1
|
Dow GT, Young AM, Garcia GA. Elucidation of the DNA-Binding Activity of VirF from Shigella flexneri for the icsA and rnaG Promoters and Characterization of the N-Terminal Domain To Identify Residues Crucial for Dimerization. J Bacteriol 2023; 205:e0001523. [PMID: 36920216 PMCID: PMC10127635 DOI: 10.1128/jb.00015-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/27/2023] [Indexed: 03/16/2023] Open
Abstract
A novel approach to treat the highly virulent and infectious enteric pathogen Shigella flexneri, with the potential for reduced resistance development, is to target virulence pathways. One promising such target is the AraC-family transcription factor VirF, which activates downstream virulence factors. VirF harbors a conserved C-terminal DNA-binding domain (DBD) and an N-terminal dimerization domain (NTD). Previously, we studied the wild type (WT) and seven alanine DBD mutants of VirF binding to the virB promoter (N. J. Ragazzone, G. T. Dow, and A. Garcia, J Bacteriol 204:e00143-22, 2022, https://doi.org/10.1128/jb.00143-22). Here, we report studies of VirF binding to the icsA and rnaG promoters. Gel shift assays (electrophoretic mobility shift assays [EMSAs]) of WT VirF binding to these promoters revealed multiple bands at higher apparent molecular weights, indicating the likelihood of VirF dimerization when bound to DNA. For three of the mutants, we observed consistent effects on binding to the three promoters. For the four other mutants, we observed differential effects on promoter binding. Results of a cell-based, LexA monohybrid β-galactosidase reporter assay [D. A. Daines, M. Granger-Schnarr, M. Dimitrova, and R. P. Silver, Methods Enzymol 358:153-161, 2002, https://doi.org/10.1016/s0076-6879(02)58087-3] indicated that WT VirF dimerizes in vivo and that alanine mutations to Y132, L137, and L147 significantly reduced dimerization. However, these mutations negatively impacted protein stability. We did purify enough of the Y132A mutant to determine that it binds in vitro to the virB and rnaG promoters, albeit with weaker affinities. Full-length VirF model structures, generated with I-TASSER, predict that these three amino acids are in a "dimerization" helix in the NTD, consistent with our results. IMPORTANCE Antimicrobial-resistant (AMR) infections continue to rise dramatically, and the lack of new approved antibiotics is not ameliorating this crisis. A promising route to reduce AMR is by targeting virulence. The Shigella flexneri virulence pathway is a valuable source for potential therapeutic targets useful to treat this infection. VirF, an AraC-family virulence transcription factor, is responsible for activating necessary downstream virulence genes that allow the bacteria to invade and spread within the human colon. Previous studies have identified how VirF interacts with the virB promoter and have even developed a lead DNA-binding inhibitor, but not much is known about VirF dimerization or binding to the icsA and rnaG promoters. Fully characterizing VirF can be a valuable resource for inhibitor discovery/design.
Collapse
Affiliation(s)
- Garrett T. Dow
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Anna M. Young
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - George A. Garcia
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
2
|
Ogawa Y, Katsuyama Y, Ohnishi Y. Engineering of the Ligand Specificity of Transcriptional Regulator XylS by Deep Mutational Scanning. ACS Synth Biol 2022; 11:473-485. [PMID: 34964613 DOI: 10.1021/acssynbio.1c00564] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Deep mutational scanning is a method for protein engineering. Here, we applied it to alter the ligand specificity of the transcriptional regulator XylS from Pseudomonas putida to recognize p-toluic acid instead of the native ligand m-toluic acid. For this purpose, we used an antibiotic resistance gene-based dual screening system, which was constructed for the directed evolution of XylS toward the above-mentioned ligand specificity. We constructed a xylS mutant library in which each codon for the amino acid residue of the putative ligand-binding domain (residues 1-213, except 7th residue) was randomized to generate all possible single amino acid-substituted XylS variants and introduced it into Escherichia coli harboring the selection plasmid for the screening system. The cells were cultured in the presence of appropriate antibiotics and m-toluic acid or p-toluic acid, and the frequency of each mutation present in the library was examined using a next-generation sequencer before and after cultivation. Heatmaps showing the enrichment score of each XylS variant were obtained. By searching for a p-toluic-acid-specific heatmap pattern, we focused on G71 and H77. Analysis of the ligand specificities of G71- or H77-substituted XylS variants revealed that several G71-substituted XylS variants responded specifically to p-toluic acid. Thus, the 71st residue was found to be an unprecedented residue that is important for switching ligand specificity. Our study demonstrated the usefulness of deep mutational scanning in engineering the ligand specificity of a transcriptional regulator without structural information. We also discussed the advantages and disadvantages of deep mutational scanning compared with directed evolution.
Collapse
Affiliation(s)
- Yuki Ogawa
- Department of Biotechnology, The Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yohei Katsuyama
- Department of Biotechnology, The Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yasuo Ohnishi
- Department of Biotechnology, The Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
3
|
HilD, HilC, and RtsA Form Homodimers and Heterodimers To Regulate Expression of the Salmonella Pathogenicity Island I Type III Secretion System. J Bacteriol 2020; 202:JB.00012-20. [PMID: 32041797 DOI: 10.1128/jb.00012-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 02/06/2020] [Indexed: 12/19/2022] Open
Abstract
Salmonella enterica serovar Typhimurium colonizes and invades host intestinal epithelial cells using the type three secretion system (T3SS) encoded on Salmonella pathogenicity island 1 (SPI1). The level of SPI1 T3SS gene expression is controlled by the transcriptional activator HilA, encoded on SPI1. Expression of hilA is positively regulated by three homologous transcriptional regulators, HilD, HilC, and RtsA, belonging to the AraC/XylS family. These regulators also activate the hilD, hilC, and rtsA genes by binding to the same DNA sequences upstream of these promoters, forming a complex feed-forward loop to control SPI1 expression. Despite the apparent redundancy in function, HilD has a unique role in SPI1 regulation because the majority of external regulatory inputs act exclusively through HilD. To better understand SPI1 regulation, the nature of interaction between HilD, HilC, and RtsA has been characterized using biochemical and genetic techniques. Our results showed that HilD, HilC, and RtsA can form heterodimers as well as homodimers in solution. Comparison with other AraC family members identified a putative α-helix in the N-terminal domain, which acts as the dimerization domain. Alanine substitution in this region results in reduced dimerization of HilD and HilC and also affects their ability to activate hilA expression. The dimer interactions of HilD, HilC, and RtsA add another layer of complexity to the SPI1 regulatory circuit, providing a more comprehensive understanding of SPI1 T3SS regulation and Salmonella pathogenesis.IMPORTANCE The SPI1 type three secretion system is a key virulence factor required for Salmonella to both cause gastroenteritis and initiate serious systemic disease. The system responds to numerous environmental signals in the intestine, integrating this information via a complex regulatory network. Here, we show that the primary regulatory proteins in the network function as both homodimers and heterodimers, providing information regarding both regulation of virulence in this important pathogen and general signal integration to control gene expression.
