1
|
Braun A, Gee LB, Mara MW, Hill EA, Kroll T, Nordlund D, Sokaras D, Glatzel P, Hedman B, Hodgson KO, Borovik AS, Baker ML, Solomon EI. X-ray Spectroscopic Study of the Electronic Structure of a Trigonal High-Spin Fe(IV)═O Complex Modeling Non-Heme Enzyme Intermediates and Their Reactivity. J Am Chem Soc 2023; 145:18977-18991. [PMID: 37590931 PMCID: PMC10631461 DOI: 10.1021/jacs.3c06181] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Fe K-edge X-ray absorption spectroscopy (XAS) has long been used for the study of high-valent iron intermediates in biological and artificial catalysts. 4p-mixing into the 3d orbitals complicates the pre-edge analysis but when correctly understood via 1s2p resonant inelastic X-ray scattering and Fe L-edge XAS, it enables deeper insight into the geometric structure and correlates with the electronic structure and reactivity. This study shows that in addition to the 4p-mixing into the 3dz2 orbital due to the short iron-oxo bond, the loss of inversion in the equatorial plane leads to 4p mixing into the 3dx2-y2,xy, providing structural insight and allowing the distinction of 6- vs 5-coordinate active sites as shown through application to the Fe(IV)═O intermediate of taurine dioxygenase. Combined with O K-edge XAS, this study gives an unprecedented experimental insight into the electronic structure of Fe(IV)═O active sites and their selectivity for reactivity enabled by the π-pathway involving the 3dxz/yz orbitals. Finally, the large effect of spin polarization is experimentally assigned in the pre-edge (i.e., the α/β splitting) and found to be better modeled by multiplet simulations rather than by commonly used time-dependent density functional theory.
Collapse
Affiliation(s)
- Augustin Braun
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Leland B Gee
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Michael W Mara
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Ethan A Hill
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Thomas Kroll
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Dennis Nordlund
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Dimosthenis Sokaras
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Pieter Glatzel
- ESRF-The European Synchrotron Radiation Facility, 71 Avenue des Martyrs, Grenoble 38000, France
| | - Britt Hedman
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Keith O Hodgson
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - A S Borovik
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Michael L Baker
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
- Department of Chemistry, The University of Manchester, Manchester M13 9PL, U.K
- The University of Manchester at Harwell, Diamond Light Source, Harwell Campus, Didcot OX11 0DE, U.K
| | - Edward I Solomon
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| |
Collapse
|
2
|
Hassan HA, D Enza M, Armengaud J, Pieper DH. Biochemical and genetic characterization comparison of four extradiol dioxygenases in Rhizorhabdus wittichii RW1. Appl Microbiol Biotechnol 2022; 106:5539-5550. [PMID: 35906995 DOI: 10.1007/s00253-022-12099-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 11/26/2022]
Abstract
Rhizorhabdus (previously Sphingomonas) wittichii RW1 uses a diverse array of aromatic organic compounds as energy and carbon sources, including some extremely recalcitrant compounds such as dibenzo-p-dioxin and dibenzofuran. Extradiol dioxygenases play a key role in the metabolism of dibenzofuran (DBF), dibenzo-p-dioxin (DBD), PCBs, and various other aromatic compounds. In this study, a detailed kinetic analysis of four extradiol dioxygenases identified in R. wittichii RW1 (DbfB, Edo2, Edo3, and Edo4) showed all of them to be typical 2,3dihydroxybiphenyl (DHB) dioxygenases with DHB as preferred substrate (kcat/Km values of 0.13-188 (µM -1 s-1)) and only slightly lower activity against trihydroxybiphenyl (THB) whereas monocyclic substrates were, to different extents, poor substrates due to high km values. All extradiol dioxygenases analyzed were subject to mechanism-based inactivation by 2,2`,3-trihydroxybiphenylether (THBE) the intermediate of DBD degradation. However, Edo4 was superior as reflected by the relatively high partition ratio and the comparably low efficiency of inactivation. Significant differences were observed with respect to their inactivation by 3-chlorocatechol. The absence of any significant mechanism-based inactivation makes Edo3 a perfect candidate for being recruited for chlorobiphenyl degradation where inactivation of extradiol dioxygenases by this intermediate creates significant metabolic problems. KEY POINTS: • Characterization of additional extradiol dioxygenases encoded by RW1 • Identification of differences in 2,2`,3-trihydroxybiphenylether transformation • Identification of differences in inhibition by 3-chlorocatechol.
Collapse
Affiliation(s)
- Hamdy A Hassan
- Department of Environmental Biotechnology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City 32897, Egypt.
