key Laboratory of Microbial Genetic EngineeringCollege of Life Sciences and OceanologyShenzhen University1066 Xueyuan Rd518055ShenzhenChina
| |
Collapse
|
5
|
A SAM-I riboswitch with the ability to sense and respond to uncharged initiator tRNA. Nat Commun 2020; 11:2794. [PMID: 32493973 PMCID: PMC7270179 DOI: 10.1038/s41467-020-16417-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 04/29/2020] [Indexed: 11/29/2022] Open
Abstract
All known riboswitches use their aptamer to senese one metabolite signal and their expression platform to regulate gene expression. Here, we characterize a SAM-I riboswitch (SAM-IXcc) from the Xanthomonas campestris that regulates methionine synthesis via the met operon. In vitro and in vivo experiments show that SAM-IXcc controls the met operon primarily at the translational level in response to cellular S-adenosylmethionine (SAM) levels. Biochemical and genetic data demonstrate that SAM-IXcc expression platform not only can repress gene expression in response to SAM binding to SAM-IXcc aptamer but also can sense and bind uncharged initiator Met tRNA, resulting in the sequestering of the anti-Shine-Dalgarno (SD) sequence and freeing the SD for translation initiation. These findings identify a SAM-I riboswitch with a dual functioning expression platform that regulates methionine synthesis through a previously unrecognized mechanism and discover a natural tRNA-sensing RNA element. This SAM-I riboswitch appears to be highly conserved in Xanthomonas species. Riboswitches consist of an aptamer domain and expression platform, which senses a signal and regulates gene expression, respectively. Here the authors show that the expression platform of a SAM-I riboswitch from the Gram-negative bacteria can sense and bind uncharged an initiator Met tRNA to control the met operon.
Collapse
|
6
|
Nieto-Domínguez M, Nikel PI. Intersecting Xenobiology and Neometabolism To Bring Novel Chemistries to Life. Chembiochem 2020; 21:2551-2571. [PMID: 32274875 DOI: 10.1002/cbic.202000091] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/09/2020] [Indexed: 12/19/2022]
Abstract
The diversity of life relies on a handful of chemical elements (carbon, oxygen, hydrogen, nitrogen, sulfur and phosphorus) as part of essential building blocks; some other atoms are needed to a lesser extent, but most of the remaining elements are excluded from biology. This circumstance limits the scope of biochemical reactions in extant metabolism - yet it offers a phenomenal playground for synthetic biology. Xenobiology aims to bring novel bricks to life that could be exploited for (xeno)metabolite synthesis. In particular, the assembly of novel pathways engineered to handle nonbiological elements (neometabolism) will broaden chemical space beyond the reach of natural evolution. In this review, xeno-elements that could be blended into nature's biosynthetic portfolio are discussed together with their physicochemical properties and tools and strategies to incorporate them into biochemistry. We argue that current bioproduction methods can be revolutionized by bridging xenobiology and neometabolism for the synthesis of new-to-nature molecules, such as organohalides.
Collapse
Affiliation(s)
- Manuel Nieto-Domínguez
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| |
Collapse
|
7
|
Markakis K, Lowe PT, Davison‐Gates L, O'Hagan D, Rosser SJ, Elfick A. An Engineered
E. coli
Strain for Direct in Vivo Fluorination. Chembiochem 2020; 21:1856-1860. [DOI: 10.1002/cbic.202000051] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Indexed: 02/04/2023]
Affiliation(s)
- Konstantinos Markakis
- Institute for BioengineeringSchool of EngineeringUniversity of Edinburgh Faraday Building King's Buildings Colin Maclaurin Road Edinburgh EH9 3DW UK
| | - Phillip T. Lowe
- School of ChemistryUniversity of St. Andrews Purdie Building North Haugh St. Andrews KY16 9ST UK
| | - Liam Davison‐Gates
- Institute for BioengineeringSchool of EngineeringUniversity of Edinburgh Faraday Building King's Buildings Colin Maclaurin Road Edinburgh EH9 3DW UK
| | - David O'Hagan
- School of ChemistryUniversity of St. Andrews Purdie Building North Haugh St. Andrews KY16 9ST UK
| | - Susan J. Rosser
- School of Biological SciencesThe University of Edinburgh Roger Land Building The King's Buildings Alexander Crum Brown Road Edinburgh EH9 3FF UK
| | - Alistair Elfick
- Institute for BioengineeringSchool of EngineeringUniversity of Edinburgh Faraday Building King's Buildings Colin Maclaurin Road Edinburgh EH9 3DW UK
| |
Collapse
|
8
|
Kriner MA, Subramaniam AR. The serine transporter SdaC prevents cell lysis upon glucose depletion in Escherichia coli. Microbiologyopen 2019; 9:e960. [PMID: 31680488 PMCID: PMC7002108 DOI: 10.1002/mbo3.960] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/25/2019] [Accepted: 10/09/2019] [Indexed: 11/10/2022] Open
Abstract
The amino acid serine plays diverse metabolic roles, yet bacteria actively degrade exogenously provided serine via deamination to pyruvate. Serine deamination is thought to be a detoxification mechanism due to the ability of serine to inhibit several biosynthetic reactions, but this pathway remains highly active even in nutrient-replete conditions. While investigating the physiological roles of serine deamination in different growth conditions, we discovered that Escherichia coli cells lacking the sdaCB operon, which encodes the serine transporter SdaC and the serine deaminase SdaB, lyse upon glucose depletion in a medium containing no exogenous serine but all other amino acids and nucleobases. Unexpectedly, this lysis phenotype can be recapitulated by deleting sdaC alone and can be rescued by heterologous expression of SdaC. Lysis of ΔsdaC cells can be prevented by omitting glycine from the medium, inhibiting the glycine cleavage system, or by increasing alanine availability. Together, our results reveal that the serine transporter SdaC plays a critical role in maintaining amino acid homeostasis during shifts in nutrient availability in E. coli.
Collapse
Affiliation(s)
- Michelle A Kriner
- Basic Sciences Division and Computational Biology Section of the Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Arvind R Subramaniam
- Basic Sciences Division and Computational Biology Section of the Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| |
Collapse
|
9
|
A CsrA-Binding, trans-Acting sRNA of Coxiella burnetii Is Necessary for Optimal Intracellular Growth and Vacuole Formation during Early Infection of Host Cells. J Bacteriol 2019; 201:JB.00524-19. [PMID: 31451541 DOI: 10.1128/jb.00524-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 08/17/2019] [Indexed: 11/20/2022] Open
Abstract
Coxiella burnetii is an obligate intracellular gammaproteobacterium and zoonotic agent of Q fever. We previously identified 15 small noncoding RNAs (sRNAs) of C. burnetii One of them, CbsR12 (Coxiella burnetii small RNA 12), is highly transcribed during axenic growth and becomes more prominent during infection of cultured mammalian cells. Secondary structure predictions of CbsR12 revealed four putative CsrA-binding sites in stem loops with consensus AGGA/ANGGA motifs. We subsequently determined that CbsR12 binds to recombinant C. burnetii CsrA-2, but not CsrA-1, proteins in vitro Moreover, through a combination of in vitro and cell culture assays, we identified several in trans mRNA targets of CbsR12. Of these, we determined that CbsR12 binds and upregulates translation of carA transcripts coding for carbamoyl phosphate synthetase A, an enzyme that catalyzes the first step of pyrimidine biosynthesis. In addition, CbsR12 binds and downregulates translation of metK transcripts coding for S-adenosylmethionine synthetase, a component of the methionine cycle. Furthermore, we found that CbsR12 binds to and downregulates the quantity of cvpD transcripts, coding for a type IVB effector protein, in mammalian cell culture. Finally, we found that CbsR12 is necessary for expansion of Coxiella-containing vacuoles and affects growth rates in a dose-dependent manner in the early phase of infecting THP-1 cells. This is the first characterization of a trans-acting sRNA of C. burnetii and the first example of a bacterial sRNA that regulates both CarA and MetK synthesis. CbsR12 is one of only a few identified trans-acting sRNAs that interacts with CsrA.IMPORTANCE Regulation of metabolism and virulence in C. burnetii is not well understood. Here, we show that C. burnetii small RNA 12 (CbsR12) is highly transcribed in the metabolically active large-cell variant compared to the nonreplicative small-cell variant. We show that CbsR12 directly regulates several genes involved in metabolism, along with a type IV effector gene, in trans In addition, we demonstrate that CbsR12 binds to CsrA-2 in vitro and induces autoaggregation and biofilm formation when transcribed ectopically in Escherichia coli, consistent with other CsrA-sequestering sRNAs. These results implicate CbsR12 in the indirect regulation of a number of genes via CsrA-mediated regulatory activities. The results also support CbsR12 as a crucial regulatory component early on in a mammalian cell infection.
Collapse
|
10
|
Keller S, Wetterhorn KM, Vecellio A, Seeger M, Rayment I, Schubert T. Structural and functional analysis of an l-serine O-phosphate decarboxylase involved in norcobamide biosynthesis. FEBS Lett 2019; 593:3040-3053. [PMID: 31325159 DOI: 10.1002/1873-3468.13543] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/05/2019] [Accepted: 07/16/2019] [Indexed: 11/11/2022]
Abstract
Structural diversity of natural cobamides (Cbas, B12 vitamers) is limited to the nucleotide loop. The loop is connected to the cobalt-containing corrin ring via an (R)-1-aminopropan-2-ol O-2-phosphate (AP-P) linker moiety. AP-P is produced by the l-threonine O-3-phosphate (l-Thr-P) decarboxylase CobD. Here, the CobD homolog SMUL_1544 of the organohalide-respiring epsilonproteobacterium Sulfurospirillum multivorans was characterized as a decarboxylase that produces ethanolamine O-phosphate (EA-P) from l-serine O-phosphate (l-Ser-P). EA-P is assumed to serve as precursor of the linker moiety of norcobamides that function as cofactors in the respiratory reductive dehalogenase. SMUL_1544 (SmCobD) is a pyridoxal-5'-phosphate (PLP)-containing enzyme. The structural analysis of the SmCobD apoprotein combined with the characterization of truncated mutant proteins uncovered a role of the SmCobD N-terminus in efficient l-Ser-P conversion.
