1
|
Zhang N, Jin CZ, Zhuo Y, Li T, Jin FJ, Lee HG, Jin L. Genetic diversity into a novel free-living species of Bradyrhizobium from contaminated freshwater sediment. Front Microbiol 2023; 14:1295854. [PMID: 38075887 PMCID: PMC10708946 DOI: 10.3389/fmicb.2023.1295854] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 10/30/2023] [Indexed: 10/10/2024] Open
Abstract
A free-living Bradyrhizobium strain isolated from a contaminated sediment sample collected at a water depth of 4 m from the Hongze Lake in China was characterized. Phylogenetic investigation of the 16S rRNA gene, concatenated housekeeping gene sequences, and phylogenomic analysis placed this strain in a lineage distinct from all previously described Bradyrhizobium species. The sequence similarities of the concatenated housekeeping genes support its distinctiveness with the type strains of the named species. The complete genome of strain S12-14-2 consists of a single chromosome of size 7.3M. The strain lacks both a symbiosis island and important nodulation genes. Based on the data presented here, the strain represents a new species, for which the name Bradyrhizobium roseus sp. nov. is proposed for the type strain S12-14-2T. Several functional differences between the isolate and other published genomes indicate that the genus Bradyrhizobium is extremely heterogeneous and has functions within the community, such as non-symbiotic nitrogen fixation. Functional denitrification and nitrogen fixation genes were identified on the genomes of strain S12-14-2T. Genes encoding proteins for sulfur oxidation, sulfonate transport, phosphonate degradation, and phosphonate production were also identified. Lastly, the B. roseus genome contained genes encoding ribulose 1,5-bisphosphate carboxylase/oxygenase, a trait that presumably enables autotrophic flexibility under varying environmental conditions. This study provides insights into the dynamics of a genome that could enhance our understanding of the metabolism and evolutionary characteristics of the genus Bradyrhizobium and a new genetic framework for future research.
Collapse
Affiliation(s)
- Naxue Zhang
- College of Ecology and Environment, Nanjing Forestry University, Nanjing, China
| | - Chun-Zhi Jin
- Cell Factory Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Ye Zhuo
- Cell Factory Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Taihua Li
- College of Ecology and Environment, Nanjing Forestry University, Nanjing, China
| | - Feng-Jie Jin
- College of Ecology and Environment, Nanjing Forestry University, Nanjing, China
| | - Hyung-Gwan Lee
- Cell Factory Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Long Jin
- College of Ecology and Environment, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
2
|
Barreiro DS, Oliveira RNS, Pauleta SR. Biochemical Characterization of the Copper Nitrite Reductase from Neisseria gonorrhoeae. Biomolecules 2023; 13:1215. [PMID: 37627281 PMCID: PMC10452240 DOI: 10.3390/biom13081215] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/16/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
The copper-containing nitrite reductase from Neisseria gonorrhoeae has been shown to play a critical role in the infection mechanism of this microorganism by producing NO and abolishing epithelial exfoliation. This enzyme is a trimer with a type 1 copper center per subunit and a type 2 copper center in the subunits interface, with the latter being the catalytic site. The two centers were characterized for the first time by EPR and CD spectroscopy, showing that the type 1 copper center has a high rhombicity due to its lower symmetry and more tetragonal structure, while the type 2 copper center has the usual properties, but with a smaller hyperfine coupling constant (A// = 10.5 mT). The thermostability of the enzyme was analyzed by differential scanning calorimetry, which shows a single endothermic transition in the thermogram, with a maximum at 94 °C, while the CD spectra in the visible region indicate the presence of the type 1 copper center up to 80 °C. The reoxidation of the N. gonorrhoeae copper-containing nitrite reductase in the presence of nitrite were analyzed by visible spectroscopy and showed a pH dependence, being higher at pH 5.5-6.0. The high thermostability of this enzyme may be important to maintaining a high activity in the extracellular space and to making it less susceptible to denaturation and proteolysis, contributing to the proliferation of N. gonorrhoeae.
Collapse
Affiliation(s)
- Daniela S. Barreiro
- Microbial Stress Lab, UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Ricardo N. S. Oliveira
- Microbial Stress Lab, UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Sofia R. Pauleta
- Microbial Stress Lab, UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
3
|
Murali R, Hemp J, Gennis RB. Evolution of quinol oxidation within the heme‑copper oxidoreductase superfamily. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148907. [PMID: 35944661 DOI: 10.1016/j.bbabio.2022.148907] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 07/09/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
The heme‑copper oxidoreductase (HCO) superfamily is a large superfamily of terminal respiratory enzymes that are widely distributed across the three domains of life. The superfamily includes biochemically diverse oxygen reductases and nitric oxide reductases that are pivotal in the pathways of aerobic respiration and denitrification. The adaptation of HCOs to use quinol as the electron donor instead of cytochrome c has significant implication for the respiratory flexibility and energetic efficiency of the respiratory chains that include them. In this work, we explore the adaptation of this scaffold to two different electron donors, cytochromes c and quinols, with extensive sequence analysis of these enzymes from publicly available datasets. Our work shows that quinol oxidation evolved independently within the HCO superfamily at least seven times. Enzymes from only two of these independently evolved clades have been biochemically well-characterized. Combining structural modeling with sequence analysis, we identify putative quinol binding sites in each of the novel quinol oxidases. Our analysis of experimental and modeling data suggests that the quinol binding site appears to have evolved at the same structural position within the scaffold more than once.
Collapse
Affiliation(s)
- Ranjani Murali
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91106, USA.
| | - James Hemp
- Metrodora Institute, West Valley City, UT, USA 84119.
| | - Robert B Gennis
- Department of Biochemistry, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
4
|
Metaproteomics, Heterotrophic Growth, and Distribution of Nitrosomonas europaea and Nitrobacter winogradskyi after Long-Term Operation of an Autotrophic Nitrifying Biofilm Reactor. Appl Microbiol 2022. [DOI: 10.3390/applmicrobiol2010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Bioregenerative life support systems (BLSS) are currently in development to tackle low recovery efficiencies, high energy demands, as well as food, water, and oxygen production challenges through the regeneration of nutrients from waste streams. The MELiSSA pilot plant has been developed as a testbed for regenerative life support system bioreactor operation and characterization. As nitrogen is a vital resource in such systems, we studied the functional composition of a new packed-bed nitrifying bioreactor inoculated with a co-culture of Nitrosomonas europaea (ATCC 25978) and Nitrobacter winogradskyi (ATCC 25391). After 840 days of autotrophic continuous cultivation, the packed-bed was sampled at five vertical positions, each with three horizontal positions, and the biomass at each position was characterized via qPCR, 16S amplicon sequencing, and liquid chromatography tandem mass spectrometry. The total number of cells within the different sections fluctuated around 8.95 ± 5.10 × 107 cells/mL of beads. Based on 16S amplicons and protein content, N. europaea and N. winogradskyi constituted overall 44.07 ± 11.75% and 57.53 ± 12.04% of the nitrifying bioreactor, respectively, indicating the presence of a heterotrophic population that, even after such a long operation time, did not affect the nitrification function of the bioreactor. In addition, DNA-based abundance estimates showed that N. europaea was slightly more abundant than N. winogradskyi, whereas protein-based abundance estimates indicated a much higher abundance of N. europaea. This highlights that single-method approaches need to be carefully interpreted in terms of overall cell abundance and metabolic activity.
Collapse
|
5
|
Wilson DF, Matschinsky FM. Metabolic Homeostasis in Life as We Know It: Its Origin and Thermodynamic Basis. Front Physiol 2021; 12:658997. [PMID: 33967829 PMCID: PMC8104125 DOI: 10.3389/fphys.2021.658997] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/19/2021] [Indexed: 12/25/2022] Open
Abstract
Living organisms require continuous input of energy for their existence. As a result, life as we know it is based on metabolic processes that extract energy from the environment and make it available to support life (energy metabolism). This metabolism is based on, and regulated by, the underlying thermodynamics. This is important because thermodynamic parameters are stable whereas kinetic parameters are highly variable. Thermodynamic control of metabolism is exerted through near equilibrium reactions that determine. (1) the concentrations of metabolic substrates for enzymes that catalyze irreversible steps and (2) the concentrations of small molecules (AMP, ADP, etc.) that regulate the activity of irreversible reactions in metabolic pathways. The result is a robust homeostatic set point (−ΔGATP) with long term (virtually unlimited) stability. The rest of metabolism and its regulation is constrained to maintain this set point. Thermodynamic control is illustrated using the ATP producing part of glycolysis, glyceraldehyde-3-phosphate oxidation to pyruvate. Flux through the irreversible reaction, pyruvate kinase (PK), is primarily determined by the rate of ATP consumption. Change in the rate of ATP consumption causes mismatch between use and production of ATP. The resulting change in [ATP]/[ADP][Pi], through near equilibrium of the reactions preceding PK, alters the concentrations of ADP and phosphoenolpyruvate (PEP), the substrates for PK. The changes in ADP and PEP alter flux through PK appropriately for restoring equality of ATP production and consumption. These reactions appeared in the very earliest lifeforms and are hypothesized to have established the set point for energy metabolism. As evolution included more metabolic functions, additional layers of control were needed to integrate new functions into existing metabolism without changing the homeostatic set point. Addition of gluconeogenesis, for example, resulted in added regulation to PK activity to prevent futile cycling; PK needs to be turned off during gluconeogenesis because flux through the enzyme would waste energy (ATP), subtracting from net glucose synthesis and decreasing overall efficiency.
