1
|
Pelech P, Navarro PP, Vettiger A, Chao LH, Allolio C. Stress-mediated growth determines E. coli division site morphogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.11.612282. [PMID: 39314472 PMCID: PMC11419054 DOI: 10.1101/2024.09.11.612282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
In order to proliferate, bacteria must remodel their cell wall at the division site. The division process is driven by the enzymatic activity of peptidoglycan (PG) synthases and hydrolases around the constricting Z-ring. PG remodelling is reg-ulated by de-and re-crosslinking enzymes, and the directing constrictive force of the Z-ring. We introduce a model that is able to reproduce correctly the shape of the division site during the constriction and septation phase of E. coli . The model represents mechanochemical coupling within the mathematical framework of morphoelasticity. It contains only two parameters, associated with volumet-ric growth and PG remodelling, that are coupled to the mechanical stress in the bacterial wall. Different morphologies, corresponding either to mutant or wild type cells were recovered as a function of the remodeling parameter. In addition, a plausible range for the cell stiffness and turgor pressure was determined by comparing numerical simulations with bacterial cell lysis data.
Collapse
|
2
|
Miao Z, De Buck J. Discriminating bovine mastitis pathogens by combining loop-mediated isothermal amplification and amplicon-binding split trehalase assay. Front Vet Sci 2024; 11:1389184. [PMID: 38887539 PMCID: PMC11180830 DOI: 10.3389/fvets.2024.1389184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/21/2024] [Indexed: 06/20/2024] Open
Abstract
Bovine mastitis is predominantly caused by intramammary infections with various Gram-positive and Gram-negative bacteria, requiring accurate pathogen identification for effective treatment and antimicrobial resistance prevention. Here, a novel diagnostic method was developed to detect mastitis pathogens in milk samples by combining loop-mediated isothermal amplification with a split enzyme biosensor whereby trehalase fragments were fused with a DNA-binding protein, SpoIIID. Three primer sets, LAMPstaph, LAMPstrep, and LAMPneg, harboring SpoIIID recognition sequences targeted Staphylococcus, Streptococcus, and Gram-negative pathogens, respectively. Limits of detection were determined for DNA extracted from bacterial culture and bacteria-spiked milk. The combined method detected as low as 2, 24, and 10 copies of genomic DNA of staphylococci, streptococci and Escherichia coli and 11 CFU/ml for milk spiked with Escherichia coli. Higher detection limits were observed for Gram-positive bacteria in spiked milk. When testing genomic DNA of 10 mastitis isolates at concentrations of 106 and 103 copies per reaction, no cross-reactivity was detected for LAMPstaph nor LAMPstrep, whereas the LAMPneg assay cross-reacted only with Corynebacterium sp. at the highest concentration. This combined method demonstrated the potential to distinguish mastitis pathogenic Gram types for a rapid decision of antimicrobial treatment without culturing.
Collapse
Affiliation(s)
| | - Jeroen De Buck
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
3
|
Lyons N, Wu W, Jin Y, Lamont IL, Pletzer D. Using host-mimicking conditions and a murine cutaneous abscess model to identify synergistic antibiotic combinations effective against Pseudomonas aeruginosa. Front Cell Infect Microbiol 2024; 14:1352339. [PMID: 38808066 PMCID: PMC11130353 DOI: 10.3389/fcimb.2024.1352339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/25/2024] [Indexed: 05/30/2024] Open
Abstract
Antibiotic drug combination therapy is critical for the successful treatment of infections caused by multidrug resistant pathogens. We investigated the efficacy of β-lactam and β-lactam/β-lactamase inhibitor combinations with other antibiotics, against the hypervirulent, ceftazidime/avibactam resistant Pseudomonas aeruginosa Liverpool epidemic strain (LES) B58. Although minimum inhibitory concentrations in vitro differed by up to eighty-fold between standard and host-mimicking media, combinatorial effects only marginally changed between conditions for some combinations. Effective combinations in vitro were further tested in a chronic, high-density murine infection model. Colistin and azithromycin demonstrated combinatorial effects with ceftazidime and ceftazidime/avibactam both in vitro and in vivo. Conversely, while tobramycin and tigecycline exhibited strong synergy in vitro, this effect was not observed in vivo. Our approach of using host-mimicking conditions and a sophisticated animal model to evaluate drug synergy against bacterial pathogens represents a promising approach. This methodology may offer insights into the prediction of combination therapy outcomes and the identification of potential treatment failures.
Collapse
Affiliation(s)
- Nikita Lyons
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Weihui Wu
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Yongxin Jin
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Iain L. Lamont
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Daniel Pletzer
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
4
|
Zuke JD, Burton BM. From isotopically labeled DNA to fluorescently labeled dynamic pili: building a mechanistic model of DNA transport to the cytoplasmic membrane. Microbiol Mol Biol Rev 2024; 88:e0012523. [PMID: 38466096 PMCID: PMC10966944 DOI: 10.1128/mmbr.00125-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024] Open
Abstract
SUMMARYNatural competence, the physiological state wherein bacteria produce proteins that mediate extracellular DNA transport into the cytosol and the subsequent recombination of DNA into the genome, is conserved across the bacterial domain. DNA must successfully translocate across formidable permeability barriers during import, including the cell membrane(s) and the cell wall, that are normally impermeable to large DNA polymers. This review will examine the mechanisms underlying DNA transport from the extracellular space to the cytoplasmic membrane. First, the challenges inherent to DNA movement through the cell periphery will be discussed to provide context for DNA transport during natural competence. The following sections will trace the development of a comprehensive model for DNA translocation to the cytoplasmic membrane, highlighting the crucial studies performed over the last century that have contributed to building contemporary DNA import models. Finally, this review will conclude by reflecting on what is still unknown about the process and the possible solutions to overcome these limitations.
Collapse
Affiliation(s)
- Jason D. Zuke
- Department of Bacteriology, University of Wisconsin–Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Briana M. Burton
- Department of Bacteriology, University of Wisconsin–Madison, Madison, Wisconsin, USA
| |
Collapse
|
5
|
Benninghaus L, Zagami L, Tassini G, Meyer F, Wendisch VF. γ-Glutamylation of Isopropylamine by Fermentation. Chembiochem 2024; 25:e202300608. [PMID: 37987374 DOI: 10.1002/cbic.202300608] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 11/22/2023]
Abstract
Glutamylation yields N-functionalized amino acids in several natural pathways. γ-Glutamylated amino acids may exhibit improved properties for their industrial application, e. g., as taste enhancers or in peptide drugs. γ-Glutamyl-isopropylamide (GIPA) can be synthesized from isopropylamine (IPA) and l-glutamate. In Pseudomonas sp. strain KIE171, GIPA is an intermediate in the biosynthesis of l-alaninol (2-amino-1-propanol), a precursor of the fluorochinolone antibiotic levofloxacin and of the chloroacetanilide herbicide metolachlor. In this study, fermentative production of GIPA with metabolically engineered Pseudomonas putida KT2440 using γ-glutamylmethylamide synthetase (GMAS) from Methylorubrum extorquens was established. Upon addition of IPA during growth with glycerol as carbon source in shake flasks, the recombinant strain produced up to 21.8 mM GIPA. In fed-batch bioreactor cultivations, GIPA accumulated to a titer of 11 g L-1 with a product yield of 0.11 g g-1 glycerol and a volumetric productivity of 0.24 g L-1 h-1 . To the best of our knowledge, this is the first fermentative production of GIPA.
Collapse
Affiliation(s)
- Leonie Benninghaus
- Genetics of Prokaryotes, Faculty of Biology & CeBiTec, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Laura Zagami
- Genetics of Prokaryotes, Faculty of Biology & CeBiTec, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Giulio Tassini
- School of Science Mathematics Physical and Natural Sciences, University of Florence, Piazza San Marco 4, 50121, Firenze, Italy
| | - Florian Meyer
- Genetics of Prokaryotes, Faculty of Biology & CeBiTec, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Volker F Wendisch
- Genetics of Prokaryotes, Faculty of Biology & CeBiTec, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| |
Collapse
|
6
|
Huang LD, Gou XY, Yang MJ, Li MJ, Chen SN, Yan J, Liu XX, Sun AH. Peptidoglycan biosynthesis-associated enzymatic kinetic characteristics and β-lactam antibiotic inhibitory effects of different Streptococcus pneumoniae penicillin-binding proteins. Int J Biol Macromol 2024; 254:127784. [PMID: 37949278 DOI: 10.1016/j.ijbiomac.2023.127784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/15/2023] [Accepted: 10/28/2023] [Indexed: 11/12/2023]
Abstract
Penicillin-binding proteins (PBPs) include transpeptidases, carboxypeptidases, and endopeptidases for biosynthesis of peptidoglycans in the cell wall to maintain bacterial morphology and survival in the environment. Streptococcus pneumoniae expresses six PBPs, but their enzymatic kinetic characteristics and inhibitory effects on different β-lactam antibiotics remain poorly understood. In this study, all the six recombinant PBPs of S. pneumoniae displayed transpeptidase activity with different substrate affinities (Km = 1.56-9.11 mM) in a concentration-dependent manner, and rPBP3 showed a greater catalytic efficiency (Kcat = 2.38 s-1) than the other rPBPs (Kcat = 3.20-7.49 × 10-2 s-1). However, only rPBP3 was identified as a carboxypeptidase (Km = 8.57 mM and Kcat = 2.57 s-1). None of the rPBPs exhibited endopeptidase activity. Penicillin and cefotaxime inhibited the transpeptidase and carboxypeptidase activity of all the rPBPs but imipenem did not inhibited the enzymatic activities of rPBP3. Except for the lack of binding of imipenem to rPBP3, penicillin, cefotaxime, and imipenem bound to all the other rPBPs (KD = 3.71-9.35 × 10-4 M). Sublethal concentrations of penicillin, cefotaxime, and imipenem induced a decrease of pneumococcal pbps-mRNA levels (p < 0.05). These results indicated that all six PBPs of S. pneumoniae are transpeptidases, while only PBP3 is a carboxypeptidase. Imipenem has no inhibitory effect on pneumococcal PBP3. The pneumococcal genes for encoding endopeptidases remain to be determined.
Collapse
Affiliation(s)
- Li-Dan Huang
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang 310053, PR China; Yiwu Central Blood Station, Yiwu, Zhejiang 322000, PR China
| | - Xiao-Yu Gou
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang 310053, PR China
| | - Mei-Juan Yang
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang 310053, PR China; The First Hospital of Putian City, Putian, Fujian 351100, PR China
| | - Meng-Jie Li
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang 310053, PR China
| | - Sui-Ning Chen
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang 310053, PR China
| | - Jie Yan
- Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, PR China
| | - Xiao-Xiang Liu
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang 310053, PR China.
| | - Ai-Hua Sun
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang 310053, PR China.
| |
Collapse
|
7
|
Chen J, Zhong J, Lei H, Ai Y. Label-free multidimensional bacterial characterization with an ultrawide detectable concentration range by microfluidic impedance cytometry. LAB ON A CHIP 2023; 23:5029-5038. [PMID: 37909182 DOI: 10.1039/d3lc00799e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Rapid and accurate identification of bacteria is of great importance to public health in various fields, including medical diagnostics, food safety, and environmental monitoring. However, most existing bacterial detection methods have very narrow detectable concentration ranges and limited detection information, which easily leads to wrong diagnosis and treatment. This work presents a novel high-throughput microfluidic electrical impedance-based multidimensional single-bacterium profiling system for ultrawide concentration range detection and accurate differentiation of viability and Gram types of bacteria. The electrical impedance-based microfluidic cytometry is capable of multi-frequency impedance quantification, which allows profiling of the bacteria size, concentration, and membrane impedance as an indicator of bacterial viability and Gram properties in a single flow-through interrogation. It has been demonstrated that this novel impedance cytometry has an ultrawide bacterial counting range (102-108 cells per mL), and exhibits a rapid and accurate discrimination of viability and Gram types of bacteria in a label-free manner. Escherichia coli (E. coli) has been used as an analog species for the accuracy assessment of the electrical impedance-based bacterial detection system in an authentic complex beverage matrix within 24 hours. The impedance-based quantifications of viable bacteria are consistent with those obtained by the classical bacterial colony counting method (R2 = 0.996). This work could pave the way for providing a novel microfluidic cytometry system for rapid and multidimensional bacterial detection in diverse areas.
