1
|
Absmeier E, Heyd F. Temperature-controlled molecular switches in mammalian cells. J Biol Chem 2024; 300:107865. [PMID: 39374780 DOI: 10.1016/j.jbc.2024.107865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/09/2024] Open
Abstract
Temperature is an omnipresent factor impacting on many aspects of life. In bacteria and ectothermic eukaryotes, various thermosensors and temperature-controlled switches have been described, ranging from RNA thermometers controlling the heat shock response in prokaryotes to temperature-dependent sex determination in reptiles, likely controlled through protein phosphorylation. However, the impact of subtle changes of human core body temperature are only beginning to be acknowledged. In this review, we will discuss thermosensing mechanisms and their functional implications with a focus on mammalian cells, also in the context of disease conditions. We will point out open questions and possible future directions for this emerging research field, which, in addition to molecular-mechanistic insights, holds the potential for the development of new therapeutic approaches.
Collapse
Affiliation(s)
- Eva Absmeier
- Laboratory of mRNA translation and turnover, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany.
| | - Florian Heyd
- Laboratory of RNA Biochemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
2
|
Maiti A, Erimban S, Daschakraborty S. Extreme makeover: the incredible cell membrane adaptations of extremophiles to harsh environments. Chem Commun (Camb) 2024; 60:10280-10294. [PMID: 39190300 DOI: 10.1039/d4cc03114h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
The existence of life beyond Earth has long captivated humanity, and the study of extremophiles-organisms surviving and thriving in extreme environments-provides crucial insights into this possibility. Extremophiles overcome severe challenges such as enzyme inactivity, protein denaturation, and damage of the cell membrane by adopting several strategies. This feature article focuses on the molecular strategies extremophiles use to maintain the cell membrane's structure and fluidity under external stress. Key strategies include homeoviscous adaptation (HVA), involving the regulation of lipid composition, and osmolyte-mediated adaptation (OMA), where small organic molecules protect the lipid membrane under stress. Proteins also have direct and indirect roles in protecting the lipid membrane. Examining the survival strategies of extremophiles provides scientists with crucial insights into how life can adapt and persist in harsh conditions, shedding light on the origins of life. This article examines HVA and OMA and their mechanisms in maintaining membrane stability, emphasizing our contributions to this field. It also provides a brief overview of the roles of proteins and concludes with recommendations for future research directions.
Collapse
Affiliation(s)
- Archita Maiti
- Department of Chemistry, Indian Institute of Technology Patna, Bihar, 801106, India.
| | - Shakkira Erimban
- Department of Chemistry, Indian Institute of Technology Patna, Bihar, 801106, India.
| | | |
Collapse
|
3
|
Sidarta M, Lorente Martín AI, Monsalve A, Marinho Righetto G, Schäfer AB, Wenzel M. Lipid phase separation impairs membrane thickness sensing by the Bacillus subtilis sensor kinase DesK. Microbiol Spectr 2024; 12:e0392523. [PMID: 38717171 PMCID: PMC11237406 DOI: 10.1128/spectrum.03925-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 04/08/2024] [Indexed: 06/06/2024] Open
Abstract
Membrane fluidity and thickness have emerged as crucial factors for the activity of and resistance to several antimicrobials. However, the lack of tools to study membrane fluidity and, in particular, thickness in living bacteria limits our understanding of this interplay. The Bacillus subtilis histidine kinase/phosphatase DesK is a molecular sensor that directly detects membrane thickness. It controls activity of DesR, which regulates expression of the lipid desaturase Des, known for its role in cold adaptation and daptomycin susceptibility. We hypothesized that this property could be exploited to develop biosensors and reporters for antibiotic-induced changes in membrane fluidity and thickness. To test this, we designed three assays based on the des system: activation of the Pdes promoter as reporter for membrane thickening, localization of DesK-GFP(green-fluorescent protein) as proxy for rigidified membrane domains, and antibiotic sensitivity of des, desK, and desR deletion mutants as readout for the importance of membrane rigidification/thickening under the tested condition. While we could not confirm the suitability of the des system as reporter for antibiotic-induced changes in membrane thickness, we did observe that des expression is only activated by mild temperature shocks, likely due to partitioning of the sensor DesK into fluid membrane domains upon phase separation, precluding effective thickness sensing under harsh cold shock and antibiotic stress conditions. Similarly, we did not observe any sensitivity of the deletion mutants to either temperature or antibiotic stress, raising the question to what extent the des system contributes to fluidity adaptation under these conditions. IMPORTANCE The B. subtilis des system is a prime model for direct molecular membrane thickness sensor and, as such, has been well studied in vitro. Our study shows that our understanding of its function in vivo and its importance under temperature and antibiotic stress is still very limited. Specifically, our results suggest that (i) the des system senses very subtle membrane fluidity changes that escape detection by established fluidity reporters like laurdan; (ii) membrane thickness sensing by DesK is impaired by phase separation due to partitioning of the protein into the fluid phase; and (iii) fluidity adaptations by Des are too subtle to elicit growth defects under rigidifying conditions, raising the question of how much the des system contributes to adaptation of overall membrane fluidity.
Collapse
Affiliation(s)
- Margareth Sidarta
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research in Gothenburg (CARe), Gothenburg, Sweden
| | - Ana I. Lorente Martín
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Anuntxi Monsalve
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Gabriela Marinho Righetto
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research in Gothenburg (CARe), Gothenburg, Sweden
| | - Ann-Britt Schäfer
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research in Gothenburg (CARe), Gothenburg, Sweden
| | - Michaela Wenzel
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research in Gothenburg (CARe), Gothenburg, Sweden
| |
Collapse
|
4
|
Leusenko AV, Mironov KS, Los DA. Transmembrane and PAS domains of the histidine kinase Hik33 as regulators of cold and light responses in the cyanobacterium Synechocystis sp. PCC 6803. Biochimie 2024; 218:76-84. [PMID: 37567357 DOI: 10.1016/j.biochi.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/05/2023] [Accepted: 08/07/2023] [Indexed: 08/13/2023]
Abstract
The PAS (Per-ARNT-Sim) domain is a sensory protein regulatory module found in archaea, prokaryotes, and eukaryotes. Histidine and serine/threonine protein kinases, chemo- and photoreceptors, circadian rhythm regulators, ion channels, phosphodiesterases, and other cellular response regulators are among these proteins. Hik33 is a multifunctional sensory histidine kinase that is implicated in cyanobacterial responses to cold, salt, hyperosmotic, and oxidative stressors. The functional roles of individual Hik33 domains in signal transduction were investigated in this study. Synechocystis Hik33 deletion variants were developed, in which either both or a portion of the transmembrane domains and/or the PAS domain were deleted. Cold stress was applied to the mutant strains either under illumination or in the dark. The findings show that the transmembrane domains govern temperature responses, whereas PAS domain may be involved in regulation of downstream gene expression in light-dependent manner.
Collapse
Affiliation(s)
- Anna V Leusenko
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow, 127276, Russia
| | - Kirill S Mironov
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow, 127276, Russia
| | - Dmitry A Los
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow, 127276, Russia.
| |
Collapse
|
5
|
Kumar A, Daschakraborty S. Anomalous lateral diffusion of lipids during the fluid/gel phase transition of a lipid membrane. Phys Chem Chem Phys 2023; 25:31431-31443. [PMID: 37962400 DOI: 10.1039/d3cp04081j] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
A lipid membrane undergoes a phase transition from fluid to gel phase upon changing external thermodynamic conditions, such as decreasing temperature and increasing pressure. Extremophilic organisms face the challenge of preventing this deleterious phase transition. The main focus of their adaptive strategy is to facilitate effective temperature sensing through sensor proteins, relying on the drastic changes in packing density and membrane fluidity during the phase transition. Although the changes in packing density parameters due to the fluid/gel phase transition are studied in detail, the impact on membrane fluidity is less explored in the literature. Understanding the lateral diffusive dynamics of lipids in response to temperature, particularly during the fluid/gel phase transition, is albeit crucial. Here we have simulated the phase transition of a single component lipid membrane composed of dipalmitoylphosphatidylcholine (DPPC) lipids using a coarse-grained (CG) model and studied the changes of the structural and dynamical properties. It is observed that near the phase transition point, both fluid and gel phase domains coexist together. The dynamics remains highly non-Gaussian for a long time even when the mean square displacement reaches the Fickian regime at a much earlier time. This Fickian yet non-Gaussian diffusion (FnGD) is a characteristic of a highly heterogeneous system, previously observed for the lateral diffusion of lipids in raft mimetic membranes having liquid-ordered and liquid-disordered phases co-existing together. We have analyzed the molecular trajectories and calculated the jump-diffusion of the lipids, stemming from sudden jump translations, using a translational jump-diffusion (TJD) approach. An overwhelming contribution of the jump-diffusion of the lipids is observed suggesting anomalous diffusion of lipids during fluid/gel phase transition of the membrane. These results are important in unravelling the intricate nature of lipid diffusion during the phase transition of the membrane and open up a new possibility of investigating the most significant change of membrane properties during phase transition, which can be effectively sensed by proteins.
Collapse
Affiliation(s)
- Abhay Kumar
- Department of Chemistry, Indian Institute of Technology Patna, Bihar 801106, India.
| | | |
Collapse
|
6
|
Gangwal A, Kumar N, Sangwan N, Dhasmana N, Dhawan U, Sajid A, Arora G, Singh Y. Giving a signal: how protein phosphorylation helps Bacillus navigate through different life stages. FEMS Microbiol Rev 2023; 47:fuad044. [PMID: 37533212 PMCID: PMC10465088 DOI: 10.1093/femsre/fuad044] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 08/04/2023] Open
Abstract
Protein phosphorylation is a universal mechanism regulating a wide range of cellular responses across all domains of life. The antagonistic activities of kinases and phosphatases can orchestrate the life cycle of an organism. The availability of bacterial genome sequences, particularly Bacillus species, followed by proteomics and functional studies have aided in the identification of putative protein kinases and protein phosphatases, and their downstream substrates. Several studies have established the role of phosphorylation in different physiological states of Bacillus species as they pass through various life stages such as sporulation, germination, and biofilm formation. The most common phosphorylation sites in Bacillus proteins are histidine, aspartate, tyrosine, serine, threonine, and arginine residues. Protein phosphorylation can alter protein activity, structural conformation, and protein-protein interactions, ultimately affecting the downstream pathways. In this review, we summarize the knowledge available in the field of Bacillus signaling, with a focus on the role of protein phosphorylation in its physiological processes.