Collapse
Affiliation(s)
- Sebastian Keller
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Karl M Wetterhorn
- Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin-Madison, WI, USA
| | - Alison Vecellio
- Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin-Madison, WI, USA
| | - Mark Seeger
- Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin-Madison, WI, USA
| | - Ivan Rayment
- Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin-Madison, WI, USA
| | - Torsten Schubert
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
11
|
Major P, Embley TM, Williams TA. Phylogenetic Diversity of NTT Nucleotide Transport Proteins in Free-Living and Parasitic Bacteria and Eukaryotes. Genome Biol Evol 2018; 9:480-487. [PMID: 28164241 PMCID: PMC5381601 DOI: 10.1093/gbe/evx015] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2017] [Indexed: 01/24/2023] Open
Abstract
Plasma membrane-located nucleotide transport proteins (NTTs) underpin the lifestyle of important obligate intracellular bacterial and eukaryotic pathogens by importing energy and nucleotides from infected host cells that the pathogens can no longer make for themselves. As such their presence is often seen as a hallmark of an intracellular lifestyle associated with reductive genome evolution and loss of primary biosynthetic pathways. Here, we investigate the phylogenetic distribution of NTT sequences across the domains of cellular life. Our analysis reveals an unexpectedly broad distribution of NTT genes in both host-associated and free-living prokaryotes and eukaryotes. We also identify cases of within-bacteria and bacteria-to-eukaryote horizontal NTT transfer, including into the base of the oomycetes, a major clade of parasitic eukaryotes. In addition to identifying sequences that retain the canonical NTT structure, we detected NTT gene fusions with HEAT-repeat and cyclic nucleotide binding domains in Cyanobacteria, pathogenic Chlamydiae and Oomycetes. Our results suggest that NTTs are versatile functional modules with a much wider distribution and a broader range of potential roles than has previously been appreciated.
Collapse
Affiliation(s)
- Peter Major
- Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne, United Kingdom
| | - T Martin Embley
- Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne, United Kingdom
| | - Tom A Williams
- School of Earth Sciences, University of Bristol, United Kingdom
| |
Collapse
|
12
|
Parungao GG, Zhao M, Wang Q, Zano SP, Viola RE, Blumenthal RM. Complementation of a metK-deficient E. coli strain with heterologous AdoMet synthetase genes. MICROBIOLOGY-SGM 2017; 163:1812-1821. [PMID: 29111970 DOI: 10.1099/mic.0.000565] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
S-adenosyl-l-methionine (AdoMet) is an essential metabolite, playing a wide variety of metabolic roles. The enzyme that produces AdoMet from l-methionine and ATP (methionine adenosyltransferase, MAT) is thus an attractive target for anti-cancer and antimicrobial agents. It would be very useful to have a system that allows rapid identification of species-specific inhibitors of this essential enzyme. A previously generated E. coli strain, lacking MAT (∆metK) but containing a heterologous AdoMet transporter, was successfully complemented with heterologous metK genes from several bacterial pathogens, as well as with MAT genes from a fungal pathogen and Homo sapiens. The nine tested genes, which vary in both sequence and kinetic properties, all complemented strain MOB1490 well in rich medium. When these strains were grown in glucose minimal medium, growth delays or defects were observed with some specific metK genes, defects that were dramatically reduced if l-methionine was added to the medium.
Collapse
Affiliation(s)
- Gwenn G Parungao
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH 43606, USA
| | - Mojun Zhao
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH 43606, USA.,Present address: Department of Pathology, Valley Pathologists Inc., Miami Valley Hospital, Dayton, OH 45409, USA
| | - Qinzhe Wang
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH 43606, USA
| | - Stephen P Zano
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH 43606, USA
| | - Ronald E Viola
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH 43606, USA
| | - Robert M Blumenthal
- Department of Medical Microbiology and Immunology and Program in Bioinformatics, University of Toledo Health Sciences Campus, Toledo, OH 43614, USA
| |
Collapse
|
13
|
Driscoll TP, Verhoeve VI, Guillotte ML, Lehman SS, Rennoll SA, Beier-Sexton M, Rahman MS, Azad AF, Gillespie JJ. Wholly Rickettsia! Reconstructed Metabolic Profile of the Quintessential Bacterial Parasite of Eukaryotic Cells. mBio 2017; 8:e00859-17. [PMID: 28951473 PMCID: PMC5615194 DOI: 10.1128/mbio.00859-17] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 08/15/2017] [Indexed: 02/02/2023] Open
Abstract
Reductive genome evolution has purged many metabolic pathways from obligate intracellular Rickettsia (Alphaproteobacteria; Rickettsiaceae). While some aspects of host-dependent rickettsial metabolism have been characterized, the array of host-acquired metabolites and their cognate transporters remains unknown. This dearth of information has thwarted efforts to obtain an axenic Rickettsia culture, a major impediment to conventional genetic approaches. Using phylogenomics and computational pathway analysis, we reconstructed the Rickettsia metabolic and transport network, identifying 51 host-acquired metabolites (only 21 previously characterized) needed to compensate for degraded biosynthesis pathways. In the absence of glycolysis and the pentose phosphate pathway, cell envelope glycoconjugates are synthesized from three imported host sugars, with a range of additional host-acquired metabolites fueling the tricarboxylic acid cycle. Fatty acid and glycerophospholipid pathways also initiate from host precursors, and import of both isoprenes and terpenoids is required for the synthesis of ubiquinone and the lipid carrier of lipid I and O-antigen. Unlike metabolite-provisioning bacterial symbionts of arthropods, rickettsiae cannot synthesize B vitamins or most other cofactors, accentuating their parasitic nature. Six biosynthesis pathways contain holes (missing enzymes); similar patterns in taxonomically diverse bacteria suggest alternative enzymes that await discovery. A paucity of characterized and predicted transporters emphasizes the knowledge gap concerning how rickettsiae import host metabolites, some of which are large and not known to be transported by bacteria. Collectively, our reconstructed metabolic network offers clues to how rickettsiae hijack host metabolic pathways. This blueprint for growth determinants is an important step toward the design of axenic media to rescue rickettsiae from the eukaryotic cell.IMPORTANCE A hallmark of obligate intracellular bacteria is the tradeoff of metabolic genes for the ability to acquire host metabolites. For species of Rickettsia, arthropod-borne parasites with the potential to cause serious human disease, the range of pilfered host metabolites is unknown. This information is critical for dissociating rickettsiae from eukaryotic cells to facilitate rickettsial genetic manipulation. In this study, we reconstructed the Rickettsia metabolic network and identified 51 host metabolites required to compensate patchwork Rickettsia biosynthesis pathways. Remarkably, some metabolites are not known to be transported by any bacteria, and overall, few cognate transporters were identified. Several pathways contain missing enzymes, yet similar pathways in unrelated bacteria indicate convergence and possible novel enzymes awaiting characterization. Our work illuminates the parasitic nature by which rickettsiae hijack host metabolism to counterbalance numerous disintegrated biosynthesis pathways that have arisen through evolution within the eukaryotic cell. This metabolic blueprint reveals what a Rickettsia axenic medium might entail.
Collapse
Affiliation(s)
- Timothy P Driscoll
- Department of Biology, West Virginia University, Morgantown, West Virginia, USA
| | - Victoria I Verhoeve
- Department of Biology, West Virginia University, Morgantown, West Virginia, USA
| | - Mark L Guillotte
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Stephanie S Lehman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Sherri A Rennoll
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Magda Beier-Sexton
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - M Sayeedur Rahman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Abdu F Azad
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Joseph J Gillespie
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
14
|
Genomes of Candidatus Wolbachia bourtzisii wDacA and Candidatus Wolbachia pipientis wDacB from the Cochineal Insect Dactylopius coccus (Hemiptera: Dactylopiidae). G3-GENES GENOMES GENETICS 2016; 6:3343-3349. [PMID: 27543297 PMCID: PMC5068953 DOI: 10.1534/g3.116.031237] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dactylopius species, known as cochineal insects, are the source of the carminic acid dye used worldwide. The presence of two Wolbachia strains in Dactylopius coccus from Mexico was revealed by PCR amplification of wsp and sequencing of 16S rRNA genes. A metagenome analysis recovered the genome sequences of Candidatus Wolbachia bourtzisii wDacA (supergroup A) and Candidatus Wolbachia pipientis wDacB (supergroup B). Genome read coverage, as well as 16S rRNA clone sequencing, revealed that wDacB was more abundant than wDacA. The strains shared similar predicted metabolic capabilities that are common to Wolbachia, including riboflavin, ubiquinone, and heme biosynthesis, but lacked other vitamin and cofactor biosynthesis as well as glycolysis, the oxidative pentose phosphate pathway, and sugar uptake systems. A complete tricarboxylic acid cycle and gluconeogenesis were predicted as well as limited amino acid biosynthesis. Uptake and catabolism of proline were evidenced in Dactylopius Wolbachia strains. Both strains possessed WO-like phage regions and type I and type IV secretion systems. Several efflux systems found suggested the existence of metal toxicity within their host. Besides already described putative virulence factors like ankyrin domain proteins, VlrC homologs, and patatin-like proteins, putative novel virulence factors related to those found in intracellular pathogens like Legionella and Mycobacterium are highlighted for the first time in Wolbachia. Candidate genes identified in other Wolbachia that are likely involved in cytoplasmic incompatibility were found in wDacB but not in wDacA.