Collapse
Affiliation(s)
- Jiahong Chen
- Guangdong Provincial Key Laboratory of Food Quality and Safety/National-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Jianwei Zhong
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore.
| | - Hongtao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety/National-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Ye Ai
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore.
| |
Collapse
|
8
|
Ganesan N, Mishra B, Felix L, Mylonakis E. Antimicrobial Peptides and Small Molecules Targeting the Cell Membrane of Staphylococcus aureus. Microbiol Mol Biol Rev 2023; 87:e0003722. [PMID: 37129495 PMCID: PMC10304793 DOI: 10.1128/mmbr.00037-22] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023] Open
Abstract
Clinical management of Staphylococcus aureus infections presents a challenge due to the high incidence, considerable virulence, and emergence of drug resistance mechanisms. The treatment of drug-resistant strains, such as methicillin-resistant S. aureus (MRSA), is further complicated by the development of tolerance and persistence to antimicrobial agents in clinical use. To address these challenges, membrane disruptors, that are not generally considered during drug discovery for agents against S. aureus, should be explored. The cell membrane protects S. aureus from external stresses and antimicrobial agents, but membrane-targeting antimicrobial agents are probably less likely to promote bacterial resistance. Nontypical linear cationic antimicrobial peptides (AMPs), highly modified AMPs such as daptomycin (lipopeptide), bacitracin (cyclic peptide), and gramicidin S (cyclic peptide), are currently in clinical use. Recent studies have demonstrated that AMPs and small molecules can penetrate the cell membrane of S. aureus, inhibit phospholipid biosynthesis, or block the passage of solutes between the periplasm and the exterior of the cell. In addition to their primary mechanism of action (MOA) that targets the bacterial membrane, AMPs and small molecules may also impact bacteria through secondary mechanisms such as targeting the biofilm, and downregulating virulence genes of S. aureus. In this review, we discuss the current state of research into cell membrane-targeting AMPs and small molecules and their potential mechanisms of action against drug-resistant physiological forms of S. aureus, including persister cells and biofilms.
Collapse
Affiliation(s)
- Narchonai Ganesan
- Infectious Diseases Division, Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Biswajit Mishra
- Infectious Diseases Division, Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Department of Medicine, The Miriam Hospital, Providence, Rhode Island, USA
| | - LewisOscar Felix
- Infectious Diseases Division, Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Eleftherios Mylonakis
- Infectious Diseases Division, Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Department of Medicine, Houston Methodist Hospital, Houston, Texas, USA
| |
Collapse
|
9
|
Liao F, Chen Y, Shu A, Chen X, Wang T, Jiang Y, Ma C, Zhou M, Chen T, Shaw C, Wang L. A Novel Strategy for the Design of Aurein 1.2 Analogs with Enhanced Bioactivities by Conjunction of Cell-Penetrating Regions. Antibiotics (Basel) 2023; 12:412. [PMID: 36830322 PMCID: PMC9952496 DOI: 10.3390/antibiotics12020412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
The rational design modification of membrane-active peptide structures by introducing additional membrane-penetrating regions has become a good strategy for the improvement of action and potency. Aurein 1.2 (GLFDIIKKIAESF-NH2) is a multifunctional antimicrobial peptide isolated from the green and golden bell frog, Litoria aurea, and the southern bell frog Litoria raniformis skin secretions. Its bio-functionality has been widely investigated. However, its lack of a potent action failed to provide aurein 1.2 with a competitive edge for further development as a therapeutic agent for clinical use. Herein, aurein 1.2 was chosen as a template for rational modification to achieve a more potent bio-functionality. KLA-2 (GLFDIIKKLAKLAESF-NH2), which a double KLA region inserted into the sequence, presented a 2-16-fold enhancement of antimicrobial activity, a 2-8-fold greater anti-biofilm activity (including biofilm prevention and eradication), and a 7-fold more potent anti-proliferation activity and hence was regarded as the most broad-spectrum active peptide. Additionally, with respect to antimicrobial activity, the IIKK-modified analog, IK-3 (GLFDIIKKIIKKIIKKI-NH2), also demonstrated a potent enhancement of activity against various pathogens, exhibiting a 2-8-fold enhanced activity compared to the parent peptide. Moreover, the selectivities of KLA-1 and KLA-2 were enhanced significantly. In conclusion, peptide modification, through the introduction of additional membrane penetrating regions, can increase both the potency and activity spectra of natural template peptides, making them suitable candidates for new drug development.
Collapse
Affiliation(s)
- Fengting Liao
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| | - Yuping Chen
- Department of Basic Medical Science, Jiangsu Vocational College of Medicine, Yancheng 224005, China
| | - Anmei Shu
- Department of Basic Medical Science, Jiangsu Vocational College of Medicine, Yancheng 224005, China
| | - Xiaoling Chen
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| | - Tao Wang
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| | - Yangyang Jiang
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| | - Chengbang Ma
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| | - Mei Zhou
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| | - Tianbao Chen
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| | - Chris Shaw
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| | - Lei Wang
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| |
Collapse
|
10
|
Arya SS, Morsy NK, Islayem DK, Alkhatib SA, Pitsalidis C, Pappa AM. Bacterial Membrane Mimetics: From Biosensing to Disease Prevention and Treatment. BIOSENSORS 2023; 13:bios13020189. [PMID: 36831955 PMCID: PMC9953710 DOI: 10.3390/bios13020189] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 05/31/2023]
Abstract
Plasma membrane mimetics can potentially play a vital role in drug discovery and immunotherapy owing to the versatility to assemble facilely cellular membranes on surfaces and/or nanoparticles, allowing for direct assessment of drug/membrane interactions. Recently, bacterial membranes (BMs) have found widespread applications in biomedical research as antibiotic resistance is on the rise, and bacteria-associated infections have become one of the major causes of death worldwide. Over the last decade, BM research has greatly benefited from parallel advancements in nanotechnology and bioelectronics, resulting in multifaceted systems for a variety of sensing and drug discovery applications. As such, BMs coated on electroactive surfaces are a particularly promising label-free platform to investigate interfacial phenomena, as well as interactions with drugs at the first point of contact: the bacterial membrane. Another common approach suggests the use of lipid-coated nanoparticles as a drug carrier system for therapies for infectious diseases and cancer. Herein, we discuss emerging platforms that make use of BMs for biosensing, bioimaging, drug delivery/discovery, and immunotherapy, focusing on bacterial infections and cancer. Further, we detail the synthesis and characteristics of BMs, followed by various models for utilizing them in biomedical applications. The key research areas required to augment the characteristics of bacterial membranes to facilitate wider applicability are also touched upon. Overall, this review provides an interdisciplinary approach to exploit the potential of BMs and current emerging technologies to generate novel solutions to unmet clinical needs.
Collapse
Affiliation(s)
- Sagar S. Arya
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Nada K. Morsy
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Deema K. Islayem
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Sarah A. Alkhatib
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Charalampos Pitsalidis
- Department of Physics Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Healthcare Engineering Innovation Center (HEIC), Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Department of Chemical Engineering and Biotechnology, Cambridge University, Philippa Fawcett Drive, Cambridge CB30AS, UK
| | - Anna-Maria Pappa
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Healthcare Engineering Innovation Center (HEIC), Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Department of Chemical Engineering and Biotechnology, Cambridge University, Philippa Fawcett Drive, Cambridge CB30AS, UK
| |
Collapse
|
11
|
Differentiating interactions of antimicrobials with Gram-negative and Gram-positive bacterial cell walls using molecular dynamics simulations. Biointerphases 2022; 17:061008. [PMID: 36511523 DOI: 10.1116/6.0002087] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Developing molecular models to capture the complex physicochemical architecture of the bacterial cell wall and to study the interaction with antibacterial molecules is an important aspect of assessing and developing novel antimicrobial molecules. We carried out molecular dynamics simulations using an atomistic model of peptidoglycan to represent the architecture for Gram-positive S. aureus. The model is developed to capture various structural features of the Staphylococcal cell wall, such as the peptide orientation, area per disaccharide, glycan length distribution, cross-linking, and pore size. A comparison of the cell wall density and electrostatic potentials is made with a previously developed cell wall model of Gram-negative bacteria, E. coli, and properties for both single and multilayered structures of the Staphylococcal cell wall are studied. We investigated the interactions of the antimicrobial peptide melittin with peptidoglycan structures. The depth of melittin binding to peptidoglycan is more pronounced in E. coli than in S. aureus, and consequently, melittin has greater contacts with glycan units of E. coli. Contacts of melittin with the amino acids of peptidoglycan are comparable across both the strains, and the D-Ala residues, which are sites for transpeptidation, show enhanced interactions with melittin. A low energetic barrier is observed for translocation of a naturally occurring antimicrobial thymol with the four-layered peptidoglycan model. The molecular model developed for Gram-positive peptidoglycan allows us to compare and contrast the cell wall penetrating properties with Gram-negative strains and assess for the first time binding and translocation of antimicrobial molecules for Gram-positive cell walls.
Collapse
|
12
|
Kermani AA, Biboy J, Vollmer D, Vollmer W. Outer membrane-anchoring enables LpoB to regulate peptidoglycan synthesis rate. Cell Surf 2022; 8:100086. [PMID: 36304570 PMCID: PMC9593243 DOI: 10.1016/j.tcsw.2022.100086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/19/2022] [Accepted: 10/19/2022] [Indexed: 11/25/2022] Open
Abstract
Peptidoglycan (PG) is an essential component of the cell envelope in most bacteria, responsible for maintaining the shape of the cell and protecting the cell from environmental stresses. The growth of the PG layer during cell elongation and division is facilitated by the coordinated activities of PG synthases and hydrolases. PG synthases are regulated from inside the cell by components of the elongasome and divisome complexes driven by the cytoskeletal proteins MreB and FtsZ. In Escherichia coli the PG synthases PBP1A and PBP1B require the activation by outer membrane (OM)-anchored lipoproteins LpoA and LpoB, respectively. These have an elongated structure and are capable to span the periplasm to reach their cognate, cytoplasmic membrane (CM)-anchored PG synthase through the PG layer. Presumably, the Lpo proteins activate the PBPs at sites where the PG mesh is stretched or defective, resulting in coupling of PG synthase activation with cell growth or PG repair. Here we investigated the importance of OM-anchoring on the function of Lpo proteins in regulating PG synthesis in response to environmental stresses. We investigated the effects of an artificially CM-tethered LpoB on cell morphology and PG synthesis. Our results indicate that mis-localization of LpoB affects the growth and morphology of cells in high osmolarity growth medium, and PG synthesis rate upon an osmotic upshift.