Collapse
Affiliation(s)
- Aakriti Gangwal
- Department of Zoology, University of Delhi, Faculty of Science, Delhi- 110007, India
| | - Nishant Kumar
- Department of Zoology, University of Delhi, Faculty of Science, Delhi- 110007, India
| | - Nitika Sangwan
- Department of Zoology, University of Delhi, Faculty of Science, Delhi- 110007, India
- Department of Biomedical Science, Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi-110075, India
| | - Neha Dhasmana
- School of Medicine, New York University, 550 First Avenue New York-10016, New York, United States
| | - Uma Dhawan
- Department of Biomedical Science, Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi-110075, India
| | - Andaleeb Sajid
- 300 Cedar St, Yale School of Medicine, Yale University, New Haven, Connecticut 06520, New Haven CT, United States
| | - Gunjan Arora
- 300 Cedar St, Yale School of Medicine, Yale University, New Haven, Connecticut 06520, New Haven CT, United States
| | - Yogendra Singh
- Department of Zoology, University of Delhi, Faculty of Science, Delhi- 110007, India
- Delhi School of Public Health, Institution of Eminence, University of Delhi, Delhi-110007, India
| |
Collapse
|
7
|
Wu G, Baumeister R, Heimbucher T. Molecular Mechanisms of Lipid-Based Metabolic Adaptation Strategies in Response to Cold. Cells 2023; 12:1353. [PMID: 37408188 PMCID: PMC10216534 DOI: 10.3390/cells12101353] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/24/2023] [Accepted: 05/05/2023] [Indexed: 07/07/2023] Open
Abstract
Temperature changes and periods of detrimental cold occur frequently for many organisms in their natural habitats. Homeothermic animals have evolved metabolic adaptation strategies to increase mitochondrial-based energy expenditure and heat production, largely relying on fat as a fuel source. Alternatively, certain species are able to repress their metabolism during cold periods and enter a state of decreased physiological activity known as torpor. By contrast, poikilotherms, which are unable to maintain their internal temperature, predominantly increase membrane fluidity to diminish cold-related damage from low-temperature stress. However, alterations of molecular pathways and the regulation of lipid-metabolic reprogramming during cold exposure are poorly understood. Here, we review organismal responses that adjust fat metabolism during detrimental cold stress. Cold-related changes in membranes are detected by membrane-bound sensors, which signal to downstream transcriptional effectors, including nuclear hormone receptors of the PPAR (peroxisome proliferator-activated receptor) subfamily. PPARs control lipid metabolic processes, such as fatty acid desaturation, lipid catabolism and mitochondrial-based thermogenesis. Elucidating the underlying molecular mechanisms of cold adaptation may improve beneficial therapeutic cold treatments and could have important implications for medical applications of hypothermia in humans. This includes treatment strategies for hemorrhagic shock, stroke, obesity and cancer.
Collapse
Affiliation(s)
- Gang Wu
- Bioinformatics and Molecular Genetics, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Ralf Baumeister
- Bioinformatics and Molecular Genetics, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- Center for Biochemistry and Molecular Cell Research, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
| | - Thomas Heimbucher
- Bioinformatics and Molecular Genetics, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
8
|
Lima S, Blanco J, Olivieri F, Imelio JA, Nieves M, Carrión F, Alvarez B, Buschiazzo A, Marti MA, Trajtenberg F. An allosteric switch ensures efficient unidirectional information transmission by the histidine kinase DesK from Bacillus subtilis. Sci Signal 2023; 16:eabo7588. [PMID: 36693130 DOI: 10.1126/scisignal.abo7588] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Phosphorylation carries chemical information in biological systems. In two-component systems (TCSs), the sensor histidine kinase and the response regulator are connected through phosphoryl transfer reactions that may be uni- or bidirectional. Directionality enables the construction of complex regulatory networks that optimize signal propagation and ensure the forward flow of information. We combined x-ray crystallography, hybrid quantum mechanics/molecular mechanics (QM/MM) simulations, and systems-integrative kinetic modeling approaches to study phosphoryl flow through the Bacillus subtilis thermosensing TCS DesK-DesR. The allosteric regulation of the histidine kinase DesK was critical to avoid back transfer of phosphoryl groups and futile phosphorylation-dephosphorylation cycles by isolating phosphatase, autokinase, and phosphotransferase activities. Interactions between the kinase's ATP-binding domain and the regulator's receiver domain placed the regulator in two distinct positions in the phosphotransferase and phosphatase complexes, thereby determining whether a key glutamine residue in DesK was properly situated to assist in the dephosphorylation reaction. Moreover, an energetically unfavorable phosphotransferase conformation when DesK was not phosphorylated minimized reverse phosphoryl transfer. DesR dimerization and a dissociative phosphoryl transfer reaction also enforced the direction of phosphoryl flow. Shorter or longer distances between the phosphoryl acceptor and donor residues shifted the phosphoryl transfer equilibrium by modulating the stabilizing effect of the Mg2+ cofactor. These mechanisms control the directionality of signal transmission and show how structure-encoded allostery stores and transmits information in signaling systems.
Collapse
Affiliation(s)
- Sofía Lima
- Laboratory of Molecular and Structural Microbiology, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Juan Blanco
- Departamento de Química Biológica e IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Federico Olivieri
- Departamento de Química Biológica e IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Juan A Imelio
- Laboratory of Molecular and Structural Microbiology, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Marcos Nieves
- Laboratory of Molecular and Structural Microbiology, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Federico Carrión
- Laboratorio de Inmunovirología, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Beatriz Alvarez
- Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay.,Centro de Investigaciones Biomédicas, Universidad de la República, Montevideo, Uruguay
| | - Alejandro Buschiazzo
- Laboratory of Molecular and Structural Microbiology, Institut Pasteur de Montevideo, Montevideo, Uruguay.,Département de Microbiologie, Institut Pasteur, Paris, France
| | - Marcelo A Marti
- Departamento de Química Biológica e IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Felipe Trajtenberg
- Laboratory of Molecular and Structural Microbiology, Institut Pasteur de Montevideo, Montevideo, Uruguay
| |
Collapse
|
9
|
Ongpipattanakul C, Desormeaux EK, DiCaprio A, van der Donk WA, Mitchell DA, Nair SK. Mechanism of Action of Ribosomally Synthesized and Post-Translationally Modified Peptides. Chem Rev 2022; 122:14722-14814. [PMID: 36049139 PMCID: PMC9897510 DOI: 10.1021/acs.chemrev.2c00210] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a natural product class that has undergone significant expansion due to the rapid growth in genome sequencing data and recognition that they are made by biosynthetic pathways that share many characteristic features. Their mode of actions cover a wide range of biological processes and include binding to membranes, receptors, enzymes, lipids, RNA, and metals as well as use as cofactors and signaling molecules. This review covers the currently known modes of action (MOA) of RiPPs. In turn, the mechanisms by which these molecules interact with their natural targets provide a rich set of molecular paradigms that can be used for the design or evolution of new or improved activities given the relative ease of engineering RiPPs. In this review, coverage is limited to RiPPs originating from bacteria.
Collapse
Affiliation(s)
- Chayanid Ongpipattanakul
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Emily K. Desormeaux
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Adam DiCaprio
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Wilfred A. van der Donk
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Department of Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Departments of Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
| | - Douglas A. Mitchell
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Department of Microbiology, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Departments of Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
| | - Satish K. Nair
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Departments of Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
| |
Collapse
|
10
|
Wang XY, Xie J. Response to Cold Adaption in Acinetobacter johnsonii XY27 from Spoiled Bigeye Tuna ( Thunnus obesus): Membrane Protein Composition and Protein Biomarker Identification by Proteomics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10000-10010. [PMID: 35919963 DOI: 10.1021/acs.jafc.2c03303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Acinetobacter johnsonii is one of the major food-spoilage bacteria and can survive under cold stress. In this study, the membrane composition, membrane permeability, and energy transduction of A. johnsonii XY27 cultured at 4 and 30 °C were examined comparatively by flow cytometry combined with liquid chromatography-mass spectrometry and gas chromatography-mass spectrometry. The Na+/K+ATPase activity, alkaline phosphatase and ATPase activity, fluorescence intensity, and cell viability in A. johnsonii XY27 increased with the decrease in cultivation temperature. The polyunsaturated fatty acid and monounsaturated fatty acids have a higher content in A. johnsonii XY27 cultured at 4 °C compared to that cultured at 30 °C, in which the contents of methyl palmitoleate, methyl myristoleate, and methyl oleate increased dramatically with decreasing temperature. Comparative proteomics analysis revealed that 31 proteins were downregulated and 4 proteins were upregulated, in which catalase-peroxidase 1 and cold shock proteins as biomarker proteins could effectively control A. johnsonii during cold adaptation.
Collapse
Affiliation(s)
- Xin-Yun Wang
- Shanghai Engineering Research Center of Aquatic Product Processing & Preservation, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai Ocean University, Shanghai 201306, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University, Shanghai Ocean University, Shanghai 201306, China
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jing Xie
- Shanghai Engineering Research Center of Aquatic Product Processing & Preservation, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai Ocean University, Shanghai 201306, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University, Shanghai Ocean University, Shanghai 201306, China
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
11
|
Genome-based characterization of a plasmid-associated micrococcin P1 biosynthetic gene cluster and virulence factors in Mammaliicoccus sciuri IMDO-S72. Appl Environ Microbiol 2021; 88:e0208821. [PMID: 34936836 DOI: 10.1128/aem.02088-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Analysis of the de novo assembled genome of Mammaliicoccus sciuri IMDO-S72 revealed the genetically encoded machinery behind its earlier reported antibacterial phenotype and gave further insight into the repertoire of putative virulence factors of this recently reclassified species. A plasmid-encoded biosynthetic gene cluster was held responsible for the antimicrobial activity of M. sciuri IMDO-S72, comprising genes involved in thiopeptide production. The compound encoded by this gene cluster was structurally identified as micrococcin P1. Further examination of its genome highlighted the ubiquitous presence of innate virulence factors mainly involved in surface colonization. Determinants contributing to aggressive virulence were generally absent, with exception of a plasmid-associated ica cluster. The native antibiotic resistance genes sal(A) and mecA were detected within the genome, amongst others, but were not consistently linked with a resistant phenotype. While mobile genetic elements were identified within the genome, such as an untypeable SCC element, they proved to be generally free of virulence- and antibiotic-related genes. These results further suggest a commensal lifestyle of M. sciuri and indicate the association of antibiotic resistance determinants with mobile genetic elements, as an important factor in conferring antibiotic resistance, in addition to their unilateral annotation. Importance Mammaliicoccus sciuri has been put forward as an important carrier of virulence and antibiotic resistance genes, which can be transmitted to clinically important staphylococcal species such as Staphylococcus aureus. As a common inhabitant of mammal skin, this species is believed to have a predominant commensal lifestyle although it has been reported as an opportunistic pathogen in some cases. This study provides an extensive genome-wide description of its putative virulence potential taking into consideration the genomic context in which these genes appear, an aspect that is often overlooked during virulence analysis. Additional genome and biochemical analysis linked M. sciuri with the production of micrococcin P1, gaining further insight to which extent these biosynthetic gene cluster are distributed amongst different related species. The frequent plasmid-associated character hints that these traits can be horizontally transferred and might confer a competitive advantage to its recipient within its ecological niche.
Collapse
|
12
|
Interhelical H-Bonds Modulate the Activity of a Polytopic Transmembrane Kinase. Biomolecules 2021; 11:biom11070938. [PMID: 34201916 PMCID: PMC8301901 DOI: 10.3390/biom11070938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/16/2021] [Accepted: 06/22/2021] [Indexed: 12/13/2022] Open
Abstract
DesK is a Histidine Kinase that allows Bacillus subtilis to maintain lipid homeostasis in response to changes in the environment. It is located in the membrane, and has five transmembrane helices and a cytoplasmic catalytic domain. The transmembrane region triggers the phosphorylation of the catalytic domain as soon as the membrane lipids rigidify. In this research, we study how transmembrane inter-helical interactions contribute to signal transmission; we designed a co-expression system that allows studying in vivo interactions between transmembrane helices. By Alanine-replacements, we identified a group of polar uncharged residues, whose side chains contain hydrogen-bond donors or acceptors, which are required for the interaction with other DesK transmembrane helices; a particular array of H-bond- residues plays a key role in signaling, transmitting information detected at the membrane level into the cell to finally trigger an adaptive response.