- Biology Department, Science and Humanities College, Shaqra University, Al-Quwayiyah, 11726, Riyadh, Saudi Arabia.
| | - Marina D Enza
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Jean Armengaud
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Université Paris-Saclay, CEA, INRAE, Département Médicaments Et Technologies Pour La Santé, Bagnols-sur-Cèze, France
| | - Dietmar H Pieper
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
3
|
Shape-function of a novel metapyrocatechase, RW4-MPC: Metagenomics to SAXS data based insight into deciphering regulators of function. Int J Biol Macromol 2021; 188:1012-1024. [PMID: 34375665 DOI: 10.1016/j.ijbiomac.2021.08.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/31/2021] [Accepted: 08/04/2021] [Indexed: 11/23/2022]
Abstract
The oxygenases have attracted considerable attention in enzyme-mediated bioremediation of xenobiotic compounds due to their high specificity, cost-effectiveness, and targeted field applications. Here, we performed a functional metagenomics approach to cope with cultivability limitations to isolate a novel extradiol dioxygenase. Fosmid clone harboring dioxygenase gene was sequenced and analyzed by bioinformatics tools. One ring-cleaving dioxygenase RW4-MPC (metapyrocatechase) was purified and characterized to examine its degradation efficiency. The RW4-MPC was significantly active in the temperature and pH range of 5 to 40 °C, and 7-10, respectively, with an optimum temperature of 25 °C and pH 8. To gain insight into observed differential activity, Small-Angle X-ray Scattering (SAXS) data of the protein samples were analyzed, which brought forth that the RW4-MPC molecules form tight globular tetramers in solution. This native association was stable till 35 °C, and protein started to associate at higher temperatures, explaining heat-induced loss of function. Similarly, RW4-MPC aggregated or lost globular profile below pH 7 or at pH 10, respectively. The kinetic parameters showed the six folds high catalytic efficiency of RW4-MPC towards 2,3-dihydroxy biphenyl than catechol and its derivatives. RW4-MPC molecules showed remarkable retention of functionality in hypersaline conditions with more than 70% activity in a buffer having 3 M NaCl concentration. In concordance, SAXS data analysis showed retention of functional shape profile in hypersaline conditions. The halotolerant and oxygen insensitive nature of this enzyme makes it a potential candidate for bioremediation.
Collapse
|
4
|
Direct coordination of pterin to Fe II enables neurotransmitter biosynthesis in the pterin-dependent hydroxylases. Proc Natl Acad Sci U S A 2021; 118:2022379118. [PMID: 33876764 PMCID: PMC8053929 DOI: 10.1073/pnas.2022379118] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The pterin-dependent nonheme iron enzymes hydroxylate aromatic amino acids to perform the biosynthesis of neurotransmitters to maintain proper brain function. These enzymes activate oxygen using a pterin cofactor and an aromatic amino acid substrate bound to the FeII active site to form a highly reactive FeIV = O species that initiates substrate oxidation. In this study, using tryptophan hydroxylase, we have kinetically generated a pre-FeIV = O intermediate and characterized its structure as a FeII-peroxy-pterin species using absorption, Mössbauer, resonance Raman, and nuclear resonance vibrational spectroscopies. From parallel characterization of the pterin cofactor and tryptophan substrate-bound ternary FeII active site before the O2 reaction (including magnetic circular dichroism spectroscopy), these studies both experimentally define the mechanism of FeIV = O formation and demonstrate that the carbonyl functional group on the pterin is directly coordinated to the FeII site in both the ternary complex and the peroxo intermediate. Reaction coordinate calculations predict a 14 kcal/mol reduction in the oxygen activation barrier due to the direct binding of the pterin carbonyl to the FeII site, as this interaction provides an orbital pathway for efficient electron transfer from the pterin cofactor to the iron center. This direct coordination of the pterin cofactor enables the biological function of the pterin-dependent hydroxylases and demonstrates a unified mechanism for oxygen activation by the cofactor-dependent nonheme iron enzymes.
Collapse
|
5
|
Srnec M, Iyer SR, Dassama LMK, Park K, Wong SD, Sutherlin KD, Yoda Y, Kobayashi Y, Kurokuzu M, Saito M, Seto M, Krebs C, Bollinger JM, Solomon EI. Nuclear Resonance Vibrational Spectroscopic Definition of the Facial Triad Fe IV═O Intermediate in Taurine Dioxygenase: Evaluation of Structural Contributions to Hydrogen Atom Abstraction. J Am Chem Soc 2020; 142:18886-18896. [PMID: 33103886 DOI: 10.1021/jacs.0c08903] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The α-ketoglutarate (αKG)-dependent oxygenases catalyze a diverse range of chemical reactions using a common high-spin FeIV═O intermediate that, in most reactions, abstract a hydrogen atom from the substrate. Previously, the FeIV═O intermediate in the αKG-dependent halogenase SyrB2 was characterized by nuclear resonance vibrational spectroscopy (NRVS) and density functional theory (DFT) calculations, which demonstrated that it has a trigonal-pyramidal geometry with the scissile C-H bond of the substrate calculated to be perpendicular to the Fe-O bond. Here, we have used NRVS and DFT calculations to show that the FeIV═O complex in taurine dioxygenase (TauD), the αKG-dependent hydroxylase in which this intermediate was first characterized, also has a trigonal bipyramidal geometry but with an aspartate residue replacing the equatorial halide of the SyrB2 intermediate. Computational analysis of hydrogen atom abstraction by square pyramidal, trigonal bipyramidal, and six-coordinate FeIV═O complexes in two different substrate orientations (one more along [σ channel] and another more perpendicular [π channel] to the Fe-O bond) reveals similar activation barriers. Thus, both substrate approaches to all three geometries are competent in hydrogen atom abstraction. The equivalence in reactivity between the two substrate orientations arises from compensation of the promotion energy (electronic excitation within the d manifold) required to access the π channel by the significantly larger oxyl character present in the pπ orbital oriented toward the substrate, which leads to an earlier transition state along the C-H coordinate.