Collapse
|
13
|
Phothichaisri W, Chankhamhaengdecha S, Janvilisri T, Nuadthaisong J, Phetruen T, Fagan RP, Chanarat S. Potential Role of the Host-Derived Cell-Wall Binding Domain of Endolysin CD16/50L as a Molecular Anchor in Preservation of Uninfected Clostridioides difficile for New Rounds of Phage Infection. Microbiol Spectr 2022; 10:e0236121. [PMID: 35377223 PMCID: PMC9045149 DOI: 10.1128/spectrum.02361-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/20/2022] [Indexed: 01/21/2023] Open
Abstract
Endolysin is a phage-encoded cell-wall hydrolase which degrades the peptidoglycan layer of the bacterial cell wall. The enzyme is often expressed at the late stage of the phage lytic cycle and is required for progeny escape. Endolysins of bacteriophage that infect Gram-positive bacteria often comprises two domains: a peptidoglycan hydrolase and a cell-wall binding domain (CBD). Although the catalytic domain of endolysin is relatively well-studied, the precise role of CBD is ambiguous and remains controversial. Here, we focus on the function of endolysin CBD from a recently isolated Clostridioides difficile phage. We found that the CBD is not required for lytic activity, which is strongly prevented by the surface layer of C. difficile. Intriguingly, hidden Markov model analysis suggested that the endolysin CBD is likely derived from the CWB2 motif of C. difficile cell-wall proteins but possesses a higher binding affinity to bacterial cell-wall polysaccharides. Moreover, the CBD forms a homodimer, formation of which is necessary for interaction with the surface saccharides. Importantly, endolysin diffusion and sequential cytolytic assays showed that CBD of endolysin is required for the enzyme to be anchored to post-lytic cell-wall remnants, suggesting its physiological roles in limiting diffusion of the enzyme, preserving neighboring host cells, and thereby enabling the phage progeny to initiate new rounds of infection. Taken together, this study provides an insight into regulation of endolysin through CBD and can potentially be applied for endolysin treatment against C. difficile infection. IMPORTANCE Endolysin is a peptidoglycan hydrolase encoded in a phage genome. The enzyme is attractive due to its potential use as antibacterial treatment. To utilize endolysin for the therapeutic propose, understanding of the fundamental role of endolysin becomes important. Here, we investigate the function of cell-wall binding domain (CBD) of an endolysin from a C. difficile phage. The domain is homologous to a cell-wall associating module of bacterial cell-wall proteins, likely acquired during phage-host coevolution. The interaction of CBD to bacterial cell walls reduces enzyme diffusion and thereby limits cell lysis of the neighboring bacteria. Our findings indicate that the endolysin is trapped to the cell-wall residuals through CBD and might serve as an advantage for phage replication. Thus, employing a CBD-less endolysin might be a feasible strategy for using endolysin for the treatment of C. difficile infection.
Collapse
Affiliation(s)
- Wichuda Phothichaisri
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | | | - Tavan Janvilisri
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Jirayu Nuadthaisong
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Tanaporn Phetruen
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Robert P. Fagan
- School of Biosciences, Florey Institute, University of Sheffield, Sheffield, United Kingdom
| | - Sittinan Chanarat
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
- Laboratory of Molecular Cell Biology, Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
14
|
Lamanna MM, Maurelli AT. What Is Motion? Recent Advances in the Study of Molecular Movement Patterns of the Peptidoglycan Synthesis Machines. J Bacteriol 2022; 204:e0059821. [PMID: 34928180 PMCID: PMC9017339 DOI: 10.1128/jb.00598-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
How proteins move through space and time is a fundamental question in biology. While great strides have been made toward a mechanistic understanding of protein movement, many questions remain. We discuss the biological implications of motion in the context of the peptidoglycan (PG) synthesis machines. We reviewed systems in several bacteria, including Escherichia coli, Bacillus subtilis, and Streptococcus pneumoniae, and present a comprehensive view of our current knowledge regarding movement dynamics. Discrepancies are also addressed because "one size does not fit all". For bacteria to divide, new PG is synthesized and incorporated into the growing cell wall by complex multiprotein nanomachines consisting of PG synthases (transglycosylases [TG] and/or transpeptidases [TP]) as well as a variety of regulators and cytoskeletal factors. Advances in imaging capabilities and labeling methods have revealed that these machines are not static but rather circumferentially transit the cell via directed motion perpendicular to the long axis of model rod-shaped bacteria such as E. coli and B. subtilis. The enzymatic activity of the TG:TPs drives motion in some species while motion is mediated by FtsZ treadmilling in others. In addition, both directed and diffusive motion of the PG synthases have been observed using single-particle tracking technology. Here, we examined the biological role of diffusion regarding transit. Lastly, findings regarding the monofunctional transglycosylases (RodA and FtsW) as well as the Class A PG synthases are discussed. This minireview serves to showcase recent advances, broach mechanistic unknowns, and stimulate future areas of study.
Collapse
Affiliation(s)
- Melissa Mae Lamanna
- Department of Environmental & Global Health and Emerging Pathogens Institute, University of Floridagrid.15276.37, Gainesville, Florida, USA
| | - Anthony T. Maurelli
- Department of Environmental & Global Health and Emerging Pathogens Institute, University of Floridagrid.15276.37, Gainesville, Florida, USA
| |
Collapse
|
15
|
Impact of crossbridge structure on peptidoglycan crosslinking: A synthetic stem peptide approach. Methods Enzymol 2022; 665:259-279. [PMID: 35379437 DOI: 10.1016/bs.mie.2021.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The bacterial cell wall, whose main component is peptidoglycan (PG), provides cellular rigidity and prevents lysis from osmotic pressure. Moreover, the cell wall is the main interface between the external environment and internal cellular components. Given its essentiality, many antibiotics target enzymes related to the biosynthesis of cell wall. Of these enzymes, transpeptidases (TPs) are central to proper cell wall assembly and their inactivation is the mechanism of action of many antibiotics including β-lactams. TPs are responsible for stitching together strands of PG to make the crosslinked meshwork of the cell wall. This chapter focuses on the use of solid-phase peptide synthesis to build PG analogs that become site-selectively incorporated into the cell wall of live bacterial cells. This method allows for the design of fluorescent handles on PG probes that will enable the interrogation of substrate preferences of TPs (e.g., amidation at the glutamic acid residue, crossbridge presence) by analyzing the level of probe incorporation within the native cell wall of live bacterial cells.
Collapse
|
16
|
Tian D, Han M. Bacterial peptidoglycan muropeptides benefit mitochondrial homeostasis and animal physiology by acting as ATP synthase agonists. Dev Cell 2022; 57:361-372.e5. [PMID: 35045336 PMCID: PMC8825754 DOI: 10.1016/j.devcel.2021.12.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 10/18/2021] [Accepted: 12/15/2021] [Indexed: 11/24/2022]
Abstract
The symbiotic relationship between commensal microbes and host animals predicts unidentified beneficial impacts of individual bacterial metabolites on animal physiology. Peptidoglycan fragments (muropeptides) from the bacterial cell wall are known for their roles in pathogenicity and for inducing host immune responses. However, the potential beneficial usage of muropeptides from commensal bacteria by the host needs exploration. We identified a striking role for muropeptides in supporting mitochondrial homeostasis, development, and behaviors in Caenorhabditis elegans. We determined that the beneficial molecules are disaccharide muropeptides containing a short AA chain, and they enter intestinal-cell mitochondria to repress oxidative stress. Further analyses indicate that muropeptides execute this role by binding to and promoting the activity of ATP synthase. Therefore, given the exceptional structural conservation of ATP synthase, the role of muropeptides as a rare agonist of the ATP synthase presents a major conceptual modification regarding the impact of bacterial cell metabolites on animal physiology.
Collapse
Affiliation(s)
- Dong Tian
- Department of MCDB, University of Colorado at Boulder, Boulder, CO 80309, USA
| | - Min Han
- Department of MCDB, University of Colorado at Boulder, Boulder, CO 80309, USA.
| |
Collapse
|
17
|
β-lactam Resistance in Pseudomonas aeruginosa: Current Status, Future Prospects. Pathogens 2021; 10:pathogens10121638. [PMID: 34959593 PMCID: PMC8706265 DOI: 10.3390/pathogens10121638] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/06/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022] Open
Abstract
Pseudomonas aeruginosa is a major opportunistic pathogen, causing a wide range of acute and chronic infections. β-lactam antibiotics including penicillins, carbapenems, monobactams, and cephalosporins play a key role in the treatment of P. aeruginosa infections. However, a significant number of isolates of these bacteria are resistant to β-lactams, complicating treatment of infections and leading to worse outcomes for patients. In this review, we summarize studies demonstrating the health and economic impacts associated with β-lactam-resistant P. aeruginosa. We then describe how β-lactams bind to and inhibit P. aeruginosa penicillin-binding proteins that are required for synthesis and remodelling of peptidoglycan. Resistance to β-lactams is multifactorial and can involve changes to a key target protein, penicillin-binding protein 3, that is essential for cell division; reduced uptake or increased efflux of β-lactams; degradation of β-lactam antibiotics by increased expression or altered substrate specificity of an AmpC β-lactamase, or by the acquisition of β-lactamases through horizontal gene transfer; and changes to biofilm formation and metabolism. The current understanding of these mechanisms is discussed. Lastly, important knowledge gaps are identified, and possible strategies for enhancing the effectiveness of β-lactam antibiotics in treating P. aeruginosa infections are considered.
Collapse
|
18
|
Abstract
Most bacteria are surrounded by a peptidoglycan cell wall that defines their shape and protects them from osmotic lysis. The expansion and division of this structure therefore plays an integral role in bacterial growth and division. Additionally, the biogenesis of the peptidoglycan layer is the target of many of our most effective antibiotics. Thus, a better understanding of how the cell wall is built will enable the development of new therapies to combat the rise of drug-resistant bacterial infections. This review covers recent advances in defining the mechanisms involved in assembling the peptidoglycan layer with an emphasis on discoveries related to the function and regulation of the cell elongation and division machineries in the model organisms Escherichia coli and Bacillus subtilis. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Patricia D A Rohs
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA; .,Current affiliation: Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Thomas G Bernhardt
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA; .,Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
19
|
Ke CL, Deng FS, Chuang CY, Lin CH. Antimicrobial Actions and Applications of Chitosan. Polymers (Basel) 2021; 13:904. [PMID: 33804268 PMCID: PMC7998239 DOI: 10.3390/polym13060904] [Citation(s) in RCA: 250] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/08/2021] [Accepted: 03/08/2021] [Indexed: 02/08/2023] Open
Abstract
Chitosan is a naturally originating product that can be applied in many areas due to its biocompatibility, biodegradability, and nontoxic properties. The broad-spectrum antimicrobial activity of chitosan offers great commercial potential for this product. Nevertheless, the antimicrobial activity of chitosan varies, because this activity is associated with its physicochemical characteristics and depends on the type of microorganism. In this review article, the fundamental properties, modes of antimicrobial action, and antimicrobial effects-related factors of chitosan are discussed. We further summarize how microorganisms genetically respond to chitosan. Finally, applications of chitosan-based biomaterials, such as nanoparticles and films, in combination with current clinical antibiotics or antifungal drugs, are also addressed.