Collapse
|
13
|
Fernández P, Díaz AR, Ré MF, Porrini L, de Mendoza D, Albanesi D, Mansilla MC. Identification of Novel Thermosensors in Gram-Positive Pathogens. Front Mol Biosci 2020; 7:592747. [PMID: 33324680 PMCID: PMC7726353 DOI: 10.3389/fmolb.2020.592747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 10/28/2020] [Indexed: 11/13/2022] Open
Abstract
Temperature is a crucial variable that every living organism, from bacteria to humans, need to sense and respond to in order to adapt and survive. In particular, pathogenic bacteria exploit host-temperature sensing as a cue for triggering virulence gene expression. Here, we have identified and characterized two integral membrane thermosensor histidine kinases (HKs) from Gram-positive pathogens that exhibit high similarity to DesK, the extensively characterized cold sensor histidine kinase from Bacillus subtilis. Through in vivo experiments, we demonstrate that SA1313 from Staphylococcus aureus and BA5598 from Bacillus anthracis, which likely control the expression of putative ATP binding cassette (ABC) transporters, are regulated by environmental temperature. We show here that these HKs can phosphorylate the non-cognate response regulator DesR, partner of DesK, both in vitro and in vivo, inducing in B. subtilis the expression of the des gene upon a cold shock. In addition, we report the characterization of another DesK homolog from B. subtilis, YvfT, also closely associated to an ABC transporter. Although YvfT phosphorylates DesR in vitro, this sensor kinase can only induce des expression in B. subtilis when overexpressed together with its cognate response regulator YvfU. This finding evidences a physiological mechanism to avoid cross talk with DesK after a temperature downshift. Finally, we present data suggesting that the HKs studied in this work appear to monitor different ranges of membrane lipid properties variations to mount adaptive responses upon cooling. Overall, our findings point out that bacteria have evolved sophisticated mechanisms to assure specificity in the response to environmental stimuli. These findings pave the way to understand thermosensing mediated by membrane proteins that could have important roles upon host invasion by bacterial pathogens.
Collapse
Affiliation(s)
- Pilar Fernández
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Rosario, Argentina
| | - Alejandra Raquel Díaz
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Centro de Recursos Naturales Renovables de la Zona Semi-árida (CERZOS-CONICET), Bahía Blanca, Argentina
| | - María Florencia Ré
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Rosario, Argentina
| | - Lucía Porrini
- Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Diego de Mendoza
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Rosario, Argentina.,Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Daniela Albanesi
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Rosario, Argentina.,Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - María Cecilia Mansilla
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Rosario, Argentina.,Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| |
Collapse
|
14
|
Inda ME, Almada JC, Vazquez DB, Bortolotti A, Fernández A, Ruysschaert JM, Cybulski LE. Driving the catalytic activity of a transmembrane thermosensor kinase. Cell Mol Life Sci 2020; 77:3905-3912. [PMID: 31802141 PMCID: PMC11104839 DOI: 10.1007/s00018-019-03400-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/06/2019] [Accepted: 11/26/2019] [Indexed: 11/26/2022]
Abstract
DesK is a Bacillus thermosensor kinase that is inactive at high temperatures but turns activated when the temperature drops below 25 °C. Surprisingly, the catalytic domain (DesKC) lacking the transmembrane region is more active at higher temperature, showing an inverted regulation regarding DesK. How does the transmembrane region control the catalytic domain, repressing activity at high temperatures, but allowing activation at lower temperatures? By designing a set of temperature minimized sensors that share the same catalytic cytoplasmic domain but differ in number and position of hydrogen-bond (H-bond) forming residues along the transmembrane helix, we are able to tune, invert or disconnect activity from the input signal. By favoring differential H-bond networks, the activation peak could be moved towards lower or higher temperatures. This principle may be involved in regulation of other sensors as environmental physicochemical changes or mutations that modify the transmembrane H-bond pattern can tilt the equilibrium favoring alternative conformations.
Collapse
Affiliation(s)
- María Eugenia Inda
- Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario-Argentine National Research Council-CONICET, Suipacha 531, 2000, Rosario, Argentina
| | - Juan Cruz Almada
- Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario-Argentine National Research Council-CONICET, Suipacha 531, 2000, Rosario, Argentina
| | - Daniela Belén Vazquez
- Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario-Argentine National Research Council-CONICET, Suipacha 531, 2000, Rosario, Argentina
| | - Ana Bortolotti
- Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario-Argentine National Research Council-CONICET, Suipacha 531, 2000, Rosario, Argentina
| | - Ariel Fernández
- Argentine Mathematics Institute-IAM/CONICET, 1053, Buenos Aires, Argentina
- Chemistry Institute-INQUISUR/UNS, National Research Council-CONICET, 8000, Bahía Blanca, Argentina
| | - Jean Marie Ruysschaert
- Structure et Fonction des Membranes Biologiques (SFMB) Campus de la Plaine, Boulevard du Triomphe, CP206/02, 1050, Brussels, Belgium
| | - Larisa Estefanía Cybulski
- Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario-Argentine National Research Council-CONICET, Suipacha 531, 2000, Rosario, Argentina.
| |
Collapse
|
15
|
Erimban S, Daschakraborty S. Cryostabilization of the Cell Membrane of a Psychrotolerant Bacteria via Homeoviscous Adaptation. J Phys Chem Lett 2020; 11:7709-7716. [PMID: 32840376 DOI: 10.1021/acs.jpclett.0c01675] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Homeoviscous adaptation (maintenance of a critical balance between the saturated and unsaturated lipids) of the cell membrane of psychrotolerant bacteria is essential to protect them against freeze-thaw cycle. But how does the homeoviscous adaptation protect the cell membrane during cold stress? In this Letter, we answer this question using a coarse-grained molecular dynamics simulation technique. On the basis of the reported fatty acid profiles of psychrotolerant bacteria at different temperatures, multiple lipid membranes are simulated at a wide range of temperatures between 250 and 300 K. We explicate how the homeoviscous adaptation minimizes the effect of cold stress on the structure and fluidity of the membrane. Partial freezing of the saturated lipid domain occurs with the self-aggregation of saturated and unsaturated lipids near the melting temperature of the unadapted lipid membrane. The gel-like phase provides necessary local packing density that can be sensed by sensor proteins responsible for the homeoviscous adaptation.
Collapse
Affiliation(s)
- Shakkira Erimban
- Department of Chemistry, Indian Institute of Technology Patna, Patna, Bihar 801106, India
| | | |
Collapse
|
16
|
Bortolotti A, Vazquez DB, Almada JC, Inda ME, Drusin SI, Villalba JM, Moreno DM, Ruysschaert JM, Cybulski LE. A Transmembrane Histidine Kinase Functions as a pH Sensor. Biomolecules 2020; 10:biom10081183. [PMID: 32823946 PMCID: PMC7465017 DOI: 10.3390/biom10081183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/27/2020] [Accepted: 08/03/2020] [Indexed: 12/25/2022] Open
Abstract
The two-component system DesK-DesR regulates the synthesis of unsaturated fatty acids in the soil bacteria Bacillus subtilis. This system is activated at low temperature and maintains membrane lipid fluidity upon temperature variations. Here, we found that DesK—the transmembrane histidine kinase—also responds to pH and studied the mechanism of pH sensing. We propose that a helix linking the transmembrane region with the cytoplasmic catalytic domain is involved in pH sensing. This helix contains several glutamate, lysine, and arginine residues At neutral pH, the linker forms an alpha helix that is stabilized by hydrogen bonds in the i, i + 4 register and thus favors the kinase state. At low pH, protonation of glutamate residues breaks salt bridges, which results in helix destabilization and interruption of signaling. This mechanism inhibits unsaturated fatty acid synthesis and rigidifies the membrane when Bacillus grows in acidic conditions.
Collapse
Affiliation(s)
- Ana Bortolotti
- Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario-Argentine National Research Council—CONICET, Suipacha 531 CP 2000, Argentina; (A.B.); (D.B.V.); (J.C.A.); (M.E.I.); (J.M.V.)
| | - Daniela Belén Vazquez
- Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario-Argentine National Research Council—CONICET, Suipacha 531 CP 2000, Argentina; (A.B.); (D.B.V.); (J.C.A.); (M.E.I.); (J.M.V.)
| | - Juan Cruz Almada
- Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario-Argentine National Research Council—CONICET, Suipacha 531 CP 2000, Argentina; (A.B.); (D.B.V.); (J.C.A.); (M.E.I.); (J.M.V.)
| | - Maria Eugenia Inda
- Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario-Argentine National Research Council—CONICET, Suipacha 531 CP 2000, Argentina; (A.B.); (D.B.V.); (J.C.A.); (M.E.I.); (J.M.V.)
| | - Salvador Iván Drusin
- Departamento de Químico-Física, Facultad de Ciencias Bioquímicas y Farmacéuticas, Área Física, Universidad Nacional de Rosario, Suipacha 531, Rosario S2002LRK, Santa Fe, Argentina;
| | - Juan Manuel Villalba
- Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario-Argentine National Research Council—CONICET, Suipacha 531 CP 2000, Argentina; (A.B.); (D.B.V.); (J.C.A.); (M.E.I.); (J.M.V.)
| | - Diego M. Moreno
- Instituto de Química de Rosario (CONICET-UNR), Suipacha 570, S2002LRK Rosario, Santa Fe, Argentina;
- Área Química General e Inorgánica, Departamento de Química-Física, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario S2002LRK, Santa Fe, Argentina
| | - Jean Marie Ruysschaert
- Structure et Fonction des Membranes Biologiques (SFMB) Campus de la Plaine, CP206/02, Boulevard du Triomphe, 1050 Bruxelles, Belgium
- Correspondence: (J.M.R.); (L.E.C.)
| | - Larisa Estefania Cybulski
- Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario-Argentine National Research Council—CONICET, Suipacha 531 CP 2000, Argentina; (A.B.); (D.B.V.); (J.C.A.); (M.E.I.); (J.M.V.)
- Correspondence: (J.M.R.); (L.E.C.)
| |
Collapse
|
17
|
Modulation of Response Regulator CheY Reaction Kinetics by Two Variable Residues That Affect Conformation. J Bacteriol 2020; 202:JB.00089-20. [PMID: 32424010 DOI: 10.1128/jb.00089-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/09/2020] [Indexed: 01/16/2023] Open
Abstract
Microorganisms and plants utilize two-component systems to regulate adaptive responses to changing environmental conditions. Sensor kinases detect stimuli and alter their autophosphorylation activity accordingly. Signal propagation occurs via the transfer of phosphoryl groups from upstream kinases to downstream response regulator proteins. Removal of phosphoryl groups from the response regulator typically resets the system. Members of the same protein family may catalyze phosphorylation and dephosphorylation reactions with different efficiencies, exhibiting rate constants spanning many orders of magnitude to accommodate response time scales from milliseconds to days. We previously found that variable positions one or two residues to the C-terminal side of the conserved Asp phosphorylation site (D+2) or Thr/Ser (T+1/T+2) in response regulators alter reaction kinetics by direct interaction with phosphodonor or phosphoacceptor molecules. Here, we explore the kinetic effects of amino acid substitutions at the two positions immediately C-terminal to the conserved Lys (K+1/K+2) in the model Escherichia coli response regulator CheY. We measured CheY autophosphorylation and autodephosphorylation rate constants for 27 pairs of K+1/K+2 residues that represent 84% of naturally occurring response regulators. Effects on autodephosphorylation were modest, but autophosphorylation rate constants varied by 2 orders of magnitude, suggesting that the K+1/K+2 positions influence reaction kinetics by altering the conformational spectrum sampled by CheY at equilibrium. Additional evidence supporting this indirect mechanism includes the following: the effect on autophosphorylation rate constants is independent of the phosphodonor, the autophosphorylation rate constants and dissociation constants for the phosphoryl group analog BeF3 - are inversely correlated, and the K+1/K+2 positions are distant from the phosphorylation site.IMPORTANCE We have identified five variable positions in response regulators that allow the rate constants of autophosphorylation and autodephosporylation reactions each to be altered over 3 orders of magnitude in CheY. The distributions of variable residue combinations across response regulator subfamilies suggest that distinct mechanisms associated with different variable positions allow reaction rates to be tuned independently during evolution for diverse biological purposes. This knowledge could be used in synthetic-biology applications to adjust the properties (e.g., background noise and response duration) of biosensors and may allow prediction of response regulator reaction kinetics from the primary amino acid sequence.