Collapse
Affiliation(s)
- Martin Srnec
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, California 94305-5080, United States.,J. Heyrovský Institute of Physical Chemistry, The Czech Academy of Sciences, Dolejškova 3, Prague 8 182 23, Czech Republic
| | - Shyam R Iyer
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, California 94305-5080, United States
| | - Laura M K Dassama
- Department of Chemistry and Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Kiyoung Park
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, California 94305-5080, United States
| | - Shaun D Wong
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, California 94305-5080, United States
| | - Kyle D Sutherlin
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, California 94305-5080, United States
| | - Yoshitaka Yoda
- Japan Synchrotron Radiation Research Institute, Hyogo 679-5198, Japan
| | | | | | - Makina Saito
- Research Reactor Institute, Kyoto University, Osaka 590-0494, Japan
| | - Makoto Seto
- Research Reactor Institute, Kyoto University, Osaka 590-0494, Japan
| | - Carsten Krebs
- Department of Chemistry and Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - J Martin Bollinger
- Department of Chemistry and Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Edward I Solomon
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, California 94305-5080, United States
| |
Collapse
|
6
|
Evaluation of a concerted vs. sequential oxygen activation mechanism in α-ketoglutarate-dependent nonheme ferrous enzymes. Proc Natl Acad Sci U S A 2020; 117:5152-5159. [PMID: 32094179 DOI: 10.1073/pnas.1922484117] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Determining the requirements for efficient oxygen (O2) activation is key to understanding how enzymes maintain efficacy and mitigate unproductive, often detrimental reactivity. For the α-ketoglutarate (αKG)-dependent nonheme iron enzymes, both a concerted mechanism (both cofactor and substrate binding prior to reaction with O2) and a sequential mechanism (cofactor binding and reaction with O2 precede substrate binding) have been proposed. Deacetoxycephalosporin C synthase (DAOCS) is an αKG-dependent nonheme iron enzyme for which both of these mechanisms have been invoked to generate an intermediate that catalyzes oxidative ring expansion of penicillin substrates in cephalosporin biosynthesis. Spectroscopy shows that, in contrast to other αKG-dependent enzymes (which are six coordinate when only αKG is bound to the FeII), αKG binding to FeII-DAOCS results in ∼45% five-coordinate sites that selectively react with O2 relative to the remaining six-coordinate sites. However, this reaction produces an FeIII species that does not catalyze productive ring expansion. Alternatively, simultaneous αKG and substrate binding to FeII-DAOCS produces five-coordinate sites that rapidly react with O2 to form an FeIV=O intermediate that then reacts with substrate to produce cephalosporin product. These results demonstrate that the concerted mechanism is operative in DAOCS and by extension, other nonheme iron enzymes.
Collapse
|
7
|
Colabroy KL, Horwitz AD, Basciano VR, Fu Y, Travitz KM, Robinson MK, Shimanski BA, Hoffmann TW. A New Way of Belonging: Active-Site Investigation of L-DOPA Dioxygenase, a VOC Family Enzyme from Lincomycin Biosynthesis. Biochemistry 2019; 58:4794-4798. [DOI: 10.1021/acs.biochem.9b00456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Keri L. Colabroy
- Department of Chemistry, Muhlenberg College, Allentown, Pennsylvania 18104, United States
| | - Alyssa D. Horwitz
- Department of Chemistry, Muhlenberg College, Allentown, Pennsylvania 18104, United States
| | - Victoria R. Basciano
- Department of Chemistry, Muhlenberg College, Allentown, Pennsylvania 18104, United States
| | - Yizhi Fu
- Department of Chemistry, Muhlenberg College, Allentown, Pennsylvania 18104, United States
| | - Kelly M. Travitz
- Department of Chemistry, Muhlenberg College, Allentown, Pennsylvania 18104, United States
| | - Miranda K. Robinson
- Department of Chemistry, Muhlenberg College, Allentown, Pennsylvania 18104, United States
| | - Brittany A. Shimanski
- Department of Chemistry, Muhlenberg College, Allentown, Pennsylvania 18104, United States
| | - Thomas W. Hoffmann
- Department of Chemistry, Muhlenberg College, Allentown, Pennsylvania 18104, United States
| |
Collapse
|
8
|
Biodegradation of 7-Hydroxycoumarin in Pseudomonas mandelii 7HK4 via ipso-Hydroxylation of 3-(2,4-Dihydroxyphenyl)-propionic Acid. Molecules 2018; 23:molecules23102613. [PMID: 30321993 PMCID: PMC6222606 DOI: 10.3390/molecules23102613] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 10/08/2018] [Accepted: 10/10/2018] [Indexed: 11/17/2022] Open
Abstract
A gene cluster, denoted as hcdABC, required for the degradation of 3-(2,4-dihydroxyphenyl)-propionic acid has been cloned from 7-hydroxycoumarin-degrading Pseudomonas mandelii 7HK4 (DSM 107615), and sequenced. Bioinformatic analysis shows that the operon hcdABC encodes a flavin-binding hydroxylase (HcdA), an extradiol dioxygenase (HcdB), and a putative hydroxymuconic semialdehyde hydrolase (HcdC). The analysis of the recombinant HcdA activity in vitro confirms that this enzyme belongs to the group of ipso-hydroxylases. The activity of the proteins HcdB and HcdC has been analyzed by using recombinant Escherichia coli cells. Identification of intermediate metabolites allowed us to confirm the predicted enzyme functions and to reconstruct the catabolic pathway of 3-(2,4-dihydroxyphenyl)-propionic acid. HcdA catalyzes the conversion of 3-(2,4-dihydroxyphenyl)-propionic acid to 3-(2,3,5-trihydroxyphenyl)-propionic acid through an ipso-hydroxylation followed by an internal (1,2-C,C)-shift of the alkyl moiety. Then, in the presence of HcdB, a subsequent oxidative meta-cleavage of the aromatic ring occurs, resulting in the corresponding linear product (2E,4E)-2,4-dihydroxy-6-oxonona-2,4-dienedioic acid. Here, we describe a Pseudomonas mandelii strain 7HK4 capable of degrading 7-hydroxycoumarin via 3-(2,4-dihydroxyphenyl)-propionic acid pathway.