Collapse
Affiliation(s)
| | | | | | - Ching-Hsuan Lin
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei 10617, Taiwan; (C.-L.K.); (F.-S.D.); (C.-Y.C.)
| |
Collapse
|
20
|
Pedebos C, Smith IPS, Boags A, Khalid S. The hitchhiker's guide to the periplasm: Unexpected molecular interactions of polymyxin B1 in E. coli. Structure 2021; 29:444-456.e2. [PMID: 33577754 DOI: 10.1016/j.str.2021.01.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 12/11/2020] [Accepted: 01/21/2021] [Indexed: 12/19/2022]
Abstract
The periplasm of Gram-negative bacteria is a complex, highly crowded molecular environment. Little is known about how antibiotics move across the periplasm and the interactions they experience. Here, atomistic molecular dynamics simulations are used to study the antibiotic polymyxin B1 within models of the periplasm, which are crowded to different extents. We show that PMB1 is likely to be able to "hitchhike" within the periplasm by binding to lipoprotein carriers-a previously unreported passive transport route. The simulations reveal that PMB1 forms both transient and long-lived interactions with proteins, osmolytes, lipids of the outer membrane, and the cell wall, and is rarely uncomplexed when in the periplasm. Furthermore, it can interfere in the conformational dynamics of native proteins. These are important considerations for interpreting its mechanism of action and are likely to also hold for other antibiotics that rely on diffusion to cross the periplasm.
Collapse
Affiliation(s)
- Conrado Pedebos
- School of Chemistry, University of Southampton, Highfield Campus, Southampton SO17 1BJ, UK
| | - Iain Peter Shand Smith
- School of Chemistry, University of Southampton, Highfield Campus, Southampton SO17 1BJ, UK
| | - Alister Boags
- School of Chemistry, University of Southampton, Highfield Campus, Southampton SO17 1BJ, UK
| | - Syma Khalid
- School of Chemistry, University of Southampton, Highfield Campus, Southampton SO17 1BJ, UK.
| |
Collapse
|
21
|
Garde S, Chodisetti PK, Reddy M. Peptidoglycan: Structure, Synthesis, and Regulation. EcoSal Plus 2021; 9:eESP-0010-2020. [PMID: 33470191 PMCID: PMC11168573 DOI: 10.1128/ecosalplus.esp-0010-2020] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Indexed: 02/06/2023]
Abstract
Peptidoglycan is a defining feature of the bacterial cell wall. Initially identified as a target of the revolutionary beta-lactam antibiotics, peptidoglycan has become a subject of much interest for its biology, its potential for the discovery of novel antibiotic targets, and its role in infection. Peptidoglycan is a large polymer that forms a mesh-like scaffold around the bacterial cytoplasmic membrane. Peptidoglycan synthesis is vital at several stages of the bacterial cell cycle: for expansion of the scaffold during cell elongation and for formation of a septum during cell division. It is a complex multifactorial process that includes formation of monomeric precursors in the cytoplasm, their transport to the periplasm, and polymerization to form a functional peptidoglycan sacculus. These processes require spatio-temporal regulation for successful assembly of a robust sacculus to protect the cell from turgor and determine cell shape. A century of research has uncovered the fundamentals of peptidoglycan biology, and recent studies employing advanced technologies have shed new light on the molecular interactions that govern peptidoglycan synthesis. Here, we describe the peptidoglycan structure, synthesis, and regulation in rod-shaped bacteria, particularly Escherichia coli, with a few examples from Salmonella and other diverse organisms. We focus on the pathway of peptidoglycan sacculus elongation, with special emphasis on discoveries of the past decade that have shaped our understanding of peptidoglycan biology.
Collapse
Affiliation(s)
- Shambhavi Garde
- These authors contributed equally
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India 500007
| | - Pavan Kumar Chodisetti
- These authors contributed equally
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India 500007
| | - Manjula Reddy
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India 500007
| |
Collapse
|
22
|
Velic A, Hasan J, Li Z, Yarlagadda PKDV. Mechanics of Bacterial Interaction and Death on Nanopatterned Surfaces. Biophys J 2020; 120:217-231. [PMID: 33333030 DOI: 10.1016/j.bpj.2020.12.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/20/2020] [Accepted: 12/01/2020] [Indexed: 02/07/2023] Open
Abstract
Nanopatterned surfaces are believed to kill bacteria through physical deformation, a mechanism that has immense potential against biochemical resistance. Because of its elusive nature, this mechanism is mostly understood through biophysical modeling. Problematically, accurate descriptions of the contact mechanics and various boundary conditions involved in the bacteria-nanopattern interaction remain to be seen. This may underpin conflicting predictions, found throughout the literature, regarding two important aspects of the mechanism-that is, its critical action site and relationship with geometry. Herein, a robust computational analysis of bacteria-nanopattern interaction is performed using a three-dimensional finite element modeling that incorporates relevant continuum mechanical properties, multilayered envelope structure, and adhesion interaction conditions. The model is applied to more accurately study the elusory mechanism and its enhancement via nanopattern geometry. Additionally, micrographs of bacteria adhered on a nanopatterned cicada wing are examined to further inform and verify the major modeling predictions. Together, the results indicate that nanopatterned surfaces do not kill bacteria predominantly by rupture in between protruding pillars as previously thought. Instead, nondevelopable deformation about pillar tips is more likely to create a critical site at the pillar apex, which delivers significant in-plane strains and may locally rupture and penetrate the cell. The computational analysis also demonstrates that envelope deformation is increased by adhesion to nanopatterns with smaller pillar radii and spacing. These results further progress understanding of the mechanism of nanopatterned surfaces and help guide their design for enhanced bactericidal efficiency.
Collapse
Affiliation(s)
- Amar Velic
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Queensland, Australia; Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Jafar Hasan
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Queensland, Australia; Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Zhiyong Li
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Queensland, Australia; Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Prasad K D V Yarlagadda
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Queensland, Australia; Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Queensland, Australia.
| |
Collapse
|
23
|
Batt SM, Burke CE, Moorey AR, Besra GS. Antibiotics and resistance: the two-sided coin of the mycobacterial cell wall. Cell Surf 2020; 6:100044. [PMID: 32995684 PMCID: PMC7502851 DOI: 10.1016/j.tcsw.2020.100044] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/26/2020] [Accepted: 08/26/2020] [Indexed: 01/07/2023] Open
Abstract
Mycobacterium tuberculosis, the bacterium responsible for tuberculosis, is the global leading cause of mortality from an infectious agent. Part of this success relies on the unique cell wall, which consists of a thick waxy coat with tightly packed layers of complexed sugars, lipids and peptides. This coat provides a protective hydrophobic barrier to antibiotics and the host's defences, while enabling the bacterium to spread efficiently through sputum to infect and survive within the macrophages of new hosts. However, part of this success comes at a cost, with many of the current first- and second-line drugs targeting the enzymes involved in cell wall biosynthesis. The flip side of this coin is that resistance to these drugs develops either in the target enzymes or the activation pathways of the drugs, paving the way for new resistant clinical strains. This review provides a synopsis of the structure and synthesis of the cell wall and the major current drugs and targets, along with any mechanisms of resistance.
Collapse
Affiliation(s)
- Sarah M. Batt
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Christopher E. Burke
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Alice R. Moorey
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Gurdyal S. Besra
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
24
|
Crump GM, Zhou J, Mashayekh S, Grimes CL. Revisiting peptidoglycan sensing: interactions with host immunity and beyond. Chem Commun (Camb) 2020; 56:13313-13322. [PMID: 33057506 PMCID: PMC7642115 DOI: 10.1039/d0cc02605k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The interaction between host immunity and bacterial cells plays a pivotal role in a variety of human diseases. The bacterial cell wall component peptidoglycan (PG) is known to stimulate an immune response, which makes PG a distinctive recognition element for unveiling these complicated molecular interactions. Pattern recognition receptor (PRR) proteins are among the critical components of this system that initially recognize molecular patterns associated with microorganisms such as bacteria and fungi. These molecular patterns are mostly embedded in the bacterial or fungal cell wall structure and can be released and presented to the immune system in various situations. Nonetheless, detailed knowledge of this recognition is limited due to the diversity among the PG polymer and its fragments; the subsequent responses by multiple hosts add more complexity. Here, we discuss how our understanding of the role and molecular mechanisms of the well-studied PRR, the NOD-like receptors (NLRs), in the human immune system has evolved in recent years. We highlight the instances of other classes of proteins with similar behavior in the recognition of PG that have been identified in other microorganisms such as yeasts. These proteins are particularly interesting because a network of cellular interactions exists between human host cells, bacteria and yeast as a part of the normal human flora. To support our understanding of these interactions, we provide insight into the chemist's toolbox of peptidoglycan probes that aid in the investigations of the behaviors of these proteins and other biological contexts relevant to the sensing and recognition of peptidoglycan. The importance of these interactions in human health for the development of biomarkers and biotherapy is highlighted.
Collapse
Affiliation(s)
- Geneva Maddison Crump
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA.
| | | | | | | |
Collapse
|
25
|
Proposed Mechanism of Antibacterial Activity of Glutathione by Inhibition of the d-Alanyl-d-alanine Carboxypeptidase Enzyme. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-020-10124-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
26
|
Jakas A, Vlahoviček-Kahlina K, Ljolić-Bilić V, Horvat L, Kosalec I. Design and synthesis of novel antimicrobial peptide scaffolds. Bioorg Chem 2020; 103:104178. [PMID: 32891859 DOI: 10.1016/j.bioorg.2020.104178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 07/06/2020] [Accepted: 08/02/2020] [Indexed: 11/20/2022]
Abstract
Muramic acid (Mur), a sugar amino acid (SAA), is present in the cell walls of bacteria asN-acetyl muramic acid (MurNAc) where together with ofN-acetylglucosamine (GlcNAc) and peptide makes main building block of peptidoglycan (PGN). It was challenging to incorporate muramic acid as SAA characteristic for bacteria into the peptides and investigate the antimicrobial activity of these scaffolds. Four building units were used in designing the desired peptide: muramic acid, tetrapeptide Leu-Ser-Lys-Leu, Nε-Lys, and Asn. Positions of three components were changeable while the position of Asn was always C-terminal (in linear peptides). The glycopeptide libraries of linear and cyclic peptides were synthesized using solid-phase peptide synthesis (SPPS). The antimicrobial effect of linear and cyclic glycopeptides, as well as the LSKL sequence used as a control, was investigated on several standard laboratory microbial strains. Liner glycopeptide with sequences Leu-Ser-Lys-Leu-Nε-Lys-Mur-Asn was active onStaphylococcus aureus(Gram-positive bacteria). Prepared compounds did not show activity towards applied tumor and normal human cell lines.
Collapse
Affiliation(s)
- Andreja Jakas
- Division of Organic Chemisty and Biochemistry, Rudjer Bošković Institute, Zagreb 10000-HR, Croatia.
| | | | - Vanja Ljolić-Bilić
- University of Zagreb, Faculty of Pharmacy and Biochemistry, Zagreb 10000-HR, Croatia
| | - Lucija Horvat
- Division of Molecular Biology, Rudjer Bošković Institute, Zagreb 10000-HR, Croatia
| | - Ivan Kosalec
- University of Zagreb, Faculty of Pharmacy and Biochemistry, Zagreb 10000-HR, Croatia.
| |
Collapse
|
27
|
Maruthapandi M, Sharma K, Luong JHT, Gedanken A. Antibacterial activities of microwave-assisted synthesized polypyrrole/chitosan and poly (pyrrole-N-(1-naphthyl) ethylenediamine) stimulated by C-dots. Carbohydr Polym 2020; 243:116474. [PMID: 32532398 DOI: 10.1016/j.carbpol.2020.116474] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 05/10/2020] [Accepted: 05/16/2020] [Indexed: 11/26/2022]
Abstract
Polypyrrole grafted with chitosan (PPy-g-CS) and poly (pyrrole-N-(1-naphthyl) ethylenediamine, a copolymer, (COP) have been synthesized by a one-step microwave procedure with carbon dots(C-Dots) as initiators. The electrostatic interaction between the positively charged polymers and negatively charged microbial cell membranes is widely anticipated to be responsible for cellular lysis. However, Escherichia coli exposed to PPy-g-CS (zeta potential = +46.9 mV) was completely perished after 3 h while COP (zeta potential = +64.1 mV) exhibited no antimicrobial effect. The two polymers were capable of eradicating Staphylococcus aureus, implying the charged effect is the main mechanism of cell death. The two polymers could also chelate calcium and other nutrients as well as form an external barrier to suppress the penetration of essential nutrients to support microbial survival and proliferation. In particular, pyrrole grafted chitosan was reasoned to stack onto the bacterial surface to impede the mass transfer and suppress the bacterial metabolic activity. The binding of chitosan to teichoic acids, essential acids of Gram-positive bacteria, would provoke a sequence of events and lead to bacterial death.