Collapse
|
18
|
Phosphatase-defective DevS sensor kinase mutants permit constitutive expression of DevR-regulated dormancy genes in Mycobacterium tuberculosis. Biochem J 2020; 477:1669-1682. [PMID: 32309848 DOI: 10.1042/bcj20200113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/10/2020] [Accepted: 04/20/2020] [Indexed: 11/17/2022]
Abstract
The DevR-DevS/DosR-DosS two-component system of Mycobacterium tuberculosis, that comprises of DevS sensor kinase and DevR response regulator, is essential for bacterial adaptation to hypoxia by inducing dormancy regulon expression. The dominant phosphatase activity of DevS under aerobic conditions enables tight negative control, whereas its kinase function activates DevR under hypoxia to induce the dormancy regulon. A net balance in these opposing kinase and phosphatase activities of DevS calibrates the response output of DevR. To gain mechanistic insights into the kinase-phosphatase balance of DevS, we generated alanine substitution mutants of five residues located in DHp α1 helix of DevS, namely Phe-403, Gly-406, Leu-407, Gly-411 and His-415. For the first time, we have identified kinase positive phosphatase negative (K+P-) mutants in DevS by a single-site mutation in either Gly-406 or Leu-407. M. tuberculosis Gly-406A and Leu-407A mutant strains constitutively expressed the DevR regulon under aerobic conditions despite the presence of negative signal, oxygen. These mutant proteins exhibited ∼2-fold interaction defect with DevR. We conclude that Gly-406 and Leu-407 residues are individually essential for the phosphatase function of DevS. Our study provides new insights into the negative control mechanism of DevS by demonstrating the importance of an optimal interaction between DevR and DevS, and local changes associated with individual residues, Gly-406 and Leu-407, which mimic ligand-free DevS. These K+P- mutant strains are expected to facilitate the rapid aerobic screening of DevR antagonists in M. tuberculosis, thereby eliminating the requirement for hypoxic culture conditions.
Collapse
|
19
|
Yang Y, Lang N, Zhang L, Wu H, Jiang W, Gu Y. A novel regulatory pathway consisting of a two-component system and an ABC-type transporter contributes to butanol tolerance in Clostridium acetobutylicum. Appl Microbiol Biotechnol 2020; 104:5011-5023. [DOI: 10.1007/s00253-020-10555-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 02/23/2020] [Accepted: 03/16/2020] [Indexed: 11/28/2022]
|
20
|
Laut CL, Perry WJ, Metzger AL, Weiss A, Stauff DL, Walker S, Caprioli RM, Skaar EP. Bacillus anthracis Responds to Targocil-Induced Envelope Damage through EdsRS Activation of Cardiolipin Synthesis. mBio 2020; 11:e03375-19. [PMID: 32234818 PMCID: PMC7157781 DOI: 10.1128/mbio.03375-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 02/27/2020] [Indexed: 01/08/2023] Open
Abstract
Bacillus anthracis is a spore-forming bacterium that causes devastating infections and has been used as a bioterror agent. This pathogen can survive hostile environments through the signaling activity of two-component systems, which couple environmental sensing with transcriptional activation to initiate a coordinated response to stress. In this work, we describe the identification of a two-component system, EdsRS, which mediates the B. anthracis response to the antimicrobial compound targocil. Targocil is a cell envelope-targeting compound that is toxic to B. anthracis at high concentrations. Exposure to targocil causes damage to the cellular barrier and activates EdsRS to induce expression of a previously uncharacterized cardiolipin synthase, which we have named ClsT. Both EdsRS and ClsT are required for protection against targocil-dependent damage. Induction of clsT by EdsRS during targocil treatment results in an increase in cardiolipin levels, which protects B. anthracis from envelope damage. Together, these results reveal that a two-component system signaling response to an envelope-targeting antimicrobial induces production of a phospholipid associated with stabilization of the membrane. Cardiolipin is then used to repair envelope damage and promote B. anthracis viability.IMPORTANCE Compromising the integrity of the bacterial cell barrier is a common action of antimicrobials. Targocil is an antimicrobial that is active against the bacterial envelope. We hypothesized that Bacillus anthracis, a potential weapon of bioterror, senses and responds to targocil to alleviate targocil-dependent cell damage. Here, we show that targocil treatment increases the permeability of the cellular envelope and is particularly toxic to B. anthracis spores during outgrowth. In vegetative cells, two-component system signaling through EdsRS is activated by targocil. This results in an increase in the production of cardiolipin via a cardiolipin synthase, ClsT, which restores the loss of barrier function, thereby reducing the effectiveness of targocil. By elucidating the B. anthracis response to targocil, we have uncovered an intrinsic mechanism that this pathogen employs to resist toxicity and have revealed therapeutic targets that are important for bacterial defense against structural damage.
Collapse
Affiliation(s)
- Clare L Laut
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - William J Perry
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee, USA
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
| | | | - Andy Weiss
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Devin L Stauff
- Department of Biology, Grove City College, Grove City, Pennsylvania, USA
| | - Suzanne Walker
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Richard M Caprioli
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee, USA
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Eric P Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
21
|
Bouillet S, Wu T, Chen S, Stock AM, Gao R. Structural asymmetry does not indicate hemiphosphorylation in the bacterial histidine kinase CpxA. J Biol Chem 2020; 295:8106-8117. [PMID: 32094228 DOI: 10.1074/jbc.ra120.012757] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/19/2020] [Indexed: 11/06/2022] Open
Abstract
Histidine protein kinases (HKs) are prevalent prokaryotic sensor kinases that are central to phosphotransfer in two-component signal transduction systems, regulating phosphorylation of response regulator proteins that determine the output responses. HKs typically exist as dimers and can potentially autophosphorylate at each conserved histidine residue in the individual protomers, leading to diphosphorylation. However, analyses of HK phosphorylation in biochemical assays in vitro suggest negative cooperativity, whereby phosphorylation in one protomer of the dimer inhibits phosphorylation in the second protomer, leading to ∼50% phosphorylation of the available sites in dimers. This negative cooperativity is often correlated with an asymmetric domain arrangement, a common structural characteristic of autophosphorylation states in many HK structures. In this study, we engineered covalent dimers of the cytoplasmic domains of Escherichia coli CpxA, enabling us to quantify individual species: unphosphorylated, monophosphorylated, and diphosphorylated dimers. Together with mathematical modeling, we unambiguously demonstrate no cooperativity in autophosphorylation of CpxA despite its asymmetric structures, indicating that these asymmetric domain arrangements are not linked to negative cooperativity and hemiphosphorylation. Furthermore, the modeling indicated that many parameters, most notably minor amounts of ADP generated during autophosphorylation reactions or present in ATP preparations, can produce ∼50% total phosphorylation that may be mistakenly attributed to negative cooperativity. This study also establishes that the engineered covalent heterodimer provides a robust experimental system for investigating cooperativity in HK autophosphorylation and offers a useful tool for testing how symmetric or asymmetric structural features influence HK functions.
Collapse
Affiliation(s)
- Sophie Bouillet
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Rutgers University-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| | - Ti Wu
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Rutgers University-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| | - Shaoxing Chen
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Rutgers University-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| | - Ann M Stock
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Rutgers University-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| | - Rong Gao
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Rutgers University-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| |
Collapse
|
22
|
Saha S. Association between the membrane transporter proteins and type 2 diabetes mellitus. Expert Rev Clin Pharmacol 2020; 13:287-297. [PMID: 32066279 DOI: 10.1080/17512433.2020.1729125] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Introduction: The prevalence rate of diabetes is increasing day by day and the current scenario of the available agents for its treatment has given rise to stimulation in the search for new therapeutic targets and agents. Therefore the present review will examine the role of membrane composition in the pathophysiology of Type 2 Diabetes and the possible therapeutic approaches for this.Areas covered: Glucose transporter proteins (GLUTs) are integral membrane proteins which are responsible for facilitated glucose transport over the plasma membrane into cells. Thus, this chapter is an attempt to interpret the co-relation between membrane transporter proteins and lipid molecules of cell membrane and their implications in type 2 diabetes mellitus. The relationship between the composition controlled flexibility of the membrane in the insertion of GLUTs into cell membrane as well as its fusion with the membrane is the focus of this chapter.Expert opinion: There is increasing data on the central role of phospholipid composition toward T2DM. Plasma membrane lipid composition plays a key role in maintaining the machinery for insulin-independent GLUT insertion into the membrane as well as insulin-dependent GLUT4 containing vesicles. As a therapeutic option, the designing of new chemical entities should be aimed to decrease saturated fatty acids of lipid bilayer phospholipids to target type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Sarmistha Saha
- Department of Zoology, University School of Sciences, Gujarat University, Ahmedabad, India
| |
Collapse
|
23
|
Li C, Murugaiyan J, Thomas C, Alter T, Riedel C. Isolate Specific Cold Response of Yersinia enterocolitica in Transcriptional, Proteomic, and Membrane Physiological Changes. Front Microbiol 2020; 10:3037. [PMID: 32038527 PMCID: PMC6990146 DOI: 10.3389/fmicb.2019.03037] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 12/17/2019] [Indexed: 12/24/2022] Open
Abstract
Yersinia enterocolitica, a zoonotic foodborne pathogen, is able to withstand low temperatures. This psychrotrophic ability allows it to multiply in food stored in refrigerators. However, little is known about the Y. enterocolitica cold response. In this study, isolate-specific behavior at 4°C was demonstrated and the cold response was investigated by examining changes in phenotype, gene expression, and the proteome. Altered expression of cold-responsive genes showed that the ability to survive at low temperature depends on the capacity to acclimate and adapt to cold stress. This cold acclimation at the transcriptional level involves the transient induction and effective repression of cold-shock protein (Csp) genes. Moreover, the resumption of expression of genes encoding other non-Csp is essential during prolonged adaptation. Based on proteomic analyses, the predominant functional categories of cold-responsive proteins are associated with protein synthesis, cell membrane structure, and cell motility. In addition, changes in membrane fluidity and motility were shown to be important in the cold response of Y. enterocolitica. Isolate-specific differences in the transcription of membrane fluidity- and motility-related genes provided evidence to classify strains within a spectrum of cold response. The combination of different approaches has permitted the systematic description of the Y. enterocolitica cold response and gives a better understanding of the physiological processes underlying this phenomenon.
Collapse
Affiliation(s)
- Chenyang Li
- Institute of Food Safety and Food Hygiene, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Jayaseelan Murugaiyan
- Institute for Animal Hygiene and Environmental Health, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- Department of Biotechnology, SRM University AP, Amaravati, India
| | - Christian Thomas
- Department of Food Science and Technology, Beuth University of Applied Sciences Berlin, Berlin, Germany
| | - Thomas Alter
- Institute of Food Safety and Food Hygiene, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Carolin Riedel
- Institute of Food Safety and Food Hygiene, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
24
|
Buschiazzo A, Trajtenberg F. Two-Component Sensing and Regulation: How Do Histidine Kinases Talk with Response Regulators at the Molecular Level? Annu Rev Microbiol 2019; 73:507-528. [PMID: 31226026 DOI: 10.1146/annurev-micro-091018-054627] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Perceiving environmental and internal information and reacting in adaptive ways are essential attributes of living organisms. Two-component systems are relevant protein machineries from prokaryotes and lower eukaryotes that enable cells to sense and process signals. Implicating sensory histidine kinases and response regulator proteins, both components take advantage of protein phosphorylation and flexibility to switch conformations in a signal-dependent way. Dozens of two-component systems act simultaneously in any given cell, challenging our understanding about the means that ensure proper connectivity. This review dives into the molecular level, attempting to summarize an emerging picture of how histidine kinases and cognate response regulators achieve required efficiency, specificity, and directionality of signaling pathways, properties that rely on protein:protein interactions. α helices that carry information through long distances, the fine combination of loose and specific kinase/regulator interactions, and malleable reaction centers built when the two components meet emerge as relevant universal principles.
