1
|
A combined de novo assembly approach increases the quality of prokaryotic draft genomes. Folia Microbiol (Praha) 2022; 67:801-810. [DOI: 10.1007/s12223-022-00980-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 05/24/2022] [Indexed: 11/04/2022]
|
2
|
Fayad N, Kallassy Awad M, Mahillon J. Diversity of Bacillus cereus sensu lato mobilome. BMC Genomics 2019; 20:436. [PMID: 31142281 PMCID: PMC6542083 DOI: 10.1186/s12864-019-5764-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 05/03/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Bacillus cereus sensu lato s.l.) is a group of bacteria displaying close phylogenetic relationships but a high ecological diversity. The three most studied species are Bacillus anthracis, Bacillus cereus sensu stricto and Bacillus thuringiensis. While some species are pathogenic to mammals or associated with food poisoning, Bacillus thuringiensis is a well-known entomopathogenic bacterium used as biopesticide worldwide. B. cereus s.l. also contains a large variety of mobile genetic elements (MGEs). RESULTS In this study, we detail the occurrence and plasmid vs. chromosome distribution of several MGEs in 102 complete and annotated genomes of B. cereus s.l. These MGEs include 16 Insertion Sequence (IS) families, the Tn3 family, 18 different Bacillus cereus repeats (BCRs) and 30 known group II introns. CONCLUSIONS Our analysis not only shows the diversity of these MGEs among strains of the same species and between different species within the B. cereus s.l. group, but also highlights the potential impact of these elements on the plasticity of the plasmid pool, and the TEs (Transposable Elements) - species relationship within B. cereus s.l.
Collapse
Affiliation(s)
- Nancy Fayad
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, UCLouvain, Croix du Sud, 2 - L7.05.12, B-1348, Louvain-la-Neuve, Belgium
- Laboratory of Biodiversity and Functional Genomics, Faculty of Science, Université Saint-Joseph de Beyrouth, Beirut, Lebanon
| | - Mireille Kallassy Awad
- Laboratory of Biodiversity and Functional Genomics, Faculty of Science, Université Saint-Joseph de Beyrouth, Beirut, Lebanon
| | - Jacques Mahillon
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, UCLouvain, Croix du Sud, 2 - L7.05.12, B-1348, Louvain-la-Neuve, Belgium.
| |
Collapse
|
3
|
Gillis A, Fayad N, Makart L, Bolotin A, Sorokin A, Kallassy M, Mahillon J. Role of plasmid plasticity and mobile genetic elements in the entomopathogen Bacillus thuringiensis serovar israelensis. FEMS Microbiol Rev 2018; 42:829-856. [PMID: 30203090 PMCID: PMC6199540 DOI: 10.1093/femsre/fuy034] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 09/06/2018] [Indexed: 12/14/2022] Open
Abstract
Bacillus thuringiensis is a well-known biopesticide that has been used for more than 80 years. This spore-forming bacterium belongs to the group of Bacillus cereus that also includes, among others, emetic and diarrheic pathotypes of B. cereus, the animal pathogen Bacillus anthracis and the psychrotolerant Bacillus weihenstephanensis. Bacillus thuringiensis is rather unique since it has adapted its lifestyle as an efficient pathogen of specific insect larvae. One of the peculiarities of B. thuringiensis strains is the extent of their extrachromosomal pool, with strains harbouring more than 10 distinct plasmid molecules. Among the numerous serovars of B. thuringiensis, 'israelensis' is certainly emblematic since its host spectrum is apparently restricted to dipteran insects like mosquitoes and black flies, vectors of human and animal diseases such as malaria, yellow fever, or river blindness. In this review, the putative role of the mobile gene pool of B. thuringiensis serovar israelensis in its pathogenicity and dedicated lifestyle is reviewed, with specific emphasis on the nature, diversity, and potential mobility of its constituents. Variations among the few related strains of B. thuringiensis serovar israelensis will also be reported and discussed in the scope of this specialised insect pathogen, whose lifestyle in the environment remains largely unknown.