Collapse
Affiliation(s)
- Moorthy Maruthapandi
- Bar-Ilan Institute for Nanotechnology and Advanced Materials, Department of Chemistry, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Kusha Sharma
- Bar-Ilan Institute for Nanotechnology and Advanced Materials, Department of Chemistry, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | | | - Aharon Gedanken
- Bar-Ilan Institute for Nanotechnology and Advanced Materials, Department of Chemistry, Bar-Ilan University, Ramat-Gan, 52900, Israel.
| |
Collapse
|
28
|
Maitra A, Munshi T, Healy J, Martin LT, Vollmer W, Keep NH, Bhakta S. Cell wall peptidoglycan in Mycobacterium tuberculosis: An Achilles' heel for the TB-causing pathogen. FEMS Microbiol Rev 2020; 43:548-575. [PMID: 31183501 PMCID: PMC6736417 DOI: 10.1093/femsre/fuz016] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 06/07/2019] [Indexed: 02/06/2023] Open
Abstract
Tuberculosis (TB), caused by the intracellular pathogen Mycobacterium tuberculosis, remains one of the leading causes of mortality across the world. There is an urgent requirement to build a robust arsenal of effective antimicrobials, targeting novel molecular mechanisms to overcome the challenges posed by the increase of antibiotic resistance in TB. Mycobacterium tuberculosis has a unique cell envelope structure and composition, containing a peptidoglycan layer that is essential for maintaining cellular integrity and for virulence. The enzymes involved in the biosynthesis, degradation, remodelling and recycling of peptidoglycan have resurfaced as attractive targets for anti-infective drug discovery. Here, we review the importance of peptidoglycan, including the structure, function and regulation of key enzymes involved in its metabolism. We also discuss known inhibitors of ATP-dependent Mur ligases, and discuss the potential for the development of pan-enzyme inhibitors targeting multiple Mur ligases.
Collapse
Affiliation(s)
- Arundhati Maitra
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Tulika Munshi
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Jess Healy
- Department of Pharmaceutical and Biological Chemistry, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Liam T Martin
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Waldemar Vollmer
- The Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Richardson Road, Newcastle upon Tyne, NE2 4AX, UK
| | - Nicholas H Keep
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Sanjib Bhakta
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| |
Collapse
|
29
|
Montero N, Alhajj MJ, Sierra M, Oñate-Garzon J, Yarce CJ, Salamanca CH. Development of Polyelectrolyte Complex Nanoparticles-PECNs Loaded with Ampicillin by Means of Polyelectrolyte Complexation and Ultra-High Pressure Homogenization (UHPH). Polymers (Basel) 2020; 12:E1168. [PMID: 32443668 PMCID: PMC7285317 DOI: 10.3390/polym12051168] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/09/2020] [Accepted: 05/14/2020] [Indexed: 12/27/2022] Open
Abstract
This study was focused on synthesizing, characterizing and evaluating the biological potential of Polyelectrolyte Complex Nanoparticles (PECNs) loaded with the antibiotic ampicillin. For this, the PECNs were produced initially by polyelectrolytic complexation (bottom-up method) and subsequently subjected to ultra-high pressure homogenization-UHPH (top-down method). The synthetic polymeric materials corresponding to the sodium salt of poly(maleic acid-alt-octadecene) (PAM-18Na) and the chloride salt of Eudragit E-100 (EuCl) were used, where the order of polyelectrolyte complexation, the polyelectrolyte ratio and the UHPH conditions on the PECNs features were evaluated. Likewise, PECNs were physicochemically characterized through particle size, polydispersity index, zeta potential, pH and encapsulation efficiency, whereas the antimicrobial effect was evaluated by means of the broth microdilution method employing ampicillin sensitive and resistant S. aureus strains. The results showed that the classical method of polyelectrolyte complexation (bottom-up) led to obtain polymeric complexes with large particle size and high polydispersity, where the 1:1 ratio between the titrant and receptor polyelectrolyte was the most critical condition. In contrast, the UHPH technique (top-down method) proved high performance to produce uniform polymeric complexes on the nanometric scale (particle size < 200 nm and PDI < 0.3). Finally, it was found there was a moderate increase in antimicrobial activity when ampicillin was loaded into the PECNs.
Collapse
Affiliation(s)
- Nicolle Montero
- Laboratorio de Diseño y Formulación de Productos Químicos y Derivados, Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Naturales, Universidad ICESI, Calle 18 No. 122-135, Cali 760035, Colombia; (N.M.); (M.J.A.); (M.S.); (C.J.Y.)
| | - Maria J. Alhajj
- Laboratorio de Diseño y Formulación de Productos Químicos y Derivados, Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Naturales, Universidad ICESI, Calle 18 No. 122-135, Cali 760035, Colombia; (N.M.); (M.J.A.); (M.S.); (C.J.Y.)
| | - Mariana Sierra
- Laboratorio de Diseño y Formulación de Productos Químicos y Derivados, Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Naturales, Universidad ICESI, Calle 18 No. 122-135, Cali 760035, Colombia; (N.M.); (M.J.A.); (M.S.); (C.J.Y.)
| | - Jose Oñate-Garzon
- Grupo de Investigación en Química y Biotecnología (QUIBIO), Facultad de Ciencias Básicas, Universidad Santiago de Cali, calle 5 No. 62-00, Cali 760035, Colombia;
| | - Cristhian J. Yarce
- Laboratorio de Diseño y Formulación de Productos Químicos y Derivados, Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Naturales, Universidad ICESI, Calle 18 No. 122-135, Cali 760035, Colombia; (N.M.); (M.J.A.); (M.S.); (C.J.Y.)
| | - Constain H. Salamanca
- Laboratorio de Diseño y Formulación de Productos Químicos y Derivados, Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Naturales, Universidad ICESI, Calle 18 No. 122-135, Cali 760035, Colombia; (N.M.); (M.J.A.); (M.S.); (C.J.Y.)
| |
Collapse
|
30
|
Amera GM, Khan RJ, Pathak A, Jha RK, Muthukumaran J, Singh AK. Computer aided ligand based screening for identification of promising molecules against enzymes involved in peptidoglycan biosynthetic pathway from Acinetobacter baumannii. Microb Pathog 2020; 147:104205. [PMID: 32353580 DOI: 10.1016/j.micpath.2020.104205] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 12/30/2022]
Abstract
A. baumannii has been considered as Priority-I as suggested by the World Health Organization (WHO) and the most critical pathogenic microorganism for causing nosocomial infection in imunno-compromised hospital-acquired patients due to multi-drug resistance (MDR). In the current study, we utilized "Computer-aided ligand-based virtual screening approach" for identification of promising molecules against Mur family proteins based on the known inhibitor (Naphthyl Tetronic Acids ((5Z)-3-(4-chlorophenyl)-4-hydroxy-5-(1-naphthylmethylene) furan-2(5H)-one)) of MurB from E. coli. The in-house library was prepared using a similarity search of a known inhibitor (Drug Bank ID: DB07296) against several relevant chemical databases. The molecules obtained from virtual screening of Naphthyl Tetronic Acids in-house library were successively subjected to physicochemical and ADMET screening. After this, the molecules which passed all the filters, subsequently subjected into interaction analysis with the drug target proteins (MurB, MurD, MurE and MurG) of A. baumanni and the results explained that four molecules were promising (CHEMBL468144, DB07296, Enamine_T5956969 and 54723243) for further molecular dynamics simulations. The free and ligand bounded proteins that undergone MD simulation are listed as follows: MurB, MurB-CHEMBL468144, MurB-DB07296, MurE, MurE-54723243, MurE-DB07296, MurD, MurD-Enamine_T5956969, MurD-DB07296, MurG, MurG-CHEMBL468144, and MurG-DB07296. Based on global and essential dynamics analysis, the stability order of molecules towards MurB (CHEMBL468144 > DB07296); MurD (Enamine_T5956969 > DB07296); MurE (54723243 > DB07296) and MurG (CHEMBL468144 > DB07296) indicates that the newly identified molecules are more promising one in comparison with the existing inhibitor. Based on all the docking and MD simulation results, the stability order of the free and ligand bounded protein are as follows; MurB and MurB-ligand complexes > MurD and MurD-ligand complexes > MurG and MurG-ligand complexes > MurE and MurE-ligand complexes. Finally, the selected compounds would be recommended for further experimental investigations and used as promising inhibitors of the infection caused by A. baumannii.
Collapse
Affiliation(s)
- Gizachew Muluneh Amera
- Department of Biotechnology, School of Engineering and Technology, Sharda University, P.C, 201310, Greater Noida, U.P, India
| | - Rameez Jabeer Khan
- Department of Biotechnology, School of Engineering and Technology, Sharda University, P.C, 201310, Greater Noida, U.P, India
| | - Amita Pathak
- Department of Chemistry, Indian Institute of Technology, HauzKhas, New Delhi, 110016, India
| | - Rajat Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, P.C, 201310, Greater Noida, U.P, India
| | - Jayaraman Muthukumaran
- Department of Biotechnology, School of Engineering and Technology, Sharda University, P.C, 201310, Greater Noida, U.P, India
| | - Amit Kumar Singh
- Department of Biotechnology, School of Engineering and Technology, Sharda University, P.C, 201310, Greater Noida, U.P, India.
| |
Collapse
|
31
|
Malanovic N, Marx L, Blondelle SE, Pabst G, Semeraro EF. Experimental concepts for linking the biological activities of antimicrobial peptides to their molecular modes of action. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183275. [PMID: 32173291 DOI: 10.1016/j.bbamem.2020.183275] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 02/07/2023]
Abstract
The search for novel compounds to combat multi-resistant bacterial infections includes exploring the potency of antimicrobial peptides and derivatives thereof. Complementary to high-throughput screening techniques, biophysical and biochemical studies of the biological activity of these compounds enable deep insight, which can be exploited in designing antimicrobial peptides with improved efficacy. This approach requires the combination of several techniques to study the effect of such peptides on both bacterial cells and simple mimics of their cell envelope, such as lipid-only vesicles. These efforts carry the challenge of bridging results across techniques and sample systems, including the proper choice of membrane mimics. This review describes some important concepts toward the development of potent antimicrobial peptides and how they translate to frequently applied experimental techniques, along with an outline of the biophysics pertaining to the killing mechanism of antimicrobial peptides.