Collapse
|
4
|
Volke DC, Turlin J, Mol V, Nikel PI. Physical decoupling of XylS/Pm regulatory elements and conditional proteolysis enable precise control of gene expression in Pseudomonas putida. Microb Biotechnol 2019; 13:222-232. [PMID: 30864281 PMCID: PMC6922516 DOI: 10.1111/1751-7915.13383] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/07/2019] [Accepted: 02/07/2019] [Indexed: 01/28/2023] Open
Abstract
Most of the gene expression systems available for Gram‐negative bacteria are afflicted by relatively high levels of basal (i.e. leaky) expression of the target gene(s). This occurrence affects the system dynamics, ultimately reducing the output and productivity of engineered pathways and synthetic circuits. In order to circumvent this problem, we have designed a novel expression system based on the well‐known XylS/Pm transcriptional regulator/promoter pair from the soil bacterium Pseudomonas putida mt‐2, in which the key functional elements are physically decoupled. By integrating the xylS gene into the chromosome of the platform strain KT2440, while placing the Pm promoter into a set of standard plasmid vectors, the inducibility of the system (i.e. the output difference between the induced and uninduced state) improved up to 170‐fold. We further combined this modular system with an extra layer of post‐translational control by means of conditional proteolysis. In this setup, the target gene is tagged with a synthetic motif dictating protein degradation. When the system features were characterized using the monomeric superfolder GFP as a model protein, the basal levels of fluorescence were brought down to zero (i.e. below the limit of detection). In all, these novel expression systems constitute an alternative tool to altogether suppress leaky gene expression, and they can be easily adapted to other vector formats and plugged‐in into different Gram‐negative bacterial species at the user's will.
Collapse
Affiliation(s)
- Daniel C Volke
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Lyngby, Denmark
| | - Justine Turlin
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Lyngby, Denmark
| | - Viviënne Mol
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Lyngby, Denmark
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Lyngby, Denmark
| |
Collapse
|
5
|
Gawin A, Valla S, Brautaset T. The XylS/Pm regulator/promoter system and its use in fundamental studies of bacterial gene expression, recombinant protein production and metabolic engineering. Microb Biotechnol 2017; 10:702-718. [PMID: 28276630 PMCID: PMC5481539 DOI: 10.1111/1751-7915.12701] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/04/2017] [Accepted: 02/07/2017] [Indexed: 12/21/2022] Open
Abstract
The XylS/Pm regulator/promoter system originating from the Pseudomonas putida TOL plasmid pWW0 is widely used for regulated low‐ and high‐level recombinant expression of genes and gene clusters in Escherichia coli and other bacteria. Induction of this system can be graded by using different cheap benzoic acid derivatives, which enter cells by passive diffusion, operate in a dose‐dependent manner and are typically not metabolized by the host cells. Combinatorial mutagenesis and selection using the bla gene encoding β‐lactamase as a reporter have demonstrated that the Pm promoter, the DNA sequence corresponding to the 5′ untranslated end of its cognate mRNA and the xylS coding region can be modified and improved relative to various types of applications. By combining such mutant genetic elements, altered and extended expression profiles were achieved. Due to their unique properties, obtained systems serve as a genetic toolbox valuable for heterologous protein production and metabolic engineering, as well as for basic studies aiming at understanding fundamental parameters affecting bacterial gene expression. The approaches used to modify XylS/Pm should be adaptable for similar improvements also of other microbial expression systems. In this review, we summarize constructions, characteristics, refinements and applications of expression tools using the XylS/Pm system.
Collapse
Affiliation(s)
- Agnieszka Gawin
- Department of Biotechnology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Svein Valla
- Department of Biotechnology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Trygve Brautaset
- Department of Biotechnology, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
6
|
Mycobacterium tuberculosis Rv1474c is a TetR-like transcriptional repressor that regulates aconitase, an essential enzyme and RNA-binding protein, in an iron-responsive manner. Tuberculosis (Edinb) 2017; 103:71-82. [PMID: 28237036 DOI: 10.1016/j.tube.2017.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 01/04/2017] [Accepted: 01/15/2017] [Indexed: 11/21/2022]
Abstract
Mycobacterium tuberculosis (M.tb), tuberculosis (TB) causing bacteria, employs several mechanisms to maintain iron homeostasis which is critical for its survival and pathogenesis. M.tb aconitase (Acn), a [4Fe-4S] cluster-containing essential protein, apart from participating in energy cycle, also binds to predicted iron-responsive RNA elements. In this study, we identified Rv1474c as a regulator of its operonic partner acn and carried out its biochemical and functional characterization. The binding motif for Rv1474c in the upstream region of acn (Rv1475c)-Rv1474c operon was verified by gel-shift assays. Reporter assays in E. coli followed by over-expression studies in mycobacteria, using both wild type and a DNA-binding defective mutant, demonstrated Rv1474c as a Tet-R like repressor of acn. Rv1474c, besides binding tetracycline, could also bind iron which negatively influenced its DNA binding activity. Further, a consistent decrease in the relative transcript levels of acn when M.tb was grown in iron-deficient conditions as compared to either normal or other stress conditions, indicated regulation of acn by Rv1474c in an iron-responsive manner in vivo. The absence of homologs in the human host and its association with indispensable iron homeostasis makes Rv1474c an attractive target for designing novel anti-mycobacterials.
Collapse
|
7
|
Santiago AE, Yan MB, Tran M, Wright N, Luzader DH, Kendall MM, Ruiz-Perez F, Nataro JP. A large family of anti-activators accompanying XylS/AraC family regulatory proteins. Mol Microbiol 2016; 101:314-32. [PMID: 27038276 PMCID: PMC4983702 DOI: 10.1111/mmi.13392] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2016] [Indexed: 11/29/2022]
Abstract
AraC Negative Regulators (ANR) suppress virulence genes by directly down‐regulating AraC/XylS members in Gram‐negative bacteria. In this study, we sought to investigate the distribution and molecular mechanisms of regulatory function for ANRs among different bacterial pathogens. We identified more than 200 ANRs distributed in diverse clinically important gram negative pathogens, including Vibrio spp., Salmonella spp., Shigella spp., Yersinia spp., Citrobacter spp., enterotoxigenic (ETEC) and enteroaggregative E. coli (EAEC), and members of the Pasteurellaceae. By employing a bacterial two hybrid system, pull down assays and surface plasmon resonance (SPR) analysis, we demonstrate that Aar (AggR‐activated regulator), a prototype member of the ANR family in EAEC, binds with high affinity to the central linker domain of AraC‐like member AggR. ANR‐AggR binding disrupted AggR dimerization and prevented AggR‐DNA binding. ANR homologs of Vibrio cholerae, Citrobacter rodentium, Salmonella enterica and ETEC were capable of complementing Aar activity by repressing aggR expression in EAEC strain 042. ANR homologs of ETEC and Vibrio cholerae bound to AggR as well as to other members of the AraC family, including Rns and ToxT. The predicted proteins of all ANR members exhibit three highly conserved predicted α‐helices. Site‐directed mutagenesis studies suggest that at least predicted α‐helices 2 and 3 are required for Aar activity. In sum, our data strongly suggest that members of the novel ANR family act by directly binding to their cognate AraC partners.