Collapse
Affiliation(s)
- Alejandro Buschiazzo
- Laboratory of Molecular and Structural Microbiology, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay; , .,Integrative Microbiology of Zoonotic Agents, Department of Microbiology, Institut Pasteur, Paris 75015, France
| | - Felipe Trajtenberg
- Laboratory of Molecular and Structural Microbiology, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay; ,
| |
Collapse
|
25
|
Ding Y, Shi Y, Yang S. Advances and challenges in uncovering cold tolerance regulatory mechanisms in plants. THE NEW PHYTOLOGIST 2019; 222:1690-1704. [PMID: 30664232 DOI: 10.1111/nph.15696] [Citation(s) in RCA: 389] [Impact Index Per Article: 77.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 01/15/2019] [Indexed: 05/18/2023]
Abstract
Contents Summary I. Introduction II. Cold stress and physiological responses in plants III. Sensing of cold signals in plants IV. Messenger molecules involved in cold signal transduction V. Cold signal transduction in plants VI. Conclusions and perspectives Acknowledgements References SUMMARY: Cold stress is a major environmental factor that seriously affects plant growth and development, and influences crop productivity. Plants have evolved a series of mechanisms that allow them to adapt to cold stress at both the physiological and molecular levels. Over the past two decades, much progress has been made in identifying crucial components involved in cold-stress tolerance and dissecting their regulatory mechanisms. In this review, we summarize recent major advances in our understanding of cold signalling and put forward open questions in the field of plant cold-stress responses. Answering these questions should help elucidate the molecular mechanisms underlying plant tolerance to cold stress.
Collapse
Affiliation(s)
- Yanglin Ding
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yiting Shi
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Shuhua Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
26
|
Bale NJ, Rijpstra WIC, Sahonero-Canavesi DX, Oshkin IY, Belova SE, Dedysh SN, Sinninghe Damsté JS. Fatty Acid and Hopanoid Adaption to Cold in the Methanotroph Methylovulum psychrotolerans. Front Microbiol 2019; 10:589. [PMID: 31024466 PMCID: PMC6460317 DOI: 10.3389/fmicb.2019.00589] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 03/07/2019] [Indexed: 12/31/2022] Open
Abstract
Three strains of aerobic psychrotolerant methanotrophic bacteria Methylovulum psychrotolerans, isolated from geographically remote low-temperature environments in Northern Russia, were grown at three different growth temperatures, 20, 10 and 4°C and were found to be capable of oxidizing methane at all temperatures. The three M. psychrotolerans strains adapted their membranes to decreasing growth temperature by increasing the percent of unsaturated fatty acid (FAs), both for the bulk and intact polar lipid (IPL)-bound FAs. Furthermore, the ratio of βOH-C16:0 to n-C16:0 increased as growth temperature decreased. The IPL head group composition did not change as an adaption to temperature. The most notable hopanoid temperature adaptation of M. psychrotolerans was an increase in unsaturated hopanols with decreasing temperature. As the growth temperature decreased from 20 to 4°C, the percent of unsaturated M. psychrotolerans bulk-FAs increased from 79 to 89 % while the total percent of unsaturated hopanoids increased from 27 to 49 %. While increased FA unsaturation in response to decreased temperature is a commonly observed response in order to maintain the liquid-crystalline character of bacterial membranes, hopanoid unsaturation upon cold exposition has not previously been described. In order to investigate the mechanisms of both FA and hopanoid cold-adaption in M. psychrotolerans we identified genes in the genome of M. psychrotolerans that potentially code for FA and hopanoid desaturases. The unsaturation of hopanoids represents a novel membrane adaption to maintain homeostasis upon cold adaptation.
Collapse
Affiliation(s)
- Nicole J Bale
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Institute for Sea Research, and Utrecht University, Texel, Netherlands
| | - W Irene C Rijpstra
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Institute for Sea Research, and Utrecht University, Texel, Netherlands
| | - Diana X Sahonero-Canavesi
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Institute for Sea Research, and Utrecht University, Texel, Netherlands
| | - Igor Y Oshkin
- Research Center of Biotechnology of the Russian Academy of Sciences, Winogradsky Institute of Microbiology, Moscow, Russia
| | - Svetlana E Belova
- Research Center of Biotechnology of the Russian Academy of Sciences, Winogradsky Institute of Microbiology, Moscow, Russia
| | - Svetlana N Dedysh
- Research Center of Biotechnology of the Russian Academy of Sciences, Winogradsky Institute of Microbiology, Moscow, Russia
| | - Jaap S Sinninghe Damsté
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Institute for Sea Research, and Utrecht University, Texel, Netherlands.,Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
27
|
Inda ME, Vazquez DB, Fernández A, Cybulski LE. Reverse Engineering of a Thermosensing Regulator Switch. J Mol Biol 2019; 431:1016-1024. [PMID: 30738600 DOI: 10.1016/j.jmb.2019.01.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 01/08/2019] [Accepted: 01/09/2019] [Indexed: 01/29/2023]
Abstract
To address the mechanism of thermosensing and its implications for molecular engineering, we previously deconstructed the functional components of the bacterial thermosensor DesK, a histidine kinase with a five-span transmembrane domain that detects temperature changes. The system was first simplified by building a sensor that consists of a single chimerical transmembrane segment that retained full sensing capacity. Genetic and biophysical analysis of this minimal sensor enabled the identification of three modular components named determinants of thermodetection (DOTs). Here we combine and tune the DOTs to determine their contribution to activity. A transmembrane zipper represents the master DOT that drives a reversible and activating dimerization through the formation of hydrogen bonds. Our findings provide the mechanism and insights to construct a synthetic transmembrane helix based on a poly-valine scaffold that harbors the DOTs and regulates the activity. The construct constitutes a modular switch that may be exploited in biotechnology and genetic circuitry.
Collapse
Affiliation(s)
- María Eugenia Inda
- Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Suipacha 531, Universidad Nacional de Rosario, Argentine National Research Council (CONICET), Rosario, Argentina
| | - Daniela B Vazquez
- Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Suipacha 531, Universidad Nacional de Rosario, Argentine National Research Council (CONICET), Rosario, Argentina
| | - Ariel Fernández
- Argentine Institute of Mathematics (IAM), Buenos Aires; Chemistry Institute - INQUISUR (UNS), Bahia Blanca, National Research Council - (CONICET), Argentina
| | - Larisa E Cybulski
- Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Suipacha 531, Universidad Nacional de Rosario, Argentine National Research Council (CONICET), Rosario, Argentina.
| |
Collapse
|
28
|
Díaz AR, Porrini L, de Mendoza D, Mansilla MC. A genetic screen for mutations affecting temperature sensing in Bacillus subtilis. MICROBIOLOGY-SGM 2018; 165:90-101. [PMID: 30431418 DOI: 10.1099/mic.0.000741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Two component systems, composed of a receptor histidine kinase and a cytoplasmic response regulator, regulate pivotal cellular processes in microorganisms. Here we describe a new screening procedure for the identification of amino acids that are crucial for the functioning of DesK, a prototypic thermosensor histidine kinase from Bacillus subtilis. This experimental strategy involves random mutagenesis of the membrane sensor domain of the DesK coding sequence, followed by the use of a detection procedure based on changes in the colony morphogenesis that take place during the sporulation programme of B. subtilis. This method permitted us the recovery of mutants defective in DesK temperature sensing. This screening approach could be applied to all histidine kinases of B. subtilis and also to kinases of other bacteria that are functionally expressed in this organism. Moreover, this reporter assay could be expanded to develop reporter assays for a variety of transcriptionally regulated systems.
Collapse
Affiliation(s)
- Alejandra R Díaz
- 1Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur and Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS-CONICET), Bahía Blanca, Argentina
| | - Lucia Porrini
- 2Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario and Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Rosario, Argentina
| | - Diego de Mendoza
- 2Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario and Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Rosario, Argentina
| | - María C Mansilla
- 2Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario and Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Rosario, Argentina
| |
Collapse
|
29
|
Ding Y, Lv J, Shi Y, Gao J, Hua J, Song C, Gong Z, Yang S. EGR2 phosphatase regulates OST1 kinase activity and freezing tolerance in Arabidopsis. EMBO J 2018; 38:embj.201899819. [PMID: 30429206 DOI: 10.15252/embj.201899819] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 10/04/2018] [Accepted: 10/19/2018] [Indexed: 01/08/2023] Open
Abstract
OST1 (open stomata 1) protein kinase plays a central role in regulating freezing tolerance in Arabidopsis; however, the mechanism underlying cold activation of OST1 remains unknown. Here, we report that a plasma membrane-localized clade-E growth-regulating 2 (EGR2) phosphatase interacts with OST1 and inhibits OST1 activity under normal conditions. EGR2 is N-myristoylated by N-myristoyltransferase NMT1 at 22°C, which is important for its interaction with OST1. Moreover, myristoylation of EGR2 is required for its function in plant freezing tolerance. Under cold stress, the interaction of EGR2 and NMT1 is attenuated, leading to the suppression of EGR2 myristoylation in plants. Plant newly synthesized unmyristoylated EGR2 has decreased binding ability to OST1 and also interferes with the EGR2-OST1 interaction under cold stress. Consequently, the EGR2-mediated inhibition of OST1 activity is released. Consistently, mutations of EGRs cause plant tolerance to freezing, whereas overexpression of EGR2 exhibits decreased freezing tolerance. This study thus unravels a molecular mechanism underlying cold activation of OST1 by membrane-localized EGR2 and suggests that a myristoyl switch on EGR2 helps plants to adapt to cold stress.
Collapse
Affiliation(s)
- Yanglin Ding
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jian Lv
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yiting Shi
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Junping Gao
- College of Horticulture, China Agricultural University, Beijing, China
| | - Jian Hua
- Department of Plant Biology, Cornell University, Ithaca, NY, USA
| | - Chunpeng Song
- Institute of Plant Stress Biology, Collaborative Innovation Center of Crop Stress Biology, Henan University, Kaifeng, China
| | - Zhizhong Gong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Shuhua Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
30
|
Vaňousová K, Beranová J, Fišer R, Jemioła-Rzemińska M, Matyska Lišková P, Cybulski L, Strzałka K, Konopásek I. Membrane fluidization by alcohols inhibits DesK-DesR signalling in Bacillus subtilis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:718-727. [DOI: 10.1016/j.bbamem.2017.12.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 12/13/2017] [Accepted: 12/15/2017] [Indexed: 11/24/2022]
|
31
|
Gianfrancesco MA, Paquot N, Piette J, Legrand-Poels S. Lipid bilayer stress in obesity-linked inflammatory and metabolic disorders. Biochem Pharmacol 2018; 153:168-183. [PMID: 29462590 DOI: 10.1016/j.bcp.2018.02.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 02/15/2018] [Indexed: 12/13/2022]
Abstract
The maintenance of the characteristic lipid compositions and physicochemical properties of biological membranes is essential for their proper function. Mechanisms allowing to sense and restore membrane homeostasis have been identified in prokaryotes for a long time and more recently in eukaryotes. A membrane remodeling can result from aberrant metabolism as seen in obesity. In this review, we describe how such lipid bilayer stress can account for the modulation of membrane proteins involved in the pathogenesis of obesity-linked inflammatory and metabolic disorders. We address the case of the Toll-like receptor 4 that is implicated in the obesity-related low grade inflammation and insulin resistance. The lipid raft-mediated TLR4 activation is promoted by an enrichment of the plasma membrane with saturated lipids or cholesterol increasing the lipid phase order. We discuss of the plasma membrane Na, K-ATPase that illustrates a new concept according to which direct interactions between specific residues and particular lipids determine both stability and activity of the pump in parallel with indirect effects of the lipid bilayer. The closely related sarco(endo)-plasmic Ca-ATPase embedded in the more fluid ER membrane seems to be more sensitive to a lipid bilayer stress as demonstrated by its inactivation in cholesterol-loaded macrophages or its inhibition mediated by an increased PtdCho/PtdEtn ratio in obese mice hepatocytes. Finally, we describe the model recently proposed for the activation of the conserved IRE-1 protein through alterations in the ER membrane lipid packing and thickness. Such IRE-1 activation could occur in response to abnormal lipid synthesis and membrane remodeling as observed in hepatocytes exposed to excess nutrients. Since the IRE-1/XBP1 branch also stimulates the lipid synthesis, this pathway could create a vicious cycle "lipogenesis-ER lipid bilayer stress-lipogenesis" amplifying hepatic ER pathology and the obesity-linked systemic metabolic defects.