Collapse
Affiliation(s)
- Nermina Malanovic
- University of Graz, Institute of Molecular Biosciences, Biophysics Division, Graz, Austria.
| | - Lisa Marx
- University of Graz, Institute of Molecular Biosciences, Biophysics Division, Graz, Austria
| | | | - Georg Pabst
- University of Graz, Institute of Molecular Biosciences, Biophysics Division, Graz, Austria
| | - Enrico F Semeraro
- University of Graz, Institute of Molecular Biosciences, Biophysics Division, Graz, Austria
| |
Collapse
|
32
|
The evolution of spherical cell shape; progress and perspective. Biochem Soc Trans 2020; 47:1621-1634. [PMID: 31829405 PMCID: PMC6925525 DOI: 10.1042/bst20180634] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/06/2019] [Accepted: 11/11/2019] [Indexed: 01/29/2023]
Abstract
Bacterial cell shape is a key trait governing the extracellular and intracellular factors of bacterial life. Rod-like cell shape appears to be original which implies that the cell wall, division, and rod-like shape came together in ancient bacteria and that the myriad of shapes observed in extant bacteria have evolved from this ancestral shape. In order to understand its evolution, we must first understand how this trait is actively maintained through the construction and maintenance of the peptidoglycan cell wall. The proteins that are primarily responsible for cell shape are therefore the elements of the bacterial cytoskeleton, principally FtsZ, MreB, and the penicillin-binding proteins. MreB is particularly relevant in the transition between rod-like and spherical cell shape as it is often (but not always) lost early in the process. Here we will highlight what is known of this particular transition in cell shape and how it affects fitness before giving a brief perspective on what will be required in order to progress the field of cell shape evolution from a purely mechanistic discipline to one that has the perspective to both propose and to test reasonable hypotheses regarding the ecological drivers of cell shape change.
Collapse
|
33
|
Ciro Y, Rojas J, Oñate-Garzon J, Salamanca CH. Synthesis, Characterisation and Biological Evaluation of Ampicillin-Chitosan-Polyanion Nanoparticles Produced by Ionic Gelation and Polyelectrolyte Complexation Assisted by High-Intensity Sonication. Polymers (Basel) 2019; 11:E1758. [PMID: 31731554 PMCID: PMC6918291 DOI: 10.3390/polym11111758] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/17/2019] [Accepted: 10/21/2019] [Indexed: 11/16/2022] Open
Abstract
Recently, one of the promising strategies to fight sensitive and resistant bacteria, and decrease the morbidity and mortality rates due to non-nosocomial infections, is to use antibiotic-loaded nanoparticles. In this study, ampicillin-loaded chitosan-polyanion nanoparticles were produced through the techniques of ionic gelation and polyelectrolyte complexation assisted by high-intensity sonication, using several crosslinking agents, including phytic acid (non-polymeric polyanion), sodium and potassium salts of poly(maleic acid-alt-ethylene) and poly(maleic acid-alt-octadecene) (polymeric polyanions). These nanoparticles were analysed and characterised in terms of particle size, polydispersity index, zeta potential and encapsulation efficiency. The stability of these nanosystems was carried out at temperatures of 4 and 40 °C, and the antimicrobial effect was determined by the broth microdilution method using sensitive and resistant Staphylococcus aureus strains. The results reveal that most of the nanosystems have sizes <220 nm, positive zeta potential values and a monodisperse population, except for the nanoparticles crosslinked with PAM-18 polyanions. The nanometric systems exhibited adequate stability preventing aggregation and revealed a two-fold increase in antimicrobial activity when compared with free ampicillin. This study demonstrates the potential application of synthesised nanoparticles in the field of medicine, especially for treating infections caused by pathogenic S. aureus strains.
Collapse
Affiliation(s)
- Yhors Ciro
- Department of Pharmacy, School of Pharmaceutical and Food Sciences, University of Antioquia, Medellín 050025, Colombia; (Y.C.); (J.R.)
| | - John Rojas
- Department of Pharmacy, School of Pharmaceutical and Food Sciences, University of Antioquia, Medellín 050025, Colombia; (Y.C.); (J.R.)
| | - Jose Oñate-Garzon
- Grupo de Investigación en Química y Biotecnología (QUIBIO), Facultad de Ciencias Básicas, Universidad Santiago de Cali, calle 5 No. 62-00, Cali 760035, Colombia;
| | - Constain H. Salamanca
- Laboratorio de Diseño y Formulación de Productos Químicos y Derivados, Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Naturales, Universidad ICESI, Calle 18 No. 122-135, Cali 760035, Colombia
| |
Collapse
|
34
|
Pidgeon SE, Apostolos AJ, Nelson JM, Shaku M, Rimal B, Islam MN, Crick DC, Kim SJ, Pavelka MS, Kana BD, Pires MM. L,D-Transpeptidase Specific Probe Reveals Spatial Activity of Peptidoglycan Cross-Linking. ACS Chem Biol 2019; 14:2185-2196. [PMID: 31487148 PMCID: PMC6804245 DOI: 10.1021/acschembio.9b00427] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 09/05/2019] [Indexed: 02/02/2023]
Abstract
Peptidoglycan (PG) is a cross-linked, meshlike scaffold endowed with the strength to withstand the internal pressure of bacteria. Bacteria are known to heavily remodel their peptidoglycan stem peptides, yet little is known about the physiological impact of these chemical variations on peptidoglycan cross-linking. Furthermore, there are limited tools to study these structural variations, which can also have important implications on cell wall integrity and host immunity. Cross-linking of peptide chains within PG is an essential process, and its disruption thereof underpins the potency of several classes of antibiotics. Two primary cross-linking modes have been identified that are carried out by D,D-transpeptidases and L,D-transpeptidases (Ldts). The nascent PG from each enzymatic class is structurally unique, which results in different cross-linking configurations. Recent advances in PG cellular probes have been powerful in advancing the understanding of D,D-transpeptidation by Penicillin Binding Proteins (PBPs). In contrast, no cellular probes have been previously described to directly interrogate Ldt function in live cells. Herein, we describe a new class of Ldt-specific probes composed of structural analogs of nascent PG, which are metabolically incorporated into the PG scaffold by Ldts. With a panel of tetrapeptide PG stem mimics, we demonstrated that subtle modifications such as amidation of iso-Glu can control PG cross-linking. Ldt probes were applied to quantify and track the localization of Ldt activity in Enterococcus faecium, Mycobacterium smegmatis, and Mycobacterium tuberculosis. These results confirm that our Ldt probes are specific and suggest that the primary sequence of the stem peptide can control Ldt cross-linking levels. We anticipate that unraveling the interplay between Ldts and other cross-linking modalities may reveal the organization of the PG structure in relation to the spatial localization of cross-linking machineries.
Collapse
Affiliation(s)
- Sean E. Pidgeon
- Department
of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Alexis J. Apostolos
- Department
of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Julia M. Nelson
- Department
of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Moagi Shaku
- DST/NRF
Centre of Excellence for Biomedical TB Research, School of Pathology,
Faculty of Health Sciences, University of
the Witwatersrand and the National Health Laboratory Service, P.O. Box 1038, Johannesburg 2000, South Africa
- MRC-CAPRISA
HIV-TB Pathogenesis and Treatment Research Unit, Centre for the AIDS Programme of Research in South Africa, CAPRISA, Durban 4001, South Africa
| | - Binayak Rimal
- Institute
of Biomedical Studies, Baylor University, Waco, Texas 76798, United States
| | - M. Nurul Islam
- Mycobacteria
Research Laboratories, Department of Microbiology, Immunology, and
Pathology, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Dean C. Crick
- Mycobacteria
Research Laboratories, Department of Microbiology, Immunology, and
Pathology, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Sung Joon Kim
- Department
of Chemistry, Howard University, Washington, DC 20059, United States
| | - Martin S. Pavelka
- Department
of Microbiology and Immunology, University
of Rochester Medical Center, Rochester, New York 14642, United States
| | - Bavesh D. Kana
- DST/NRF
Centre of Excellence for Biomedical TB Research, School of Pathology,
Faculty of Health Sciences, University of
the Witwatersrand and the National Health Laboratory Service, P.O. Box 1038, Johannesburg 2000, South Africa
- MRC-CAPRISA
HIV-TB Pathogenesis and Treatment Research Unit, Centre for the AIDS Programme of Research in South Africa, CAPRISA, Durban 4001, South Africa
| | - Marcos M. Pires
- Department
of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
35
|
Mayer VMT, Hottmann I, Figl R, Altmann F, Mayer C, Schäffer C. Peptidoglycan-type analysis of the N-acetylmuramic acid auxotrophic oral pathogen Tannerella forsythia and reclassification of the peptidoglycan-type of Porphyromonas gingivalis. BMC Microbiol 2019; 19:200. [PMID: 31477019 PMCID: PMC6721243 DOI: 10.1186/s12866-019-1575-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 08/22/2019] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Tannerella forsythia is a Gram-negative oral pathogen. Together with Porphyromonas gingivalis and Treponema denticola it constitutes the "red complex" of bacteria, which is crucially associated with periodontitis, an inflammatory disease of the tooth supporting tissues that poses a health burden worldwide. Due to the absence of common peptidoglycan biosynthesis genes, the unique bacterial cell wall sugar N-acetylmuramic acid (MurNAc) is an essential growth factor of T. forsythia to build up its peptidoglycan cell wall. Peptidoglycan is typically composed of a glycan backbone of alternating N-acetylglucosamine (GlcNAc) and MurNAc residues that terminates with anhydroMurNAc (anhMurNAc), and short peptides via which the sugar backbones are cross-linked to build up a bag-shaped network. RESULTS We investigated T. forsythia's peptidoglycan structure, which is an essential step towards anti-infective strategies against this pathogen. A new sensitive radioassay was developed which verified the presence of MurNAc and anhMurNAc in the cell wall of the bacterium. Upon digest of isolated peptidoglycan with endo-N-acetylmuramidase, exo-N-acetylglucosaminidase and muramyl-L-alanine amidase, respectively, peptidoglycan fragments were obtained. HPLC and mass spectrometry (MS) analyses revealed the presence of GlcNAc-MurNAc-peptides and the cross-linked dimer with retention-times and masses, respectively, equalling those of control digests of Escherichia coli and P. gingivalis peptidoglycan. Data were confirmed by tandem mass spectrometry (MS2) analysis, revealing the GlcNAc-MurNAc-tetra-tetra-MurNAc-GlcNAc dimer to contain the sequence of the amino acids alanine, glutamic acid, diaminopimelic acid (DAP) and alanine, as well as a direct cross-link between DAP on the third and alanine on the fourth position of the two opposite stem peptides. The stereochemistry of DAP was determined by reversed-phase HPLC after dabsylation of hydrolysed peptidoglycan to be of the meso-type. CONCLUSION T. forsythia peptidoglycan is of the A1γ-type like that of E. coli. Additionally, the classification of P. gingivalis peptidoglycan as A3γ needs to be revised to A1γ, due to the presence of meso-DAP instead of LL-DAP, as reported previously.