Collapse
Affiliation(s)
- Araceli E Santiago
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Michael B Yan
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Minh Tran
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Nathan Wright
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, VA, USA
| | - Deborah H Luzader
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, School of Medicine, Charlottesville, VA, USA
| | - Melissa M Kendall
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, School of Medicine, Charlottesville, VA, USA
| | - Fernando Ruiz-Perez
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - James P Nataro
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, VA, USA.,Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, School of Medicine, Charlottesville, VA, USA
| |
Collapse
|
8
|
Dragset MS, Barczak AK, Kannan N, Mærk M, Flo TH, Valla S, Rubin EJ, Steigedal M. Benzoic Acid-Inducible Gene Expression in Mycobacteria. PLoS One 2015; 10:e0134544. [PMID: 26348349 PMCID: PMC4562662 DOI: 10.1371/journal.pone.0134544] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 07/11/2015] [Indexed: 12/20/2022] Open
Abstract
Conditional expression is a powerful tool to investigate the role of bacterial genes. Here, we adapt the Pseudomonas putida-derived positively regulated XylS/Pm expression system to control inducible gene expression in Mycobacterium smegmatis and Mycobacterium tuberculosis, the causative agent of human tuberculosis. By making simple changes to a Gram-negative broad-host-range XylS/Pm-regulated gene expression vector, we prove that it is possible to adapt this well-studied expression system to non-Gram-negative species. With the benzoic acid-derived inducer m-toluate, we achieve a robust, time- and dose-dependent reversible induction of Pm-mediated expression in mycobacteria, with low background expression levels. XylS/Pm is thus an important addition to existing mycobacterial expression tools, especially when low basal expression is of particular importance.
Collapse
Affiliation(s)
- Marte S. Dragset
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
- Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Biotechnology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Amy K. Barczak
- Massachusetts General Hospital, Department of Medicine, Boston, Massachusetts, United States of America
| | - Nisha Kannan
- Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Mali Mærk
- Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Trude H. Flo
- Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Svein Valla
- Department of Biotechnology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Eric J. Rubin
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Magnus Steigedal
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
- Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Central Norway Regional Health Authority, Stjørdal, Norway
- * E-mail:
| |
Collapse
|
9
|
Hoffmann J, Altenbuchner J. Functional Characterization of the Mannitol Promoter of Pseudomonas fluorescens DSM 50106 and Its Application for a Mannitol-Inducible Expression System for Pseudomonas putida KT2440. PLoS One 2015; 10:e0133248. [PMID: 26207762 PMCID: PMC4514859 DOI: 10.1371/journal.pone.0133248] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 06/24/2015] [Indexed: 01/29/2023] Open
Abstract
A new pBBR1MCS-2-derived vector containing the Pseudomonas fluorescens DSM10506 mannitol promoter PmtlE and mtlR encoding its AraC/XylS type transcriptional activator was constructed and optimized for low basal expression. Mannitol, arabitol, and glucitol-inducible gene expression was demonstrated with Pseudomonas putida and eGFP as reporter gene. The new vector was applied for functional characterization of PmtlE. Identification of the DNA binding site of MtlR was achieved by in vivo eGFP measurement with PmtlE wild type and mutants thereof. Moreover, purified MtlR was applied for detailed in vitro investigations using electrophoretic mobility shift assays and DNaseI footprinting experiments. The obtained data suggest that MtlR binds to PmtlE as a dimer. The proposed DNA binding site of MtlR is AGTGC-N5-AGTAT-N7-AGTGC-N5-AGGAT. The transcription activation mechanism includes two binding sites with different binding affinities, a strong upstream binding site and a weaker downstream binding site. The presence of the weak downstream binding site was shown to be necessary to sustain mannitol-inducibility of PmtlE. Two possible functions of mannitol are discussed; the effector might stabilize binding of the second monomer to the downstream half site or promote transcription activation by inducing a conformational change of the regulator that influences the contact to the RNA polymerase.
Collapse
Affiliation(s)
- Jana Hoffmann
- Institut für Industrielle Genetik, Universität Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Josef Altenbuchner
- Institut für Industrielle Genetik, Universität Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| |
Collapse
|
10
|
Self-association is required for occupation of adjacent binding sites in Pseudomonas aeruginosa type III secretion system promoters. J Bacteriol 2014; 196:3546-55. [PMID: 25070741 DOI: 10.1128/jb.01969-14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ExsA is a member of the AraC/XylS family of transcriptional regulators and is required for expression of the Pseudomonas aeruginosa type III secretion system (T3SS). All P. aeruginosa T3SS promoters contain two adjacent binding sites for monomeric ExsA. The amino-terminal domain of ExsA (NTD) is thought to mediate interactions between the ExsA monomers bound to each site. Threading the NTD onto the AraC backbone revealed an α-helix that likely serves as the primary determinant for dimerization. In this study, we performed alanine scanning mutagenesis of the ExsA α-helix (residues 136 to 152) to identify determinants required for self-association. Residues L137, C139, L140, K141, and L148 exhibited self-association defects and were required for maximal activation by ExsA. Disruption of self-association resulted in decreased binding to T3SS promoters, particularly loss of binding by the second ExsA monomer. Removing the NTD or increasing the space between the ExsA-binding sites restored the ability of the second ExsA monomer to bind the PexsC promoter. This finding indicated that, in the absence of self-association, the NTD prevents binding by a second monomer. Similar findings were seen with the PexoT promoter; however, binding of the second ExsA monomer in the absence of self-association also required the presence of a high-affinity site 2. Based on these data, ExsA self-association is necessary to overcome inhibition by the NTD and to compensate for low-affinity binding sites, thereby allowing for full occupation and activation of ExsA-dependent promoters. Therefore, ExsA self-association is indispensable and provides an attractive target for antivirulence therapies.
Collapse
|
11
|
Zwick F, Lale R, Valla S. Regulation of the expression level of transcription factor XylS reveals new functional insight into its induction mechanism at the Pm promoter. BMC Microbiol 2013; 13:262. [PMID: 24252441 PMCID: PMC4225500 DOI: 10.1186/1471-2180-13-262] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 11/18/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND XylS is the positive regulator of the inducible Pm promoter, originating from Pseudomonas putida, where the system controls a biochemical pathway involved in degradation of aromatic hydrocarbons, which also act as inducers. The XylS/Pm positive regulator/promoter system is used for recombinant gene expression and the output from Pm is known to be sensitive to the intracellular XylS concentration. RESULTS By constructing a synthetic operon consisting of xylS and luc, the gene encoding luciferase, relative XylS expression levels could be monitored indirectly at physiological concentrations. Expression of XylS from inducible promoters allowed control over a more than 800-fold range, however, the corresponding output from Pm covered only an about five-fold range. The maximum output from Pm could not be increased by introducing more copies of the promoter in the cells. Interestingly, a previously reported XylS variant (StEP-13), known to strongly stimulate expression from Pm, caused the same maximum activity from Pm as wild-type XylS at high XylS expression levels. Under uninduced conditions expression from Pm also increased as a function of XylS expression levels, and at very high concentrations the maximum activity from Pm was the same as in the presence of inducer. CONCLUSION According to our proposed model, which is in agreement with current knowledge, the regulator, XylS, can exist in three states: monomers, dimers, and aggregates. Only the dimers are active and able to induce expression from Pm. Their maximum intracellular concentration and the corresponding output from Pm are limited by the concentration-dependent conversion into inactive aggregates. Maximization of the induction ratio at Pm can be obtained by expression of XylS at the level where aggregation occurs, which might be exploited for recombinant gene expression. The results described here also indicate that there might exist variants of XylS which can exist at higher active dimer concentrations and thus lead to increased expression levels from Pm.