Collapse
Affiliation(s)
- Annika Gillis
- Laboratory of Food and Environmental Microbiology, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Nancy Fayad
- Laboratory of Food and Environmental Microbiology, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
- Laboratory of Biodiversity and Functional Genomics (BGF), Faculty of Sciences, Université Saint-Joseph, 1107 2050 Beirut, Lebanon
| | - Lionel Makart
- Laboratory of Food and Environmental Microbiology, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Alexander Bolotin
- UMR1319 Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, F-78350 Jouy-en-Josas, France
| | - Alexei Sorokin
- UMR1319 Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, F-78350 Jouy-en-Josas, France
| | - Mireille Kallassy
- Laboratory of Biodiversity and Functional Genomics (BGF), Faculty of Sciences, Université Saint-Joseph, 1107 2050 Beirut, Lebanon
| | - Jacques Mahillon
- Laboratory of Food and Environmental Microbiology, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
4
|
Whole-Genome Characterization of Bacillus cereus Associated with Specific Disease Manifestations. Infect Immun 2018; 86:IAI.00574-17. [PMID: 29158433 DOI: 10.1128/iai.00574-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 11/13/2017] [Indexed: 12/17/2022] Open
Abstract
Bacillus cereus remains an important cause of infections, particularly in immunocompromised hosts. While typically associated with enteric infections, disease manifestations can be quite diverse and include skin infections, bacteremia, pneumonia, and meningitis. Whether there are any genetic correlates of bacterial strains with particular clinical manifestations remains unknown. To address this gap in understanding, we undertook whole-genome analysis of B. cereus strains isolated from patients with a range of disease manifestations, including noninvasive colonizing disease, superficial skin infections, and invasive bacteremia. Interestingly, strains involved in skin infection tended to form a distinct genetic cluster compared to isolates associated with invasive disease. Other disease manifestations, despite not being exclusively clustered, nonetheless had unique genetic features. The unique features associated with the specific types of infections ranged from traditional virulence determinants to metabolic pathways and gene regulators. These data represent the largest genetic analysis to date of pathogenic B. cereus isolates with associated clinical parameters.
Collapse
|
5
|
Di Nocera PP, De Gregorio E, Rocco F. GTAG- and CGTC-tagged palindromic DNA repeats in prokaryotes. BMC Genomics 2013; 14:522. [PMID: 23902135 PMCID: PMC3733652 DOI: 10.1186/1471-2164-14-522] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 07/30/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND REPs (Repetitive Extragenic Palindromes) are small (20-40 bp) palindromic repeats found in high copies in some prokaryotic genomes, hypothesized to play a role in DNA supercoiling, transcription termination, mRNA stabilization. RESULTS We have monitored a large number of REP elements in prokaryotic genomes, and found that most can be sorted into two large DNA super-families, as they feature at one end unpaired motifs fitting either the GTAG or the CGTC consensus. Tagged REPs have been identified in >80 species in 8 different phyla. GTAG and CGTC repeats reside predominantly in microorganisms of the gamma and alpha division of Proteobacteria, respectively. However, the identification of members of both super- families in deeper branching phyla such Cyanobacteria and Planctomycetes supports the notion that REPs are old components of the bacterial chromosome. On the basis of sequence content and overall structure, GTAG and CGTC repeats have been assigned to 24 and 4 families, respectively. Of these, some are species-specific, others reside in multiple species, and several organisms contain different REP types. In many families, most units are close to each other in opposite orientation, and may potentially fold into larger secondary structures. In different REP-rich genomes the repeats are predominantly located between unidirectionally and convergently transcribed ORFs. REPs are predominantly located downstream from coding regions, and many are plausibly transcribed and function as RNA elements. REPs located inside genes have been identified in several species. Many lie within replication and global genome repair genes. It has been hypothesized that GTAG REPs are miniature transposons mobilized by specific transposases known as RAYTs (REP associated tyrosine transposases). RAYT genes are flanked either by GTAG repeats or by long terminal inverted repeats (TIRs) unrelated to GTAG repeats. Moderately abundant families of TIRs have been identified in multiple species. CONCLUSIONS CGTC REPs apparently lack a dedicated transposase. Future work will clarify whether these elements may be mobilized by RAYTs or other transposases, and assess if de-novo formation of either GTAG or CGTC repeats type still occurs.