Collapse
Affiliation(s)
- David F Wilson
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Franz M Matschinsky
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
6
|
Amanullah S, Saha P, Nayek A, Ahmed ME, Dey A. Biochemical and artificial pathways for the reduction of carbon dioxide, nitrite and the competing proton reduction: effect of 2nd sphere interactions in catalysis. Chem Soc Rev 2021; 50:3755-3823. [DOI: 10.1039/d0cs01405b] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Reduction of oxides and oxoanions of carbon and nitrogen are of great contemporary importance as they are crucial for a sustainable environment.
Collapse
Affiliation(s)
- Sk Amanullah
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata
- India
| | - Paramita Saha
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata
- India
| | - Abhijit Nayek
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata
- India
| | - Md Estak Ahmed
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata
- India
| | - Abhishek Dey
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata
- India
| |
Collapse
|
7
|
Yang J, Feng L, Pi S, Cui D, Ma F, Zhao HP, Li A. A critical review of aerobic denitrification: Insights into the intracellular electron transfer. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 731:139080. [PMID: 32417477 DOI: 10.1016/j.scitotenv.2020.139080] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/04/2020] [Accepted: 04/26/2020] [Indexed: 05/23/2023]
Abstract
Aerobic denitrification is a novel biological nitrogen removal technology, which has been widely investigated as an alternative to the conventional denitrification and for its unique advantages. To fully comprehend aerobic denitrification, it is essential to clarify the regulatory mechanisms of intracellular electron transfer during aerobic denitrification. However, reports on intracellular electron transfer during aerobic denitrification are rather limited. Thus, the purpose of this review is to discuss the molecular mechanism of aerobic denitrification from the perspective of electron transfer, by summarizing the advancements in current research on electron transfer based on conventional denitrification. Firstly, the implication of aerobic denitrification is briefly discussed, and the status of current research on aerobic denitrification is summarized. Then, the occurring foundation and significance of aerobic denitrification are discussed based on a brief review of the key components involved in the electron transfer of denitrifying enzymes. Moreover, a strategy for enhancing the efficiency of aerobic denitrification is proposed on the basis of the regulatory mechanisms of denitrification enzymes. Finally, scientific outlooks are given for further investigation on aerobic denitrification in the future. This review could help clarify the mechanism of aerobic denitrification from the perspective of electron transfer.
Collapse
Affiliation(s)
- Jixian Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| | - Liang Feng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| | - Shanshan Pi
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| | - Di Cui
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China; Engineering Research Center for Medicine, College of Pharmacy, Harbin University of Commerce, Harbin 150076, People's Republic of China
| | - Fang Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| | - He-Ping Zhao
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Ang Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China.
| |
Collapse
|
8
|
Klünemann T, Henke S, Blankenfeldt W. The crystal structure of the heme d 1 biosynthesis-associated small c-type cytochrome NirC reveals mixed oligomeric states in crystallo. Acta Crystallogr D Struct Biol 2020; 76:375-384. [PMID: 32254062 PMCID: PMC7137109 DOI: 10.1107/s2059798320003101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 03/05/2020] [Indexed: 11/10/2022] Open
Abstract
Monoheme c-type cytochromes are important electron transporters in all domains of life. They possess a common fold hallmarked by three α-helices that surround a covalently attached heme. An intriguing feature of many monoheme c-type cytochromes is their capacity to form oligomers by exchanging at least one of their α-helices, which is often referred to as 3D domain swapping. Here, the crystal structure of NirC, a c-type cytochrome co-encoded with other proteins involved in nitrite reduction by the opportunistic pathogen Pseudomonas aeruginosa, has been determined. The crystals diffracted anisotropically to a maximum resolution of 2.12 Å (spherical resolution of 2.83 Å) and initial phases were obtained by Fe-SAD phasing, revealing the presence of 11 NirC chains in the asymmetric unit. Surprisingly, these protomers arrange into one monomer and two different types of 3D domain-swapped dimers, one of which shows pronounced asymmetry. While the simultaneous observation of monomers and dimers probably reflects the interplay between the high protein concentration required for crystallization and the structural plasticity of monoheme c-type cytochromes, the identification of conserved structural motifs in the monomer together with a comparison with similar proteins may offer new leads to unravel the unknown function of NirC.
Collapse
Affiliation(s)
- Thomas Klünemann
- Structure and Function of Proteins, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Steffi Henke
- Structure and Function of Proteins, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Wulf Blankenfeldt
- Structure and Function of Proteins, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
| |
Collapse
|
9
|
Genomic and Metabolic Insights into Denitrification, Sulfur Oxidation, and Multidrug Efflux Pump Mechanisms in the Bacterium Rhodoferax sediminis sp. nov. Microorganisms 2020; 8:microorganisms8020262. [PMID: 32075304 PMCID: PMC7074706 DOI: 10.3390/microorganisms8020262] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/05/2020] [Accepted: 02/13/2020] [Indexed: 12/31/2022] Open
Abstract
This genus contains both phototrophs and nonphototrophic members. Here, we present a high-quality complete genome of the strain CHu59-6-5T, isolated from a freshwater sediment. The circular chromosome (4.39 Mbp) of the strain CHu59-6-5T has 64.4% G+C content and contains 4240 genes, of which a total of 3918 genes (92.4%) were functionally assigned to the COG (clusters of orthologous groups) database. Functional genes for denitrification (narGHJI, nirK and qnor) were identified on the genomes of the strain CHu59-6-5T, except for N2O reductase (nos) genes for the final step of denitrification. Genes (soxBXAZY) for encoding sulfur oxidation proteins were identified, and the FSD and soxF genes encoding the monomeric flavoproteins which have sulfide dehydrogenase activities were also detected. Lastly, genes for the assembly of two different RND (resistance-nodulation division) type efflux systems and one ABC (ATP-binding cassette) type efflux system were identified in the Rhodoferax sediminis CHu59-6-5T. Phylogenetic analysis based on 16S rRNA sequences and Average Nucleotide Identities (ANI) support the idea that the strain CHu59-6-5T has a close relationship to the genus Rhodoferax. A polyphasic study was done to establish the taxonomic status of the strain CHu59-6-5T. Based on these data, we proposed that the isolate be classified to the genus Rhodoferax as Rhodoferax sediminis sp. nov. with isolate CHu59-6-5T.
Collapse
|
10
|
Functional interactions between nitrite reductase and nitric oxide reductase from Paracoccus denitrificans. Sci Rep 2019; 9:17234. [PMID: 31754148 PMCID: PMC6872814 DOI: 10.1038/s41598-019-53553-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/29/2019] [Indexed: 12/25/2022] Open
Abstract
Denitrification is a microbial pathway that constitutes an important part of the nitrogen cycle on earth. Denitrifying organisms use nitrate as a terminal electron acceptor and reduce it stepwise to nitrogen gas, a process that produces the toxic nitric oxide (NO) molecule as an intermediate. In this work, we have investigated the possible functional interaction between the enzyme that produces NO; the cd1 nitrite reductase (cd1NiR) and the enzyme that reduces NO; the c-type nitric oxide reductase (cNOR), from the model soil bacterium P. denitrificans. Such an interaction was observed previously between purified components from P. aeruginosa and could help channeling the NO (directly from the site of formation to the side of reduction), in order to protect the cell from this toxic intermediate. We find that electron donation to cNOR is inhibited in the presence of cd1NiR, presumably because cd1NiR binds cNOR at the same location as the electron donor. We further find that the presence of cNOR influences the dimerization of cd1NiR. Overall, although we find no evidence for a high-affinity, constant interaction between the two enzymes, our data supports transient interactions between cd1NiR and cNOR that influence enzymatic properties of cNOR and oligomerization properties of cd1NiR. We speculate that this could be of particular importance in vivo during metabolic switches between aerobic and denitrifying conditions.