Collapse
Affiliation(s)
- Friederike Zwick
- Department of Biotechnology, Norwegian University of Science and Technology, Sem Sælands Vei 6/8, Trondheim N-7491, Norway.
| | | | | |
Collapse
|
12
|
A two-component system (XydS/R) controls the expression of genes encoding CBM6-containing proteins in response to straw in Clostridium cellulolyticum. PLoS One 2013; 8:e56063. [PMID: 23418511 PMCID: PMC3572039 DOI: 10.1371/journal.pone.0056063] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 01/03/2013] [Indexed: 12/17/2022] Open
Abstract
The composition of the cellulosomes (multi enzymatic complexes involved in the degradation of plant cell wall polysaccharides) produced by Clostridium cellulolyticum differs according to the growth substrate. In particular, the expression of a cluster of 14 hemicellulase-encoding genes (called xyl-doc) seems to be induced by the presence of straw and not of cellulose. Genes encoding a putative two-component regulation system (XydS/R) were found upstream of xyl-doc. First evidence for the involvement of the response regulator, XydR, part of this two-component system, in the expression of xyl-doc genes was given by the analysis of the cellulosomes produced by a regulator overproducing strain when grown on cellulose. Nano-LC MS/MS analysis allowed the detection of the products of all xyl-doc genes and of the product of the gene at locus Ccel_1656 predicted to bear a carbohydrate binding domain targeting hemicellulose. RT-PCR experiments further demonstrated that the regulation occurs at the transcriptional level and that all xyl-doc genes are transcriptionally linked. mRNA quantification in a regulator knock-out strain and in its complemented derivative confirmed the involvement of the regulator in the expression of xyl-doc genes and of the gene at locus Ccel_1656 in response to straw. Electrophoretic mobility shift assays using the purified regulator further demonstrated that the regulator binds to DNA regions located upstream of the first gene of the xyl-doc gene cluster and upstream of the gene at locus Ccel_1656.
Collapse
|
13
|
Rodgers ME, Schleif R. Heterodimers Reveal That Two Arabinose Molecules Are Required for the Normal Arabinose Response of AraC. Biochemistry 2012; 51:8085-91. [DOI: 10.1021/bi3005347] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Michael E. Rodgers
- Biology Department, Johns Hopkins University, 3400 North Charles Street,
Baltimore, Maryland 21218, United States
| | - Robert Schleif
- Biology Department, Johns Hopkins University, 3400 North Charles Street,
Baltimore, Maryland 21218, United States
| |
Collapse
|
14
|
Mahon V, Fagan RP, Smith SGJ. Snap denaturation reveals dimerization by AraC-like protein Rns. Biochimie 2012; 94:2058-61. [PMID: 22627379 DOI: 10.1016/j.biochi.2012.05.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 05/14/2012] [Indexed: 11/19/2022]
Abstract
Here we show that the Rns regulator of Escherichia coli dimerises in vivo and in vitro. Furthermore, we demonstrate that Rns forms aggregates in vitro and describe a methodology to ameliorate aggregation thus permitting the analysis of Rns by cross-linking.
Collapse
Affiliation(s)
- Vivienne Mahon
- Department of Clinical Microbiology, School of Medicine, Trinity College Dublin, St. James's Hospital, Dublin, Ireland
| | | | | |
Collapse
|
15
|
Parra MC, Collins CM. Mutational analysis of the N-terminal domain of UreR, the positive transcriptional regulator of urease gene expression. Microbiol Res 2012; 167:433-44. [PMID: 22537874 DOI: 10.1016/j.micres.2012.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 12/22/2011] [Accepted: 03/12/2012] [Indexed: 10/28/2022]
Abstract
The Escherichia coli plasmid-encoded urease, a virulence factor in human and animal infections of the urinary and gastroduodenal tracts, is induced when the substrate urea is present in the growth medium. Urea-dependent urease expression is mediated at the transcriptional level by the AraC-like activator UreR. Previous work has shown that a peptide representing the N-terminal 194 amino-acid residues of UreR binds urea at a single site, full-length UreR forms an oligomer, and the oligomerization motif is thought to reside in the N-terminal portion of the molecule. The C-terminal domain of UreR contains two helix-turn-helix motifs presumed to be necessary for DNA binding. In this study, we exploited mutational analyses at the N-terminal domain of UreR to determine if this domain dimerizes similar to other AraC family members. UreR mutants were analyzed for the ability to activate transcription of lacZ from an ureDp-lacZ transcriptional fusion. A construct encoding the N-terminal 194 amino acids of UreR, eluted as an oligomer by gel filtration and had a dominant negative phenotype over the wild-type ureR allele. We hypothesize that this dominant negative phenotype results from the formation of inactive heterodimers between wild-type and truncated UreR. Dominant negative analysis and cross-linking assays demonstrated that E. coli UreR is active as a dimer and dimerization occurs within the first 180 residues.
Collapse
Affiliation(s)
- Maria C Parra
- Department of Microbiology, University of Washington, Seattle, WA 98195, United States.
| | | |
Collapse
|
16
|
Youard ZA, Reimmann C. Stereospecific recognition of pyochelin and enantio-pyochelin by the PchR proteins in fluorescent pseudomonads. Microbiology (Reading) 2010; 156:1772-1782. [DOI: 10.1099/mic.0.037796-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The siderophore pyochelin of Pseudomonas aeruginosa promotes growth under iron limitation and induces the expression of its biosynthesis genes via the transcriptional AraC/XylS-type regulator PchR. Pseudomonas fluorescens strain CHA0 makes the optical antipode of pyochelin termed enantio-pyochelin, which also promotes growth and induces the expression of its biosynthesis genes when iron is scarce. Growth promotion and signalling by pyochelin and enantio-pyochelin are highly stereospecific and are known to involve the pyochelin and enantio-pyochelin outer-membrane receptors FptA and FetA, respectively. Here we show that stereospecificity in signalling is also based on the stereospecificity of the homologous PchR proteins of P. aeruginosa and P. fluorescens towards their respective siderophore effectors. We found that PchR functioned in the heterologous species only if supplied with its native ligand and that the FptA and FetA receptors enhanced the efficiency of signalling. By constructing and expressing hybrid and truncated PchR regulators we showed that the weakly conserved N-terminal domain of PchR is responsible for siderophore specificity. Thus, both uptake and transcriptional regulation confer stereospecificity to pyochelin and enantio-pyochelin biosynthesis.