Collapse
Affiliation(s)
- Pier Paolo Di Nocera
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Federico II, Napoli, Via S, Pansini 5 80131, Naples, Italy.
| | | | | |
Collapse
|
6
|
Kristoffersen SM, Haase C, Weil MR, Passalacqua KD, Niazi F, Hutchison SK, Desany B, Kolstø AB, Tourasse NJ, Read TD, Økstad OA. Global mRNA decay analysis at single nucleotide resolution reveals segmental and positional degradation patterns in a Gram-positive bacterium. Genome Biol 2012; 13:R30. [PMID: 22537947 PMCID: PMC3446304 DOI: 10.1186/gb-2012-13-4-r30] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 04/15/2012] [Accepted: 04/26/2012] [Indexed: 11/23/2022] Open
Abstract
Background Recent years have shown a marked increase in the use of next-generation sequencing technologies for quantification of gene expression (RNA sequencing, RNA-Seq). The expression level of a gene is a function of both its rate of transcription and RNA decay, and the influence of mRNA decay rates on gene expression in genome-wide studies of Gram-positive bacteria is under-investigated. Results In this work, we employed RNA-Seq in a genome-wide determination of mRNA half-lives in the Gram-positive bacterium Bacillus cereus. By utilizing a newly developed normalization protocol, RNA-Seq was used successfully to determine global mRNA decay rates at the single nucleotide level. The analysis revealed positional degradation patterns, with mRNAs being degraded from both ends of the molecule, indicating that both 5' to 3' and 3' to 5' directions of RNA decay are present in B. cereus. Other operons showed segmental degradation patterns where specific ORFs within polycistrons were degraded at variable rates, underlining the importance of RNA processing in gene regulation. We determined the half-lives for more than 2,700 ORFs in B. cereus ATCC 10987, ranging from less than one minute to more than fifteen minutes, and showed that mRNA decay rate correlates globally with mRNA expression level, GC content, and functional class of the ORF. Conclusions To our knowledge, this study presents the first global analysis of mRNA decay in a bacterium at single nucleotide resolution. We provide a proof of principle for using RNA-Seq in bacterial mRNA decay analysis, revealing RNA processing patterns at the single nucleotide level.
Collapse
Affiliation(s)
- Simen M Kristoffersen
- Laboratory for Microbial Dynamics, Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, PB 1068 Blindern, 0316 Oslo, Norway
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
Miniature inverted terminal repeat elements (MITEs) are nonautonomous mobile elements that have a significant impact on bacterial evolution. Here we characterize E622, a 611-bp virulence-associated MITE from Pseudomonas syringae, which contains no coding region but has almost perfect 168-bp inverted repeats. Using an antibiotic coupling assay, we show that E622 is transposable and can mobilize an antibiotic resistance gene contained between its borders. Its predicted parent element, designated TnE622, has a typical transposon structure with a three-gene operon, consisting of resolvase, integrase, and exeA-like genes, which is bounded by the same terminal inverted repeats as E622. A broader genome level survey of the E622/TnE622 inverted repeats identified homologs in Pseudomonas, Salmonella, Shewanella, Erwinia, Pantoea, and the cyanobacteria Nostoc and Cyanothece, many of which appear to encompass known virulence genes, including genes encoding toxins, enzymes, and type III secreted effectors. Its association with niche-specific genetic determinants, along with its persistence and evolutionary diversification, indicates that this mobile element family has played a prominent role in the evolution of many agriculturally and clinically relevant pathogenic bacteria.