Collapse
|
11
|
Garg N, Taylor AJ, Kelly DJ. Bacterial periplasmic nitrate and trimethylamine-N-oxide respiration coupled to menaquinol-cytochrome c reductase (Qcr): Implications for electrogenic reduction of alternative electron acceptors. Sci Rep 2018; 8:15478. [PMID: 30341307 PMCID: PMC6195509 DOI: 10.1038/s41598-018-33857-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 10/08/2018] [Indexed: 12/14/2022] Open
Abstract
The periplasmic reduction of the electron acceptors nitrate (Em +420 mV) and trimethylamine-N-oxide (TMAO; Em +130 mV) by Nap and Tor reductases is widespread in Gram-negative bacteria and is usually considered to be driven by non-energy conserving quinol dehydrogenases. The Epsilonproteobacterium Campylobacter jejuni can grow by nitrate and TMAO respiration and it has previously been assumed that these alternative pathways of electron transport are independent of the proton-motive menaquinol-cytochrome c reductase complex (QcrABC) that functions in oxygen-linked respiration. Here, we show that a qcrABC deletion mutant is completely deficient in oxygen-limited growth on both nitrate and TMAO and is unable to reduce these oxidants with physiological electron donors. As expected, the mutant grows normally on fumarate under oxygen-limited conditions. Thus, the periplasmic Nap and Tor reductases receive their electrons via QcrABC in C. jejuni, explaining the general absence of NapC and TorC quinol dehydrogenases in Epsilonproteobacteria. Moreover, the specific use of menaquinol (Em -75 mV) coupled with a Qcr complex to drive reduction of nitrate or TMAO against the proton-motive force allows the process to be electrogenic with a H+/2e- ratio of 2. The results have general implications for the role of Qcr complexes in bacterial oxygen-independent respiration and growth.
Collapse
Affiliation(s)
- Nitanshu Garg
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Aidan J Taylor
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - David J Kelly
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK.
| |
Collapse
|
12
|
Hira D, Kitamura R, Nakamura T, Yamagata Y, Furukawa K, Fujii T. Anammox Organism KSU-1 Expresses a Novel His/DOPA Ligated Cytochrome c. J Mol Biol 2018; 430:1189-1200. [DOI: 10.1016/j.jmb.2018.02.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 02/18/2018] [Accepted: 02/20/2018] [Indexed: 10/18/2022]
|
13
|
Giannopoulos G, Sullivan MJ, Hartop KR, Rowley G, Gates AJ, Watmough NJ, Richardson DJ. Tuning the modular Paracoccus denitrificans respirome to adapt from aerobic respiration to anaerobic denitrification. Environ Microbiol 2017; 19:4953-4964. [PMID: 29076595 DOI: 10.1111/1462-2920.13974] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 10/10/2017] [Accepted: 10/16/2017] [Indexed: 12/31/2022]
Abstract
Bacterial denitrification is a respiratory process that is a major source and sink of the potent greenhouse gas nitrous oxide. Many denitrifying bacteria can adjust to life in both oxic and anoxic environments through differential expression of their respiromes in response to environmental signals such as oxygen, nitrate and nitric oxide. We used steady-state oxic and anoxic chemostat cultures to demonstrate that the switch from aerobic to anaerobic metabolism is brought about by changes in the levels of expression of relatively few genes, but this is sufficient to adjust the configuration of the respirome to allow the organism to efficiently respire nitrate without the significant release of intermediates, such as nitrous oxide. The regulation of the denitrification respirome in strains deficient in the transcription factors FnrP, Nnr and NarR was explored and revealed that these have both inducer and repressor activities, possibly due to competitive binding at similar DNA binding sites. This may contribute to the fine tuning of expression of the denitrification respirome and so adds to the understanding of the regulation of nitrous oxide emission by denitrifying bacteria in response to different environmental signals.
Collapse
Affiliation(s)
- Georgios Giannopoulos
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Matthew J Sullivan
- School of Medical Science, Griffith University, Gold Coast campus, Southport, Australia
| | - Katherine R Hartop
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Gary Rowley
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Andrew J Gates
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Nicholas J Watmough
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - David J Richardson
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| |
Collapse
|
14
|
Pérez-Henarejos SA, Alcaraz LA, Donaire A. Blue Copper Proteins: A rigid machine for efficient electron transfer, a flexible device for metal uptake. Arch Biochem Biophys 2015; 584:134-48. [DOI: 10.1016/j.abb.2015.08.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 08/24/2015] [Accepted: 08/28/2015] [Indexed: 10/23/2022]
|
15
|
Deeudom M, Huston W, Moir JWB. Lipid-modified azurin of Neisseria meningitidis is a copper protein localized on the outer membrane surface and not regulated by FNR. Antonie van Leeuwenhoek 2015; 107:1107-16. [PMID: 25666376 DOI: 10.1007/s10482-015-0400-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 01/29/2015] [Indexed: 11/24/2022]
Abstract
The laz gene of Neisseria meningitidis is predicted to encode a lipid-modified azurin (Laz). Laz is very similar to azurin, a periplasmic protein, which belongs to the copper-containing proteins in the cupredoxin superfamily. In other bacteria, azurin is an electron donor to nitrite reductase, an important enzyme in the denitrifying process. It is not known whether Laz could function as an electron transfer protein in this important pathogen. Laz protein was heterologously expressed in Escherichia coli and purified. Electrospray mass spectrometry indicated that the Laz protein contains one copper ion. Laz was shown to be redox-active in the presence of its redox center copper ion. When oxidized, Laz exhibits an intense blue colour and absorbs visible light around 626 nm. The absorption is lost when exposed to diethyldithiocarbamate, a copper chelating agent. Polyclonal antibodies were raised against purified Laz for detecting expression of Laz under different growth conditions and to determine the orientation of Laz on the outer membrane. The expression of Laz under microaerobic and microaerobic denitrifying conditions was slightly higher than that under aerobic conditions. However, the expression of Laz was similar between the wild type strain and an fnr mutant, suggesting that Fumarate/Nitrate reduction regulator (FNR) does not regulate the expression of Laz despite the presence of a partial FNR box upstream of the laz gene. We propose that some Laz protein is exposed on the outer membrane surface of N. meningitidis as the αLaz antibodies can increase killing by complement in a capsule deficient N. meningitidis strain, in a dose-dependent fashion.
Collapse
Affiliation(s)
- Manu Deeudom
- Department of Biology (Area 10), University of York, Heslington, York, YO10 5YW, UK,
| | | | | |
Collapse
|
16
|
Bali S, Palmer DJ, Schroeder S, Ferguson SJ, Warren MJ. Recent advances in the biosynthesis of modified tetrapyrroles: the discovery of an alternative pathway for the formation of heme and heme d 1. Cell Mol Life Sci 2014; 71:2837-63. [PMID: 24515122 PMCID: PMC11113276 DOI: 10.1007/s00018-014-1563-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 12/19/2013] [Accepted: 01/10/2014] [Indexed: 02/05/2023]
Abstract
Hemes (a, b, c, and o) and heme d 1 belong to the group of modified tetrapyrroles, which also includes chlorophylls, cobalamins, coenzyme F430, and siroheme. These compounds are found throughout all domains of life and are involved in a variety of essential biological processes ranging from photosynthesis to methanogenesis. The biosynthesis of heme b has been well studied in many organisms, but in sulfate-reducing bacteria and archaea, the pathway has remained a mystery, as many of the enzymes involved in these characterized steps are absent. The heme pathway in most organisms proceeds from the cyclic precursor of all modified tetrapyrroles uroporphyrinogen III, to coproporphyrinogen III, which is followed by oxidation of the ring and finally iron insertion. Sulfate-reducing bacteria and some archaea lack the genetic information necessary to convert uroporphyrinogen III to heme along the "classical" route and instead use an "alternative" pathway. Biosynthesis of the isobacteriochlorin heme d 1, a cofactor of the dissimilatory nitrite reductase cytochrome cd 1, has also been a subject of much research, although the biosynthetic pathway and its intermediates have evaded discovery for quite some time. This review focuses on the recent advances in the understanding of these two pathways and their surprisingly close relationship via the unlikely intermediate siroheme, which is also a cofactor of sulfite and nitrite reductases in many organisms. The evolutionary questions raised by this discovery will also be discussed along with the potential regulation required by organisms with overlapping tetrapyrrole biosynthesis pathways.