Collapse
|
15
|
Metabolic Adaptations of Intracellullar Bacterial Pathogens and their Mammalian Host Cells during Infection ("Pathometabolism"). Microbiol Spectr 2016; 3. [PMID: 26185075 DOI: 10.1128/microbiolspec.mbp-0002-2014] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Several bacterial pathogens that cause severe infections in warm-blooded animals, including humans, have the potential to actively invade host cells and to efficiently replicate either in the cytosol or in specialized vacuoles of the mammalian cells. The interaction between these intracellular bacterial pathogens and the host cells always leads to multiple physiological changes in both interacting partners, including complex metabolic adaptation reactions aimed to promote proliferation of the pathogen within different compartments of the host cells. In this chapter, we discuss the necessary nutrients and metabolic pathways used by some selected cytosolic and vacuolar intracellular pathogens and--when available--the links between the intracellular bacterial metabolism and the expression of the virulence genes required for the intracellular bacterial replication cycle. Furthermore, we address the growing evidence that pathogen-specific factors may also trigger metabolic responses of the infected mammalian cells affecting the carbon and nitrogen metabolism as well as defense reactions. We also point out that many studies on the metabolic host cell responses induced by the pathogens have to be scrutinized due to the use of established cell lines as model host cells, as these cells are (in the majority) cancer cells that exhibit a dysregulated primary carbon metabolism. As the exact knowledge of the metabolic host cell responses may also provide new concepts for antibacterial therapies, there is undoubtedly an urgent need for host cell models that more closely reflect the in vivo infection conditions.
Collapse
|
16
|
Zhao M, Wijayasinghe YS, Bhansali P, Viola RE, Blumenthal RM. A surprising range of modified-methionyl S-adenosylmethionine analogues support bacterial growth. MICROBIOLOGY-SGM 2015; 161:674-82. [PMID: 25717169 DOI: 10.1099/mic.0.000034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
S-Adenosyl-l-methionine (AdoMet) is an essential metabolite, serving in a very wide variety of metabolic reactions. The enzyme that produces AdoMet from l-methionine and ATP (methionine adenosyltransferase, MAT) is thus an attractive target for antimicrobial agents. We previously showed that a variety of methionine analogues are MAT substrates, yielding AdoMet analogues that function in specific methyltransfer reactions. However, this left open the question of whether the modified AdoMet molecules could support bacterial growth, meaning that they functioned in the full range of essential AdoMet-dependent reactions. The answer matters both for insight into the functional flexibility of key metabolic enzymes, and for drug design strategies for both MAT inhibitors and selectively toxic MAT substrates. In this study, methionine analogues were converted in vitro into AdoMet analogues, and tested with an Escherichia coli strain lacking MAT (ΔmetK) but that produces a heterologous AdoMet transporter. Growth that yields viable, morphologically normal cells provides exceptionally robust evidence that the analogue functions in every essential reaction in which AdoMet participates. Overall, the S-adenosylated derivatives of all tested l-methionine analogues modified at the carboxyl moiety, and some others as well, showed in vivo functionality sufficient to allow good growth in both rich and minimal media, with high viability and morphological normality. As the analogues were chosen based on incompatibility with the reactions via which AdoMet is used to produce acylhomoserine lactones (AHLs) for quorum sensing, these results support the possibility of using this route to selectively interfere with AHL biosynthesis without inhibiting bacterial growth.
Collapse
Affiliation(s)
- Mojun Zhao
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH 43606, USA
| | | | - Pravin Bhansali
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH 43606, USA
| | - Ronald E Viola
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH 43606, USA
| | - Robert M Blumenthal
- Department of Medical Microbiology and Immunology, and Program in Bioinformatics, University of Toledo Health Sciences Campus, Toledo, OH 43614, USA
| |
Collapse
|
17
|
El-Hajj ZW, Newman EB. How much territory can a single E. coli cell control? Front Microbiol 2015; 6:309. [PMID: 25954251 PMCID: PMC4404868 DOI: 10.3389/fmicb.2015.00309] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 03/29/2015] [Indexed: 11/20/2022] Open
Abstract
Bacteria have been traditionally classified in terms of size and shape and are best known for their very small size. Escherichia coli cells in particular are small rods, each 1–2 μ. However, the size varies with the medium, and faster growing cells are larger because they must have more ribosomes to make more protoplasm per unit time, and ribosomes take up space. Indeed, Maaløe’s experiments on how E. coli establishes its size began with shifts between rich and poor media. Recently much larger bacteria have been described, including Epulopiscium fishelsoni at 700 μm and Thiomargarita namibiensis at 750 μm. These are not only much longer than E. coli cells but also much wider, necessitating considerable intracellular organization. Epulopiscium cells for instance, at 80 μm wide, enclose a large enough volume of cytoplasm to present it with major transport problems. This review surveys E. coli cells much longer than those which grow in nature and in usual lab cultures. These include cells mutated in a single gene (metK) which are 2–4 × longer than their non-mutated parent. This metK mutant stops dividing when slowly starved of S-adenosylmethionine but continues to elongate to 50 μm and more. FtsZ mutants have been routinely isolated as long cells which form during growth at 42°C. The SOS response is a well-characterized regulatory network that is activated in response to DNA damage and also results in cell elongation. Our champion elongated E. coli is a metK strain with a further, as yet unidentified mutation, which reaches 750 μm with no internal divisions and no increase in width.
Collapse
Affiliation(s)
- Ziad W El-Hajj
- Department of Biology, Concordia University , Montreal, QC, Canada
| | - Elaine B Newman
- Department of Biology, Concordia University , Montreal, QC, Canada
| |
Collapse
|
18
|
High-efficiency scarless genetic modification in Escherichia coli by using lambda red recombination and I-SceI cleavage. Appl Environ Microbiol 2014; 80:3826-34. [PMID: 24747889 DOI: 10.1128/aem.00313-14] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genetic modifications of bacterial chromosomes are important for both fundamental and applied research. In this study, we developed an efficient, easy-to-use system for genetic modification of the Escherichia coli chromosome, a two-plasmid method involving lambda Red (λ-Red) recombination and I-SceI cleavage. An intermediate strain is generated by integration of a resistance marker gene(s) and I-SceI recognition sites in or near the target gene locus, using λ-Red PCR targeting. The intermediate strain is transformed with a donor plasmid carrying the target gene fragment with the desired modification flanked by I-SceI recognition sites, together with a bifunctional helper plasmid for λ-Red recombination and I-SceI endonuclease. I-SceI cleavage of the chromosome and the donor plasmid allows λ-Red recombination between chromosomal breaks and linear double-stranded DNA from the donor plasmid. Genetic modifications are introduced into the chromosome, and the placement of the I-SceI sites determines the nature of the recombination and the modification. This method was successfully used for cadA knockout, gdhA knock-in, seamless deletion of pepD, site-directed mutagenesis of the essential metK gene, and replacement of metK with the Rickettsia S-adenosylmethionine transporter gene. This effective method can be used with both essential and nonessential gene modifications and will benefit basic and applied genetic research.
Collapse
|
19
|
Sahni SK, Narra HP, Sahni A, Walker DH. Recent molecular insights into rickettsial pathogenesis and immunity. Future Microbiol 2014; 8:1265-88. [PMID: 24059918 DOI: 10.2217/fmb.13.102] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Human infections with arthropod-borne Rickettsia species remain a major global health issue, causing significant morbidity and mortality. Epidemic typhus due to Rickettsia prowazekii has an established reputation as the 'scourge of armies', and as a major determinant of significant 'historical turning points'. No suitable vaccines for human use are currently available to prevent rickettsial diseases. The unique lifestyle features of rickettsiae include obligate intracellular parasitism, intracytoplasmic niche within the host cell, predilection for infection of microvascular endothelium in mammalian hosts, association with arthropods and the tendency for genomic reduction. The fundamental research in the field of Rickettsiology has witnessed significant recent progress in the areas of pathogen adhesion/invasion and host immune responses, as well as the genomics, proteomics, metabolomics, phylogenetics, motility and molecular manipulation of important rickettsial pathogens. The focus of this review article is to capture a snapshot of the latest developments pertaining to the mechanisms of rickettsial pathogenesis and immunity.