Collapse
|
8
|
Abstract
Intergenic regions of prokaryotic genomes carry multiple copies of terminal inverted repeat (TIR) sequences, the nonautonomous miniature inverted-repeat transposable element (MITE). In addition, there are the repetitive extragenic palindromic (REP) sequences that fold into a small stem loop rich in G–C bonding. And the clustered regularly interspaced short palindromic repeats (CRISPRs) display similar small stem loops but are an integral part of a complex genetic element. Other classes of repeats such as the REP2 element do not have TIRs but show other signatures. With the current availability of a large number of whole-genome sequences, many new repeat elements have been discovered. These sequences display diverse properties. Some show an intimate linkage to integrons, and at least one encodes a small RNA. Many repeats are found fused with chromosomal open reading frames, and some are located within protein coding sequences. Small repeat units appear to work hand in hand with the transcriptional and/or post-transcriptional apparatus of the cell. Functionally, they are multifaceted, and this can range from the control of gene expression, the facilitation of host/pathogen interactions, or stimulation of the mammalian immune system. The CRISPR complex displays dramatic functions such as an acquired immune system that defends against invading viruses and plasmids. Evolutionarily, mobile repeat elements may have influenced a cycle of active versus inactive genes in ancestral organisms, and some repeats are concentrated in regions of the chromosome where there is significant genomic plasticity. Changes in the abundance of genomic repeats during the evolution of an organism may have resulted in a benefit to the cell or posed a disadvantage, and some present day species may reflect a purification process. The diverse structure, eclectic functions, and evolutionary aspects of repeat elements are described.
Collapse
Affiliation(s)
- Nicholas Delihas
- Department of Molecular Genetics and Microbiology, School of Medicine, State University of New York, Stony Brook, NY, USA.
| |
Collapse
|
9
|
Hot D, Slupek S, Wulbrecht B, D'Hondt A, Hubans C, Antoine R, Locht C, Lemoine Y. Detection of small RNAs in Bordetella pertussis and identification of a novel repeated genetic element. BMC Genomics 2011; 12:207. [PMID: 21524285 PMCID: PMC3110155 DOI: 10.1186/1471-2164-12-207] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 04/27/2011] [Indexed: 11/16/2022] Open
Abstract
Background Small bacterial RNAs (sRNAs) have been shown to participate in the regulation of gene expression and have been identified in numerous prokaryotic species. Some of them are involved in the regulation of virulence in pathogenic bacteria. So far, little is known about sRNAs in Bordetella, and only very few sRNAs have been identified in the genome of Bordetella pertussis, the causative agent of whooping cough. Results An in silico approach was used to predict sRNAs genes in intergenic regions of the B. pertussis genome. The genome sequences of B. pertussis, Bordetella parapertussis, Bordetella bronchiseptica and Bordetella avium were compared using a Blast, and significant hits were analyzed using RNAz. Twenty-three candidate regions were obtained, including regions encoding the already documented 6S RNA, and the GCVT and FMN riboswitches. The existence of sRNAs was verified by Northern blot analyses, and transcripts were detected for 13 out of the 20 additional candidates. These new sRNAs were named Bordetella pertussis RNAs, bpr. The expression of 4 of them differed between the early, exponential and late growth phases, and one of them, bprJ2, was found to be under the control of BvgA/BvgS two-component regulatory system of Bordetella virulence. A phylogenetic study of the bprJ sequence revealed a novel, so far undocumented repeat of ~90 bp, found in numerous copies in the Bordetella genomes and in that of other Betaproteobacteria. This repeat exhibits certain features of mobile elements. Conclusion We shown here that B. pertussis, like other pathogens, expresses sRNAs, and that the expression of one of them is controlled by the BvgA/BvgS system, similarly to most virulence genes, suggesting that it is involved in virulence of B. pertussis.