Collapse
Affiliation(s)
- Shilpa Bali
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| | - David J. Palmer
- School of Biosciences, University of Kent, Kent, Canterbury, CT2 7NZ UK
| | - Susanne Schroeder
- School of Biosciences, University of Kent, Kent, Canterbury, CT2 7NZ UK
| | - Stuart J. Ferguson
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| | - Martin J. Warren
- School of Biosciences, University of Kent, Kent, Canterbury, CT2 7NZ UK
| |
Collapse
|
17
|
Affiliation(s)
- Luisa B. Maia
- REQUIMTE/CQFB, Departamento
de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - José J. G. Moura
- REQUIMTE/CQFB, Departamento
de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
18
|
No laughing matter: the unmaking of the greenhouse gas dinitrogen monoxide by nitrous oxide reductase. Met Ions Life Sci 2014; 14:177-210. [PMID: 25416395 DOI: 10.1007/978-94-017-9269-1_8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The gas nitrous oxide (N₂O) is generated in a variety of abiotic, biotic, and anthropogenic processes and it has recently been under scrutiny for its role as a greenhouse gas. A single enzyme, nitrous oxide reductase, is known to reduce N₂O to uncritical N₂, in a two-electron reduction process that is catalyzed at two unusual metal centers containing copper. Nitrous oxide reductase is a bacterial metalloprotein from the metabolic pathway of denitrification, and it forms a 130 kDa homodimer in which the two metal sites CuA and CuZ from opposing monomers are brought into close contact to form the active site of the enzyme. CuA is a binuclear, valence-delocalized cluster that accepts and transfers a single electron. The CuA site of nitrous oxide reductase is highly similar to that of respiratory heme-copper oxidases, but in the denitrification enzyme the site additionally undergoes a conformational change on a ligand that is suggested to function as a gate for electron transfer from an external donor protein. CuZ, the tetranuclear active center of nitrous oxide reductase, is isolated under mild and anoxic conditions as a unique [4Cu:2S] cluster. It is easily desulfurylated to yield a [4Cu:S] state termed CuZ (*) that is functionally distinct. The CuZ form of the cluster is catalytically active, while CuZ (*) is inactive as isolated in the [3Cu(1+):1Cu(2+)] state. However, only CuZ (*) can be reduced to an all-cuprous state by sodium dithionite, yielding a form that shows higher activities than CuZ. As the possibility of a similar reductive activation in the periplasm is unconfirmed, the mechanism and the actual functional state of the enzyme remain under debate. Using enzyme from anoxic preparations with CuZ in the [4Cu:2S] state, N2O was shown to bind between the CuA and CuZ sites, suggesting direct electron transfer from CuA to the substrate after its activation by CuZ.
Collapse
|
19
|
Abstract
Laboratory-adapted strains of Thermus spp. have been shown to require oxygen for growth, including the model strains T. thermophilus HB27 and HB8. In contrast, many isolates of this species that have not been intensively grown under laboratory conditions keep the capability to grow anaerobically with one or more electron acceptors. The use of nitrogen oxides, especially nitrate, as electron acceptors is one of the most widespread capabilities among these facultative strains. In this process, nitrate is reduced to nitrite by a reductase (Nar) that also functions as electron transporter toward nitrite and nitric oxide reductases when nitrate is scarce, effectively replacing respiratory complex III. In many T. thermophilus denitrificant strains, most electrons for Nar are provided by a new class of NADH dehydrogenase (Nrc). The ability to reduce nitrite to NO and subsequently to N2O by the corresponding Nir and Nor reductases is also strain specific. The genes encoding the capabilities for nitrate (nar) and nitrite (nir and nor) respiration are easily transferred between T. thermophilus strains by natural competence or by a conjugation-like process and may be easily lost upon continuous growth under aerobic conditions. The reason for this instability is apparently related to the fact that these metabolic capabilities are encoded in gene cluster islands, which are delimited by insertion sequences and integrated within highly variable regions of easily transferable extrachromosomal elements. Together with the chromosomal genes, these plasmid-associated genetic islands constitute the extended pangenome of T. thermophilus that provides this species with an enhanced capability to adapt to changing environments.
Collapse
|
20
|
Direct electron transfer from pseudoazurin to nitrous oxide reductase in catalytic N2O reduction. J Inorg Biochem 2012; 115:163-73. [DOI: 10.1016/j.jinorgbio.2012.07.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 07/09/2012] [Accepted: 07/10/2012] [Indexed: 11/22/2022]
|
21
|
Simon J, Klotz MG. Diversity and evolution of bioenergetic systems involved in microbial nitrogen compound transformations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1827:114-35. [PMID: 22842521 DOI: 10.1016/j.bbabio.2012.07.005] [Citation(s) in RCA: 214] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 07/10/2012] [Accepted: 07/19/2012] [Indexed: 11/18/2022]
Abstract
Nitrogen is an essential element of life that needs to be assimilated in its most reduced form, ammonium. On the other hand, nitrogen exists in a multitude of oxidation states and, consequently, nitrogen compounds (NCs) serve as electron donor and/or acceptors in many catabolic pathways including various forms of microbial respiration that contribute to the global biogeochemical nitrogen cycle. Some of these NCs are also known as reactive nitrogen species able to cause nitrosative stress because of their high redox reactivity. The best understood processes of the nitrogen cycle are denitrification and ammonification (both beginning with nitrate reduction to nitrite), nitrification (aerobic oxidation of ammonium and nitrite) and anaerobic ammonium oxidation (anammox). This review presents examples of the diverse architecture, either elucidated or anticipated, and the high degree of modularity of the corresponding respiratory electron transport processes found in Bacteria and Archaea, and relates these to their respective bioenergetic mechanisms of proton motive force generation. In contrast to the multiplicity of enzymes that catalyze NC transformations, the number of proteins or protein modules involved in connecting electron transport to and from these enzymes with the quinone/quinol pool is comparatively small. These quinone/quinol-reactive protein modules consist of cytochromes b and c and iron-sulfur proteins. Conclusions are drawn towards the evolutionary relationships of bioenergetic systems involved in NC transformation and deduced aspects of the evolution of the biogeochemical nitrogen cycle are presented. This article is part of a Special Issue entitled: The evolutionary aspects of bioenergetic systems.
Collapse
Affiliation(s)
- Jörg Simon
- Microbial Energy Conversion and Biotechnology, Department of Biology, Technische Universität Darmstadt, Schnittspahnstr. 10, 64287 Darmstadt, Germany.
| | | |
Collapse
|
22
|
Felgate H, Giannopoulos G, Sullivan MJ, Gates AJ, Clarke TA, Baggs E, Rowley G, Richardson DJ. The impact of copper, nitrate and carbon status on the emission of nitrous oxide by two species of bacteria with biochemically distinct denitrification pathways. Environ Microbiol 2012; 14:1788-800. [DOI: 10.1111/j.1462-2920.2012.02789.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Bueno E, Mesa S, Bedmar EJ, Richardson DJ, Delgado MJ. Bacterial adaptation of respiration from oxic to microoxic and anoxic conditions: redox control. Antioxid Redox Signal 2012; 16:819-52. [PMID: 22098259 PMCID: PMC3283443 DOI: 10.1089/ars.2011.4051] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 11/16/2011] [Accepted: 11/18/2011] [Indexed: 12/22/2022]
Abstract
Under a shortage of oxygen, bacterial growth can be faced mainly by two ATP-generating mechanisms: (i) by synthesis of specific high-affinity terminal oxidases that allow bacteria to use traces of oxygen or (ii) by utilizing other substrates as final electron acceptors such as nitrate, which can be reduced to dinitrogen gas through denitrification or to ammonium. This bacterial respiratory shift from oxic to microoxic and anoxic conditions requires a regulatory strategy which ensures that cells can sense and respond to changes in oxygen tension and to the availability of other electron acceptors. Bacteria can sense oxygen by direct interaction of this molecule with a membrane protein receptor (e.g., FixL) or by interaction with a cytoplasmic transcriptional factor (e.g., Fnr). A third type of oxygen perception is based on sensing changes in redox state of molecules within the cell. Redox-responsive regulatory systems (e.g., ArcBA, RegBA/PrrBA, RoxSR, RegSR, ActSR, ResDE, and Rex) integrate the response to multiple signals (e.g., ubiquinone, menaquinone, redox active cysteine, electron transport to terminal oxidases, and NAD/NADH) and activate or repress target genes to coordinate the adaptation of bacterial respiration from oxic to anoxic conditions. Here, we provide a compilation of the current knowledge about proteins and regulatory networks involved in the redox control of the respiratory adaptation of different bacterial species to microxic and anoxic environments.