Collapse
Affiliation(s)
- Marco A Gianfrancesco
- Laboratory of Immunometabolism and Nutrition, GIGA-I3, University of Liège, Liège, Belgium; Division of Diabetes, Nutrition and Metabolic Disorders, Department of Medicine, University Hospital of Liège, Liège, Belgium
| | - Nicolas Paquot
- Laboratory of Immunometabolism and Nutrition, GIGA-I3, University of Liège, Liège, Belgium; Division of Diabetes, Nutrition and Metabolic Disorders, Department of Medicine, University Hospital of Liège, Liège, Belgium
| | - Jacques Piette
- Laboratory of Virology and Immunology, GIGA-Molecular Biology of Diseases, University of Liège, Liège, Belgium
| | - Sylvie Legrand-Poels
- Laboratory of Immunometabolism and Nutrition, GIGA-I3, University of Liège, Liège, Belgium; Laboratory of Virology and Immunology, GIGA-Molecular Biology of Diseases, University of Liège, Liège, Belgium.
| |
Collapse
|
32
|
Hernández-Eligio A, Andrade Á, Soto L, Morett E, Juárez K. The unphosphorylated form of the PilR two-component system regulates pilA gene expression in Geobacter sulfurreducens. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:25693-25701. [PMID: 26888530 DOI: 10.1007/s11356-016-6192-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 01/27/2016] [Indexed: 05/21/2023]
Abstract
In Geobacter sulfurreducens, metal reduction and generation of bioelectricity require the participation of several elements, and among them, the type IV pili has an essential role. The pilus is composed of multiple PilA monomers. Expression of pilA gene depends mainly on the σ54 factor and the response regulator protein PilR. In this work, we characterized the role of the PilS-PilR two-component system in the regulation of the pilA gene expression. Experimental evidence indicates that PilS is autophosphorylated at the His-334 residue, which in turn is transferred to the conserved Asp-53 in PilR. Contrary to other PilS-PilR systems, substitution D53N in PilR resulted in higher activation of the pilA gene. By using a pilA::luxCDABE fusion with different promoter fragments and in vitro DNA-binding assays, we demonstrated the existence of multiple functional PilR binding sites. A regulatory model in which the non-phosphorylated PilR protein directs activation of pilA expression by binding to two sites in the promoter region of this gene is presented.
Collapse
Affiliation(s)
- Alberto Hernández-Eligio
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001. Col. Chamilpa, Cuernavaca, Morelos, 62210, México
- CONACYT-Research Fellow, Ciudad de México, México
| | - Ángel Andrade
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001. Col. Chamilpa, Cuernavaca, Morelos, 62210, México
| | - Lizeth Soto
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001. Col. Chamilpa, Cuernavaca, Morelos, 62210, México
| | - Enrique Morett
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001. Col. Chamilpa, Cuernavaca, Morelos, 62210, México
- Instituto Nacional de Medicina Genómica, Periférico Sur 4809, Arenal Tepepan, Tlalpan, Ciudad de México, D.F., 14610, México
| | - Katy Juárez
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001. Col. Chamilpa, Cuernavaca, Morelos, 62210, México.
| |
Collapse
|
33
|
Multiscale approach to the activation and phosphotransfer mechanism of CpxA histidine kinase reveals a tight coupling between conformational and chemical steps. Biochem Biophys Res Commun 2017; 498:305-312. [PMID: 28911864 DOI: 10.1016/j.bbrc.2017.09.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 08/23/2017] [Accepted: 09/08/2017] [Indexed: 11/21/2022]
Abstract
Sensor histidine kinases (SHKs) are an integral component of the molecular machinery that permits bacteria to adapt to widely changing environmental conditions. CpxA, an extensively studied SHK, is a multidomain homodimeric protein with each subunit consisting of a periplasmic sensor domain, a transmembrane domain, a signal-transducing HAMP domain, a dimerization and histidine phospho-acceptor sub-domain (DHp) and a catalytic and ATP-binding subdomain (CA). The key activation event involves the rearrangement of the HAMP-DHp helical core and translation of the CA towards the acceptor histidine, which presumably results in an autokinase-competent complex. In the present work we integrate coarse-grained, all-atom, and hybrid QM-MM computer simulations to probe the large-scale conformational reorganization that takes place from the inactive to the autokinase-competent state (conformational step), and evaluate its relation to the autokinase reaction itself (chemical step). Our results highlight a tight coupling between conformational and chemical steps, underscoring the advantage of CA walking along the DHp core, to favor a reactive tautomeric state of the phospho-acceptor histidine. The results not only represent an example of multiscale modelling, but also show how protein dynamics can promote catalysis.
Collapse
|
34
|
Imelio JA, Larrieux N, Mechaly AE, Trajtenberg F, Buschiazzo A. Snapshots of the Signaling Complex DesK:DesR in Different Functional States Using Rational Mutagenesis and X-ray Crystallography. Bio Protoc 2017; 7:e2510. [PMID: 34541173 DOI: 10.21769/bioprotoc.2510] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/13/2017] [Accepted: 07/24/2017] [Indexed: 11/02/2022] Open
Abstract
We have developed protocols to generate site-specific variants of the histidine-kinase DesK and its cognate response regulator DesR, conducive to trapping different signaling states of the proteins. Co-expression of both partners in E. coli, ensuring an excess of the regulator, was essential for soluble production of the DesK:DesR complexes and further purification. The 3D structures of the complex trapped in the phosphotransferase and in the phosphatase reaction steps, were solved by X-ray crystallography using molecular replacement. The solution was not trivial, and we found that in silico-generated models used as search probes, were instrumental to succeeding in placing a large portion of the complex in the asymmetric unit. Electron density maps were then clear enough to allow for manual model building attaining complete atomic models. These methods contribute to tackling a major challenge in the bacterial signaling field, namely obtaining stable kinase:regulator complexes, in distinct conformational states, amenable for high-resolution crystallographic studies.
Collapse
Affiliation(s)
- Juan Andres Imelio
- Laboratory of Molecular and Structural Microbiology, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Nicole Larrieux
- Laboratory of Molecular and Structural Microbiology, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Ariel Edgardo Mechaly
- Laboratory of Molecular and Structural Microbiology, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Felipe Trajtenberg
- Laboratory of Molecular and Structural Microbiology, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Alejandro Buschiazzo
- Laboratory of Molecular and Structural Microbiology, Institut Pasteur de Montevideo, Montevideo, Uruguay.,Department of Microbiology, Institut Pasteur, Paris, France
| |
Collapse
|
35
|
Baraúna RA, Freitas DY, Pinheiro JC, Folador ARC, Silva A. A Proteomic Perspective on the Bacterial Adaptation to Cold: Integrating OMICs Data of the Psychrotrophic Bacterium Exiguobacterium antarcticum B7. Proteomes 2017; 5:proteomes5010009. [PMID: 28248259 PMCID: PMC5372230 DOI: 10.3390/proteomes5010009] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/24/2016] [Accepted: 12/05/2016] [Indexed: 11/30/2022] Open
Abstract
Since the publication of one of the first studies using 2D gel electrophoresis by Patrick H. O’Farrell in 1975, several other studies have used that method to evaluate cellular responses to different physicochemical variations. In environmental microbiology, bacterial adaptation to cold environments is a “hot topic” because of its application in biotechnological processes. As in other fields, gel-based and gel-free proteomic methods have been used to determine the molecular mechanisms of adaptation to cold of several psychrotrophic and psychrophilic bacterial species. In this review, we aim to describe and discuss these main molecular mechanisms of cold adaptation, referencing proteomic studies that have made significant contributions to our current knowledge in the area. Furthermore, we use Exiguobacterium antarcticum B7 as a model organism to present the importance of integrating genomic, transcriptomic, and proteomic data. This species has been isolated in Antarctica and previously studied at all three omic levels. The integration of these data permitted more robust conclusions about the mechanisms of bacterial adaptation to cold.
Collapse
Affiliation(s)
- Rafael A Baraúna
- Laboratory of Genomics and Bioinformatics, Center of Genomics and Systems Biology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil.
| | - Dhara Y Freitas
- Laboratory of Genomics and Bioinformatics, Center of Genomics and Systems Biology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil.
| | - Juliana C Pinheiro
- Laboratory of Genomics and Bioinformatics, Center of Genomics and Systems Biology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil.
| | - Adriana R C Folador
- Laboratory of Genomics and Bioinformatics, Center of Genomics and Systems Biology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil.
| | - Artur Silva
- Laboratory of Genomics and Bioinformatics, Center of Genomics and Systems Biology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil.
| |
Collapse
|
36
|
Bush A, Vasen G, Constantinou A, Dunayevich P, Patop IL, Blaustein M, Colman-Lerner A. Yeast GPCR signaling reflects the fraction of occupied receptors, not the number. Mol Syst Biol 2016; 12:898. [PMID: 28034910 PMCID: PMC5199120 DOI: 10.15252/msb.20166910] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
According to receptor theory, the effect of a ligand depends on the amount of agonist-receptor complex. Therefore, changes in receptor abundance should have quantitative effects. However, the response to pheromone in Saccharomyces cerevisiae is robust (unaltered) to increases or reductions in the abundance of the G-protein-coupled receptor (GPCR), Ste2, responding instead to the fraction of occupied receptor. We found experimentally that this robustness originates during G-protein activation. We developed a complete mathematical model of this step, which suggested the ability to compute fractional occupancy depends on the physical interaction between the inhibitory regulator of G-protein signaling (RGS), Sst2, and the receptor. Accordingly, replacing Sst2 by the heterologous hsRGS4, incapable of interacting with the receptor, abolished robustness. Conversely, forcing hsRGS4:Ste2 interaction restored robustness. Taken together with other results of our work, we conclude that this GPCR pathway computes fractional occupancy because ligand-bound GPCR-RGS complexes stimulate signaling while unoccupied complexes actively inhibit it. In eukaryotes, many RGSs bind to specific GPCRs, suggesting these complexes with opposing activities also detect fraction occupancy by a ratiometric measurement. Such complexes operate as push-pull devices, which we have recently described.