Collapse
Affiliation(s)
- David Hot
- Center for Infection and Immunity of Lille, Institut Pasteur de Lille, France.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Kristoffersen SM, Tourasse NJ, Kolstø AB, Økstad OA. Interspersed DNA repeats bcr1-bcr18 of Bacillus cereus group bacteria form three distinct groups with different evolutionary and functional patterns. Mol Biol Evol 2010; 28:963-83. [PMID: 20961964 DOI: 10.1093/molbev/msq269] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Many short (<400 bp) interspersed sequence repeats exist in bacteria, yet little is known about their origins, mode of generation, or possible function. Here, we present a comprehensive analysis of 18 different previously identified repeated DNA elements, bcr1-bcr18 (Økstad OA, Hegna I, Lindback T, Rishovd AL, Kolstø AB. 1999. Genome organization is not conserved between Bacillus cereus and Bacillus subtilis. Microbiology. 145:621-631.; Tourasse NJ, Helgason E, Økstad OA, Hegna IK, Kolstø AB. 2006. The Bacillus cereus group: novel aspects of population structure and genome dynamics. J Appl Microbiol. 101:579-593.), in 36 sequenced genomes from the Bacillus cereus group of bacteria. This group consists of genetically closely related species with variable pathogenic specificity toward different hosts and includes among others B. anthracis, B. cereus, and B. thuringiensis. The B. cereus group repeat elements could be classified into three categories with different properties: Group A elements (bcr1-bcr3) exhibited highly variable copy numbers ranging from 4 to 116 copies per strain, showed a nonconserved chromosomal distribution pattern between strains, and displayed several features characteristic of mobile elements. Group B repeats (bcr4-bcr6) were present in 0-10 copies per strain and were associated with strain-specific genes and disruptions of genome synteny, implying a possible contribution to genome rearrangements and/or horizontal gene transfer events. bcr5, in particular, was associated with large gene clusters showing resemblance to integrons. In agreement with their potentially mobile nature or involvement in horizontal transfers, the sequences of the repeats from Groups A and B (bcr1-bcr6) followed a phylogeny different from that of the host strains. Conversely, repeats from Group C (bcr7-bcr18) had a conserved chromosomal location and orthologous gene neighbors in the investigated B. cereus group genomes, and their phylogeny matched that of the host chromosome. Several of the group C repeats exhibited a conserved secondary structure or had parts of the structure conserved, possibly indicating functional RNAs. Accordingly, five of the repeats in group C overlapped regions encoding previously characterized riboswitches. Similarly, other group C repeats could represent novel riboswitches, encode small RNAs, and/or constitute other types of regulatory elements with specific biological functions. The current analysis suggests that the multitude of repeat elements identified in the B. cereus group promote genome dynamics and plasticity and could contribute to the flexible and adaptive life style of these bacteria.
Collapse
Affiliation(s)
- Simen M Kristoffersen
- Laboratory for Microbial Dynamics (LaMDa), Department of Pharmaceutical Biosciences, University of Oslo, Blindern, Oslo, Norway
| | | | | | | |
Collapse
|
11
|
Kolstø AB, Tourasse NJ, Økstad OA. What sets Bacillus anthracis apart from other Bacillus species? Annu Rev Microbiol 2009; 63:451-76. [PMID: 19514852 DOI: 10.1146/annurev.micro.091208.073255] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bacillus anthracis is the cause of anthrax, and two large plasmids are essential for toxicity: pXO1, which contains the toxin genes, and pXO2, which encodes a capsule. B. anthracis forms a highly monomorphic lineage within the B. cereus group, but strains of Bacillus thuringiensis and B. cereus exist that are genetically closely related to the B. anthracis cluster. During the past five years B. cereus strains that contain the pXO1 virulence plasmid were discovered, and strains with both pXO1 and pXO2 have been isolated from great apes in Africa. Therefore, the presence of pXO1 and pXO2 no longer principally separates B. anthracis from other Bacilli. The B. anthracis lineage carries a specific mutation in the global regulator PlcR, which controls the transcription of secreted virulence factors in B. cereus and B. thuringiensis. Coevolution of the B. anthracis chromosome with its plasmids may be the basis for the successful development and uniqueness of the B. anthracis lineage.