Collapse
Affiliation(s)
- Emilio Bueno
- Estación Experimental del Zaidín, CSIC, Granada, Spain
| | | | | | | | | |
Collapse
|
24
|
Dell'acqua S, Moura I, Moura JJG, Pauleta SR. The electron transfer complex between nitrous oxide reductase and its electron donors. J Biol Inorg Chem 2011; 16:1241-54. [PMID: 21739254 DOI: 10.1007/s00775-011-0812-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 06/20/2011] [Indexed: 11/25/2022]
Abstract
Identifying redox partners and the interaction surfaces is crucial for fully understanding electron flow in a respiratory chain. In this study, we focused on the interaction of nitrous oxide reductase (N(2)OR), which catalyzes the final step in bacterial denitrification, with its physiological electron donor, either a c-type cytochrome or a type 1 copper protein. The comparison between the interaction of N(2)OR from three different microorganisms, Pseudomonas nautica, Paracoccus denitrificans, and Achromobacter cycloclastes, with their physiological electron donors was performed through the analysis of the primary sequence alignment, electrostatic surface, and molecular docking simulations, using the bimolecular complex generation with global evaluation and ranking algorithm. The docking results were analyzed taking into account the experimental data, since the interaction is suggested to have either a hydrophobic nature, in the case of P. nautica N(2)OR, or an electrostatic nature, in the case of P. denitrificans N(2)OR and A. cycloclastes N(2)OR. A set of well-conserved residues on the N(2)OR surface were identified as being part of the electron transfer pathway from the redox partner to N(2)OR (Ala495, Asp519, Val524, His566 and Leu568 numbered according to the P. nautica N(2)OR sequence). Moreover, we built a model for Wolinella succinogenes N(2)OR, an enzyme that has an additional c-type-heme-containing domain. The structures of the N(2)OR domain and the c-type-heme-containing domain were modeled and the full-length structure was obtained by molecular docking simulation of these two domains. The orientation of the c-type-heme-containing domain relative to the N(2)OR domain is similar to that found in the other electron transfer complexes.
Collapse
Affiliation(s)
- Simone Dell'acqua
- REQUIMTE/CQFB, Departamento de Química, Universidade Nova de Lisboa, Caparica, Portugal
| | | | | | | |
Collapse
|
25
|
Identification, functional studies, and genomic comparisons of new members of the NnrR regulon in Rhodobacter sphaeroides. J Bacteriol 2009; 192:903-11. [PMID: 19966004 DOI: 10.1128/jb.01026-09] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Analysis of the Rhodobacter sphaeroides 2.4.3 genome revealed four previously unidentified sequences similar to the binding site of the transcriptional regulator NnrR. Expression studies demonstrated that three of these sequences are within the promoters of genes, designated paz, norEF, and cdgA, in the NnrR regulon, while the status of the fourth sequence, within the tat operon promoter, remains uncertain. nnrV, under control of a previously identified NnrR site, was also identified. paz encodes a pseudoazurin that is a donor of electrons to nitrite reductase. paz inactivation did not decrease nitrite reductase activity, but loss of pseudoazurin and cytochrome c(2) together reduced nitrite reduction. Inactivation of norEF reduced nitrite and nitric oxide reductase activity and increased the sensitivity to nitrite in a taxis assay. This suggests that loss of norEF increases NO production as a result of decreased nitric oxide reductase activity. 2.4.3 is the only strain of R. sphaeroides with norEF, even though all four of the strains whose genomes have been sequenced have the norCBQD operon and nnrR. norEF was shown to provide resistance to nitrite when it was mobilized into R. sphaeroides strain 2.4.1 containing nirK. Inactivation of the other identified genes did not reveal any detectable denitrification-related phenotype. The distribution of members of the NnrR regulon in R. sphaeroides revealed patterns of coselection of structural genes with the ancillary genes identified here. The strong coselection of these genes indicates their functional importance under real-world conditions, even though inactivation of the majority of them does not impact denitrification under laboratory conditions.
Collapse
|
26
|
Zajicek RS, Bali S, Arnold S, Brindley AA, Warren MJ, Ferguson SJ. d(1) haem biogenesis - assessing the roles of three nir gene products. FEBS J 2009; 276:6399-411. [PMID: 19796169 DOI: 10.1111/j.1742-4658.2009.07354.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The synthesis of the modified tetrapyrrole known as d(1) haem requires several dedicated proteins which are coded for by a set of genes that are often found adjacent to the structural gene, nirS, for cytochrome cd(1) nitrite reductase. NirE, the product of the first gene in the nir biogenesis operon, was anticipated to catalyse the conversion of uroporphyrinogen III into precorrin-2; this was confirmed, but it was shown that this enzyme is less sensitive to product inhibition than similar enzymes that function in other biosynthetic pathways. Sequence analysis suggesting that one of these proteins, NirN, is a c-type cytochrome, and has similarity to the part of cytochrome cd(1) that binds d(1), was validated by recombinant production and characterization of NirN. A NirN-d(1) haem complex was demonstrated to release the cofactor to a semi-apo form of cytochrome cd(1) from which d(1) was extracted, suggesting a role for NirN in the assembly of cytochrome cd(1) (NirS). However, inactivation of nirN surprisingly led to only a marginal attenuation of growth of Paracoccus pantotrophus under anaerobic denitrifying conditions. As predicted, NirC is a c-type cytochrome; it was shown in vitro to be an electron donor to the NirN-d(1) complex.
Collapse
|
27
|
Sam KA, Strampraad MJ, de Vries S, Ferguson SJ. Very Early Reaction Intermediates Detected by Microsecond Time Scale Kinetics of Cytochrome cd1-catalyzed Reduction of Nitrite. J Biol Chem 2008; 283:27403-27409. [DOI: 10.1074/jbc.m804493200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
28
|
Dell’Acqua S, Pauleta SR, Monzani E, Pereira AS, Casella L, Moura JJG, Moura I. Electron Transfer Complex between Nitrous Oxide Reductase and Cytochrome c552 from Pseudomonas nautica: Kinetic, Nuclear Magnetic Resonance, and Docking Studies. Biochemistry 2008; 47:10852-62. [DOI: 10.1021/bi801375q] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Simone Dell’Acqua
- REQUIMTE/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal, and Dipartimento di Chimica Generale, Università di Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Sofia R. Pauleta
- REQUIMTE/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal, and Dipartimento di Chimica Generale, Università di Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Enrico Monzani
- REQUIMTE/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal, and Dipartimento di Chimica Generale, Università di Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Alice S. Pereira
- REQUIMTE/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal, and Dipartimento di Chimica Generale, Università di Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Luigi Casella
- REQUIMTE/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal, and Dipartimento di Chimica Generale, Università di Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - José J. G. Moura
- REQUIMTE/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal, and Dipartimento di Chimica Generale, Università di Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Isabel Moura
- REQUIMTE/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal, and Dipartimento di Chimica Generale, Università di Pavia, Via Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
29
|
Sam KA, Fairhurst SA, Thorneley RNF, Allen JWA, Ferguson SJ. Pseudoazurin dramatically enhances the reaction profile of nitrite reduction by Paracoccus pantotrophus cytochrome cd1 and facilitates release of product nitric oxide. J Biol Chem 2008; 283:12555-63. [PMID: 18310770 DOI: 10.1074/jbc.m800954200] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cytochrome cd(1) is a respiratory nitrite reductase found in the periplasm of denitrifying bacteria. When fully reduced Paracoccus pantotrophus cytochrome cd(1) is mixed with nitrite in a stopped-flow apparatus in the absence of excess reductant, a kinetically stable complex of enzyme and product forms, assigned as a mixture of cFe(II) d(1)Fe(II)-NO(+) and cFe(III) d(1)Fe(II)-NO (cd(1)-X). However, in order for the enzyme to achieve steady-state turnover, product (NO) release must occur. In this work, we have investigated the effect of a physiological electron donor to cytochrome cd(1), the copper protein pseudoazurin, on the mechanism of nitrite reduction by the enzyme. Our data clearly show that initially oxidized pseudoazurin causes rapid further turnover by the enzyme to give a final product that we assign as all-ferric cytochrome cd(1) with nitrite bound to the d(1) heme (i.e. from which NO had dissociated). Pseudoazurin catalyzed this effect even when present at only one-tenth the stoichiometry of cytochrome cd(1). In contrast, redox-inert zinc pseudoazurin did not affect cd(1)-X, indicating a crucial role for electron movement between monomers or individual enzyme dimers rather than simply a protein-protein interaction. Furthermore, formation of cd(1)-X was, remarkably, accelerated by the presence of pseudoazurin, such that it occurred at a rate consistent with cd(1)-X being an intermediate in the catalytic cycle. It is clear that cytochrome cd(1) functions significantly differently in the presence of its two substrates, nitrite and electron donor protein, than in the presence of nitrite alone.