Collapse
Affiliation(s)
- Zeb A. Youard
- Département de Microbiologie Fondamentale, Université de Lausanne, CH-1015 Lausanne, Switzerland
| | - Cornelia Reimmann
- Département de Microbiologie Fondamentale, Université de Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
17
|
Sequential XylS-CTD binding to the Pm promoter induces DNA bending prior to activation. J Bacteriol 2010; 192:2682-90. [PMID: 20363935 DOI: 10.1128/jb.00165-10] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
XylS protein, a member of the AraC family of transcriptional regulators, comprises a C-terminal domain (CTD) involved in DNA binding and an N-terminal domain required for effector binding and protein dimerization. In the absence of benzoate effectors, the N-terminal domain behaves as an intramolecular repressor of the DNA binding domain. To date, the poor solubility properties of the full-length protein have restricted XylS analysis to genetic approaches in vivo. To characterize the molecular consequences of XylS binding to its operator, we used a recombinant XylS-CTD variant devoid of the N-terminal domain. The resulting protein was soluble and monomeric in solution and activated transcription from its cognate promoter in an effector-independent manner. XylS binding sites in the Pm promoter present an intrinsic curvature of 35 degrees centered at position -42 within the proximal site. Gel retardation and DNase footprint analysis showed XylS-CTD binding to Pm occurred sequentially: first a XylS-CTD monomer binds to the proximal site overlapping the RNA polymerase binding sequence to form complex I. This first event increased Pm bending to 50 degrees and was followed by the binding of the second monomer, which further increased the observed global curvature to 98 degrees. This generated a concomitant shift in the bending center to a region centered at position -51 when the two sites were occupied (complex II). We propose a model in which DNA structure and binding sequences strongly influence XylS binding events previous to transcription activation.
Collapse
|
18
|
Becker PD, Royo JL, Guzman CA. Exploitation of prokaryotic expression systems based on the salicylate-dependent control circuit encompassing nahR/P(sal)::xylS2 for biotechnological applications. Bioeng Bugs 2010; 1:244-51. [PMID: 21327056 DOI: 10.4161/bbug.1.4.11247] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2009] [Revised: 01/11/2010] [Accepted: 01/12/2010] [Indexed: 12/13/2022] Open
Abstract
Expression vectors appear to be an indispensable tool for both biological studies and biotechnological applications. Controlling gene overexpression becomes a critical issue when protein production is desired. In addition to several aspects regarding toxicity or plasmid instability, tight control of gene expression is an essential factor in biotechnological processes. Thus, the search for better-controlled circuits is an important issue among biotechnologists. Traditionally, expression systems involve a single regulatory protein operating over a target promoter. However, these circuits are limited on their induction ratios (e.g., by their restriction in the maximal expression capacity, by their leakiness under non-induced conditions). Due to these limitations, regulatory cascades, which are far more efficient, are necessary for biotechnological applications. Thus, regulatory circuits with two modules operating in cascade offer a significant advantage. In this review, we describe the regulatory cascade based on two salicylate-responsive transcriptional regulators of Pseudomonas putida (nahR/P(sal)::xylS2), its properties, and contribution to a tighter control over heterologous gene expression in different applications.Nowadays, heterologous expression has been proven to be an indispensable tool for tackling basic biological questions, as well as for developing biotechnological applications. As the nature of the protein of interest becomes more complex, biotechnologists find that a tight control of gene expression is a key factor which conditions the success of the downstream purification process, as well as the interpretation of the results in other type of studies. Fortunately, different expression systems can be found in the market, each of them with their own pros and cons. In this review we discuss the exploitation of prokaryotic expression systems based on a promising expression system, the salicylate-dependent control circuit encompassing nahR/P(sal)::xylS2, as well as some of the improvements that have been done on this system to exploit it more efficiently in the context of both biotechnological applications and basic research.
Collapse
Affiliation(s)
- Pablo D Becker
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | | |
Collapse
|
19
|
Vee Aune TE, Bakke I, Drabløs F, Lale R, Brautaset T, Valla S. Directed evolution of the transcription factor XylS for development of improved expression systems. Microb Biotechnol 2010; 3:38-47. [PMID: 21255304 PMCID: PMC3815945 DOI: 10.1111/j.1751-7915.2009.00126.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Revised: 04/29/2009] [Accepted: 05/03/2009] [Indexed: 11/28/2022] Open
Abstract
The inducible Pm promoter together with its cognate positive transcription regulator XylS has been shown to be useful for recombinant protein production under high cell density conditions. Here we report directed evolution of XylS resulting in mutant proteins with increased ability to stimulate transcription in Escherichia coli from Pm. A first round of mutagenesis using error-prone PCR on xylS was used to construct a library consisting of about 430,000 clones, and this library could be efficiently screened with respect to stimulation of expression from Pm due to a positive correlation between the level of expression of the reporter gene, bla (encoding β-lactamase), and the ampicillin tolerance of the corresponding host cells. Fourteen different amino acid substitutions in XylS were found to separately lead to up to nearly a threefold stimulation of expression under induced conditions, relative to wild type. These mutations were all located in the part corresponding to the N-terminal half of the protein. Varying combinations of the mutations resulted in further stimulation, and the best results (about 10-fold stimulation under induced conditions) were obtained by using a random shuffling procedure followed by a new round of screening. The uninduced levels of expression for the same mutants also increased, but only about four times. Through in silico 3D modelling of the N-terminal domain of XylS, it was observed that the evolved mutant proteins contained substitutions that were positioned in different parts of the predicted structure, including a β-barrel putatively responsible for effector binding and a coiled coil probably important for dimerization. The total production of the host-toxic antibody fragment scFv-phOx expressed from Pm with the evolved XylS mutant protein StEP-13 was about ninefold higher than with wild-type XylS, demonstrating that directed evolution of transcription factors can be an important new tool to achieve high-level recombinant protein production.
Collapse
Affiliation(s)
- Trond Erik Vee Aune
- Department of Biotechnology, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Ingrid Bakke
- Department of Biotechnology, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Finn Drabløs
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, 7006 Trondheim, Norway
| | - Rahmi Lale
- Department of Biotechnology, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Trygve Brautaset
- SINTEF Materials and Chemistry, Department of Biotechnology, SINTEF, 7465 Trondheim, Norway
| | - Svein Valla
- Department of Biotechnology, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| |
Collapse
|
20
|
Yang J, Dogovski C, Hocking D, Tauschek M, Perugini M, Robins-Browne RM. Bicarbonate-mediated stimulation of RegA, the global virulence regulator from Citrobacter rodentium. J Mol Biol 2009; 394:591-9. [PMID: 19853617 DOI: 10.1016/j.jmb.2009.10.033] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Revised: 09/30/2009] [Accepted: 10/14/2009] [Indexed: 11/26/2022]
Abstract
The global virulence regulatory protein RegA, an AraC-like regulator, controls the expression of more than 60 genes in the mouse enteric pathogen Citrobacter rodentium. In the presence of bicarbonate, RegA activates the transcription of a number of virulence determinants and inhibits the expression of a series of housekeeping genes. To elucidate the molecular mechanism by which bicarbonate stimulates RegA activity, we carried out biophysical and mutational analyses. Our data indicate that RegA exists as a dimer in solution regardless of bicarbonate concentration. A leucine zipper, located in the region downstream of the N-terminal domain, is responsible for dimerisation. The N-terminal arm itself is involved in modulating the response to bicarbonate, which appears to bind to a region comprising a series of beta-sheets within the N-terminal domain. The presence of bicarbonate relieves the autoinhibition of RegA activity by its N-terminal arm. RegA is the first example of a bacterial virulence regulator that utilises the light switch mechanism, previously described for the Escherichia coli AraC protein, to respond to a gut-associated effector that controls its activity.