Collapse
Affiliation(s)
- Anne-Brit Kolstø
- Laboratory for Microbial Dynamics and Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo 0316, Norway.
| | | | | |
Collapse
|
12
|
Stabell FB, Egge-Jacobsen W, Risøen PA, Kolstø AB, Økstad OA. ORF 2 from the Bacillus cereus linear plasmid pBClin15 encodes a DNA binding protein. Lett Appl Microbiol 2008; 48:51-7. [PMID: 19018965 DOI: 10.1111/j.1472-765x.2008.02483.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
AIMS To isolate and identify DNA-binding protein(s) with affinity for the mobile chromosomal repeat element bcr1 in Bacillus cereus group bacteria. METHODS AND RESULTS A biotinylated bcr1 element was immobilized to streptavidin-coated magnetic beads and used to pull out a 20 kDa DNA-binding protein from a whole cell protein extract of B. cereus ATCC 14579. The protein was identified as the product of ORF 2 encoded by the bacteriophage-related autonomously replicating linear genetic element pBClin15 carried by the strain. DNA binding was not bcr1-specific. By Northern blotting ORF 2 was co-transcribed with ORF 1, and also in certain instances with ORF 3 by transcriptional readthrough of the terminator located between ORF 2 and ORF 3. CONCLUSIONS ORF 2 from pBClin15 encodes a DNA-binding protein. ORF 2 is co-transcribed with its upstream gene ORF 1, and in a subset of the transcripts also with the downstream gene ORF 3 through alternative transcription termination. SIGNIFICANCE AND IMPACT OF THE STUDY The B. cereus group contains bacterial species of medical and economic importance. Bacteriophages or phage-encoded proteins from these bacteria have been suggested as potential therapeutic agents. Understanding the biology of bacteriophage-related genetic elements through functional characterization of their genes is of high relevance.
Collapse
Affiliation(s)
- F B Stabell
- Laboratory for Microbial Dynamics, School of Pharmacy, University of Oslo, Blindern, Oslo, Norway
| | | | | | | | | |
Collapse
|
13
|
Cozzuto L, Petrillo M, Silvestro G, Di Nocera PP, Paolella G. Systematic identification of stem-loop containing sequence families in bacterial genomes. BMC Genomics 2008; 9:20. [PMID: 18201379 PMCID: PMC2267715 DOI: 10.1186/1471-2164-9-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2007] [Accepted: 01/17/2008] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Analysis of non-coding sequences in several bacterial genomes brought to the identification of families of repeated sequences, able to fold as secondary structures. These sequences have often been claimed to be transcribed and fulfill a functional role. A previous systematic analysis of a representative set of 40 bacterial genomes produced a large collection of sequences, potentially able to fold as stem-loop structures (SLS). Computational analysis of these sequences was carried out by searching for families of repetitive nucleic acid elements sharing a common secondary structure. RESULTS The initial clustering procedure identified clusters of similar sequences in 29 genomes, corresponding to about 1% of the whole population. Sequences selected in this way have a substantially higher aptitude to fold into a stable secondary structure than the initial set. Removal of redundancies and regrouping of the selected sequences resulted in a final set of 92 families, defined by HMM analysis. 25 of them include all well-known SLS containing repeats and others reported in literature, but not analyzed in detail. The remaining 67 families have not been previously described. Two thirds of the families share a common predicted secondary structure and are located within intergenic regions. CONCLUSION Systematic analysis of 40 bacterial genomes revealed a large number of repeated sequence families, including known and novel ones. Their predicted structure and genomic location suggest that, even in compact bacterial genomes, a relatively large fraction of the genome consists of non-protein-coding sequences, possibly functioning at the RNA level.
Collapse
Affiliation(s)
- Luca Cozzuto
- CEINGE Biotecnologie Avanzate scarl, Via Comunale Margherita 482, 80145 Napoli, Italy.