Collapse
Affiliation(s)
- Alan Bush
- Department of Physiology, Molecular and Cellular Biology, University of Buenos Aires, Buenos Aires, Argentina.,Institute of Physiology, Molecular Biology and Neurosciences, National Research Council (CONICET), Buenos Aires, Argentina
| | - Gustavo Vasen
- Department of Physiology, Molecular and Cellular Biology, University of Buenos Aires, Buenos Aires, Argentina.,Institute of Physiology, Molecular Biology and Neurosciences, National Research Council (CONICET), Buenos Aires, Argentina
| | - Andreas Constantinou
- Department of Physiology, Molecular and Cellular Biology, University of Buenos Aires, Buenos Aires, Argentina.,Institute of Physiology, Molecular Biology and Neurosciences, National Research Council (CONICET), Buenos Aires, Argentina
| | - Paula Dunayevich
- Department of Physiology, Molecular and Cellular Biology, University of Buenos Aires, Buenos Aires, Argentina.,Institute of Physiology, Molecular Biology and Neurosciences, National Research Council (CONICET), Buenos Aires, Argentina
| | - Inés Lucía Patop
- Department of Physiology, Molecular and Cellular Biology, University of Buenos Aires, Buenos Aires, Argentina.,Institute of Physiology, Molecular Biology and Neurosciences, National Research Council (CONICET), Buenos Aires, Argentina
| | - Matías Blaustein
- Department of Physiology, Molecular and Cellular Biology, University of Buenos Aires, Buenos Aires, Argentina.,Institute of Physiology, Molecular Biology and Neurosciences, National Research Council (CONICET), Buenos Aires, Argentina
| | - Alejandro Colman-Lerner
- Department of Physiology, Molecular and Cellular Biology, University of Buenos Aires, Buenos Aires, Argentina .,Institute of Physiology, Molecular Biology and Neurosciences, National Research Council (CONICET), Buenos Aires, Argentina
| |
Collapse
|
37
|
Trajtenberg F, Imelio JA, Machado MR, Larrieux N, Marti MA, Obal G, Mechaly AE, Buschiazzo A. Regulation of signaling directionality revealed by 3D snapshots of a kinase:regulator complex in action. eLife 2016; 5:e21422. [PMID: 27938660 PMCID: PMC5231405 DOI: 10.7554/elife.21422] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 12/09/2016] [Indexed: 01/19/2023] Open
Abstract
Two-component systems (TCS) are protein machineries that enable cells to respond to input signals. Histidine kinases (HK) are the sensory component, transferring information toward downstream response regulators (RR). HKs transfer phosphoryl groups to their specific RRs, but also dephosphorylate them, overall ensuring proper signaling. The mechanisms by which HKs discriminate between such disparate directions, are yet unknown. We now disclose crystal structures of the HK:RR complex DesK:DesR from Bacillus subtilis, comprising snapshots of the phosphotransfer and the dephosphorylation reactions. The HK dictates the reactional outcome through conformational rearrangements that include the reactive histidine. The phosphotransfer center is asymmetric, poised for dissociative nucleophilic substitution. The structural bases of HK phosphatase/phosphotransferase control are uncovered, and the unexpected discovery of a dissociative reactional center, sheds light on the evolution of TCS phosphotransfer reversibility. Our findings should be applicable to a broad range of signaling systems and instrumental in synthetic TCS rewiring.
Collapse
Affiliation(s)
- Felipe Trajtenberg
- Laboratory of Molecular and Structural Microbiology, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Juan A Imelio
- Laboratory of Molecular and Structural Microbiology, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Matías R Machado
- Biomolecular Simulations, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Nicole Larrieux
- Laboratory of Molecular and Structural Microbiology, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Marcelo A Marti
- Departamento de Química Biológica e IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Gonzalo Obal
- Protein Biophysics Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Ariel E Mechaly
- Laboratory of Molecular and Structural Microbiology, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Alejandro Buschiazzo
- Laboratory of Molecular and Structural Microbiology, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Département de Microbiologie, Institut Pasteur, Paris, France
| |
Collapse
|
38
|
Inda ME, Oliveira RG, de Mendoza D, Cybulski LE. The Single Transmembrane Segment of Minimal Sensor DesK Senses Temperature via a Membrane-Thickness Caliper. J Bacteriol 2016; 198:2945-2954. [PMID: 27528507 PMCID: PMC5055599 DOI: 10.1128/jb.00431-16] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 08/08/2016] [Indexed: 02/07/2023] Open
Abstract
Thermosensors detect temperature changes and trigger cellular responses crucial for survival at different temperatures. The thermosensor DesK is a transmembrane (TM) histidine kinase which detects a decrease in temperature through its TM segments (TMS). Here, we address a key issue: how a physical stimulus such as temperature can be converted into a cellular response. We show that the thickness of Bacillus lipid membranes varies with temperature and that such variations can be detected by DesK with great precision. On the basis of genetic studies and measurements of in vitro activity of a DesK construct with a single TMS (minimal sensor DesK [MS-DesK]), reconstituted in liposomes, we propose an interplay mechanism directed by a conserved dyad, phenylalanine 8-lysine 10. This dyad is critical to anchor the only transmembrane segment of the MS-DesK construct to the extracellular water-lipid interphase and is required for the transmembrane segment of MS-DesK to function as a caliper for precise measurement of membrane thickness. The data suggest that positively charged lysine 10, which is located in the hydrophobic core of the membrane but is close to the water-lipid interface, pulls the transmembrane region toward the water phase to localize its charge at the interface. Nevertheless, the hydrophobic residue phenylalanine 8, located at the N-terminal extreme of the TMS, has a strong tendency to remain in the lipid phase, impairing access of lysine 10 to the water phase. The outcome of this interplay is a fine-tuned sensitivity to membrane thickness that elicits conformational changes that favor different signaling states of the protein. IMPORTANCE The ability to sense and respond to extracellular signals is essential for cell survival. One example is the cellular response to temperature variation. How do cells "sense" temperature changes? It has been proposed that the bacterial thermosensor DesK acts as a molecular caliper measuring membrane thickness variations that would occur as a consequence of temperature changes and activates a pathway to restore membrane fluidity at low temperature. Here, we demonstrated that membrane thickness variations do occur at physiological temperatures by directly measuring Bacillus lipid membrane thickness. We also dissected the N-terminal sensing motif of MS-DesK at the molecular-biophysical level and found that the dyad phenylalanine-lysine at the water-lipid phase is critical for achievement of a fine-tuned sensitivity to temperature.
Collapse
Affiliation(s)
- Maria E Inda
- Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Suipacha, Rosario, Argentina
| | - Rafael G Oliveira
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, CONICET, and Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina
| | - Diego de Mendoza
- Instituto de Biología Molecular y Celular de Rosario, CONICET, Universidad Nacional de Rosario, Predio CONICET, Rosario, Argentina
| | - Larisa E Cybulski
- Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Suipacha, Rosario, Argentina
| |
Collapse
|
39
|
Abstract
Fundamental questions remain unresolved in diabetes: What is the actual mechanism of glucose toxicity? Why is there insulin resistance in type 2 diabetes? Why do diets rich in sugars or saturated fatty acids increase the risk of developing diabetes? Studying the C. elegans homologs of the anti-diabetic adiponectin receptors (AdipoR1 and AdipoR2) has led us to exciting new discoveries and to revisit what may be termed “The Membrane Theory of Diabetes”. We hypothesize that excess saturated fatty acids (obtained through a diet rich in saturated fats or through conversion of sugars into saturated fats via lipogenesis) leads to rigid cellular membranes that in turn impair insulin signalling, glucose uptake and blood circulation, thus creating a vicious cycle that contributes to the development of overt type 2 diabetes. This hypothesis is supported by our own studies in C. elegans and by a wealth of literature concerning membrane composition in diabetics. The purpose of this review is to survey this literature in the light of the new results, and to provide an admittedly membrane-centric view of diabetes.
Collapse
|
40
|
Characterization of a temperature-responsive two component regulatory system from the Antarctic archaeon, Methanococcoides burtonii. Sci Rep 2016; 6:24278. [PMID: 27052690 PMCID: PMC4823666 DOI: 10.1038/srep24278] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 03/23/2016] [Indexed: 01/18/2023] Open
Abstract
Cold environments dominate the Earth’s biosphere and the resident microorganisms play critical roles in fulfilling global biogeochemical cycles. However, only few studies have examined the molecular basis of thermosensing; an ability that microorganisms must possess in order to respond to environmental temperature and regulate cellular processes. Two component regulatory systems have been inferred to function in thermal regulation of gene expression, but biochemical studies assessing these systems in Bacteria are rare, and none have been performed in Archaea or psychrophiles. Here we examined the LtrK/LtrR two component regulatory system from the Antarctic archaeon, Methanococcoides burtonii, assessing kinase and phosphatase activities of wild-type and mutant proteins. LtrK was thermally unstable and had optimal phosphorylation activity at 10 °C (the lowest optimum activity for any psychrophilic enzyme), high activity at 0 °C and was rapidly thermally inactivated at 30 °C. These biochemical properties match well with normal environmental temperatures of M. burtonii (0–4 °C) and the temperature this psychrophile is capable of growing at in the laboratory (−2 to 28 °C). Our findings are consistent with a role for LtrK in performing phosphotransfer reactions with LtrR that could lead to temperature-dependent gene regulation.
Collapse
|
41
|
Svensk E, Devkota R, Ståhlman M, Ranji P, Rauthan M, Magnusson F, Hammarsten S, Johansson M, Borén J, Pilon M. Caenorhabditis elegans PAQR-2 and IGLR-2 Protect against Glucose Toxicity by Modulating Membrane Lipid Composition. PLoS Genet 2016; 12:e1005982. [PMID: 27082444 PMCID: PMC4833288 DOI: 10.1371/journal.pgen.1005982] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 03/16/2016] [Indexed: 12/19/2022] Open
Abstract
In spite of the worldwide impact of diabetes on human health, the mechanisms behind glucose toxicity remain elusive. Here we show that C. elegans mutants lacking paqr-2, the worm homolog of the adiponectin receptors AdipoR1/2, or its newly identified functional partner iglr-2, are glucose intolerant and die in the presence of as little as 20 mM glucose. Using FRAP (Fluorescence Recovery After Photobleaching) on living worms, we found that cultivation in the presence of glucose causes a decrease in membrane fluidity in paqr-2 and iglr-2 mutants and that genetic suppressors of this sensitivity act to restore membrane fluidity by promoting fatty acid desaturation. The essential roles of paqr-2 and iglr-2 in the presence of glucose are completely independent from daf-2 and daf-16, the C. elegans homologs of the insulin receptor and its downstream target FoxO, respectively. Using bimolecular fluorescence complementation, we also show that PAQR-2 and IGLR-2 interact on plasma membranes and thus may act together as a fluidity sensor that controls membrane lipid composition.
Collapse
Affiliation(s)
- Emma Svensk
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Ranjan Devkota
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Marcus Ståhlman
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Parmida Ranji
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Manish Rauthan
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Fredrik Magnusson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Sofia Hammarsten
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Maja Johansson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Jan Borén
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Marc Pilon
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
42
|
Saita E, Abriata LA, Tsai YT, Trajtenberg F, Lemmin T, Buschiazzo A, Dal Peraro M, de Mendoza D, Albanesi D. A coiled coil switch mediates cold sensing by the thermosensory protein DesK. Mol Microbiol 2015; 98:258-71. [PMID: 26172072 DOI: 10.1111/mmi.13118] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2015] [Indexed: 12/13/2022]
Abstract
The thermosensor histidine kinase DesK from Bacillus subtilis senses changes in membrane fluidity initiating an adaptive response. Structural changes in DesK have been implicated in transmembrane signaling, but direct evidence is still lacking. On the basis of structure-guided mutagenesis, we now propose a mechanism of DesK-mediated signal sensing and transduction. The data indicate that stabilization/destabilization of a 2-helix coiled coil, which connects the transmembrane sensory domain of DesK to its cytosolic catalytic region, is crucial to control its signaling state. Computational modeling and simulations reveal couplings between protein, water and membrane mechanics. We propose that membrane thickening is the main driving force for signal sensing and that it acts by inducing helix stretching and rotation prompting an asymmetric kinase-competent state. Overall, the known structural changes of the sensor kinase, as well as further dynamic rearrangements that we now predict, consistently link structure determinants to activity modulation.