Collapse
Affiliation(s)
- Sanjeev K Sahni
- Department of Pathology & Institute for Human Infections & Immunity, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
| | | | | | | |
Collapse
|
20
|
El-Hajj ZW, Reyes-Lamothe R, Newman EB. Cell division, one-carbon metabolism and methionine synthesis in a metK-deficient Escherichia coli mutant, and a role for MmuM. Microbiology (Reading) 2013; 159:2036-2048. [DOI: 10.1099/mic.0.069682-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Z. W. El-Hajj
- Biology Department, Concordia University, 1455 de Maisonneuve Ave., Montreal, Quebec H3G 1M8, Canada
| | - R. Reyes-Lamothe
- Biology Department, Concordia University, 1455 de Maisonneuve Ave., Montreal, Quebec H3G 1M8, Canada
| | - E. B. Newman
- Biology Department, Concordia University, 1455 de Maisonneuve Ave., Montreal, Quebec H3G 1M8, Canada
| |
Collapse
|
21
|
Dual mechanisms of metabolite acquisition by the obligate intracytosolic pathogen Rickettsia prowazekii reveal novel aspects of triose phosphate transport. J Bacteriol 2013; 195:3752-60. [PMID: 23772074 DOI: 10.1128/jb.00404-13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rickettsia prowazekii is an obligate intracytosolic pathogen and the causative agent of epidemic typhus fever in humans. As an evolutionary model of intracellular pathogenesis, rickettsiae are notorious for their use of transport systems that parasitize eukaryotic host cell biochemical pathways. Rickettsial transport systems for substrates found only in eukaryotic cell cytoplasm are uncommon among free-living microorganisms and often possess distinctive mechanisms. We previously reported that R. prowazekii acquires triose phosphates for phospholipid biosynthesis via the coordinated activities of a novel dihydroxyacetone phosphate transport system and an sn-glycerol-3-phosphate dehydrogenase (K. M. Frohlich et al., J. Bacteriol. 192:4281-4288, 2010). In the present study, we have determined that R. prowazekii utilizes a second, independent triose phosphate acquisition pathway whereby sn-glycerol-3-phosphate is directly transported and incorporated into phospholipids. Herein we describe the sn-glycerol-3-phosphate and dihydroxyacetone phosphate transport systems in isolated R. prowazekii with respect to kinetics, energy coupling, transport mechanisms, and substrate specificity. These data suggest the existence of multiple rickettsial triose phosphate transport systems. Furthermore, the R. prowazekii dihydroxyacetone phosphate transport systems displayed unexpected mechanistic properties compared to well-characterized triose phosphate transport systems from plant plastids. Questions regarding possible roles for dual-substrate acquisition pathways as metabolic virulence factors in the context of a pathogen undergoing reductive evolution are discussed.
Collapse
|
22
|
The endosymbiont Amoebophilus asiaticus encodes an S-adenosylmethionine carrier that compensates for its missing methylation cycle. J Bacteriol 2013; 195:3183-92. [PMID: 23667233 DOI: 10.1128/jb.00195-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
All organisms require S-adenosylmethionine (SAM) as a methyl group donor and cofactor for various biologically important processes. However, certain obligate intracellular parasitic bacteria and also the amoeba symbiont Amoebophilus asiaticus have lost the capacity to synthesize this cofactor and hence rely on its uptake from host cells. Genome analyses revealed that A. asiaticus encodes a putative SAM transporter. The corresponding protein was functionally characterized in Escherichia coli: import studies demonstrated that it is specific for SAM and S-adenosylhomocysteine (SAH), the end product of methylation. SAM transport activity was shown to be highly dependent on the presence of a membrane potential, and by targeted analyses, we obtained direct evidence for a proton-driven SAM/SAH antiport mechanism. Sequence analyses suggest that SAM carriers from Rickettsiales might operate in a similar way, in contrast to chlamydial SAM transporters. SAM/SAH antiport is of high physiological importance, as it allows for compensation for the missing methylation cycle. The identification of a SAM transporter in A. asiaticus belonging to the Bacteroidetes phylum demonstrates that SAM transport is more widely spread than previously assumed and occurs in bacteria belonging to three different phyla (Proteobacteria, Chlamydiae, and Bacteroidetes).
Collapse
|
23
|
A Rickettsia genome overrun by mobile genetic elements provides insight into the acquisition of genes characteristic of an obligate intracellular lifestyle. J Bacteriol 2011; 194:376-94. [PMID: 22056929 DOI: 10.1128/jb.06244-11] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We present the draft genome for the Rickettsia endosymbiont of Ixodes scapularis (REIS), a symbiont of the deer tick vector of Lyme disease in North America. Among Rickettsia species (Alphaproteobacteria: Rickettsiales), REIS has the largest genome sequenced to date (>2 Mb) and contains 2,309 genes across the chromosome and four plasmids (pREIS1 to pREIS4). The most remarkable finding within the REIS genome is the extraordinary proliferation of mobile genetic elements (MGEs), which contributes to a limited synteny with other Rickettsia genomes. In particular, an integrative conjugative element named RAGE (for Rickettsiales amplified genetic element), previously identified in scrub typhus rickettsiae (Orientia tsutsugamushi) genomes, is present on both the REIS chromosome and plasmids. Unlike the pseudogene-laden RAGEs of O. tsutsugamushi, REIS encodes nine conserved RAGEs that include F-like type IV secretion systems similar to that of the tra genes encoded in the Rickettsia bellii and R. massiliae genomes. An unparalleled abundance of encoded transposases (>650) relative to genome size, together with the RAGEs and other MGEs, comprise ~35% of the total genome, making REIS one of the most plastic and repetitive bacterial genomes sequenced to date. We present evidence that conserved rickettsial genes associated with an intracellular lifestyle were acquired via MGEs, especially the RAGE, through a continuum of genomic invasions. Robust phylogeny estimation suggests REIS is ancestral to the virulent spotted fever group of rickettsiae. As REIS is not known to invade vertebrate cells and has no known pathogenic effects on I. scapularis, its genome sequence provides insight on the origin of mechanisms of rickettsial pathogenicity.
Collapse
|
24
|
Pajares MA, Markham GD. Methionine adenosyltransferase (s-adenosylmethionine synthetase). ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2011; 78:449-521. [PMID: 22220481 DOI: 10.1002/9781118105771.ch11] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- María A Pajares
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Madrid Spain
| | | |
Collapse
|
25
|
Differential proteomic analysis of Rickettsia prowazekii propagated in diverse host backgrounds. Appl Environ Microbiol 2011; 77:4712-8. [PMID: 21642410 DOI: 10.1128/aem.05140-11] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The obligate intracellular growth of Rickettsia prowazekii places severe restrictions on the analysis of rickettsial gene expression. With a small genome, predicted to code for 835 proteins, identifying which proteins are differentially expressed in rickettsiae that are isolated from different hosts or that vary in virulence is critical to an understanding of rickettsial pathogenicity. We employed a liquid chromatography (LC)-linear trap quadrupole (LTQ)-Orbitrap mass spectrometer for simultaneous acquisition of quantitative mass spectrometry (MS)-only data and tandem mass spectrometry (MS-MS) sequence data. With the use of a combination of commercially available algorithms and in-house software, quantitative MS-only data and comprehensive peptide coverage generated from MS-MS were integrated, resulting in the assignment of peptide identities with intensity values, allowing for the differential comparison of complex protein samples. With the use of these protocols, it was possible to directly compare protein abundance and analyze changes in the total proteome profile of R. prowazekii grown in different host backgrounds. Total protein extracted from rickettsiae grown in murine, tick, and insect cell lines or hen egg yolk sacs was analyzed. Here, we report the fold changes, including an upregulation of shock-related proteins, in rickettsiae cultivated in tissue culture compared to the level for rickettsiae harvested from hen yolk sacs. The ability to directly compare, in a complex sample, differential rickettsial protein expression provides a snapshot of host-specific proteomic profiles that will help to identify proteins important in intracellular growth and virulence.
Collapse
|
26
|
Identification and characterization of the Chlamydia trachomatis L2 S-adenosylmethionine transporter. mBio 2011; 2:e00051-11. [PMID: 21558433 PMCID: PMC3104491 DOI: 10.1128/mbio.00051-11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Methylation is essential to the physiology of all cells, including the obligate intracellular bacterium Chlamydia. Nevertheless, the methylation cycle is under strong reductive evolutionary pressure in Chlamydia. Only Parachlamydia acanthamoebae and Waddlia chondrophila genome sequences harbor homologs to metK, encoding the S-adenosylmethionine (SAM) synthetase required for synthesis of SAM, and to sahH, which encodes the S-adenosylhomocysteine (SAH) hydrolase required for detoxification of SAH formed after the transfer of the methyl group from SAM to the methylation substrate. Transformation of a conditional-lethal ΔmetK mutant of Escherichia coli with a genomic library of Chlamydia trachomatis L2 identified CTL843 as a putative SAM transporter based on its ability to allow the mutant to survive metK deficiency only in the presence of extracellular SAM. CTL843 belongs to the drug/metabolite superfamily of transporters and allowed E. coli to transport S-adenosyl-L-[methyl-(14)C]methionine with an apparent K(m) of 5.9 µM and a V(max) of 32 pmol min(-1) mg(-1). Moreover, CTL843 conferred a growth advantage to a Δpfs E. coli mutant that lost the ability to detoxify SAH, while competition and back-transport experiments further implied that SAH was an additional substrate for CTL843. We propose that CTL843 acts as a SAM/SAH transporter (SAMHT) serving a dual function by allowing Chlamydia to acquire SAM from the host cell and excrete the toxic by-product SAH. The demonstration of a functional SAMHT provides further insight into the reductive evolution associated with the obligate intracellular lifestyle of Chlamydia and identifies an excellent chemotherapeutic target. IMPORTANCE Obligate intracellular parasites like Chlamydia have followed a reductive evolutionary path that has made them almost totally dependent on their host cell for nutrients. In this work, we identify a unique transporter of a metabolite essential for all methylation reactions that potentially bypasses the need for two enzymatic reactions in Chlamydia. The transporter, CTL843, allows Chlamydia trachomatis L2 to steal S-adenosylmethionine (SAM) from the eukaryotic host cytosol and to likely remove the toxic S-adenosylhomocysteine (SAH) formed when SAM loses its methyl group, acting as a SAM/SAH transporter (SAMHT). In addition to reflecting the adaptation of Chlamydia to an obligate intracellular lifestyle, the specific and central roles of SAMHT in Chlamydia metabolism provide a target for the development of therapeutic agents for the treatment of chlamydial infections.