Collapse
Affiliation(s)
- Katharine A Sam
- Department of Biochemistry, University of Oxford South Parks Road, Oxford OX1 3QU, United Kingdom
| | | | | | | | | |
Collapse
|
30
|
Bueno E, Bedmar EJ, Richardson DJ, Delgado MJ. Role ofBradyrhizobium japonicumcytochromec550in nitrite and nitrate respiration. FEMS Microbiol Lett 2008; 279:188-94. [DOI: 10.1111/j.1574-6968.2007.01034.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
31
|
Field SJ, Thorndycroft FH, Matorin AD, Richardson DJ, Watmough NJ. The respiratory nitric oxide reductase (NorBC) from Paracoccus denitrificans. Methods Enzymol 2008; 437:79-101. [PMID: 18433624 DOI: 10.1016/s0076-6879(07)37005-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The two subunit cytochrome bc complex (NorBC) isolated from membranes of the model denitrifying soil bacterium Paracoccus denitrificans is the best characterized example of the bacterial respiratory nitric oxide reductases. These are members of the superfamily of heme-copper oxidases and are characterized by the elemental composition of their active site, which contains nonheme iron rather than copper, at which the reductive coupling of two molecules of nitric oxide to form nitrous oxide is catalyzed. This chapter describes methods for the purification and characterization of both native nitric oxide reductase from P. denitrificans and a recombinant form of the enzyme expressed in Escherichia coli, which enables site-directed mutagenesis of the catalytic subunit NorB. Examples are given of electronic absorption and electron paramagnetic resonance spectra that characterize the enzyme in a number of redox states, along with a method for the routine assay of the complex using its natural electron donor pseudoazurin.
Collapse
Affiliation(s)
- Sarah J Field
- Center for Metalloprotein Spectroscopy and Biology, School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | | | | | | | | |
Collapse
|
32
|
Agrobacterium tumefaciens C58 uses ActR and FnrN to control nirK and nor expression. J Bacteriol 2007; 190:78-86. [PMID: 17981975 DOI: 10.1128/jb.00792-07] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Agrobacterium tumefaciens can grow anaerobically via denitrification. To learn more about how cells regulate production of nitrite and nitric oxide, experiments were carried out to identify proteins involved in regulating expression and activity of nitrite and nitric oxide reductase. Transcription of NnrR, required for expression of these two reductases, was found to be under control of FnrN. Insertional inactivation of the response regulator actR significantly reduced nirK expression and Nir activity but not nnrR expression. Purified ActR bound to the nirK promoter but not the nor or nnrR promoter. A putative ActR binding site was identified in the nirK promoter region using mutational analysis and an in vitro binding assay. A nirK promoter containing mutations preventing the binding of ActR showed delayed expression but eventually reached about 65% of the activity of an equivalent wild-type promoter lacZ fusion. Truncation of the nirK promoter revealed that truncation up to and within the ActR binding site reduced expression, but fragments lacking the ActR binding site and retaining the NnrR binding site showed expression as high as or higher than the full-length fragment. Additional experiments revealed that expression of paz, encoding the copper protein pseudoazurin, was highly reduced in the actR or fnrN mutants and that ActR binds to the paz promoter. Inactivation of paz reduced Nir activity by 55%. These results help explain why Nir activity is very low in the actR mutant even though a nirK promoter with mutations in the ActR binding site showed significant expression.
Collapse
|
33
|
Thorndycroft F, Butland G, Richardson D, Watmough N. A new assay for nitric oxide reductase reveals two conserved glutamate residues form the entrance to a proton-conducting channel in the bacterial enzyme. Biochem J 2007; 401:111-9. [PMID: 16961460 PMCID: PMC1698692 DOI: 10.1042/bj20060856] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A specific amperometric assay was developed for the membrane-bound NOR [NO (nitric oxide) reductase] from the model denitrifying bacterium Paracoccus denitrificans using its natural electron donor, pseudoazurin, as a co-substrate. The method allows the rapid and specific assay of NO reduction catalysed by recombinant NOR expressed in the cytoplasmic membranes of Escherichia coli. The effect on enzyme activity of substituting alanine, aspartate or glutamine for two highly conserved glutamate residues, which lie in a periplasmic facing loop between transmembrane helices III and IV in the catalytic subunit of NOR, was determined using this method. Three of the substitutions (E122A, E125A and E125D) lead to an almost complete loss of NOR activity. Some activity is retained when either Glu122 or Glu125 is substituted with a glutamine residue, but only replacement of Glu122 with an aspartate residue retains a high level of activity. These results are interpreted in terms of these residues forming the mouth of a channel that conducts substrate protons to the active site of NOR during turnover. This channel is also likely to be that responsible in the coupling of proton movement to electron transfer during the oxidation of fully reduced NOR with oxygen [U. Flock, N. J. Watmough and P. Adelroth (2005) Biochemistry 44, 10711-10719].
Collapse
Affiliation(s)
- Faye H. Thorndycroft
- Centre for Metalloprotein Spectroscopy and Biology, School of Biological Sciences, University of East Anglia, Norfolk NR4 7TJ, U.K
| | - Gareth Butland
- Centre for Metalloprotein Spectroscopy and Biology, School of Biological Sciences, University of East Anglia, Norfolk NR4 7TJ, U.K
| | - David J. Richardson
- Centre for Metalloprotein Spectroscopy and Biology, School of Biological Sciences, University of East Anglia, Norfolk NR4 7TJ, U.K
| | - Nicholas J. Watmough
- Centre for Metalloprotein Spectroscopy and Biology, School of Biological Sciences, University of East Anglia, Norfolk NR4 7TJ, U.K
- To whom correspondence should be addressed (email )
| |
Collapse
|
34
|
Zumft WG, Kroneck PMH. Respiratory transformation of nitrous oxide (N2O) to dinitrogen by Bacteria and Archaea. Adv Microb Physiol 2006; 52:107-227. [PMID: 17027372 DOI: 10.1016/s0065-2911(06)52003-x] [Citation(s) in RCA: 203] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
N2O is a potent greenhouse gas and stratospheric reactant that has been steadily on the rise since the beginning of industrialization. It is an obligatory inorganic metabolite of denitrifying bacteria, and some production of N2O is also found in nitrifying and methanotrophic bacteria. We focus this review on the respiratory aspect of N2O transformation catalysed by the multicopper enzyme nitrous oxide reductase (N2OR) that provides the bacterial cell with an electron sink for anaerobic growth. Two types of Cu centres discovered in N2OR were both novel structures among the Cu proteins: the mixed-valent dinuclear Cu(A) species at the electron entry site of the enzyme, and the tetranuclear Cu(Z) centre as the first catalytically active Cu-sulfur complex known. Several accessory proteins function as Cu chaperone and ABC transporter systems for the biogenesis of the catalytic centre. We describe here the paradigm of Z-type N2OR, whose characteristics have been studied in most detail in the genera Pseudomonas and Paracoccus. Sequenced bacterial genomes now provide an invaluable additional source of information. New strains harbouring nos genes and capability of N2O utilization are being uncovered. This reveals previously unknown relationships and allows pattern recognition and predictions. The core nos genes, nosZDFYL, share a common phylogeny. Most principal taxonomic lineages follow the same biochemical and genetic pattern and share the Z-type enzyme. A modified N2OR is found in Wolinella succinogenes, and circumstantial evidence also indicates for certain Archaea another type of N2OR. The current picture supports the view of evolution of N2O respiration prior to the separation of the domains Bacteria and Archaea. Lateral nos gene transfer from an epsilon-proteobacterium as donor is suggested for Magnetospirillum magnetotacticum and Dechloromonas aromatica. In a few cases, nos gene clusters are plasmid borne. Inorganic N2O metabolism is associated with a diversity of physiological traits and biochemically challenging metabolic modes or habitats, including halorespiration, diazotrophy, symbiosis, pathogenicity, psychrophily, thermophily, extreme halophily and the marine habitat down to the greatest depth. Components for N2O respiration cover topologically the periplasm and the inner and outer membranes. The Sec and Tat translocons share the task of exporting Nos components to their functional sites. Electron donation to N2OR follows pathways with modifications depending on the host organism. A short chronology of the field is also presented.
Collapse
Affiliation(s)
- Walter G Zumft
- Institute of Applied Biosciences, Division of Molecular Microbiology, University of Karlsruhe, D-76128 Karlsruhe, Germany
| | | |
Collapse
|
35
|
Harris RL, Eady RR, Hasnain SS, Sawers RG. Coordinate synthesis of azurin I and copper nitrite reductase in Alcaligenes xylosoxidans during denitrification. Arch Microbiol 2006; 186:241-9. [PMID: 16832626 DOI: 10.1007/s00203-006-0139-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2006] [Revised: 06/07/2006] [Accepted: 06/19/2006] [Indexed: 11/27/2022]
Abstract
The denitrifying bacterium Alcaligenes xylosoxidans synthesises two azurins (Az), which are termed Az I and Az 2. Both function as effective electron donors to copper nitrite reductase (NiR) in vitro. As a first step towards identifying the physiological relevance of these electron transfer proteins in the denitrification process, the gene (azuA) encoding Az I was characterised and its expression with respect to denitrification determined. We show that the azuA gene from A. xylosoxidans is monocistronic and its expression is increased when cells are grown under denitrifying conditions in the presence of nitrate or nitrite. The expression pattern of azuA was similar, though not identical, to that of the monocistronic nirK gene, which encodes copper NiR, and is in accord with both gene products being synthesised when the bacterium denitrifies. Recombinant Az I was exported to the periplasm of the heterologous host Escherichia coli, was synthesised at very high levels (80 mg purified protein per litre) and was fully loaded with copper. Electron donation from reduced recombinant Az to NiR was indistinguishable from the activity determined with the native protein. Taken together, these findings indicate that in A. xylosoxidans azuA expression is coordinated with denitrification and recombinant Az I is processed and matured in the periplasm of E. coli in the same way it is in A. xylosoxidans.