Collapse
|
9
|
Nerdinger S, Kuatsjah E, Hurst TE, Schlapp-Hackl I, Kahlenberg V, Wurst K, Eltis LD, Snieckus V. Bacterial Catabolism of Biphenyls: Synthesis and Evaluation of Analogues. Chembiochem 2018; 19:1771-1778. [PMID: 29905982 DOI: 10.1002/cbic.201800231] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Indexed: 12/31/2022]
Abstract
A series of alkylated 2,3-dihydroxybiphenyls has been prepared on the gram scale by using an effective Directed ortho Metalation-Suzuki-Miyaura cross-coupling strategy. These compounds have been used to investigate the substrate specificity of the meta-cleavage dioxygenase BphC, a key enzyme in the microbial catabolism of biphenyl. Isolation and characterization of the meta-cleavage products will allow further study of related processes, including the catabolism of lignin-derived biphenyls.
Collapse
Affiliation(s)
- Sven Nerdinger
- Global Commercial Operations, Sandoz GmbH, Biochemiestrasse 10, 6250, Kundl, Austria
| | - Eugene Kuatsjah
- Life Sciences Centre, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Timothy E Hurst
- Department of Chemistry, Queen's University, Chernoff Hall, Kingston, ON, K7L 3N6, Canada
| | - Inge Schlapp-Hackl
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Center for Chemistry and Biomedicine, Innrain 80-82, 6020, Innsbruck, Austria
| | - Volker Kahlenberg
- Institute of Mineralogy and Petrography, University of Innsbruck, Innrain 52, 6020, Innsbruck, Austria
| | - Klaus Wurst
- Faculty of Chemistry and Pharmacy, University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - Lindsay D Eltis
- Life Sciences Centre, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Victor Snieckus
- Department of Chemistry, Queen's University, Chernoff Hall, Kingston, ON, K7L 3N6, Canada
| |
Collapse
|
10
|
Tearing down to build up: Metalloenzymes in the biosynthesis lincomycin, hormaomycin and the pyrrolo [1,4]benzodiazepines. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:724-737. [DOI: 10.1016/j.bbapap.2016.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 02/24/2016] [Accepted: 03/02/2016] [Indexed: 11/21/2022]
|
11
|
Defining a kinetic mechanism for l-DOPA 2,3 dioxygenase, a single-domain type I extradiol dioxygenase from Streptomyces lincolnensis. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:607-14. [DOI: 10.1016/j.bbapap.2013.12.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 11/11/2013] [Accepted: 12/09/2013] [Indexed: 11/22/2022]
|
12
|
Egorova DO, Demakov VA, Plotnikova EG. Destruction of mixture of tri-hexa-chlorinated biphenyls by Rhodococcus genus strains. APPL BIOCHEM MICRO+ 2011. [DOI: 10.1134/s0003683811060044] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
He P, Moran GR. Structural and mechanistic comparisons of the metal-binding members of the vicinal oxygen chelate (VOC) superfamily. J Inorg Biochem 2011; 105:1259-72. [DOI: 10.1016/j.jinorgbio.2011.06.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 06/21/2011] [Accepted: 06/24/2011] [Indexed: 11/30/2022]
|
14
|
Machonkin TE, Doerner AE. Substrate Specificity of Sphingobium chlorophenolicum 2,6-Dichlorohydroquinone 1,2-Dioxygenase. Biochemistry 2011; 50:8899-913. [DOI: 10.1021/bi200855m] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Timothy E. Machonkin
- Department of Chemistry, Whitman College, 345 Boyer Avenue, Walla Walla, Washington
99362, United States
| | - Amy E. Doerner
- Department of Chemistry, Whitman College, 345 Boyer Avenue, Walla Walla, Washington
99362, United States
| |
Collapse
|
15
|
Biphenyl-metabolizing bacteria in the rhizosphere of horseradish and bulk soil contaminated by polychlorinated biphenyls as revealed by stable isotope probing. Appl Environ Microbiol 2009; 75:6471-7. [PMID: 19700551 DOI: 10.1128/aem.00466-09] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
DNA-based stable isotope probing in combination with terminal restriction fragment length polymorphism was used in order to identify members of the microbial community that metabolize biphenyl in the rhizosphere of horseradish (Armoracia rusticana) cultivated in soil contaminated with polychlorinated biphenyls (PCBs) compared to members of the microbial community in initial, uncultivated bulk soil. On the basis of early and recurrent detection of their 16S rRNA genes in clone libraries constructed from [(13)C]DNA, Hydrogenophaga spp. appeared to dominate biphenyl catabolism in the horseradish rhizosphere soil, whereas Paenibacillus spp. were the predominant biphenyl-utilizing bacteria in the initial bulk soil. Other bacteria found to derive carbon from biphenyl in this nutrient-amended microcosm-based study belonged mostly to the class Betaproteobacteria and were identified as Achromobacter spp., Variovorax spp., Methylovorus spp., or Methylophilus spp. Some bacteria that were unclassified at the genus level were also detected, and these bacteria may be members of undescribed genera. The deduced amino acid sequences of the biphenyl dioxygenase alpha subunits (BphA) from bacteria that incorporated [(13)C]into DNA in 3-day incubations of the soils with [(13)C]biphenyl are almost identical to that of Pseudomonas alcaligenes B-357. This suggests that the spectrum of the PCB congeners that can be degraded by these enzymes may be similar to that of strain B-357. These results demonstrate that altering the soil environment can result in the participation of different bacteria in the metabolism of biphenyl.