Collapse
|
27
|
Eitinger T, Rodionov DA, Grote M, Schneider E. Canonical and ECF-type ATP-binding cassette importers in prokaryotes: diversity in modular organization and cellular functions. FEMS Microbiol Rev 2011; 35:3-67. [PMID: 20497229 DOI: 10.1111/j.1574-6976.2010.00230.x] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- Thomas Eitinger
- Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | | | | | | |
Collapse
|
28
|
Deficiency in L-serine deaminase interferes with one-carbon metabolism and cell wall synthesis in Escherichia coli K-12. J Bacteriol 2010; 192:5515-25. [PMID: 20729359 DOI: 10.1128/jb.00748-10] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli K-12 provided with glucose and a mixture of amino acids depletes L-serine more quickly than any other amino acid even in the presence of ammonium sulfate. A mutant without three 4Fe4S L-serine deaminases (SdaA, SdaB, and TdcG) of E. coli K-12 is unable to do this. The high level of L-serine that accumulates when such a mutant is exposed to amino acid mixtures starves the cells for C(1) units and interferes with cell wall synthesis. We suggest that at high concentrations, L-serine decreases synthesis of UDP-N-acetylmuramate-L-alanine by the murC-encoded ligase, weakening the cell wall and producing misshapen cells and lysis. The inhibition by high L-serine is overcome in several ways: by a large concentration of L-alanine, by overproducing MurC together with a low concentration of L-alanine, and by overproducing FtsW, thus promoting septal assembly and also by overexpression of the glycine cleavage operon. S-Adenosylmethionine reduces lysis and allows an extensive increase in biomass without improving cell division. This suggests that E. coli has a metabolic trigger for cell division. Without that reaction, if no other inhibition occurs, other metabolic functions can continue and cells can elongate and replicate their DNA, reaching at least 180 times their usual length, but cannot divide.
Collapse
|
29
|
Rickettsia prowazekii uses an sn-glycerol-3-phosphate dehydrogenase and a novel dihydroxyacetone phosphate transport system to supply triose phosphate for phospholipid biosynthesis. J Bacteriol 2010; 192:4281-8. [PMID: 20581209 DOI: 10.1128/jb.00443-10] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rickettsia prowazekii is an obligate intracellular pathogen that possesses a small genome and a highly refined repertoire of biochemical pathways compared to those of free-living bacteria. Here we describe a novel biochemical pathway that relies on rickettsial transport of host cytosolic dihydroxyacetone phosphate (DHAP) and its subsequent conversion to sn-glycerol-3-phosphate (G3P) for synthesis of phospholipids. This rickettsial pathway compensates for the evolutionary loss of rickettsial glycolysis/gluconeogenesis, the typical endogenous source of G3P. One of the components of this pathway is R. prowazekii open reading frame RP442, which is annotated GpsA, a G3P dehydrogenase (G3PDH). Purified recombinant rickettsial GpsA was shown to specifically catalyze the conversion of DHAP to G3P in vitro. The products of the GpsA assay were monitored spectrophotometrically, and the identity of the reaction product was verified by paper chromatography. In addition, heterologous expression of the R. prowazekii gpsA gene functioned to complement an Escherichia coli gpsA mutant. Furthermore, gpsA mRNA was detected in R. prowazekii purified from hen egg yolk sacs, and G3PDH activity was assayable in R. prowazekii lysed-cell extracts. Together, these data strongly suggested that R. prowazekii encodes and synthesizes a functional GpsA enzyme, yet R. prowazekii is unable to synthesize DHAP as a substrate for the GpsA enzymatic reaction. On the basis of the fact that intracellular organisms often avail themselves of resources in the host cell cytosol via the activity of novel carrier-mediated transport systems, we reasoned that R. prowazekii transports DHAP to supply substrate for GpsA. In support of this hypothesis, we show that purified R. prowazekii transported and incorporated DHAP into phospholipids, thus implicating a role for GpsA in vivo as part of a novel rickettsial G3P acquisition pathway for phospholipid biosynthesis.
Collapse
|
30
|
Dridi L, Ahmed Ouameur A, Ouellette M. High affinity S-Adenosylmethionine plasma membrane transporter of Leishmania is a member of the folate biopterin transporter (FBT) family. J Biol Chem 2010; 285:19767-75. [PMID: 20406813 PMCID: PMC2888387 DOI: 10.1074/jbc.m110.114520] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Revised: 04/12/2010] [Indexed: 11/06/2022] Open
Abstract
S-Adenosylmethionine (AdoMet) is an important methyl group donor that plays a central role in many essential biochemical processes. The parasite Leishmania can both synthesize and transport AdoMet. Leishmania cells resistant to the antifolate methotrexate due to a rearrangement in folate biopterin transporter (FBT) genes were cross-resistant to sinefungin, an AdoMet analogue. FBT gene rearrangements were also observed in Leishmania major cells selected for sinefungin resistance. One of the rearranged FBT genes corresponded to the main AdoMet transporter (AdoMetT1) of Leishmania as determined by gene transfection and gene inactivation experiments. AdoMetT1 was determined to be a high affinity plasma membrane transporter expressed constitutively throughout the growth phases of the parasite. Leishmania cells selected for resistance or naturally insensitive to sinefungin had lower expression of AdoMetT1. A new function in one carbon metabolism, also a pathway of interest for chemotherapeutic interventions, is described for a novel class of membrane proteins found in diverse organisms.
Collapse
Affiliation(s)
- Larbi Dridi
- From the Centre de Recherche en Infectiologie du CHUL, Université Laval, Québec City, Québec G1V 4G2, Canada
| | - Amin Ahmed Ouameur
- From the Centre de Recherche en Infectiologie du CHUL, Université Laval, Québec City, Québec G1V 4G2, Canada
| | - Marc Ouellette
- From the Centre de Recherche en Infectiologie du CHUL, Université Laval, Québec City, Québec G1V 4G2, Canada
| |
Collapse
|
31
|
Zhao XQ, Gust B, Heide L. S-Adenosylmethionine (SAM) and antibiotic biosynthesis: effect of external addition of SAM and of overexpression of SAM biosynthesis genes on novobiocin production in Streptomyces. Arch Microbiol 2010; 192:289-97. [DOI: 10.1007/s00203-010-0548-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 12/14/2009] [Accepted: 01/04/2010] [Indexed: 11/27/2022]
|
32
|
Schmitz-Esser S, Tischler P, Arnold R, Montanaro J, Wagner M, Rattei T, Horn M. The genome of the amoeba symbiont "Candidatus Amoebophilus asiaticus" reveals common mechanisms for host cell interaction among amoeba-associated bacteria. J Bacteriol 2010; 192:1045-57. [PMID: 20023027 PMCID: PMC2812958 DOI: 10.1128/jb.01379-09] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Accepted: 12/07/2009] [Indexed: 11/20/2022] Open
Abstract
Protozoa play host for many intracellular bacteria and are important for the adaptation of pathogenic bacteria to eukaryotic cells. We analyzed the genome sequence of "Candidatus Amoebophilus asiaticus," an obligate intracellular amoeba symbiont belonging to the Bacteroidetes. The genome has a size of 1.89 Mbp, encodes 1,557 proteins, and shows massive proliferation of IS elements (24% of all genes), although the genome seems to be evolutionarily relatively stable. The genome does not encode pathways for de novo biosynthesis of cofactors, nucleotides, and almost all amino acids. "Ca. Amoebophilus asiaticus" encodes a variety of proteins with predicted importance for host cell interaction; in particular, an arsenal of proteins with eukaryotic domains, including ankyrin-, TPR/SEL1-, and leucine-rich repeats, which is hitherto unmatched among prokaryotes, is remarkable. Unexpectedly, 26 proteins that can interfere with the host ubiquitin system were identified in the genome. These proteins include F- and U-box domain proteins and two ubiquitin-specific proteases of the CA clan C19 family, representing the first prokaryotic members of this protein family. Consequently, interference with the host ubiquitin system is an important host cell interaction mechanism of "Ca. Amoebophilus asiaticus". More generally, we show that the eukaryotic domains identified in "Ca. Amoebophilus asiaticus" are also significantly enriched in the genomes of other amoeba-associated bacteria (including chlamydiae, Legionella pneumophila, Rickettsia bellii, Francisella tularensis, and Mycobacterium avium). This indicates that phylogenetically and ecologically diverse bacteria which thrive inside amoebae exploit common mechanisms for interaction with their hosts, and it provides further evidence for the role of amoebae as training grounds for bacterial pathogens of humans.
Collapse
|
33
|
Coproporphyrin excretion and low thiol levels caused by point mutation in the Rhodobacter sphaeroides S-adenosylmethionine synthetase gene. J Bacteriol 2009; 192:1238-48. [PMID: 20038586 DOI: 10.1128/jb.01342-09] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A spontaneous mutant of Rhodobacter sphaeroides f. sp. denitrificans IL-106 was found to excrete a large amount of a red compound identified as coproporphyrin III, an intermediate in bacteriochlorophyll and heme synthesis. The mutant, named PORF, is able to grow under phototrophic conditions but has low levels of intracellular cysteine and glutathione and overexpresses the cysteine synthase CysK. The expression of molybdoenzymes such as dimethyl sulfoxide (DMSO) and nitrate reductases is also affected under certain growth conditions. Excretion of coproporphyrin and overexpression of CysK are not directly related but were both found to be consequences of a diminished synthesis of the key metabolite S-adenosylmethionine (SAM). The wild-type phenotype is restored when the gene metK encoding SAM synthetase is supplied in trans. The metK gene in the mutant strain has a mutation leading to a single amino acid change (H145Y) in the encoded protein. This point mutation is responsible for a 70% decrease in intracellular SAM content which probably affects the activities of numerous SAM-dependent enzymes such as coproporphyrinogen oxidase (HemN); uroporphyrinogen III methyltransferase (CobA), which is involved in siroheme synthesis; and molybdenum cofactor biosynthesis protein A (MoaA). We propose a model showing that the attenuation of the activities of SAM-dependent enzymes in the mutant could be responsible for the coproporphyrin excretion, the low cysteine and glutathione contents, and the decrease in DMSO and nitrate reductase activities.