Collapse
Affiliation(s)
- Ji Yang
- Department of Microbiology and Immunology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia
| | | | | | | | | | | |
Collapse
|
21
|
Abstract
Regulated promoters are useful tools for many aspects related to recombinant gene expression in bacteria, including for high‐level expression of heterologous proteins and for expression at physiological levels in metabolic engineering applications. In general, it is common to express the genes of interest from an inducible promoter controlled either by a positive regulator or by a repressor protein. In this review, we discuss established and potentially useful positively regulated bacterial promoter systems, with a particular emphasis on those that are controlled by the AraC‐XylS family of transcriptional activators. The systems function in a wide range of microorganisms, including enterobacteria, soil bacteria, lactic bacteria and streptomycetes. The available systems that have been applied to express heterologous genes are regulated either by sugars (l‐arabinose, l‐rhamnose, xylose and sucrose), substituted benzenes, cyclohexanone‐related compounds, ε‐caprolactam, propionate, thiostrepton, alkanes or peptides. It is of applied interest that some of the inducers require the presence of transport systems, some are more prone than others to become metabolized by the host and some have been applied mainly in one or a limited number of species. Based on bioinformatics analyses, the AraC‐XylS family of regulators contains a large number of different members (currently over 300), but only a small fraction of these, the XylS/Pm, AraC/PBAD, RhaR‐RhaS/rhaBAD, NitR/PnitA and ChnR/Pb regulator/promoter systems, have so far been explored for biotechnological applications.
Collapse
Affiliation(s)
- Trygve Brautaset
- Department of Biotechnology, Sintef Materials and Chemistry, Sintef, Trondheim, Norway.
| | | | | |
Collapse
|
22
|
Roles of effectors in XylS-dependent transcription activation: intramolecular domain derepression and DNA binding. J Bacteriol 2008; 190:3118-28. [PMID: 18296514 DOI: 10.1128/jb.01784-07] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
XylS, an AraC family protein, activates transcription from the benzoate degradation pathway Pm promoter in the presence of a substrate effector such as 3-methylbenzoate (3MB). We developed a procedure to obtain XylS-enriched preparations which proved suitable to analyze its activation mechanism. XylS showed specific 3MB-independent binding to its target operator, which became strictly 3MB dependent in a dimerization-defective mutant. We demonstrated that the N-terminal domain of the protein can make linker-independent interactions with the C-terminal domain and inhibit its capacity to bind DNA. Interactions are hampered in the presence of 3MB effector. We propose two independent roles for 3MB in XylS activation: in addition to its known influence favoring protein dimerization, the effector is able to modify XylS conformation to trigger N-terminal domain intramolecular derepression. We also show that activation by XylS involves RNA polymerase recruitment to the Pm promoter as demonstrated by chromatin immunoprecipitation assays. RNA polymerase switching in Pm transcription was reproduced in in vitro transcription assays. All sigma(32)-, sigma(38)-, and sigma(70)-dependent RNA polymerases were able to carry out Pm transcription in a rigorous XylS-dependent manner, as demonstrated by the formation of open complexes only in the presence of the regulator.
Collapse
|
23
|
Residues near the amino terminus of Rns are essential for positive autoregulation and DNA binding. J Bacteriol 2008; 190:2279-85. [PMID: 18223083 DOI: 10.1128/jb.01705-07] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Most members of the AraC/XylS family contain a conserved carboxy-terminal DNA binding domain and a less conserved amino-terminal domain involved in binding small-molecule effectors and dimerization. However, there is no evidence that Rns, a regulator of enterotoxigenic Escherichia coli virulence genes, responds to an effector ligand, and in this study we found that the amino-terminal domain of Rns does not form homodimers in vivo. Exposure of Rns to the chemical cross-linker glutaraldehyde revealed that the full-length protein is also a monomer in vitro. Nevertheless, deletion analysis of Rns demonstrated that the first 60 amino acids of the protein are essential for the activation and repression of Rns-regulated promoters in vivo. Amino-terminal truncation of Rns abolished DNA binding in vitro, and two randomly generated mutations, I14T and N16D, that independently abolished Rns autoregulation were isolated. Further analysis of these mutations revealed that they have disparate effects at other Rns-regulated promoters and suggest that they may be involved in an interaction with the carboxy-terminal domain of Rns. Thus, evolution may have preserved the amino terminus of Rns because it is essential for the regulator's activity even though it apparently lacks the two functions, dimerization and ligand binding, usually associated with the amino-terminal domains of AraC/XylS family members.
Collapse
|
24
|
Abstract
The expression of a subset of Shigella flexneri virulence genes is dependent upon a cytoplasmic chaperone, IpgC, and an activator from the AraC/XylS family, MxiE. In this paper, we report that the chaperone forms a specific and stable heteromer with MxiE.
Collapse
|
25
|
Domínguez-Cuevas P, Marín P, Marqués S, Ramos JL. XylS-Pm promoter interactions through two helix-turn-helix motifs: identifying XylS residues important for DNA binding and activation. J Mol Biol 2007; 375:59-69. [PMID: 18005985 DOI: 10.1016/j.jmb.2007.10.047] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Revised: 10/15/2007] [Accepted: 10/16/2007] [Indexed: 11/25/2022]
Abstract
The XylS protein is the positive transcription regulator of the TOL plasmid meta-cleavage pathway operon Pm. XylS belongs to the AraC family of transcriptional regulators and exhibits an N-terminal domain involved in effector recognition, and a C-terminal domain, made up of seven alpha-helices conforming two helix-turn-helix DNA-binding domains. alpha-Helix 3 and alpha-helix 6 are the recognition helices. In consonance with XylS structural organization, Pm exhibits a bipartite DNA-binding motif consisting of two boxes, called A and B, whose sequences are TGCA and GGNTA, respectively. This bipartite motif is repeated at the Pm promoter so that one of the XylS monomers binds to each of the repeats. An extensive series of genetic epistasis assays combining mutant Pm promoters and XylS single substitution mutant proteins revealed that alpha-helix 3 contacts A box nucleotides, whereas alpha-helix 6 residues contact B box nucleotides. In alpha-helix 3, Asn246 and Arg242 are involved in specific contacts with the TG dinucleotide at box A, whereas Arg296 and Glu299 contact the second G and T nucleotides at box B. On the basis of our results and of the three-dimensional model of the XylS C-terminal domain, we propose that Ser243, Glu249 and Lys250 in alpha-helix 3, and Asn299 and Arg302 in alpha-helix 6 contact the phosphate backbones. Alanine substitutions at the predicted phosphate backbone-contacting residues yielded mutants with low levels of activity, suggesting that XylS-Pm binding specificity not only involves specific amino acid-base interactions, but also relies on secondary DNA structure, which, although at another level, also comes into play. We propose a model in which a XylS dimer binds to the direct repeats in Pm in a head-to-tail conformation that allows the direct interaction of the XylS proximal subunit with the RNA polymerase sigma factor.