Collapse
Affiliation(s)
- Valentina M T Mayer
- Department of NanoBiotechnology, NanoGlycobiology unit, Universität für Bodenkultur Wien, Vienna, Austria
| | - Isabel Hottmann
- Department of Biology, Interfaculty Institute of Microbiology and Infection Medicine, Eberhard Karls Universität, Tübingen, Germany
| | - Rudolf Figl
- Department of Chemistry, Institute of Biochemistry, Universität für Bodenkultur Wien, Vienna, Austria
| | - Friedrich Altmann
- Department of Chemistry, Institute of Biochemistry, Universität für Bodenkultur Wien, Vienna, Austria
| | - Christoph Mayer
- Department of Biology, Interfaculty Institute of Microbiology and Infection Medicine, Eberhard Karls Universität, Tübingen, Germany.
| | - Christina Schäffer
- Department of NanoBiotechnology, NanoGlycobiology unit, Universität für Bodenkultur Wien, Vienna, Austria.
| |
Collapse
|
36
|
Porfírio S, Carlson RW, Azadi P. Elucidating Peptidoglycan Structure: An Analytical Toolset. Trends Microbiol 2019; 27:607-622. [DOI: 10.1016/j.tim.2019.01.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 01/16/2019] [Accepted: 01/29/2019] [Indexed: 01/04/2023]
|
37
|
Vermassen A, Leroy S, Talon R, Provot C, Popowska M, Desvaux M. Cell Wall Hydrolases in Bacteria: Insight on the Diversity of Cell Wall Amidases, Glycosidases and Peptidases Toward Peptidoglycan. Front Microbiol 2019; 10:331. [PMID: 30873139 PMCID: PMC6403190 DOI: 10.3389/fmicb.2019.00331] [Citation(s) in RCA: 189] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 02/08/2019] [Indexed: 11/13/2022] Open
Abstract
The cell wall (CW) of bacteria is an intricate arrangement of macromolecules, at least constituted of peptidoglycan (PG) but also of (lipo)teichoic acids, various polysaccharides, polyglutamate and/or proteins. During bacterial growth and division, there is a constant balance between CW degradation and biosynthesis. The CW is remodeled by bacterial hydrolases, whose activities are carefully regulated to maintain cell integrity or lead to bacterial death. Each cell wall hydrolase (CWH) has a specific role regarding the PG: (i) cell wall amidase (CWA) cleaves the amide bond between N-acetylmuramic acid and L-alanine residue at the N-terminal of the stem peptide, (ii) cell wall glycosidase (CWG) catalyses the hydrolysis of the glycosidic linkages, whereas (iii) cell wall peptidase (CWP) cleaves amide bonds between amino acids within the PG chain. After an exhaustive overview of all known conserved catalytic domains responsible for CWA, CWG, and CWP activities, this review stresses that the CWHs frequently display a modular architecture combining multiple and/or different catalytic domains, including some lytic transglycosylases as well as CW binding domains. From there, direct physiological and collateral roles of CWHs in bacterial cells are further discussed.
Collapse
Affiliation(s)
- Aurore Vermassen
- Université Clermont Auvergne, INRA, MEDiS, Clermont-Ferrand, France
| | - Sabine Leroy
- Université Clermont Auvergne, INRA, MEDiS, Clermont-Ferrand, France
| | - Régine Talon
- Université Clermont Auvergne, INRA, MEDiS, Clermont-Ferrand, France
| | | | - Magdalena Popowska
- Department of Applied Microbiology, Faculty of Biology, Institute of Microbiology, University of Warsaw, Warsaw, Poland
| | - Mickaël Desvaux
- Université Clermont Auvergne, INRA, MEDiS, Clermont-Ferrand, France
| |
Collapse
|
38
|
Wu J, Zhan M, Chang Y, Su Q, Yu R. Adaption and recovery of Nitrosomonas europaea to chronic TiO 2 nanoparticle exposure. WATER RESEARCH 2018; 147:429-439. [PMID: 30342338 DOI: 10.1016/j.watres.2018.09.043] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 09/24/2018] [Accepted: 09/25/2018] [Indexed: 06/08/2023]
Abstract
Although the adverse impacts of emerging nanoparticles (NPs) on the biological nitrogen removal (BNR) process have been broadly reported, the adaptive responses of NP-impaired nitrifiers and the related mechanisms have seldom been addressed to date. Here, we systematically explored the adaption and recovery capacities of the ammonia oxidizer Nitrosomonas europaea under chronic TiO2 NP exposure and different dissolved oxygen (DO) conditions at the physiological and transcriptional levels in a chemostat reactor. N. europaea cells adapted to 50 mg/L TiO2 NP exposure after 40-d incubation and the inhibited cell growth, membrane integrity, nitritation rate, and ammonia monooxygenase activity all recovered regardless of the DO concentrations. Transmission electron microscope imaging indicated the remission of the membrane distortion after the cells' 40-d adaption to the NP exposure. The microarray results further suggested that the metabolic processes associated with the membrane repair were pivotal for cellular adaption/recovery, such as the membrane efflux for toxicant exclusion, the structural preservation or stabilization, and the osmotic equilibrium adjustment. In addition, diverse metabolic and stress-defense pathways, including aminoacyl-tRNA biosynthesis, respiratory chain, ATP production, toxin-antitoxin 'stress-fighting', and DNA repair were activated for the cellular adaption coupled with the metabolic activity recovery, probably via recovering the energy production/conversion efficiency and mediating the non-photooxidative stress. Finally, low DO (0.5 mg/L) incubated cells were more susceptible to TiO2 NP exposure and required more time to adapt to and recover from the stress, which was probably due to the stimulation limitation of the oxygen-dependent energy metabolism with a lower oxygen supply. The findings of this study provide new insights into NP contamination control and management adjustments during the BNR process.
Collapse
Affiliation(s)
- Junkang Wu
- Department of Environmental Science and Engineering, School of Energy and Environment, Wuxi Engineering Research Center of Taihu Lake Water Environment, Southeast University, Nanjing, Jiangsu, 210096, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, Jiangsu, 210009, China; Department of Environmental Engineering, Technical University of Denmark, Lyngby, 2800, Denmark
| | - Manjun Zhan
- Nanjing Research Institute of Environmental Protection, Nanjing Environmental Protection Bureau, Nanjing, Jiangsu, 210013, China
| | - Yan Chang
- Department of Environmental Science and Engineering, School of Energy and Environment, Wuxi Engineering Research Center of Taihu Lake Water Environment, Southeast University, Nanjing, Jiangsu, 210096, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Qingxian Su
- Department of Environmental Engineering, Technical University of Denmark, Lyngby, 2800, Denmark
| | - Ran Yu
- Department of Environmental Science and Engineering, School of Energy and Environment, Wuxi Engineering Research Center of Taihu Lake Water Environment, Southeast University, Nanjing, Jiangsu, 210096, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, Jiangsu, 210009, China.
| |
Collapse
|
39
|
Insight into Elongation Stages of Peptidoglycan Processing in Bacterial Cytoplasmic Membranes. Sci Rep 2018; 8:17704. [PMID: 30531805 PMCID: PMC6286386 DOI: 10.1038/s41598-018-36075-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 11/05/2018] [Indexed: 11/08/2022] Open
Abstract
Peptidoglycan (PG) biosynthesis and assembly are needed for bacterial cell wall formation. Lipid II is the precursor in the PG biosynthetic pathway and carries a nascent PG unit that is processed by glycosyltransferases. Despite its immense therapeutic value as a target of several classes of antibiotics, the conformational ensemble of lipid II in bacterial membranes and its interactions with membrane-anchored enzymes remain elusive. In this work, lipid II and its elongated forms (lipid VI and lipid XII) were modeled and simulated in bilayers of POPE (palmitoyl-oleoyl-phosphatidyl-ethanolamine) and POPG (palmitoyl-oleoyl-phosphatidyl-glycerol) that mimic the prototypical composition of Gram-negative cytoplasmic membranes. In addition, penicillin-binding protein 1b (PBP1b) from Escherichia coli was modeled and simulated in the presence of a nascent PG to investigate their interactions. Trajectory analysis reveals that as the glycan chain grows, the non-reducing end of the nascent PG displays much greater fluctuation along the membrane normal and minimally interacts with the membrane surface. In addition, dihedral angles within the pyrophosphate moiety are determined by the length of the PG moiety and its surrounding environment. When a nascent PG is bound to PBP1b, the stem peptide remains in close contact with PBP1b by structural rearrangement of the glycan chain. Most importantly, the number of nascent PG units required to reach the transpeptidase domain are determined to be 7 or 8. Our findings complement experimental results to further understand how the structure of nascent PG can dictate the assembly of the PG scaffold.
Collapse
|
40
|
Gokulan K, Varughese KI. Drug resistance in Mycobacterium tuberculosis
and targeting the l,d
-transpeptidase enzyme. Drug Dev Res 2018; 80:11-18. [DOI: 10.1002/ddr.21455] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 07/26/2018] [Accepted: 07/28/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Kuppan Gokulan
- The Department of Physiology & Biophysics; University of Arkansas for Medical Sciences; Little Rock Arkansas
- The Division of Microbiology; National Center for Toxicological Research, US-FDA; Jefferson Arkansas
| | - Kottayil I. Varughese
- The Department of Physiology & Biophysics; University of Arkansas for Medical Sciences; Little Rock Arkansas
| |
Collapse
|
41
|
Montón Silva A, Otten C, Biboy J, Breukink E, VanNieuwenhze M, Vollmer W, den Blaauwen T. The Fluorescent D-Amino Acid NADA as a Tool to Study the Conditional Activity of Transpeptidases in Escherichia coli. Front Microbiol 2018; 9:2101. [PMID: 30233559 PMCID: PMC6131605 DOI: 10.3389/fmicb.2018.02101] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/17/2018] [Indexed: 01/01/2023] Open
Abstract
The enzymes responsible for the synthesis of the peptidoglycan (PG) layer constitute a fundamental target for a large group of antibiotics. The family of β-lactam antibiotics inhibits the DD-transpeptidase (TPase) activity of the penicillin binding proteins (PBPs), whereas its subgroup of carbapenems can also block the TPase activity of the LD-TPases. D-Ala fluorescent probes, such as NADA, are incorporated into the PG presumably by TPases in Escherichia coli and can be used to study conditions that are required for their function. Of all LD-TPases of E. coli, only LdtD was able to incorporate NADA during exponential growth. Overproduction of LdtD caused NADA to be especially inserted at mid cell in the presence of LpoB-activated PBP1b and the class C PBP5. Using the NADA assay, we could confirm that LpoB activates PBP1b at mid cell and that CpoB regulates the activity of PBP1b in vivo. Overproduction of LdtD was able to partly compensate for the inhibition of the cell division specific class B PBP3 by aztreonam. We showed that class A PBP1c and the class C PBP6b cooperated with LdtD for NADA incorporation when PBP1b and PBP5 were absent, respectively. Besides, we proved that LdtD is active at pH 7.0 whereas LdtE and LdtF are more active in cells growing at pH 5.0 and they seem to cooperate synergistically. The NADA assay proved to be a useful tool for the analysis of the in vivo activities of the proteins involved in PG synthesis and our results provide additional evidence that the LD-TPases are involved in PG maintenance at different conditions.
Collapse
Affiliation(s)
- Alejandro Montón Silva
- Bacterial Cell Biology and Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Christian Otten
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Jacob Biboy
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Eefjan Breukink
- Department of Membrane Biochemistry and Biophysics, Institute of Biomembranes, Utrecht University, Utrecht, Netherlands
| | - Michael VanNieuwenhze
- Department of Chemistry, Indiana University Bloomington, Bloomington, IN, United States
| | - Waldemar Vollmer
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Tanneke den Blaauwen
- Bacterial Cell Biology and Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
42
|
Lessen HJ, Fleming PJ, Fleming KG, Sodt AJ. Building Blocks of the Outer Membrane: Calculating a General Elastic Energy Model for β-Barrel Membrane Proteins. J Chem Theory Comput 2018; 14:4487-4497. [PMID: 29979594 PMCID: PMC6191857 DOI: 10.1021/acs.jctc.8b00377] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The outer membranes of Gram negative bacteria are the first points of contact these organisms make with their environment. Understanding how composition determines the mechanical properties of this essential barrier is of paramount importance. Therefore, we developed a new computational method to measure the elasticity of transmembrane proteins found in the outer membrane. Using all-atom molecular dynamics simulations of these proteins, we apply a set of external forces to mechanically stress the transmembrane β-barrels. Our results from four representative β-barrels show that outer membrane proteins display elastic properties that are approximately 70 to 190 times stiffer than neat lipid membranes. These findings suggest that outer membrane β-barrels are a significant source of mechanical stability in bacteria. Our all-atom approach further reveals that resistance to radial stress is encoded by a general mechanism that includes stretching of backbone hydrogen bonds and tilting of β-strands with respect to the bilayer normal. This computational framework facilitates an increased theoretical understanding of how varying lipid and protein amounts affect the mechanical properties of the bacterial outer membrane.