Collapse
|
34
|
Zhang X, Newman E. Deficiency in l-serine deaminase results in abnormal growth and cell division of Escherichia coli K-12. Mol Microbiol 2008; 69:870-81. [PMID: 18532981 DOI: 10.1111/j.1365-2958.2008.06315.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The loss of the ability to deaminate l-serine severely impairs growth and cell division in Escherichia coli K-12. A strain from which the three genes (sdaA, sdaB, tdcG) coding for this organism's three l-serine deaminases had been deleted grows well in glucose minimal medium but, on subculture into minimal medium with glucose and casamino acids, it makes very large, abnormally shaped cells, many of which lyse. When inoculated into Luria-Bertani (LB) broth with or without glucose, it makes very long filaments. Provision of S-adenosylmethionine restores cell division in LB broth with glucose, and repairs much of the difficulty in growth in medium with casamino acids. We suggest that replication of E. coli is regulated by methylation, that an unusually high intracellular l-serine concentration, in the presence of other amino acids, starves the cell for S-adenosylmethionine and that it is the absence of S-adenosylmethionine and/or of C1-tetrahydrofolate derivatives that prevents normal cell division.
Collapse
Affiliation(s)
- Xiao Zhang
- Biology Department, Concordia University, 1455 de Maisonneuve Ave, Montreal, Quebec, Canada
| | | |
Collapse
|
35
|
Ren Q, Paulsen IT. Large-scale comparative genomic analyses of cytoplasmic membrane transport systems in prokaryotes. J Mol Microbiol Biotechnol 2007; 12:165-79. [PMID: 17587866 DOI: 10.1159/000099639] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The recent advancements in genome sequencing make it possible for the comparative analyses of essential cellular processes like transport in organisms across the three domains of life. Membrane transporters play crucial roles in fundamental cellular processes and functions in prokaryotic systems. Between 3 and 16% of open reading frames in prokaryotic genomes were predicted to encode membrane transport proteins, emphasizing the importance of transporters in their lifestyles. Hierarchical clustering of phylogenetic profiles of transporter families, which are derived from the presence or absence of a certain transporter family, showed distinct clustering patterns for obligate intracellular organisms, plant/soil-associated microbes and autotrophs. Obligate intracellular organisms possess the fewest types and number of transporters presumably due to their relatively stable living environment, while plant/soil-associated organisms generally encode the largest variety and number of transporters. A group of autotrophs are clustered together largely due to their absence of transporters for carbohydrate and organic nutrients and the presence of transporters for inorganic nutrients. Inside of each group, organisms are further clustered by their phylogenetic properties. These findings strongly suggest the correlation of transporter profiles to both evolutionary history and the overall physiology and lifestyles of the organisms.
Collapse
Affiliation(s)
- Qinghu Ren
- The Institute for Genomic Research, Rockville, MD 20850, USA
| | | |
Collapse
|
36
|
Liu ZM, Tucker AM, Driskell LO, Wood DO. Mariner-based transposon mutagenesis of Rickettsia prowazekii. Appl Environ Microbiol 2007; 73:6644-9. [PMID: 17720821 PMCID: PMC2075046 DOI: 10.1128/aem.01727-07] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rickettsia prowazekii, the causative agent of epidemic typhus, is an obligate intracellular bacterium that grows directly within the cytoplasm of its host cell, unbounded by a vacuolar membrane. The obligate intracytoplasmic nature of rickettsial growth places severe restrictions on the genetic analysis of this distinctive human pathogen. In order to expand the repertoire of genetic tools available for the study of this pathogen, we have employed the versatile mariner-based, Himar1 transposon system to generate insertional mutants of R. prowazekii. A transposon containing the R. prowazekii arr-2 rifampin resistance gene and a gene coding for a green fluorescent protein (GFP(UV)) was constructed and placed on a plasmid expressing the Himar1 transposase. Electroporation of this plasmid into R. prowazekii resulted in numerous transpositions into the rickettsial genome. Transposon insertion sites were identified by rescue cloning, followed by DNA sequencing. Random transpositions integrating at TA sites in both gene coding and intergenic regions were identified. Individual rickettsial clones were isolated by the limiting-dilution technique. Using both fixed and live-cell techniques, R. prowazekii transformants expressing GFP(UV) were easily visible by fluorescence microscopy. Thus, a mariner-based system provides an additional mechanism for generating rickettsial mutants that can be screened using GFP(UV) fluorescence.
Collapse
Affiliation(s)
- Zhi-Mei Liu
- Department of Microbiology and Immunology, Laboratory of Molecular Biology, University of South Alabama, Mobile, AL 36688-0002, USA.
| | | | | | | |
Collapse
|
37
|
de Crécy-Lagard V, El Yacoubi B, de la Garza RD, Noiriel A, Hanson AD. Comparative genomics of bacterial and plant folate synthesis and salvage: predictions and validations. BMC Genomics 2007; 8:245. [PMID: 17645794 PMCID: PMC1971073 DOI: 10.1186/1471-2164-8-245] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Accepted: 07/23/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Folate synthesis and salvage pathways are relatively well known from classical biochemistry and genetics but they have not been subjected to comparative genomic analysis. The availability of genome sequences from hundreds of diverse bacteria, and from Arabidopsis thaliana, enabled such an analysis using the SEED database and its tools. This study reports the results of the analysis and integrates them with new and existing experimental data. RESULTS Based on sequence similarity and the clustering, fusion, and phylogenetic distribution of genes, several functional predictions emerged from this analysis. For bacteria, these included the existence of novel GTP cyclohydrolase I and folylpolyglutamate synthase gene families, and of a trifunctional p-aminobenzoate synthesis gene. For plants and bacteria, the predictions comprised the identities of a 'missing' folate synthesis gene (folQ) and of a folate transporter, and the absence from plants of a folate salvage enzyme. Genetic and biochemical tests bore out these predictions. CONCLUSION For bacteria, these results demonstrate that much can be learnt from comparative genomics, even for well-explored primary metabolic pathways. For plants, the findings particularly illustrate the potential for rapid functional assignment of unknown genes that have prokaryotic homologs, by analyzing which genes are associated with the latter. More generally, our data indicate how combined genomic analysis of both plants and prokaryotes can be more powerful than isolated examination of either group alone.
Collapse
Affiliation(s)
- Valérie de Crécy-Lagard
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | - Basma El Yacoubi
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | | | - Alexandre Noiriel
- Department of Horticultural Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Andrew D Hanson
- Department of Horticultural Sciences, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
38
|
Blanc G, Ogata H, Robert C, Audic S, Suhre K, Vestris G, Claverie JM, Raoult D. Reductive genome evolution from the mother of Rickettsia. PLoS Genet 2007; 3:e14. [PMID: 17238289 PMCID: PMC1779305 DOI: 10.1371/journal.pgen.0030014] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Accepted: 12/08/2006] [Indexed: 11/30/2022] Open
Abstract
The Rickettsia genus is a group of obligate intracellular α-proteobacteria representing a paradigm of reductive evolution. Here, we investigate the evolutionary processes that shaped the genomes of the genus. The reconstruction of ancestral genomes indicates that their last common ancestor contained more genes, but already possessed most traits associated with cellular parasitism. The differences in gene repertoires across modern Rickettsia are mainly the result of differential gene losses from the ancestor. We demonstrate using computer simulation that the propensity of loss was variable across genes during this process. We also analyzed the ratio of nonsynonymous to synonymous changes (Ka/Ks) calculated as an average over large sets of genes to assay the strength of selection acting on the genomes of Rickettsia, Anaplasmataceae, and free-living γ-proteobacteria. As a general trend, Ka/Ks were found to decrease with increasing divergence between genomes. The high Ka/Ks for closely related genomes are probably due to a lag in the removal of slightly deleterious nonsynonymous mutations by natural selection. Interestingly, we also observed a decrease of the rate of gene loss with increasing divergence, suggesting a similar lag in the removal of slightly deleterious pseudogene alleles. For larger divergence (Ks > 0.2), Ka/Ks converge toward similar values indicating that the levels of selection are roughly equivalent between intracellular α-proteobacteria and their free-living relatives. This contrasts with the view that obligate endocellular microorganisms tend to evolve faster as a consequence of reduced effectiveness of selection, and suggests a major role of enhanced background mutation rates on the fast protein divergence in the obligate intracellular α-proteobacteria. Genome downsizing and fast sequence divergence are frequently observed in bacteria living exclusively within the cells of higher eukaryotes. However, the driving forces and contributions of these processes to the genome diversity of the microorganisms remain poorly understood. The genus Rickettsia, a group of small obligate intracellular pathogens of humans, provides a fascinating model to study the genome downsizing process. In this article, we used seven Rickettsia genomes to reconstruct the genome of their ancestor and inferred the origin and fate of the genes found in today's species. We identify the process of gene loss as the main cause of genome diversification within the genus and show that the rate of gene loss, sequence divergence, and genome rearrangements are highly variable across the various Rickettsia lineages. This heterogeneity likely reflects the intricate effects of specialization to distinct arthropod hosts and critical alterations of the gene repertoire, such as the losses of DNA repair genes and the amplification of mobile genes. In contrast, we did not find evidence for the role of reduced population sizes on the long-term acceleration of sequence evolution. Overall, the data presented in this article shed new light on the fundamental evolutionary processes that drive the evolution of obligate intracellular bacteria.