Collapse
Affiliation(s)
- Roger L Harris
- Department of Molecular Microbiology, John Innes Centre, Norwich, UK
| | | | | | | |
Collapse
|
36
|
Laratta WP, Nanaszko MJ, Shapleigh JP. Electron transfer to nitrite reductase of Rhodobacter sphaeroides 2.4.3: examination of cytochromes c 2 and c Y. Microbiology (Reading) 2006; 152:1479-1488. [PMID: 16622064 DOI: 10.1099/mic.0.28524-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The role of cytochromec2, encoded bycycA, and cytochromecY, encoded bycycY, in electron transfer to the nitrite reductase ofRhodobacter sphaeroides2.4.3 was investigated using bothin vivoandin vitroapproaches. BothcycAandcycYwere isolated, sequenced and insertionally inactivated in strain 2.4.3. Deletion of either gene alone had no apparent effect on the ability ofR. sphaeroidesto reduce nitrite. In acycA–cycYdouble mutant, nitrite reduction was largely inhibited. However, the expression of the nitrite reductase genenirKfrom a heterologous promoter substantially restored nitrite reductase activity in the double mutant. Using purified protein, a turnover number of 5 s−1was observed for the oxidation of cytochromec2by nitrite reductase. In contrast, oxidation ofcYonly resulted in a turnover of ∼0·1 s−1. The turnover experiments indicate thatc2is a major electron donor to nitrite reductase butcYis probably not. Taken together, these results suggest that there is likely an unidentified electron donor, in addition toc2, that transfers electrons to nitrite reductase, and that the decreased nitrite reductase activity observed in thecycA–cycYdouble mutant probably results from a change innirKexpression.
Collapse
Affiliation(s)
- William P Laratta
- Department of Microbiology, Wing Hall, Cornell University, Ithaca, NY 14850-8101, USA
| | - Michael J Nanaszko
- Department of Microbiology, Wing Hall, Cornell University, Ithaca, NY 14850-8101, USA
| | - James P Shapleigh
- Department of Microbiology, Wing Hall, Cornell University, Ithaca, NY 14850-8101, USA
| |
Collapse
|
37
|
Yamada T, Fialho AM, Punj V, Bratescu L, Gupta TKD, Chakrabarty AM. Internalization of bacterial redox protein azurin in mammalian cells: entry domain and specificity. Cell Microbiol 2005; 7:1418-31. [PMID: 16153242 DOI: 10.1111/j.1462-5822.2005.00567.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Azurin is a member of a group of copper-containing redox proteins called cupredoxins. Different cupredoxins are produced by different aerobic bacteria as agents of electron transfer. Recently, we demonstrated that azurin enters into J774 and several types of cancer cells leading to the induction of apoptosis. We now demonstrate that azurin is internalized in J774 or cancer cells in a temperature-dependent manner. Azurin shows preferential entry into cancer compared with normal cells. An 28-amino-acid fragment of azurin fused to glutathione S-transferase (GST) or the green fluorescent protein (GFP), which are incapable of entering mammalian cells by themselves, can be internalized in J774 or human melanoma or breast cancer cells at 37 degrees C, but not at 4 degrees C. Competition experiments as well as studies with inhibitors such as cytochalasin D suggest that azurin may enter cells, at least in part, by a receptor-mediated endocytic process. The 28-amino-acid peptide therefore acts as a potential protein transduction domain (PTD), and can be used as a vehicle to transport cargo proteins such as GST and GST-GFP fusion proteins. Another member of the cupredoxin family, rusticyanin, that has also been shown to enter J774 and human cancer cells and exert cytotoxicity, does not demonstrate preferential entry for cancer cells and lacks the structural features characteristic of the azurin PTD.
Collapse
Affiliation(s)
- Tohru Yamada
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, 60612, USA
| | | | | | | | | | | |
Collapse
|
38
|
Zajicek RS, Cheesman MR, Gordon EHJ, Ferguson SJ. Y25S Variant of Paracoccus pantotrophus Cytochrome cd1 Provides Insight into Anion Binding by d1 Heme and a Rare Example of a Critical Difference between Solution and Crystal Structures. J Biol Chem 2005; 280:26073-9. [PMID: 15901734 DOI: 10.1074/jbc.m501890200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tyr25 is a ligand to the active site d1 heme in as isolated, oxidized cytochrome cd1 nitrite reductase from Paracoccus pantotrophus. This form of the enzyme requires reductive activation, a process that involves not only displacement of Tyr25 from the d1 heme but also switching of the ligands at the c heme from bis-histidinyl to His/Met. A Y25S variant retains this bis-histidinyl coordination in the crystal of the oxidized state that has sulfate bound to the d1 heme iron. This Y25S form of the enzyme does not require reductive activation, an observation previously interpreted as meaning that the presence of the phenolate oxygen of Tyr25 is the critical determinant of the requirement for activation. This interpretation now needs re-evaluation because, unexpectedly, the oxidized as prepared Y25S protein, unlike the wild type, has different heme iron ligands in solution at room temperature, as judged by magnetic circular dichroism and electron spin resonance spectroscopies, than in the crystal. In addition, the binding of nitrite and cyanide to oxidized Y25S cytochrome cd1 is markedly different from the wild type enzyme, thus providing insight into the affinity of the oxidized d1 heme ring for anions in the absence of the steric barrier presented by Tyr25.
Collapse
Affiliation(s)
- Richard S Zajicek
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | | | | | | |
Collapse
|
39
|
Allen J, Ginger M, Ferguson S. Maturation of the unusual single-cysteine (XXXCH) mitochondrial c-type cytochromes found in trypanosomatids must occur through a novel biogenesis pathway. Biochem J 2005; 383:537-42. [PMID: 15500440 PMCID: PMC1133747 DOI: 10.1042/bj20040832] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The c-type cytochromes are characterized by the covalent attachment of haem to the polypeptide via thioether bonds formed from haem vinyl groups and, normally, the thiols of two cysteines in a CXXCH motif. Intriguingly, the mitochondrial cytochromes c and c1 from two euglenids and the Trypanosomatidae contain only a single cysteine within the haem-binding motif (XXXCH). There are three known distinct pathways by which c-type cytochromes are matured post-translationally in different organisms. The absence of genes encoding any of these c-type cytochrome biogenesis machineries is established here by analysis of six trypanosomatid genomes, and correlates with the presence of single-cysteine cytochromes c and c1. In contrast, we have identified a comprehensive catalogue of proteins required for a typical mitochondrial oxidative phosphorylation apparatus. Neither spontaneous nor catalysed maturation of the single-cysteine Trypanosoma brucei cytochrome c occurred in Escherichia coli. However, a CXXCH variant was matured by the E. coli cytochrome c maturation machinery, confirming the proposed requirement of the latter for two cysteines in the haem-binding motif and indicating that T. brucei cytochrome c can accommodate a second cysteine in a CXXCH motif. The single-cysteine haem attachment conserved in cytochromes c and c1 of the trypanosomatids is suggested to be related to their cytochrome c maturation machinery, and the environment in the mitochondrial intermembrane space. Our genomic and biochemical studies provide very persuasive evidence that the trypanosomatid mitochondrial cytochromes c are matured by a novel biogenesis system.
Collapse
Affiliation(s)
- James W. A. Allen
- *Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K
- To whom correspondence should be addressed (email or )
| | - Michael L. Ginger
- †Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, U.K
- To whom correspondence should be addressed (email or )
| | - Stuart J. Ferguson
- *Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K
| |
Collapse
|
40
|
Mattila K, Haltia T. How does nitrous oxide reductase interact with its electron donors?-A docking study. Proteins 2005; 59:708-22. [PMID: 15822112 DOI: 10.1002/prot.20437] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Electron transfer reactions are crucial for respiration and denitrification. In this article, we analyze the interaction of nitrous oxide reductase with its electron donors cytochrome c550 and pseudoazurin. Our docking protocol comprises generation of candidate complexes followed by a selection step based on the distance of the donor and acceptor groups in each partner protein. Finally, the structures of the candidate complexes were optimized using a force field calculation, together with a second distance filtering step. The prediction power of this protocol was studied using the crystal structure of the cytochrome c2/photosynthetic reaction center of Rhodobacter sphaeroides as a reference. The results suggest that both cytochrome c550 and pseudoazurin bind at the same hydrophobic surface patch residing near the CuA center of nitrous oxide reductase. The central, well-conserved interaction surface of the donors is hydrophobic, but it is surrounded by numerous lysine side-chains, which interact electrostatically with analogously positioned side-chain carboxylates of the acceptor. The prediction output is an ensemble of energetically similar structures that are rotationally related to each other. While such an ensemble may reflect incomplete prediction power of the docking protocol, it may also manifest a biological situation where there are multiple ways of forming a productive electron transfer complex. Analyses of the predicted structures and the conservation pattern of the amino acid residues suggest the existence of specific electron transfer pathways to and from the CuA center of nitrous oxide reductase.