Collapse
|
16
|
Caglio R, Valetti F, Caposio P, Gribaudo G, Pessione E, Giunta C. Fine-Tuning of Catalytic Properties of Catechol 1,2-Dioxygenase by Active Site Tailoring. Chembiochem 2009; 10:1015-24. [DOI: 10.1002/cbic.200800836] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
17
|
Biochemical characterization of l-DOPA 2,3-dioxygenase, a single-domain type I extradiol dioxygenase from lincomycin biosynthesis. Arch Biochem Biophys 2008; 479:131-8. [DOI: 10.1016/j.abb.2008.08.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Revised: 08/27/2008] [Accepted: 08/27/2008] [Indexed: 11/23/2022]
|
18
|
Abstract
Ring-cleaving dioxygenases catalyze the oxygenolytic fission of catecholic compounds, a critical step in the aerobic degradation of aromatic compounds by bacteria. Two classes of these enzymes have been identified, based on the mode of ring cleavage: intradiol dioxygenases utilize non-heme Fe(III) to cleave the aromatic nucleus ortho to the hydroxyl substituents; and extradiol dioxygenases utilize non-heme Fe(II) or other divalent metal ions to cleave the aromatic nucleus meta to the hydroxyl substituents. Recent genomic, structural, spectroscopic, and kinetic studies have increased our understanding of the distribution, evolution, and mechanisms of these enzymes. Overall, extradiol dioxygenases appear to be more versatile than their intradiol counterparts. Thus, the former cleave a wider variety of substrates, have evolved on a larger number of structural scaffolds, and occur in a wider variety of pathways, including biosynthetic pathways and pathways that degrade non-aromatic compounds. The catalytic mechanisms of the two enzymes proceed via similar iron-alkylperoxo intermediates. The ability of extradiol enzymes to act on a variety of non-catecholic compounds is consistent with proposed differences in the breakdown of this iron-alkylperoxo intermediate in the two enzymes, involving alkenyl migration in extradiol enzymes and acyl migration in intradiol enzymes. Nevertheless, despite recent advances in our understanding of these fascinating enzymes, the major determinant of the mode of ring cleavage remains unknown.
Collapse
Affiliation(s)
- Frédéric H Vaillancourt
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | | | | |
Collapse
|
19
|
Furukawa K, Fujihara H. Microbial degradation of polychlorinated biphenyls: Biochemical and molecular features. J Biosci Bioeng 2008; 105:433-49. [PMID: 18558332 DOI: 10.1263/jbb.105.433] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2007] [Accepted: 02/04/2008] [Indexed: 11/17/2022]
Affiliation(s)
- Kensuke Furukawa
- Depatment of Food and Bioscience, Faculty of Food and Nutrition, Beppu University, Beppu, Ohita 874-8501, Japan.
| | | |
Collapse
|
20
|
Michaud L, Di Marco G, Bruni V, Lo Giudice A. Biodegradative potential and characterization of psychrotolerant polychlorinated biphenyl-degrading marine bacteria isolated from a coastal station in the Terra Nova Bay (Ross Sea, Antarctica). MARINE POLLUTION BULLETIN 2007; 54:1754-61. [PMID: 17854841 DOI: 10.1016/j.marpolbul.2007.07.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2007] [Revised: 07/18/2007] [Accepted: 07/20/2007] [Indexed: 05/17/2023]
Abstract
Antarctic marine bacteria were screened for their ability to degrade polychlorinated biphenyls (PCB) as the sole carbon and energy source at both 4 degrees C and 15 degrees C. PCB-degrading isolates (7.1%) were identified by sequencing their 16S rDNA as Pseudoalteromonas, Psychrobacter and Arthrobacter members. One representative isolate per genera was selected for evaluating the biodegradative potential under laboratory scale and phenotypically characterized. Removal of individual PCB congeners was between 35.6% and 79.8% at 4 degrees C and between 0.4% and 82.8% at 15 degrees C. Differences in the removal patterns of PCB congeners were observed in relation to the phylogenetic affiliation: Arthrobacter isolate showed similar biodegradation efficiencies when growing at 4 degrees C and 15 degrees C, while Pseudoalteromonas better degraded PCBs at 15 degrees C. No biodegradation was detected for Psychrobacter isolate at 4 degrees C. Results obtained highlight the occurrence of PCB-degrading bacteria in Antarctic seawater and suggest the potential exploitation of autochthonous bacteria for PCB bioremediation in cold marine environments.