Collapse
Affiliation(s)
- Henry J. Lessen
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health
| | - Patrick J. Fleming
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health
| | - Karen G. Fleming
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health
| | - Alexander J. Sodt
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health
| |
Collapse
|
43
|
Wiegand S, Jogler M, Jogler C. On the maverick Planctomycetes. FEMS Microbiol Rev 2018; 42:739-760. [DOI: 10.1093/femsre/fuy029] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 07/22/2018] [Indexed: 01/01/2023] Open
Affiliation(s)
- Sandra Wiegand
- Department of Microbiology, Radboud University, Heyendaalseweg 135, Nijmegen, The Netherlands
| | - Mareike Jogler
- Leibniz Institute DSMZ, Inhoffenstraße 7b, 38124 Braunschweig, Germany
| | - Christian Jogler
- Department of Microbiology, Radboud University, Heyendaalseweg 135, Nijmegen, The Netherlands
| |
Collapse
|
44
|
Datta D, Stroscio MA, Dutta M, Zhang W, Brown ER. Terahertz vibrational signature of bacterial spores arising from nanostructure decorated endospore surface. JOURNAL OF BIOPHOTONICS 2018; 11:e201700398. [PMID: 29726101 DOI: 10.1002/jbio.201700398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 05/02/2018] [Indexed: 05/28/2023]
Abstract
This theoretical effort is the first to explore the possible hypothesis that terahertz optical activity of Bacillus spores arises from normal vibrational modes of spore coat subcomponents in the terahertz frequency range. Bacterial strains like Bacillus and Clostridium form spores with a hardened coating made of peptidoglycan to protect its genetic material in harsh conditions. In recent years, electron microscopy and atomic force microscopy has revealed that bacterial spore surfaces are decorated with nanocylinders and honeycomb nanostructures. In this article, a simple elastic continuum model is used to describe the vibration of these nanocylinders mainly in Bacillus subtilis, which also leads to the conclusion that the terahertz signature of these spores arises from the vibration of these nanostructures. Three vibrating modes: radial/longitudinal, torsional and flexural, have been identified and discussed for the nanocylinders. The effect of bound water, which shifts the vibration frequency, is also discussed. The peptidoglycan molecule consists of polar and charged amino acids; hence, the sporal surface local vibrations interact strongly with the terahertz radiation.
Collapse
Affiliation(s)
- Debopam Datta
- Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, Illinois
| | - Michael A Stroscio
- Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, Illinois
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois
- Department of Physics, University of Illinois at Chicago, Chicago, Illinois
| | - Mitra Dutta
- Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, Illinois
- Department of Physics, University of Illinois at Chicago, Chicago, Illinois
| | - Weidong Zhang
- Department of Physics and Electrical Engineering, Wright State University, Dayton, Ohio
| | - Elliott R Brown
- Department of Physics and Electrical Engineering, Wright State University, Dayton, Ohio
| |
Collapse
|
45
|
Gokulan K, Khare S, Cerniglia CE, Foley SL, Varughese KI. Structure and Inhibitor Specificity of L,D-Transpeptidase (LdtMt2) from Mycobacterium tuberculosis and Antibiotic Resistance: Calcium Binding Promotes Dimer Formation. AAPS JOURNAL 2018. [DOI: 10.1208/s12248-018-0193-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
46
|
Otten C, Brilli M, Vollmer W, Viollier PH, Salje J. Peptidoglycan in obligate intracellular bacteria. Mol Microbiol 2018; 107:142-163. [PMID: 29178391 PMCID: PMC5814848 DOI: 10.1111/mmi.13880] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2017] [Indexed: 01/08/2023]
Abstract
Peptidoglycan is the predominant stress-bearing structure in the cell envelope of most bacteria, and also a potent stimulator of the eukaryotic immune system. Obligate intracellular bacteria replicate exclusively within the interior of living cells, an osmotically protected niche. Under these conditions peptidoglycan is not necessarily needed to maintain the integrity of the bacterial cell. Moreover, the presence of peptidoglycan puts bacteria at risk of detection and destruction by host peptidoglycan recognition factors and downstream effectors. This has resulted in a selective pressure and opportunity to reduce the levels of peptidoglycan. In this review we have analysed the occurrence of genes involved in peptidoglycan metabolism across the major obligate intracellular bacterial species. From this comparative analysis, we have identified a group of predicted 'peptidoglycan-intermediate' organisms that includes the Chlamydiae, Orientia tsutsugamushi, Wolbachia and Anaplasma marginale. This grouping is likely to reflect biological differences in their infection cycle compared with peptidoglycan-negative obligate intracellular bacteria such as Ehrlichia and Anaplasma phagocytophilum, as well as obligate intracellular bacteria with classical peptidoglycan such as Coxiella, Buchnera and members of the Rickettsia genus. The signature gene set of the peptidoglycan-intermediate group reveals insights into minimal enzymatic requirements for building a peptidoglycan-like sacculus and/or division septum.
Collapse
Affiliation(s)
- Christian Otten
- The Centre for Bacterial Cell BiologyInstitute for Cell and Molecular Biosciences, Newcastle UniversityNewcastle upon TyneNE2 4AXUK
| | - Matteo Brilli
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE)University of Padova. Agripolis ‐ V.le dell'Università, 16 | 35020 Legnaro PadovaItaly
- Present address:
Department of BiosciencesUniversity of Milan, via Celoria 26(MI)Italy
| | - Waldemar Vollmer
- The Centre for Bacterial Cell BiologyInstitute for Cell and Molecular Biosciences, Newcastle UniversityNewcastle upon TyneNE2 4AXUK
| | - Patrick H. Viollier
- Department of Microbiology and Molecular MedicineInstitute of Genetics & Genomics in Geneva (iGE3), University of GenevaGenevaSwitzerland
| | - Jeanne Salje
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global HealthUniversity of OxfordOxfordUK
- Mahidol‐Oxford Tropical Medicine Research UnitMahidol UniversityBangkokThailand
| |
Collapse
|
47
|
Chang J, Chen Y, Xu Z, Wang Z, Zeng Q, Fan H. Switchable Control of Antibiotic Activity: A Shape-Shifting “Tail” Strategy. Bioconjug Chem 2017; 29:74-82. [DOI: 10.1021/acs.bioconjchem.7b00599] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Jinming Chang
- Key
Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, 610065, P.R. China
| | - Yi Chen
- Key
Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, 610065, P.R. China
- Department
of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Zhou Xu
- Key
Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, 610065, P.R. China
| | - Zhonghui Wang
- Key
Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, 610065, P.R. China
| | - Qi Zeng
- Key
Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, 610065, P.R. China
| | - Haojun Fan
- Key
Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, 610065, P.R. China
| |
Collapse
|
48
|
Samsudin F, Boags A, Piggot TJ, Khalid S. Braun's Lipoprotein Facilitates OmpA Interaction with the Escherichia coli Cell Wall. Biophys J 2017; 113:1496-1504. [PMID: 28978443 DOI: 10.1016/j.bpj.2017.08.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/13/2017] [Accepted: 08/02/2017] [Indexed: 11/29/2022] Open
Abstract
Gram-negative bacteria such as Escherichia coli are protected by a complex cell envelope. The development of novel therapeutics against these bacteria necessitates a molecular level understanding of the structure-dynamics-function relationships of the various components of the cell envelope. We use atomistic MD simulations to reveal the details of covalent and noncovalent protein interactions that link the outer membrane to the aqueous periplasmic region. We show that the Braun's lipoprotein tilts and bends, and thereby lifts the cell wall closer to the outer membrane. Both monomers and dimers of the outer membrane porin OmpA can interact with peptidoglycan in the presence of Braun's lipoprotein, but in the absence of the latter, only dimers of OmpA show a propensity to form contacts with peptidoglycan. Our study provides a glimpse of how the molecular components of the bacterial cell envelope interact with each other to mediate cell wall attachment in E. coli.
Collapse
Affiliation(s)
- Firdaus Samsudin
- School of Chemistry, University of Southampton, Highfield, Southampton, United Kingdom
| | - Alister Boags
- School of Chemistry, University of Southampton, Highfield, Southampton, United Kingdom
| | - Thomas J Piggot
- School of Chemistry, University of Southampton, Highfield, Southampton, United Kingdom; CBR Division, Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire, United Kingdom
| | - Syma Khalid
- School of Chemistry, University of Southampton, Highfield, Southampton, United Kingdom.
| |
Collapse
|
49
|
Zhao H, Patel V, Helmann JD, Dörr T. Don't let sleeping dogmas lie: new views of peptidoglycan synthesis and its regulation. Mol Microbiol 2017; 106:847-860. [PMID: 28975672 DOI: 10.1111/mmi.13853] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2017] [Indexed: 12/24/2022]
Abstract
Bacterial cell wall synthesis is the target for some of our most powerful antibiotics and has thus been the subject of intense research focus for more than 50 years. Surprisingly, we still lack a fundamental understanding of how bacteria build, maintain and expand their cell wall. Due to technical limitations, directly testing hypotheses about the coordination and biochemistry of cell wall synthesis enzymes or architecture has been challenging, and interpretation of data has therefore often relied on circumstantial evidence and implicit assumptions. A number of recent papers have exploited new technologies, like single molecule tracking and real-time, high resolution temporal mapping of cell wall synthesis processes, to address fundamental questions of bacterial cell wall biogenesis. The results have challenged established dogmas and it is therefore timely to integrate new data and old observations into a new model of cell wall biogenesis in rod-shaped bacteria.
Collapse
Affiliation(s)
- Heng Zhao
- Department of Microbiology, Cornell University, Ithaca, NY 14853-8101, USA
| | - Vaidehi Patel
- Department of Microbiology, Cornell University, Ithaca, NY 14853-8101, USA
| | - John D Helmann
- Department of Microbiology, Cornell University, Ithaca, NY 14853-8101, USA
| | - Tobias Dörr
- Department of Microbiology, Cornell University, Ithaca, NY 14853-8101, USA.,Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
50
|
Abstract
Cellular mechanical properties play an integral role in bacterial survival and adaptation. Historically, the bacterial cell wall and, in particular, the layer of polymeric material called the peptidoglycan were the elements to which cell mechanics could be primarily attributed. Disrupting the biochemical machinery that assembles the peptidoglycan (e.g., using the β-lactam family of antibiotics) alters the structure of this material, leads to mechanical defects, and results in cell lysis. Decades after the discovery of peptidoglycan-synthesizing enzymes, the mechanisms that underlie their positioning and regulation are still not entirely understood. In addition, recent evidence suggests a diverse group of other biochemical elements influence bacterial cell mechanics, may be regulated by new cellular mechanisms, and may be triggered in different environmental contexts to enable cell adaptation and survival. This review summarizes the contributions that different biomolecular components of the cell wall (e.g., lipopolysaccharides, wall and lipoteichoic acids, lipid bilayers, peptidoglycan, and proteins) make to Gram-negative and Gram-positive bacterial cell mechanics. We discuss the contribution of individual proteins and macromolecular complexes in cell mechanics and the tools that make it possible to quantitatively decipher the biochemical machinery that contributes to bacterial cell mechanics. Advances in this area may provide insight into new biology and influence the development of antibacterial chemotherapies.
Collapse
Affiliation(s)
- George K Auer
- Department of Biomedical Engineering, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Douglas B Weibel
- Department of Biomedical Engineering, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States.,Department of Biochemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States.,Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| |
Collapse
|