Collapse
Affiliation(s)
- Patricia Domínguez-Cuevas
- Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, Department of Environmental Protection, E-18008 Granada, Spain
| | | | | | | |
Collapse
|
26
|
Miguel V, Pezza RJ, Argaraña CE. The C-terminal region of Escherichia coli MutS and protein oligomerization. Biochem Biophys Res Commun 2007; 360:412-7. [PMID: 17599803 DOI: 10.1016/j.bbrc.2007.06.056] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2007] [Accepted: 06/12/2007] [Indexed: 11/22/2022]
Abstract
Escherichia coli MutS, an 853 amino acids oligomeric protein, is involved in the postreplicative DNA mismatch repair and avoidance of homeologous recombination. By constructing MutS mutated versions of the C-terminal region, we determined that deletion of the last 7 C-terminal amino acids is enough to abolish tetramer formation and that the K850A substitution destabilize the tetramer structure. It is proposed that the C-terminal extreme alpha helix (residues 839-850) of the protein may play an important role in protein oligomerization. We also show that the C-terminal region or the C-terminal plus the HTH domain of MutS, fused to the monomeric Maltose Binding Protein promote oligomerization of the chimeric protein. However, chemical cross-linking experiments indicate that the HTH domain improves the oligomerization properties of the fused protein. Escherichia coli cells expressing the fused proteins become hypermutator suggesting that the C-terminal region of MutS plays an important role in vivo.
Collapse
Affiliation(s)
- Virginia Miguel
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina
| | | | | |
Collapse
|
27
|
Childers BM, Weber GG, Prouty MG, Castaneda MM, Peng F, Klose KE. Identification of residues critical for the function of the Vibrio cholerae virulence regulator ToxT by scanning alanine mutagenesis. J Mol Biol 2007; 367:1413-30. [PMID: 17320105 DOI: 10.1016/j.jmb.2007.01.061] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2006] [Revised: 01/22/2007] [Accepted: 01/23/2007] [Indexed: 11/30/2022]
Abstract
Virulence factor expression in Vibrio cholerae is controlled by the transcriptional regulatory protein ToxT. ToxT activates transcription of the genes encoding cholera toxin (ctx) and the toxin co-regulated pilus (tcp), as well as accessory colonization factor (acf) genes. Previous studies of ToxT, a member of the AraC family of proteins, have revealed that it consists of two domains, an N-terminal dimerization and environmental sensing domain, and a C-terminal DNA binding domain. In this study, comprehensive scanning alanine mutagenesis was utilized to identify amino acids critical for the function of ToxT. Forty-eight proteins with Ala substitutions (of 267 total) exhibited defects in ToxT-dependent activation (>90% reduction) in both a V. cholerae acfA-phoA reporter strain and a Salmonella typhimurium ctxAp-lacZ reporter strain. Most of these mutant proteins also caused reductions in cholera toxin (CT) and toxin coregulated pilus (TCP) expression in a DeltatoxT V cholerae strain under in vitro virulence factor inducing conditions. Further analysis with a LexA-based reporter system revealed that one of the 20 Ala substitutions in the N terminus (F151A) diminishes dimerization, and this residue is located in a region of predicted alpha-helical structure, thus identifying a putative dimer interface. Ala substitutions in two putative helix-turn-helix (HTH) recognition helices that caused differential promoter activation (K203A and S249A) did not appear to alter specific DNA binding, suggesting these residues contribute to other aspects of transcriptional activation. A number of Ala substitutions were also found that result in a higher level of ToxT transcriptional activity, and these mutations were almost exclusively found within the N terminus, consistent with this domain being involved in modulation of ToxT activity. This study illuminates the contribution of specific amino acids to the dimerization, DNA binding, and transcriptional activity of ToxT.
Collapse
Affiliation(s)
- Brandon M Childers
- South Texas Center for Emerging Infectious Diseases, University of Texas San Antonio, San Antonio, TX 78249, USA
| | | | | | | | | | | |
Collapse
|
28
|
Lacal J, Busch A, Guazzaroni ME, Krell T, Ramos JL. The TodS-TodT two-component regulatory system recognizes a wide range of effectors and works with DNA-bending proteins. Proc Natl Acad Sci U S A 2006; 103:8191-6. [PMID: 16702539 PMCID: PMC1472451 DOI: 10.1073/pnas.0602902103] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The TodS and TodT proteins form a previously unrecognized and highly specific two-component regulatory system in which the TodS sensor protein contains two input domains, each of which are coupled to a histidine kinase domain. This system regulates the expression of the genes involved in the degradation of toluene, benzene, and ethylbenzene through the toluene dioxygenase pathway. In contrast to the narrow substrate range of this catabolic pathway, the TodS effector profile is broad. TodS has basal autophosphorylation activity in vitro, which is enhanced by the presence of effectors. Toluene binds to TodS with high affinity (Kd = 684 +/- 13 nM) and 1:1 stoichiometry. The analysis of the truncated variants of TodS reveals that toluene binds to the N-terminal input domain (Kd = 2.3 +/- 0.1 microM) but not to the C-terminal half. TodS transphosphorylates TodT, which binds to two highly similar DNA binding sites at base pairs -107 and -85 of the promoter. Integration host factor (IHF) plays a crucial role in the activation process and binds between the upstream TodT boxes and the -10 hexamer region. In an IHF-deficient background, expression from the tod promoter drops 8-fold. In vitro transcription assays confirmed the role determined in vivo for TodS, TodT, and IHF. A functional model is presented in which IHF favors the contact between the TodT activator, bound further upstream, and the alpha-subunit of RNA polymerase bound to the downstream promoter element. Once these contacts are established, the tod operon is efficiently transcribed.
Collapse
Affiliation(s)
- Jesús Lacal
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, E-18008 Granada, Spain
| | - Andreas Busch
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, E-18008 Granada, Spain
| | - María-Eugenia Guazzaroni
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, E-18008 Granada, Spain
| | - Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, E-18008 Granada, Spain
| | - Juan L. Ramos
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, E-18008 Granada, Spain
- To whom correspondence should be addressed at:
Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Calle Professor Albareda 1, E-18008 Granada, Spain. E-mail:
| |
Collapse
|
29
|
Chiribau CB, Sandu C, Igloi GL, Brandsch R. Characterization of PmfR, the transcriptional activator of the pAO1-borne purU-mabO-folD operon of Arthrobacter nicotinovorans. J Bacteriol 2005; 187:3062-70. [PMID: 15838033 PMCID: PMC1082840 DOI: 10.1128/jb.187.9.3062-3070.2005] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nicotine catabolism by Arthrobacter nicotinovorans is linked to the presence of the megaplasmid pAO1. Genes involved in this catabolic pathway are arranged on the plasmid into gene modules according to function. During nicotine degradation gamma-N-methylaminobutyrate is formed from the pyrrolidine ring of nicotine. Analysis of the pAO1 open reading frames (ORF) resulted in identification of the gene encoding a demethylating gamma-N-methylaminobutyrate oxidase (mabO). This gene was shown to form an operon with purU- and folD-like genes. Only in bacteria grown in the presence of nicotine could transcripts of the purU-mabO-folD operon be detected, demonstrating that this operon constitutes part of the pAO1 nicotine regulon. Its transcriptional start site was determined by primer extension analysis. Transcription of the operon was shown to be controlled by a new transcriptional regulator, PmfR, the product of a gene that is transcribed divergently from the purU, mabO, and folD genes. PmfR was purified, and electromobility shift assays and DNase I-nuclease digestion experiments were used to determine that its DNA binding site is located between -48 and -88 nucleotides upstream of the transcriptional start site of the operon. Disruption of pmfR by homologous recombination with a chloramphenicol resistance cassette demonstrated that PmfR acts in vivo as a transcriptional activator. Mutagenesis of the PmfR target DNA suggested that the sequence GTTT-14 bp-AAAC is the core binding site of the regulator upstream of the -35 promoter region of the purU-mabO-folD operon.