Collapse
Affiliation(s)
- Luigi Michaud
- Dipartimento di Biologia Animale ed Ecologia Marina (DBAEM), Università di Messina, Salita Sperone 31, 98166 Messina, Italy.
| | | | | | | |
Collapse
|
21
|
Larkin MJ, Kulakov LA, Allen CCR. Biodegradation by members of the genus Rhodococcus: biochemistry, physiology, and genetic adaptation. ADVANCES IN APPLIED MICROBIOLOGY 2006; 59:1-29. [PMID: 16829254 DOI: 10.1016/s0065-2164(06)59001-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Michael J Larkin
- The QUESTOR Centre, The Queen's University of Belfast, Belfast BT9 5AG, Northern Ireland, United Kingdom
| | | | | |
Collapse
|
22
|
Anderton MC, Bhakta S, Besra GS, Jeavons P, Eltis LD, Sim E. Characterization of the putative operon containing arylamine N-acetyltransferase (nat) in Mycobacterium bovis BCG. Mol Microbiol 2006; 59:181-92. [PMID: 16359327 DOI: 10.1111/j.1365-2958.2005.04945.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Mycobacterium bovis BCG and Mycobacterium tuberculosis possess a single arylamine N-acetyltransferase whose gene is predicted to occur within a six-gene operon. Deletion of the nat gene caused an extended lag phase in M. bovis BCG and a cell morphology associated with an altered pattern of cell wall mycolates. Analysis of cDNA from M. bovis BCG shows that during in vitro growth all the genes in the putative nat operon are expressed and the open reading frames are contiguous, supporting the existence of an operon. Two genes in the operon, Mb3599c and Mb3600c, are predicted to encode homologues of enzymes annotated as a 2,3-dihydroxybiphenyl 1,2-dioxygenase (bphC5) and a 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoate hydrolase (bphD2), respectively, in Rhodococcus RHA1. As predicted, M. bovis BCG cell lysates metabolized the BphC substrate 2,3-dihydroxybiphenyl (2,3-DHB) to 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid (HOPDA), a BphD substrate, which was subsequently hydrolysed. Immunoprecipitation of the BphD homologue from these lysates led to an accumulation of HOPDA. M. bovis BCG growth on both solid and liquid media was inhibited with either 2,3-DHB or an inhibitor of BphC, 3-chlorocatechol (3-CC). In addition, incubation with 2,3-DHB affects the lipid composition of the cell wall resulting in a diminished level of mycolates and an altered cell morphology similar to the Deltanat strain. We propose the enzymes encoded by the putative operon have a similar endogenous role to that of the NAT enzyme and are part of a pathway important for cell wall synthesis.
Collapse
Affiliation(s)
- Matthew C Anderton
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | | | | | | | | | | |
Collapse
|
23
|
Ishida T, Senda T, Tanaka H, Yamamoto A, Horiike K. Single-turnover kinetics of 2,3-dihydroxybiphenyl 1,2-dioxygenase reacting with 3-formylcatechol. Biochem Biophys Res Commun 2005; 338:223-9. [PMID: 16169514 DOI: 10.1016/j.bbrc.2005.08.218] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2005] [Accepted: 08/30/2005] [Indexed: 11/23/2022]
Abstract
2,3-Dihydroxybiphenyl 1,2-dioxygenase (EC 1.13.11.39) from Pseudomonas sp. strain KKS102 (BphC) catalyzes the proximal extradiol cleavage of the catechol ring of 2,3-dihydroxybiphenyl (DHB), a key step in the biodegradation of polychlorinated biphenyl. Because the active site Fe(II) ion of the extradiol dioxygenase is colorless, it has been difficult to monitor the reaction cycle kinetics. Here, we have found that BphC binds strongly the chromophoric substrate 3-formylcatechol (3FC) as a monoanion (Kd=0.8 microM) and cleaves it two orders of magnitude slower compared to DHB under air-saturation conditions. By utilizing 3FC as a probe, the reaction cycle kinetics of BphC was monitored for the first time. The binding of 3FC occurred in a three-step process involving rapid deprotonation of 3FC. The bound monoanionic 3FC reacted slowly with O2 in three steps, occurring in sequence, the ring opening step being the slowest one.
Collapse
Affiliation(s)
- Tetsuo Ishida
- Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Seta, Ohtsu, Shiga 520-2192, Japan.
| | | | | | | | | |
Collapse
|
24
|
Fortin PD, MacPherson I, Neau DB, Bolin JT, Eltis LD. Directed evolution of a ring-cleaving dioxygenase for polychlorinated biphenyl degradation. J Biol Chem 2005; 280:42307-14. [PMID: 16227200 DOI: 10.1074/jbc.m510456200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DoxG, an extradiol dioxygenase involved in the aerobic catabolism of naphthalene, possesses a weak ability to cleave 3,4-dihydroxybiphenyls (3,4-DHB), critical polychlorinated biphenyl metabolites. A directed evolution strategy combining error-prone PCR, saturation mutagenesis, and DNA shuffling was used to improve the polychlorinated biphenyl-degrading potential of DoxG. Screening was facilitated through analysis of filtered, digital imaging of plated colonies. A simple scheme, which is readily adaptable to other activities, enabled the screening of >10(5) colonies/h. The best variant, designated DoxGSMA2, cleaved 3,4-DHB with an apparent specificity constant of 2.0 +/- 0.3 x 10(6) m(-1) s(-1), which is 770 times that of wild-type (WT) DoxG. The specificities of DoxGSMA2 for 1,2-DHN and 2,3-DHB were increased by 6.7-fold and reduced by 2-fold, respectively, compared with the WT enzyme. DoxGSMA2 contained three substituted residues with respect to the WT enzyme: L190M, S191W, and L242S. Structural data indicate that the side chains of residues 190 and 242 occur on opposite walls of the substrate binding pocket and may interact directly with the distal ring of 3,4-DHB or influence contacts between this substrate and other residues. Thus, the introduction of two bulkier residues on one side of the substrate binding pocket and a smaller residue on the other may reshape the binding pocket and alter the catalytically relevant interactions of 3,4-DHB with the enzyme and dioxygen. Kinetic analyses reveal that the substitutions are anti-cooperative.