Collapse
Affiliation(s)
- Guillaume Blanc
- Structural and Genomic Information Laboratory, Institut de Biologie Structurale et Microbiologie, Parc Scientifique de Luminy, Marseille, France
- * To whom correspondence should be addressed. E-mail: (GB), (DR)
| | - Hiroyuki Ogata
- Structural and Genomic Information Laboratory, Institut de Biologie Structurale et Microbiologie, Parc Scientifique de Luminy, Marseille, France
| | | | - Stéphane Audic
- Structural and Genomic Information Laboratory, Institut de Biologie Structurale et Microbiologie, Parc Scientifique de Luminy, Marseille, France
| | - Karsten Suhre
- Structural and Genomic Information Laboratory, Institut de Biologie Structurale et Microbiologie, Parc Scientifique de Luminy, Marseille, France
| | - Guy Vestris
- Unité des Rickettsies, Faculté de Médecine, Marseille, France
| | - Jean-Michel Claverie
- Structural and Genomic Information Laboratory, Institut de Biologie Structurale et Microbiologie, Parc Scientifique de Luminy, Marseille, France
| | - Didier Raoult
- Unité des Rickettsies, Faculté de Médecine, Marseille, France
- * To whom correspondence should be addressed. E-mail: (GB), (DR)
| |
Collapse
|
39
|
Klimasauskas S, Weinhold E. A new tool for biotechnology: AdoMet-dependent methyltransferases. Trends Biotechnol 2007; 25:99-104. [PMID: 17254657 DOI: 10.1016/j.tibtech.2007.01.006] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2006] [Revised: 11/15/2006] [Accepted: 01/12/2007] [Indexed: 11/26/2022]
Abstract
AdoMet-dependent methyltransferases catalyze highly specific methyl group transfers from the ubiquitous cofactor S-adenosyl-L-methionine to a multitude of biological targets in the cell. Recently, DNA methyltransferases have been used for the sequence-specific, covalent attachment of larger chemical groups to plasmid and bacteriophage DNA using two classes of synthetic AdoMet analogs. These synthetic cofactors, in combination with the myriad AdoMet-dependent methyltransferases available in nature, provide new molecular tools for precise, targeted functionalization and labeling of large natural DNAs and, in all likelihood, RNAs and proteins. This paves the way for numerous novel applications in the functional analysis of biological methylation, biotechnology and medical diagnostics.
Collapse
Affiliation(s)
- Saulius Klimasauskas
- Laboratory of Biological DNA Modification, Institute of Biotechnology, LT-02241 Vilnius, Lithuania.
| | | |
Collapse
|
40
|
Bouvier F, Linka N, Isner JC, Mutterer J, Weber APM, Camara B. Arabidopsis SAMT1 defines a plastid transporter regulating plastid biogenesis and plant development. THE PLANT CELL 2006; 18:3088-105. [PMID: 17098813 PMCID: PMC1693945 DOI: 10.1105/tpc.105.040741] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2005] [Revised: 09/01/2006] [Accepted: 10/24/2006] [Indexed: 05/12/2023]
Abstract
S-Adenosylmethionine (SAM) is formed exclusively in the cytosol but plays a major role in plastids; SAM can either act as a methyl donor for the biogenesis of small molecules such as prenyllipids and macromolecules or as a regulator of the synthesis of aspartate-derived amino acids. Because the biosynthesis of SAM is restricted to the cytosol, plastids require a SAM importer. However, this transporter has not yet been identified. Here, we report the molecular and functional characterization of an Arabidopsis thaliana gene designated SAM TRANSPORTER1 (SAMT1), which encodes a plastid metabolite transporter required for the import of SAM from the cytosol. Recombinant SAMT1 produced in yeast cells, when reconstituted into liposomes, mediated the counter-exchange of SAM with SAM and with S-adenosylhomocysteine, the by-product and inhibitor of transmethylation reactions using SAM. Insertional mutation in SAMT1 and virus-induced gene silencing of SAMT1 in Nicotiana benthamiana caused severe growth retardation in mutant plants. Impaired function of SAMT1 led to decreased accumulation of prenyllipids and mainly affected the chlorophyll pathway. Biochemical analysis suggests that the latter effect represents one prominent example of the multiple events triggered by undermethylation, when there is decreased SAM flux into plastids.
Collapse
Affiliation(s)
- Florence Bouvier
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique and Université Louis Pasteur, 67084 Strasbourg Cedex, France
| | | | | | | | | | | |
Collapse
|
41
|
Audia JP, Winkler HH. Study of the five Rickettsia prowazekii proteins annotated as ATP/ADP translocases (Tlc): Only Tlc1 transports ATP/ADP, while Tlc4 and Tlc5 transport other ribonucleotides. J Bacteriol 2006; 188:6261-8. [PMID: 16923893 PMCID: PMC1595366 DOI: 10.1128/jb.00371-06] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The obligate intracytoplasmic pathogen Rickettsia prowazekii relies on the transport of many essential compounds from the cytoplasm of the eukaryotic host cell in lieu of de novo synthesis, an evolutionary outcome undoubtedly linked to obligatory growth in this metabolite-replete niche. The paradigm for the study of rickettsial transport systems is the ATP/ADP translocase Tlc1, which exchanges bacterial ADP for host cell ATP as a source of energy, rather than as a source of adenylate. Interestingly, the R. prowazekii genome encodes four open reading frames that are highly homologous to the well-characterized ATP/ADP translocase Tlc1. Therefore, by annotation, the R. prowazekii genome encodes a total of five ATP/ADP translocases: Tlc1, Tlc2, Tlc3, Tlc4, and Tlc5. We have confirmed by quantitative reverse transcriptase PCR that mRNAs corresponding to all five tlc homologues are expressed in R. prowazekii growing in L-929 cells and have shown their heterologous protein expression in Escherichia coli, suggesting that none of the tlc genes are pseudogenes in the process of evolutionary meltdown. However, we demonstrate by heterologous expression in E. coli that only Tlc1 functions as an ATP/ADP transporter. A survey of nucleotides and nucleosides has determined that Tlc4 transports CTP, UTP, and GDP. Intriguingly, although GTP was not transported by Tlc4, it was an inhibitor of CTP and UTP uptake and demonstrated a K(i) similar to that of GDP. In addition, we demonstrate that Tlc5 transports GTP and GDP. We postulate that Tlc4 and Tlc5 serve the primary function of maintaining intracellular pools of nucleotides for rickettsial nucleic acid biosynthesis and do not provide the cell with nucleoside triphosphates as an energy source, as is the case for Tlc1. Although heterologous expression of Tlc2 and Tlc3 was observed in E. coli, we were unable to identify substrates for these proteins.
Collapse
Affiliation(s)
- Jonathon P Audia
- Laboratory of Molecular Biology, Department of Microbiology and Immunology, University of South Alabama College of Medicine, Mobile, AL 36688, USA.
| | | |
Collapse
|
42
|
Tucker AM, Pannell LK, Wood DO. Dissecting the Rickettsia prowazekii genome: genetic and proteomic approaches. Ann N Y Acad Sci 2006; 1063:35-46. [PMID: 16481488 DOI: 10.1196/annals.1355.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The obligate nature of Rickettsia prowazekii intracellular growth places severe restrictions on the analysis of rickettsial gene function and gene expression. Fortunately, this situation is improving as methods for the genetic manipulation and proteomic analysis of this fascinating human pathogen become available. In this paper, we review the current status of rickettsial genetics and the isolation of rickettsial mutants using a genetic approach. In addition, the examination of rickettsial gene expression through characterization of the rickettsial proteome will be described. This will include a description of a high-throughput, accurate mass approach that has identified 596 rickettsial proteins in a complex rickettsial protein sample.
Collapse
Affiliation(s)
- Aimee M Tucker
- Department of Microbiology and Immunology, Laboratory of Molecular Biology, University of South Alabama, Mobile, AL 36688, USA
| | | | | |
Collapse
|
43
|
Sällström B, Andersson SGE. Genome reduction in the α-Proteobacteria. Curr Opin Microbiol 2005; 8:579-85. [PMID: 16099701 DOI: 10.1016/j.mib.2005.08.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2005] [Accepted: 08/03/2005] [Indexed: 01/26/2023]
Abstract
More than 20 alpha-proteobacterial genomes are currently available. These range in size from 1-9 Mb and represent excellent model systems for evolutionary studies of the organizational features of bacterial genomes. Computational inferences have shown that genome reductions have occurred independently in lineages such as Rickettsia and Bartonella that are associated with intracellular lifestyles. Analyses of these reduced genomes have provided insights into the evolution of vector-borne transmission pathways. Further research into the population biology of bacteria, arthropods and vertebrate hosts will help to refine the biology of host-pathogen interactions and will facilitate the design of vaccines and vector-control programs.
Collapse
Affiliation(s)
- Björn Sällström
- Department of Molecular Evolution, Evolutionary Biology Center, Uppsala University, Norbyvägen 18C, 752 36 Uppsala, Sweden
| | | |
Collapse
|
44
|
Driskell LO, Tucker AM, Winkler HH, Wood DO. Rickettsial metK-encoded methionine adenosyltransferase expression in an Escherichia coli metK deletion strain. J Bacteriol 2005; 187:5719-22. [PMID: 16077118 PMCID: PMC1196085 DOI: 10.1128/jb.187.16.5719-5722.2005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The obligate intracellular bacterium Rickettsia prowazekii has recently been shown to transport the essential metabolite S-adenosylmethionine (SAM). The existence of such a transporter would suggest that the metK gene, coding for the enzyme that synthesizes SAM, is unnecessary for rickettsial growth. Genome sequencing has revealed that this is the case for the metK genes of the spotted fever group and the Madrid E strain of R. prowazekii, which contain recognizable inactivating mutations. However, several strains of the typhus group rickettsiae possess metK genes lacking obvious mutations. In order to determine if these genes code for a product that retains MAT function, an Escherichia coli metK deletion mutant was constructed in which individual rickettsial metK genes were tested for the ability to complement the methionine adenosyltransferase deficiency. Both the R. prowazekii Breinl and R. typhi Wilmington metK genes complemented at a level comparable to that of an E. coli metK control, demonstrating that the typhus group rickettsiae have the capability of synthesizing as well as transporting SAM. However, the appearance of mutations that affect the function of the metK gene products (a stop codon in the Madrid E strain and a 6-bp deletion in the Breinl strain) provides experimental support for the hypothesis that these typhus group genes, like the more degenerate spotted fever group orthologs, are in the process of gene degradation.