Collapse
Affiliation(s)
- Calin B Chiribau
- Institute of Biochemistry and Molecular Biology, University of Freiburg, 76104 Freiburg, Germany
| | | | | | | |
Collapse
|
30
|
Tropel D, van der Meer JR. Bacterial transcriptional regulators for degradation pathways of aromatic compounds. Microbiol Mol Biol Rev 2004; 68:474-500, table of contents. [PMID: 15353566 PMCID: PMC515250 DOI: 10.1128/mmbr.68.3.474-500.2004] [Citation(s) in RCA: 288] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human activities have resulted in the release and introduction into the environment of a plethora of aromatic chemicals. The interest in discovering how bacteria are dealing with hazardous environmental pollutants has driven a large research community and has resulted in important biochemical, genetic, and physiological knowledge about the degradation capacities of microorganisms and their application in bioremediation, green chemistry, or production of pharmacy synthons. In addition, regulation of catabolic pathway expression has attracted the interest of numerous different groups, and several catabolic pathway regulators have been exemplary for understanding transcription control mechanisms. More recently, information about regulatory systems has been used to construct whole-cell living bioreporters that are used to measure the quality of the aqueous, soil, and air environment. The topic of biodegradation is relatively coherent, and this review presents a coherent overview of the regulatory systems involved in the transcriptional control of catabolic pathways. This review summarizes the different regulatory systems involved in biodegradation pathways of aromatic compounds linking them to other known protein families. Specific attention has been paid to describing the genetic organization of the regulatory genes, promoters, and target operon(s) and to discussing present knowledge about signaling molecules, DNA binding properties, and operator characteristics, and evidence from regulatory mutants. For each regulator family, this information is combined with recently obtained protein structural information to arrive at a possible mechanism of transcription activation. This demonstrates the diversity of control mechanisms existing in catabolic pathways.
Collapse
Affiliation(s)
- David Tropel
- Swiss Federal Institute for Environmental Science and Technology (EAWAG), Dübendorf, Switzerland
| | | |
Collapse
|
31
|
Timmes A, Rodgers M, Schleif R. Biochemical and physiological properties of the DNA binding domain of AraC protein. J Mol Biol 2004; 340:731-8. [PMID: 15223316 DOI: 10.1016/j.jmb.2004.05.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2004] [Revised: 04/29/2004] [Accepted: 05/25/2004] [Indexed: 11/19/2022]
Abstract
Intact AraC protein is poorly soluble and difficult to purify, whereas its dimerization domain is the opposite. Unexpectedly, the DNA binding domain of AraC proved also to be soluble in cells when overproduced and is easily purified to homogeneity. The DNA binding affinity of the DNA binding domain for its binding site could not be measured by electrophoretic mobility shift because of its rapid association and dissociation rates, but its affinity could be measured with a fluorescence assay and was found to have a dissociation constant of 1 x 10(-8)M in 100 mM KCl. The binding of monomers of the DNA binding domain to adjacent half-sites occurs without substantial positive or negative cooperativity. A simple analysis relates the DNA binding affinities of monomers of DNA binding domain and normal dimeric AraC protein.
Collapse
Affiliation(s)
- Andrew Timmes
- Department of Biology, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21204, USA
| | | | | |
Collapse
|
32
|
Carl B, Arnold A, Hauer B, Fetzner S. Sequence and transcriptional analysis of a gene cluster of Pseudomonas putida 86 involved in quinoline degradation. Gene 2004; 331:177-88. [PMID: 15094204 DOI: 10.1016/j.gene.2004.02.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2003] [Revised: 01/10/2004] [Accepted: 02/09/2004] [Indexed: 11/16/2022]
Abstract
Although quinoline 2-oxidoreductase (Qor) and 1H-2-oxoquinoline 8-monooxygenase (OxoOR), which catalyse the first two steps of quinoline degradation by Pseudomonas putida 86, and their genes have been investigated in some detail, the genetic organization and regulation of the catabolic pathway are not known yet. A gene cluster involved in quinoline degradation was characterized. Upstream of oxoO encoding the oxygenase component of OxoOR, the gene oxoS coding for a XylS-type protein is located. The DNA region downstream of oxoO comprises potential open reading frames (ORFs) that may code for further catabolic enzymes (an alpha/beta-hydrolase fold protein, and an amidase), and for accessory proteins presumably required for the assembly of metal cofactor containing holoenzymes (XdhC-like protein, MoeC- and MobA-like protein(s), IscS and IscU). The potential iscU gene is followed by the genes qorMSL that encode the structural subunits of Qor. Three potential ORFs (ORFs7-9) are located between qorMSL and oxoR, which codes for the reductase component of OxoOR. ORFs7-9 have counterparts in the cox (CO oxidizing system) and nic (nicotine degradation) gene clusters. Transcription of all these genes and ORFs located downstream of oxoS is induced by quinoline or 1H-2-oxoquinoline. Insertional inactivation of oxoS abolished quinoline-induced transcription. However, weak transcription of ORFs7-9 also occurred independent of quinoline and OxoS. The typical tandem recognition site for a XylS-type transcriptional activator was identified in the putative promoter region of qorM, and archetypal XylS indeed was found to activate synthesis of Qor. Motifs corresponding to single half-sites of a XylS-type binding site are located upstream of oxoO, the xdhC-like gene, and oxoR. Putative quinoline-specific transcriptional start sites were identified for these genes, and for qorM. The gene cluster probably is transcribed from several promoters, resulting in multiple overlapping polycistronic mRNAs.
Collapse
MESH Headings
- Base Sequence
- Binding Sites/genetics
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- Gene Expression Regulation, Bacterial
- Genes, Bacterial/genetics
- Genes, Regulator/genetics
- Molecular Sequence Data
- Multigene Family/genetics
- Pseudomonas putida/genetics
- Pseudomonas putida/metabolism
- Quinolines/metabolism
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
- Transcription Initiation Site
- Transcription, Genetic/genetics
Collapse
Affiliation(s)
- Birgit Carl
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 3, D-48149 Muenster, Germany
| | | | | | | |
Collapse
|