Collapse
Affiliation(s)
- Pascal D Fortin
- Department of Microbiology and Biochemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | | | | | |
Collapse
|
25
|
Larkin MJ, Kulakov LA, Allen CCR. Biodegradation and Rhodococcus – masters of catabolic versatility. Curr Opin Biotechnol 2005; 16:282-90. [PMID: 15961029 DOI: 10.1016/j.copbio.2005.04.007] [Citation(s) in RCA: 260] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2004] [Revised: 02/15/2005] [Accepted: 04/22/2005] [Indexed: 12/31/2022]
Abstract
The genus Rhodococcus is a very diverse group of bacteria that possesses the ability to degrade a large number of organic compounds, including some of the most difficult compounds with regard to recalcitrance and toxicity. They achieve this through their capacity to acquire a remarkable range of diverse catabolic genes and their robust cellular physiology. Rhodococcus appear to have adopted a strategy of hyper-recombination associated with a large genome. Notably, they harbour large linear plasmids that contribute to their catabolic diversity by acting as 'mass storage' for a large number of catabolic genes. In addition, there is increasing evidence that multiple pathways and gene homologues are present that further increase the catabolic versatility and efficiency of Rhodococcus.
Collapse
Affiliation(s)
- Michael J Larkin
- School of Biology and Biochemistry and The QUESTOR Centre, The Queen's University of Belfast, Belfast BT9 5AG, Northern Ireland, UK.
| | | | | |
Collapse
|
26
|
Fortin PD, Lo ATF, Haro MA, Kaschabek SR, Reineke W, Eltis LD. Evolutionarily divergent extradiol dioxygenases possess higher specificities for polychlorinated biphenyl metabolites. J Bacteriol 2005; 187:415-21. [PMID: 15629912 PMCID: PMC543568 DOI: 10.1128/jb.187.2.415-421.2005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The reactivities of four evolutionarily divergent extradiol dioxygenases towards mono-, di-, and trichlorinated (triCl) 2,3-dihydroxybiphenyls (DHBs) were investigated: 2,3-dihydroxybiphenyl dioxygenase (EC 1.13.11.39) from Burkholderia sp. strain LB400 (DHBDLB400), DHBDP6-I and DHBDP6-III from Rhodococcus globerulus P6, and 2,2',3-trihydroxybiphenyl dioxygenase from Sphingomonas sp. strain RW1 (THBDRW1). The specificity of each isozyme for particular DHBs differed by up to 3 orders of magnitude. Interestingly, the Kmapp values of each isozyme for the tested polychlorinated DHBs were invariably lower than those of monochlorinated DHBs. Moreover, each enzyme cleaved at least one of the tested chlorinated (Cl) DHBs better than it cleaved DHB (e.g., apparent specificity constants for 3',5'-dichlorinated [diCl] DHB were 2 to 13.4 times higher than for DHB). These results are consistent with structural data and modeling studies which indicate that the substrate-binding pocket of the DHBDs is hydrophobic and can accommodate the Cl DHBs, particularly in the distal portion of the pocket. Although the activity of DHBDP6-III was generally lower than that of the other three enzymes, six of eight tested Cl DHBs were better substrates for DHBDP6-III than was DHB. Indeed, DHBDP6-III had the highest apparent specificity for 4,3',5'-triCl DHB and cleaved this compound better than two of the other enzymes. Of the four enzymes, THBDRW1 had the highest specificity for 2'-Cl DHB and was at least five times more resistant to inactivation by 2'-Cl DHB, consistent with the similarity between the latter and 2,2',3-trihydroxybiphenyl. Nonetheless, THBDRW1 had the lowest specificity for 2',6'-diCl DHB and, like the other enzymes, was unable to cleave this critical PCB metabolite (kcatapp < 0.001 s(-1)).