Collapse
Affiliation(s)
- Kimmo Mattila
- Institute of Biomedical Sciences/Biochemistry, University of Helsinki, Helsinki, Finland.
| | | |
Collapse
|
41
|
Zajicek RS, Ferguson SJ. The enigma of Paracoccus pantotrophus cytochrome cd1 activation. Biochem Soc Trans 2005; 33:147-8. [PMID: 15667289 DOI: 10.1042/bst0330147] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Paracoccus pantotrophus cytochrome cd1 nitrite reductase is isolated under aerobic conditions from anaerobically grown cells in an inactive form. This state requires reductive activation to make it catalytically competent for nitrite reduction. In this work, we discuss the methods of this reductive activation and its consequences for the cell.
Collapse
Affiliation(s)
- R S Zajicek
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | | |
Collapse
|
42
|
Pauleta SR, Guerlesquin F, Goodhew CF, Devreese B, Van Beeumen J, Pereira AS, Moura I, Pettigrew GW. Paracoccus pantotrophus pseudoazurin is an electron donor to cytochrome c peroxidase. Biochemistry 2004; 43:11214-25. [PMID: 15366931 DOI: 10.1021/bi0491144] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The gene for pseudoazurin was isolated from Paracoccus pantotrophus LMD 52.44 and expressed in a heterologous system with a yield of 54.3 mg of pure protein per liter of culture. The gene and protein were shown to be identical to those from P. pantotrophus LMD 82.5. The extinction coefficient of the protein was re-evaluated and was found to be 3.00 mM(-1) cm(-1) at 590 nm. It was confirmed that the oxidized protein is in a weak monomer/dimer equilibrium that is ionic-strength-dependent. The pseudoazurin was shown to be a highly active electron donor to cytochrome c peroxidase, and activity showed an ionic strength dependence consistent with an electrostatic interaction. The pseudoazurin has a very large dipole moment, the vector of which is positioned at the putative electron-transfer site, His81, and is conserved in this position across a wide range of blue copper proteins. Binding of the peroxidase to pseudoazurin causes perturbation of a set of NMR resonances associated with residues on the His81 face, including a ring of lysine residues. These lysines are associated with acidic residues just back from the rim, the resonances of which are also affected by binding to the peroxidase. We propose that these acidic residues moderate the electrostatic influence of the lysines and so ensure that specific charge interactions do not form across the interface with the peroxidase.
Collapse
Affiliation(s)
- Sofia R Pauleta
- ReQuimte, Centro de Química Física e Biotecnologia, FCT/UNL, Quinta da Torre, 2829-516 Caparica, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Baek SH, Rajashekara G, Splitter GA, Shapleigh JP. Denitrification genes regulate Brucella virulence in mice. J Bacteriol 2004; 186:6025-31. [PMID: 15342571 PMCID: PMC515144 DOI: 10.1128/jb.186.18.6025-6031.2004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Brucella is the causative agent of the zoonotic disease brucellosis, which is endemic in many parts of the world. Genome sequencing of B. suis and B. melitensis revealed that both are complete denitrifiers. To learn more about the role of denitrification in these animal pathogens, a study of the role of denitrification in the closely related B. neotomae was undertaken. In contrast to B. suis and B. melitensis, it was found that B. neotomae is a partial denitrifier that can reduce nitrate to nitrite but no further. Examination of the B. neotomae genome showed that a deletion in the denitrification gene cluster resulted in complete loss of nirV and the partial deletion of nirK and nnrA. Even though the nor operon is intact, a norC-lacZ promoter fusion was not expressed in B. neotomae. However, the norC-lacZ fusion was expressed in the related denitrifier Agrobacterium tumefaciens, suggesting that the lack of expression in B. neotomae is due to inactivation of NnrA. A narK-lacZ promoter fusion was found to exhibit nitrate-dependent expression consistent with the partial denitrifier phenotype. Complementation of the deleted region in B. neotomae by using nirK, nirV, and nnrA from B. melitensis restored the ability of B. neotomae to reduce nitrite. There was a significant difference in the death of IRF-1-/- mice when infected with B. neotomae containing nirK, nirV, and nnrA and those infected with wild-type B. neotomae. The wild-type strain killed all the infected mice, whereas most of the mice infected with B. neotomae containing nirK, nirV, and nnrA survived.
Collapse
Affiliation(s)
- Seung-Hun Baek
- Department of Microbiology, Wing Hall, Cornell University, Ithaca, NY 14853-8101, USA
| | | | | | | |
Collapse
|
44
|
Puskás LG, Nagy ZB, Kelemen JZ, Rüberg S, Bodogai M, Becker A, Dusha I. Wide-range transcriptional modulating effect of ntrR under microaerobiosis in Sinorhizobium meliloti. Mol Genet Genomics 2004; 272:275-89. [PMID: 15365818 DOI: 10.1007/s00438-004-1051-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2004] [Accepted: 07/31/2004] [Indexed: 10/26/2022]
Abstract
A mutation in the second gene in the ntrPR operon results in increased expression of nodulation (nod) and nitrogen fixation (nif) genes in Sinorhizobium meliloti. Since this pleiotropic effect is particularly pronounced in the presence of external combined nitrogen, a nitrogen regulatory function has been suggested for NtrR. To identify the complete set of protein-coding genes influenced by loss of ntrR function, microarray hybridizations were carried out to compare transcript levels in the wild type and mutant strains grown under aerobic and microaerobic conditions. Of the 6207 genes examined, representing the entire genome of S. meliloti, 7% exhibited altered expression: 4.5% of the genes are affected under oxic, 2.5% under microoxic conditions. 0.4% of all the genes are affected under both oxygen concentrations. A microoxic environment is required for the induction of genes related to symbiotic functions but results in the down-regulation of other (e.g. metabolic) functions. When the alterations in transcription levels at low oxygen concentration in the mutant strain were compared to those of the wild type, a modulating effect of the ntrR mutation was observed. For example, symbiotic nif/fix genes were induced in both strains, but the level of induction was higher in the ntrR mutant. In contrast, genes related to transcription/translation functions were down-regulated in both strains, and the effect was greater in the wild-type strain than in the ntrR mutant. A relatively wide range of functions was affected by this modulating influence, suggesting that ntrR is not a nitrogen regulatory gene. Since genes encoding various unrelated functions were affected, we propose that NtrR may either interfere with general regulatory mechanisms, such as phosphorylation/dephosphorylation, or may influence RNA stability.
Collapse
Affiliation(s)
- L G Puskás
- Laboratory of Functional Genomics, Biological Research Center, Hungarian Academy of Sciences, P.O. Box 521, 6701 Szeged, Hungary
| | | | | | | | | | | | | |
Collapse
|
45
|
Zajicek RS, Allen JWA, Cartron ML, Richardson DJ, Ferguson SJ. Paracoccus pantotrophusNapC can reductively activate cytochromecd1nitrite reductase. FEBS Lett 2004; 565:48-52. [PMID: 15135051 DOI: 10.1016/j.febslet.2004.03.072] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2004] [Revised: 03/23/2004] [Accepted: 03/25/2004] [Indexed: 11/24/2022]
Abstract
The oxidized "as isolated" form of Paracoccus pantotrophus cytochrome cd1 nitrite reductase has a bis-histidinyl coordinated c heme and a histidine/tyrosine coordinated d1 heme. This form of the enzyme has previously been shown to be kinetically incompetent. Upon reduction, the coordination of both hemes changes and the enzyme is kinetically activated. Here, we show that P. pantotrophus NapC, a tetraheme c-type cytochrome belonging to a large family of such proteins, is capable of reducing, and hence activating, "as isolated" cytochrome cd1. NapC is the first protein from P. pantotrophus identified as being capable of this activation step and, given the periplasmic co-location and co-expression of the two proteins, is a strong candidate to be a physiological activation partner.
Collapse
Affiliation(s)
- Richard S Zajicek
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | | | | | | | | |
Collapse
|