Collapse
Affiliation(s)
- Emilio Saita
- Laboratorio de Fisiología Microbiana, Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Ocampo y Esmeralda, Predio CONICET Rosario, 2000, Rosario, Argentina
| | - Luciano A Abriata
- Laboratory for Biomolecular Modeling, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Swiss Institute of Bioinformatics (SIB), AAB011 Station 19, 1015, Lausanne, Switzerland
| | - Yi Ting Tsai
- Laboratorio de Fisiología Microbiana, Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Ocampo y Esmeralda, Predio CONICET Rosario, 2000, Rosario, Argentina
| | - Felipe Trajtenberg
- Institut Pasteur de Montevideo, Unit of Protein Crystallography, Mataojo 2020, Montevideo, 11400, Uruguay
| | - Thomas Lemmin
- Laboratory for Biomolecular Modeling, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Swiss Institute of Bioinformatics (SIB), AAB011 Station 19, 1015, Lausanne, Switzerland
| | - Alejandro Buschiazzo
- Institut Pasteur de Montevideo, Unit of Protein Crystallography, Mataojo 2020, Montevideo, 11400, Uruguay.,Département de Biologie Structurale et Chimie, Institut Pasteur, 25 rue du Dr. Roux, Paris, 75015, France
| | - Matteo Dal Peraro
- Laboratory for Biomolecular Modeling, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Swiss Institute of Bioinformatics (SIB), AAB011 Station 19, 1015, Lausanne, Switzerland
| | - Diego de Mendoza
- Laboratorio de Fisiología Microbiana, Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Ocampo y Esmeralda, Predio CONICET Rosario, 2000, Rosario, Argentina
| | - Daniela Albanesi
- Laboratorio de Fisiología Microbiana, Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Ocampo y Esmeralda, Predio CONICET Rosario, 2000, Rosario, Argentina
| |
Collapse
|
43
|
Activation of the bacterial thermosensor DesK involves a serine zipper dimerization motif that is modulated by bilayer thickness. Proc Natl Acad Sci U S A 2015; 112:6353-8. [PMID: 25941408 DOI: 10.1073/pnas.1422446112] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
DesK is a bacterial thermosensor protein involved in maintaining membrane fluidity in response to changes in environmental temperature. Most likely, the protein is activated by changes in membrane thickness, but the molecular mechanism of sensing and signaling is still poorly understood. Here we aimed to elucidate the mode of action of DesK by studying the so-called "minimal sensor DesK" (MS-DesK), in which sensing and signaling are captured in a single transmembrane segment. This simplified version of the sensor allows investigation of membrane thickness-dependent protein-lipid interactions simply by using synthetic peptides, corresponding to the membrane-spanning parts of functional and nonfunctional mutants of MS-DesK incorporated in lipid bilayers with varying thicknesses. The lipid-dependent behavior of the peptides was investigated by circular dichroism, tryptophan fluorescence, and molecular modeling. These experiments were complemented with in vivo functional studies on MS-DesK mutants. Based on the results, we constructed a model that suggests a new mechanism for sensing in which the protein is present as a dimer and responds to an increase in bilayer thickness by membrane incorporation of a C-terminal hydrophilic motif. This results in exposure of three serines on the same side of the transmembrane helices of MS-DesK, triggering a switching of the dimerization interface to allow the formation of a serine zipper. The final result is activation of the kinase state of MS-DesK.
Collapse
|
44
|
Shi Y, Ding Y, Yang S. Cold signal transduction and its interplay with phytohormones during cold acclimation. PLANT & CELL PHYSIOLOGY 2015; 56:7-15. [PMID: 25189343 DOI: 10.1093/pcp/pcu115] [Citation(s) in RCA: 174] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Cold stress is a major environmental factor that affects plant growth, development, productivity and distribution. In higher plants, the known major cold signaling pathway is the C-repeat (CRT)-binding factor/dehydration-responsive element (DRE) binding factor (CBF/DREB)-mediated transcriptional regulatory cascade, which is essential for the induction of a set of cold responsive (COR) genes. Recent studies indicate that various plant hormones are also involved in responses to cold stress. This review summarizes recent progress in cold signaling and our understanding of phytohormone signaling in the regulation of plant responses to cold stress.
Collapse
Affiliation(s)
- Yiting Shi
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China These authors contributed equally to this work
| | - Yanglin Ding
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China These authors contributed equally to this work
| | - Shuhua Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
45
|
Affiliation(s)
- Diego de Mendoza
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET) and Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, 2000-Rosario, Argentina;
| |
Collapse
|
46
|
Mussi MA, Actis LA, de Mendoza D, Cybulski LE. Using a microbial physiologic and genetic approach to investigate how bacteria sense physical stimuli. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2014; 42:427-434. [PMID: 25052184 DOI: 10.1002/bmb.20810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 06/11/2014] [Indexed: 06/03/2023]
Abstract
A laboratory exercise was designed to illustrate how physical stimuli such as temperature and light are sensed and processed by bacteria to elaborate adaptive responses. In particular, we use the well-characterized Des pathway of Bacillus subtilis to show that temperature modulates gene expression, resulting ultimately in modification of the levels of unsaturated fatty acids required to maintain proper membrane fluidity at different temperatures. In addition, we adapt recent findings concerning the modulation by light of traits related to virulence such as motility and biofilm formation in the chemotropic bacterium Acinetobacter baumannii. Beyond the theoretical background that this activity provides regarding sensing of environmental stimuli, the experimental setup includes approaches derived from classic genetics, microbiology, and biochemistry. The incorporation of these kind of teaching and training activities in middle-advanced Microbiology or Bacterial Genetics courses promotes acquisition of general and specific techniques and improves student's comprehension of scientific literature and research.
Collapse
Affiliation(s)
- María Alejandra Mussi
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI- CONICET), Department of Biological Chemistry, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, 2000, Rosario, Argentina
| | | | | | | |
Collapse
|
47
|
Zhang BC, Zhang J, Sun L. Streptococcus iniae SF1: complete genome sequence, proteomic profile, and immunoprotective antigens. PLoS One 2014; 9:e91324. [PMID: 24621602 PMCID: PMC3951389 DOI: 10.1371/journal.pone.0091324] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 02/10/2014] [Indexed: 01/06/2023] Open
Abstract
Streptococcus iniae is a Gram-positive bacterium that is reckoned one of the most severe aquaculture pathogens. It has a broad host range among farmed marine and freshwater fish and can also cause zoonotic infection in humans. Here we report for the first time the complete genome sequence as well as the host factor-induced proteomic profile of a pathogenic S. iniae strain, SF1, a serotype I isolate from diseased fish. SF1 possesses a single chromosome of 2,149,844 base pairs, which contains 2,125 predicted protein coding sequences (CDS), 12 rRNA genes, and 45 tRNA genes. Among the protein-encoding CDS are genes involved in resource acquisition and utilization, signal sensing and transduction, carbohydrate metabolism, and defense against host immune response. Potential virulence genes include those encoding adhesins, autolysins, toxins, exoenzymes, and proteases. In addition, two putative prophages and a CRISPR-Cas system were found in the genome, the latter containing a CRISPR locus and four cas genes. Proteomic analysis detected 21 secreted proteins whose expressions were induced by host serum. Five of the serum-responsive proteins were subjected to immunoprotective analysis, which revealed that two of the proteins were highly protective against lethal S. iniae challenge when used as purified recombinant subunit vaccines. Taken together, these results provide an important molecular basis for future study of S. iniae in various aspects, in particular those related to pathogenesis and disease control.
Collapse
Affiliation(s)
- Bao-cun Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Graduate University of the Chinese Academy of Sciences, Beijing, China
| | - Jian Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Graduate University of the Chinese Academy of Sciences, Beijing, China
| | - Li Sun
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Collaborative Innovation Center of Deep Sea Biology, Zhejiang University, Hangzhou, China
- * E-mail:
| |
Collapse
|
48
|
Porrini L, Cybulski LE, Altabe SG, Mansilla MC, de Mendoza D. Cerulenin inhibits unsaturated fatty acids synthesis in Bacillus subtilis by modifying the input signal of DesK thermosensor. Microbiologyopen 2014; 3:213-24. [PMID: 24574048 PMCID: PMC3996569 DOI: 10.1002/mbo3.154] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 11/14/2013] [Accepted: 11/25/2013] [Indexed: 11/11/2022] Open
Abstract
Bacillus subtilis responds to a sudden decrease in temperature by transiently inducing the expression of the des gene encoding for a lipid desaturase, Δ5-Des, which introduces a double bond into the acyl chain of preexisting membrane phospholipids. This Δ5-Des-mediated membrane remodeling is controlled by the cold-sensor DesK. After cooling, DesK activates the response regulator DesR, which induces transcription of des. We show that inhibition of fatty acid synthesis by the addition of cerulenin, a potent and specific inhibitor of the type II fatty acid synthase, results in increased levels of short-chain fatty acids (FA) in membrane phospholipids that lead to inhibition of the transmembrane-input thermal control of DesK. Furthermore, reduction of phospholipid synthesis by conditional inactivation of the PlsC acyltransferase causes significantly elevated incorporation of long-chain FA and constitutive upregulation of the des gene. Thus, we provide in vivo evidence that the thickness of the hydrophobic core of the lipid bilayer serves as one of the stimulus sensed by the membrane spanning region of DesK.
Collapse
Affiliation(s)
- Lucía Porrini
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas, Rosario, Argentina; Departamento de Microbiología Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario. Ocampo y Esmeralda, Rosario, Argentina
| | | | | | | | | |
Collapse
|
49
|
A lipid-mediated conformational switch modulates the thermosensing activity of DesK. Proc Natl Acad Sci U S A 2014; 111:3579-84. [PMID: 24522108 DOI: 10.1073/pnas.1317147111] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The thermosensor DesK is a multipass transmembrane histidine-kinase that allows the bacterium Bacillus subtilis to adjust the levels of unsaturated fatty acids required to optimize membrane lipid fluidity. The cytoplasmic catalytic domain of DesK behaves like a kinase at low temperature and like a phosphatase at high temperature. Temperature sensing involves a built-in instability caused by a group of hydrophilic residues located near the N terminus of the first transmembrane (TM) segment. These residues are buried in the lipid phase at low temperature and partially "buoy" to the aqueous phase at higher temperature with the thinning of the membrane, promoting the required conformational change. Nevertheless, the core question remains poorly understood: How is the information sensed by the transmembrane region converted into a rearrangement in the cytoplasmic catalytic domain to control DesK activity? Here, we identify a "linker region" (KSRKERERLEEK) that connects the TM sensor domain with the cytoplasmic catalytic domain involved in signal transmission. The linker adopts two conformational states in response to temperature-dependent membrane thickness changes: (i) random coiled and bound to the phospholipid head groups at the water-membrane interface, promoting the phosphatase state or (ii) unbound and forming a continuous helix spanning a region from the membrane to the cytoplasm, promoting the kinase state. Our results uphold the view that the linker is endowed with a helix/random coil conformational duality that enables it to behave like a transmission switch, with helix disruption decreasing the kinase/phosphatase activity ratio, as required to modulate the DesK output response.
Collapse
|
50
|
Los DA, Mironov KS, Allakhverdiev SI. Regulatory role of membrane fluidity in gene expression and physiological functions. PHOTOSYNTHESIS RESEARCH 2013; 116:489-509. [PMID: 23605242 DOI: 10.1007/s11120-013-9823-4] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 04/05/2013] [Indexed: 05/18/2023]
Abstract
Plants, algae, and photosynthetic bacteria experience frequent changes in environment. The ability to survive depends on their capacity to acclimate to such changes. In particular, fluctuations in temperature affect the fluidity of cytoplasmic and thylakoid membranes. The molecular mechanisms responsible for the perception of changes in membrane fluidity have not been fully characterized. However, the understanding of the functions of the individual genes for fatty acid desaturases in cyanobacteria and plants led to the directed mutagenesis of such genes that altered the membrane fluidity of cytoplasmic and thylakoid membranes. Characterization of the photosynthetic properties of the transformed cyanobacteria and higher plants revealed that lipid unsaturation is essential for protection of the photosynthetic machinery against environmental stresses, such as strong light, salt stress, and high and low temperatures. The unsaturation of fatty acids enhances the repair of the damaged photosystem II complex under stress conditions. In this review, we summarize the knowledge on the mechanisms that regulate membrane fluidity, on putative sensors that perceive changes in membrane fluidity, on genes that are involved in acclimation to new sets of environmental conditions, and on the influence of membrane properties on photosynthetic functions.
Collapse
Affiliation(s)
- Dmitry A Los
- Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, 127276, Moscow, Russia,
| | | | | |
Collapse
|