| | | | | | | | | |
Collapse
|
14
|
Klevan A, Tourasse NJ, Stabell FB, Kolstø AB, Økstad OA. Exploring the evolution of the Bacillus cereus group repeat element bcr1 by comparative genome analysis of closely related strains. MICROBIOLOGY-SGM 2008; 153:3894-3908. [PMID: 17975097 DOI: 10.1099/mic.0.2007/005504-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
bcr1 is a chromosomal approximately 155 bp repeated element found uniquely and ubiquitously in the Bacillus cereus group of Gram-positive bacteria; it exhibits several features characteristic of mobile elements, including a variable distribution pattern between strains. Here, highly similar bcr1 elements in non-conserved genomic loci are identified in a set of closely related B. cereus and Bacillus thuringiensis strains near the Bacillus anthracis phylogenetic cluster. It is also shown that bcr1 may be present on small RNA transcripts in the 100-400 bp size range. In silico folding of bcr1 at the RNA level indicated that transcripts may form a double-hairpin-like structure predicted to have high structural stability. A functional role of bcr1 at the RNA level is supported by multiple cases of G-U base-pairing, and compensatory mutations maintaining structural stability of the RNA fold. In silico folding at the DNA level produced similar predicted structures, with the potential to form a cruciform structure at open DNA complexes. The predicted structural stability was greater for bcr1 elements showing high sequence identities to bcr1 elements in non-conserved chromosomal loci in other strains, relative to other bcr1 copies. bcr1 mobility could thus be dependent on the formation of a stable DNA or RNA intermediate. Furthermore, bcr1 elements potentially encoding structurally stable and less stable transcripts were phylogenetically intermixed, indicating that loss of bcr1 mobility may have occurred multiple times during evolution. Repeated elements with similar features in other bacteria have been shown to provide functions such as mRNA stabilization, transcription termination and/or promoter function. Similarly, bcr1 may constitute a mobile element which occasionally gains a function when it enters an appropriate chromosomal locus.
Collapse
Affiliation(s)
- Are Klevan
- Department of Pharmaceutical Biosciences (Microbiology), University of Oslo, PO Box 1068 Blindern, 0316 Oslo, Norway
| | - Nicolas J Tourasse
- Department of Pharmaceutical Biosciences (Microbiology), University of Oslo, PO Box 1068 Blindern, 0316 Oslo, Norway
| | - Fredrik B Stabell
- Department of Pharmaceutical Biosciences (Microbiology), University of Oslo, PO Box 1068 Blindern, 0316 Oslo, Norway
| | - Anne-Brit Kolstø
- Department of Pharmaceutical Biosciences (Microbiology), University of Oslo, PO Box 1068 Blindern, 0316 Oslo, Norway
| | - Ole Andreas Økstad
- Department of Pharmaceutical Biosciences (Microbiology), University of Oslo, PO Box 1068 Blindern, 0316 Oslo, Norway
| |
Collapse
|
15
|
Tourasse NJ, Helgason E, Økstad OA, Hegna IK, Kolstø AB. The Bacillus cereus group: novel aspects of population structure and genome dynamics. J Appl Microbiol 2007; 101:579-93. [PMID: 16907808 DOI: 10.1111/j.1365-2672.2006.03087.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
AIMS To provide new insights into the population and genomic structure of the Bacillus cereus group of bacteria. METHODS AND RESULTS The genetic relatedness among B. cereus group strains was assessed by multilocus sequence typing (MLST) using an optimized scheme based on seven chromosomal housekeeping genes. A set of 48 strains from different clinical sources was included, and six clonal complexes containing several genetically similar isolates from unrelated patients were identified. Interestingly, several clonal groups contained strains that were isolated from similar human sources. Furthermore, comparative whole genome sequence analysis of 16 strains led to the discovery of novel ubiquitous genome features of the B. cereus group, such as atypical group II introns, IStrons, and hitherto uncharacterized repeated elements. CONCLUSIONS The B. cereus group constitutes a coherent population unified by the presence of ubiquitous and specific genetic elements which do not show any pattern, either in their sequences or genomic locations, which allows to differentiate between the member species of the group. Nevertheless, the population is very dynamic, as particular lineages of clinical origin can evolve to form clonal complexes. At the genome level, the dynamic behaviour is indicated by the presence of numerous mobile and repeated elements. SIGNIFICANCE AND IMPACT OF THE STUDY The B. cereus group of bacteria comprises species that are of medical and economic importance. The MLST data, along with the primers and protocols used, will be available in a public, web-accessible database (http://mlstoslo.uio.no).
Collapse
Affiliation(s)
- N J Tourasse
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Norway
| | | | | | | | | |
Collapse
|