Collapse
Affiliation(s)
- Lonnie O Driskell
- Department of Microbiology and Immunology, Laboratory of Molecular Biology, University of South Alabama, Mobile, AL 36688-0002, USA
| | | | | | | |
Collapse
|
45
|
Ogata H, Claverie JM. Metagrowth: a new resource for the building of metabolic hypotheses in microbiology. Nucleic Acids Res 2005; 33:D321-4. [PMID: 15608207 PMCID: PMC539996 DOI: 10.1093/nar/gki042] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Metagrowth is a new type of knowledge base developed to guide the experimental studies of culture conditions of obligate parasitic bacteria. We have gathered biological evidences giving possible clues to the development of the axenic (i.e. ‘cell-free’) growth of obligate parasites from various sources including published literature, genomic sequence information, metabolic databases and transporter databases. The database entries are composed of those evidences and specific hypotheses derived from them. Currently, 200 entries are available for Rickettsia prowazekii, Rickettsia conorii, Tropheryma whipplei, Treponema pallidum, Mycobacterium tuberculosis and Coxiella burnetii. The web interface of Metagrowth helps users to design new axenic culture media eventually suitable for those bacteria. Metagrowth is accessible at http://igs-server.cnrs-mrs.fr/axenic/.
Collapse
Affiliation(s)
- Hiroyuki Ogata
- Information Génomique et Structurale, CNRS UPR 2589, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France.
| | | |
Collapse
|
46
|
Renesto P, Ogata H, Audic S, Claverie JM, Raoult D. Some lessons from Rickettsia genomics. FEMS Microbiol Rev 2005; 29:99-117. [PMID: 15652978 DOI: 10.1016/j.femsre.2004.09.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2004] [Revised: 08/11/2004] [Accepted: 09/02/2004] [Indexed: 10/26/2022] Open
Abstract
Sequencing of the Rickettsia conorii genome and its comparison with its closest sequenced pathogenic relative, i.e., Rickettsia prowazekii, provided powerful insights into the evolution of these microbial pathogens. However, advances in our knowledge of rickettsial diseases are still hindered by the difficulty of working with strict intracellular bacteria and their hosts. Information gained from comparing the genomes of closely related organisms will shed new light on proteins susceptible to be targeted in specific diagnostic assays, by new antimicrobial drugs, and that could be employed in the generation of future rickettsial vaccines. In this review we present a detailed comparison of the metabolic pathways of these bacteria as well as the polymorphisms of their membrane proteins, transporters and putative virulence factors. Environmental adaptation of Rickettsia is also discussed.
Collapse
Affiliation(s)
- Patricia Renesto
- Unité des Rickettsies, CNRS UMR 6020, IFR-48, Faculté de Médecine--Universite de la Mediterranee, 27 Boulevard Jean Moulin, 13385 Marseille cedex 05, France
| | | | | | | | | |
Collapse
|
47
|
Pannekoek Y, Heurgué-Hamard V, Langerak AAJ, Speijer D, Buckingham RH, van der Ende A. The N5-glutamine S-adenosyl-L-methionine-dependent methyltransferase PrmC/HemK in Chlamydia trachomatis methylates class 1 release factors. J Bacteriol 2005; 187:507-11. [PMID: 15629922 PMCID: PMC543528 DOI: 10.1128/jb.187.2.507-511.2005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The gene prmC, encoding the putative S-adenosyl-L-methionine (AdoMet)-dependent methyltransferase (MTase) of release factors (RFs) of the obligate intracellular pathogen Chlamydia trachomatis, was functionally analyzed. Chlamydial PrmC expression suppresses the growth defect of a prmC knockout strain of Escherichia coli K-12, suggesting an interaction of chlamydial PrmC with E. coli RFs in vivo. In vivo methylation assays carried out with recombinant PrmC and RFs of chlamydial origin demonstrated that PrmC methylates RFs within the tryptic fragment containing the universally conserved sequence motif Gly-Gly-Gln. This is consistent with the enzymatic properties of PrmC of E. coli origin. We conclude that C. trachomatis PrmC functions as an N5-glutamine AdoMet-dependent MTase, involved in methylation of RFs.
Collapse
Affiliation(s)
- Yvonne Pannekoek
- Academic Medical Center, Dept. of Medical Microbiology, Room L1-162, University of Amsterdam, PO Box 22660, 1100 DD Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
48
|
Shivji M, Burger S, Moncada CA, Clarkson AB, Merali S. Effect of nicotine on lung S-adenosylmethionine and development of Pneumocystis pneumonia. J Biol Chem 2005; 280:15219-28. [PMID: 15668255 DOI: 10.1074/jbc.m413946200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Because S-adenosylmethionine (AdoMet) is required by Pneumocystis carinii in vitro, Pneumocystis infection depletes plasma AdoMet of rats and humans, nicotine reduces AdoMet of guinea pig lungs, and smoking correlates with reduced episodes of Pneumocystis pneumonia (PCP) in AIDS patients, we tested the effect of nicotine treatment on PCP using a rat model. Intraperitoneal infusion of 400 microg of R-(+) nicotine kg(-1) h(-1) intraperitoneal for 21 days caused a 15-fold reduction in lung AdoMet although neither plasma nor liver were changed. Infusion of 4 and 400 microg kg(-1) h(-1) into immunosuppressed rats, beginning when rats were inoculated with P. carinii, caused 85 and 99.88% reductions, respectively, in P. carinii cysts at sacrifice 21 days later; P. carinii nuclei were reduced by 91.2 and >99.99%, respectively. This effect was reversed by concomitant administration of AdoMet with nicotine. Treatment with AdoMet alone increased infection intensity. We conclude that AdoMet is a critical and limiting nutrient for Pneumocystis thus can serve as a therapeutic target for PCP. Regarding the mechanism, nicotine treatment caused no change in rat lung activity of AdoMet synthesizing methionine ATP transferase activity nor was there any evidence of increased AdoMet utilization for methylation reactions. Except of a doubling of putrescine, nicotine treatment also did not change lung polyamine content. However, key polyamine anabolic and catabolic enzymes were upregulated, and there were corresponding changes in polyamine metabolic intermediates. We conclude that chronic nicotine treatment increases lung polyamine catabolic/anabolic cycling and/or excretion leading to increased AdoMet-consuming polyamine biosynthesis and depletion of lung AdoMet.
Collapse
Affiliation(s)
- Mehboob Shivji
- Department of Medical and Molecular Parasitology, New York University School of Medicine, New York, New York 10010, USA
| | | | | | | | | |
Collapse
|
49
|
Nozaki T, Ali V, Tokoro M. Sulfur-Containing Amino Acid Metabolism in Parasitic Protozoa. ADVANCES IN PARASITOLOGY 2005; 60:1-99. [PMID: 16230102 DOI: 10.1016/s0065-308x(05)60001-2] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Sulfur-containing amino acids play indispensable roles in a wide variety of biological activities including protein synthesis, methylation, and biosynthesis of polyamines and glutathione. Biosynthesis and catabolism of these amino acids need to be carefully regulated to achieve the requirement of the above-mentioned activities and also to eliminate toxicity attributable to the amino acids. Genome-wide analyses of enzymes involved in the metabolic pathways of sulfur-containing amino acids, including transsulfuration, sulfur assimilatory de novo cysteine biosynthesis, methionine cycle, and degradation, using genome databases available from a variety of parasitic protozoa, reveal remarkable diversity between protozoan parasites and their mammalian hosts. Thus, the sulfur-containing amino acid metabolic pathways are a rational target for the development of novel chemotherapeutic and prophylactic agents against diseases caused by protozoan parasites. These pathways also demonstrate notable heterogeneity among parasites, suggesting that the metabolism of sulfur-containing amino acids reflects the diversity of parasitism among parasite species, and probably influences their biology and pathophysiology such as virulence competence and stress defense.
Collapse
Affiliation(s)
- Tomoyoshi Nozaki
- Department of Parasitology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | | | | |
Collapse
|
50
|
Pretorius AM, Jensenius M, Birtles RJ. Update on Spotted Fever Group Rickettsiae in South Africa. Vector Borne Zoonotic Dis 2004; 4:249-60. [PMID: 15631070 DOI: 10.1089/vbz.2004.4.249] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Until very recently, Mediterranean spotted fever caused by Rickettsia conorii was the only spotted fever group (SFG) rickettsioses recognized in southern Africa. However, increasing medical awareness of tick-borne infections, together with the introduction of improved isolation methods and the availability of molecular techniques, have led to the identification of several new SFG rickettsioses in the region. African tick bite fever, caused by Rickettsia africae, is currently the most important of these new rickettsioses, affecting large numbers of international travellers each year, but infections due to Rickettsia aeschlimannii and Rickettsia mongolotimonae have also been recently encountered. In this review, we describe the current status of the epidemiology, microbiology, clinical presentation, diagnosis, treatment, and prevention of SFG rickettsioses in southern Africa.
Collapse
Affiliation(s)
- Anne-Marié Pretorius
- National Health Laboratory Services, Department of Medical Microbiology, School of Medicine, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa.
| | | | | |
Collapse
|