Collapse
Affiliation(s)
- Pascal D Fortin
- Department of Microbiology and Immunology, University of British Columbia, #300-6174 University Blvd., Vancouver, BC V6T 1Z3, Canada
| | | | | | | | | | | |
Collapse
|
27
|
Wang P, Seah SYK. Determination of the metal ion dependence and substrate specificity of a hydratase involved in the degradation pathway of biphenyl/chlorobiphenyl. FEBS J 2005; 272:966-74. [PMID: 15691330 DOI: 10.1111/j.1742-4658.2004.04530.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BphH is a divalent metal ion-dependent hydratase that catalyzes the formation of 2-keto-4-hydroxypentanoate from 2-hydroxypent-2,4-dienoate (HPDA). This reaction lies on the catabolic pathway of numerous aromatics, including the significant environmental pollutant, polychlorinated biphenyls (PCBs). BphH from the PCB degrading bacterium, Burkholderia xenoverans LB400, was overexpressed and purified to homogeneity. Atomic absorption spectroscopy and Scatchard analysis reveal that only one divalent metal ion is bound to each enzyme subunit. The enzyme exhibits the highest activity when Mg2+ was used as cofactor. Other divalent cations activate the enzyme in the following order of effectiveness: Mg2+ > Mn2+ > Co2+ > Zn2+ > Ca2+. This differs from the metal activation profile of the homologous hydratase, MhpD. UV-visible spectroscopy of the Co2+-BphH complex indicates that the divalent metal ion is hexa-coordinated in the enzyme. The nature of the metal ion affected only the kcat and not the Km values in the BphH hydration of HPDA, suggesting that cation has a catalytic rather than just a substrate binding role. BphH is able to transform alternative substrates substituted with methyl- and chlorine groups at the 5-position of HPDA. The specificity constants (kcat/Km) for 5-methyl and 5-chloro substrates are, however, lowered by eight- and 67-fold compared with the unsubstituted substrate. Significantly, kcat for the chloro-substituted substrate is eightfold lower compared with the methyl-substituted substrate, showing that electron withdrawing substituent at the 5-position of the substrate has a negative influence on enzyme catalysis.
Collapse
Affiliation(s)
- Pan Wang
- Department of Microbiology, University of Guelph, Ontario, Canada
| | | |
Collapse
|
28
|
Pieper DH. Aerobic degradation of polychlorinated biphenyls. Appl Microbiol Biotechnol 2004; 67:170-91. [PMID: 15614564 DOI: 10.1007/s00253-004-1810-4] [Citation(s) in RCA: 226] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2004] [Revised: 10/10/2004] [Accepted: 10/19/2004] [Indexed: 10/26/2022]
Abstract
The microbial degradation of polychlorinated biphenyls (PCBs) has been extensively studied in recent years. The genetic organization of biphenyl catabolic genes has been elucidated in various groups of microorganisms, their structures have been analyzed with respect to their evolutionary relationships, and new information on mobile elements has become available. Key enzymes, specifically biphenyl 2,3-dioxygenases, have been intensively characterized, structure/sequence relationships have been determined and enzymes optimized for PCB transformation. However, due to the complex metabolic network responsible for PCB degradation, optimizing degradation by single bacterial species is necessarily limited. As PCBs are usually not mineralized by biphenyl-degrading organisms, and cometabolism can result in the formation of toxic metabolites, the degradation of chlorobenzoates has received special attention. A broad set of bacterial strategies to degrade chlorobenzoates has recently been elucidated, including new pathways for the degradation of chlorocatechols as central intermediates of various chloroaromatic catabolic pathways. To optimize PCB degradation in the environment beyond these metabolic limitations, enhancing degradation in the rhizosphere has been suggested, in addition to the application of surfactants to overcome bioavailability barriers. However, further research is necessary to understand the complex interactions between soil/sediment, pollutant, surfactant and microorganisms in different environments.
Collapse
Affiliation(s)
- Dietmar H Pieper
- Department of Environmental Microbiology, German Research Center for Biotechnology, Mascheroder Weg 1, 38124, Braunschweig, Germany.
| |
Collapse
|
29
|
Gürtler V, Mayall BC, Seviour R. Can whole genome analysis refine the taxonomy of the genus Rhodococcus? FEMS Microbiol Rev 2004; 28:377-403. [PMID: 15449609 DOI: 10.1016/j.femsre.2004.01.001] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The current systematics of the genus Rhodococcus is unclear, partly because many members were originally included before the application of a polyphasic taxonomic approach, central to which is the acquisition of 16S rRNA sequence data. This has resulted in the reclassification and description of many new species. Hence, the literature is replete with new species names that have not been brought together in an organized and easily interpreted form. This taxonomic confusion has been compounded by assigning many xenobiotic degrading isolates with phylogenetic positions but without formal taxonomic descriptions. In order to provide a framework for a taxonomic approach based on multiple genetic loci, a survey was undertaken of the known genome characteristics of members of the genus Rhodococcus including: (i) genetics of cell envelope biosynthesis; (ii) virulence genes; (iii) gene clusters involved in metabolic degradation and industrially relevant pathways; (iv) genetic analysis tools; (v) rapid identification of bacteria including rhodococci with specific gene RFLPs; (vi) genomic organization of rrn operons. Genes encoding virulence factors have been characterized for Rhodococcus equi and Rhodococcus fascians. Based on peptide signature comparisons deduced from gene sequences for cytochrome P-450, mono- and dioxygenases, alkane degradation, nitrile metabolism, proteasomes and desulfurization, phylogenetic relationships can be deduced for Rhodococcus erythropolis, Rhodococcus globerulus, Rhodococcus ruber and a number of undesignated Rhodococcus spp. that may distinguish the genus Rhodococcus into two further genera. The linear genome topologies that exist in some Rhodococcus species may alter a previously proposed model for the analysis of genomic fingerprinting techniques used in bacterial systematics.
Collapse
Affiliation(s)
- Volker Gürtler
- Department of Microbiology, Austin Health, Studley Road, Heidelberg, Vic. 3084, Australia.
| | | | | |
Collapse
|