1
|
Simó-Cabrera L, García-Chumillas S, Benitez-Benitez SJ, Cánovas V, Monzó F, Pire C, Martínez-Espinosa RM. Production of Poly(3-hydroxybutyrate- co-3-hydroxyvalerate) (PHBV) by Haloferax mediterranei Using Candy Industry Waste as Raw Materials. Bioengineering (Basel) 2024; 11:870. [PMID: 39329612 PMCID: PMC11429114 DOI: 10.3390/bioengineering11090870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/09/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024] Open
Abstract
The haloarchaeon Haloferax mediterranei synthesizes poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) under unfavorable nutritional conditions without the addition of any precursor to the culture, which is an advantage compared to other microbial counterparts able to synthesize polyhydroxyalkanoates (PHA). PHBV is a biodegradable polymer showing physiochemical properties of biotechnological and biomedical interest and can be used as an alternative to plastics made from chemical synthesis (which are not environmentally friendly). The versatile metabolism of H. mediterranei makes the use of waste as a carbon source for cellular growth and PHA synthesis possible. In this work, cellular growth and the production and characterization of PHBV using two different types of confectionery waste were analyzed and compared with cellular growth and PHBV synthesis in a standard culture media with glucose of analytical grade as a carbon source. The PHBV granules produced were analyzed by TEM and the biopolymer was isolated and characterized by GC-MS, FTIR NMR, and DSC. The results reveal that H. mediterranei can use these two residues (R1 and R2) for pure PHBV production, achieving 0.256 and 0.983 g PHBV/L, respectively, which are among the highest yields so far described using for the first-time waste from the candy industry. Thus, a circular economy-based process has been designed to optimize the upscaling of PHBV production by using haloarchaea as cell factories and valorizing confectionery waste.
Collapse
Affiliation(s)
- Lorena Simó-Cabrera
- Biochemistry, Molecular Biology, Edaphology and Agricultural Chemistry Department, Faculty of Science, University of Alicante, Carretera San Vicente del Raspeig s/n-03690 San Vicente del Raspeig, E-03690 Alicante, Spain
- Multidisciplinary Institute for Environmental Studies "Ramón Margalef", University of Alicante, Ap. 99, E-03080 Alicante, Spain
| | - Salvador García-Chumillas
- Technological Centre of Footwear and Plastic of the Region of Murcia (CETEC) Avda, Europa 4-5, E-30840 Alhama de Murcia, Spain
- Cetec Biotechnology, Avda, Europa 4-5, E-30840 Alhama de Murcia, Spain
| | - Sergio J Benitez-Benitez
- Technological Centre of Footwear and Plastic of the Region of Murcia (CETEC) Avda, Europa 4-5, E-30840 Alhama de Murcia, Spain
| | - Verónica Cánovas
- Cetec Biotechnology, Avda, Europa 4-5, E-30840 Alhama de Murcia, Spain
| | - Fuensanta Monzó
- Technological Centre of Footwear and Plastic of the Region of Murcia (CETEC) Avda, Europa 4-5, E-30840 Alhama de Murcia, Spain
| | - Carmen Pire
- Biochemistry, Molecular Biology, Edaphology and Agricultural Chemistry Department, Faculty of Science, University of Alicante, Carretera San Vicente del Raspeig s/n-03690 San Vicente del Raspeig, E-03690 Alicante, Spain
- Multidisciplinary Institute for Environmental Studies "Ramón Margalef", University of Alicante, Ap. 99, E-03080 Alicante, Spain
| | - Rosa María Martínez-Espinosa
- Biochemistry, Molecular Biology, Edaphology and Agricultural Chemistry Department, Faculty of Science, University of Alicante, Carretera San Vicente del Raspeig s/n-03690 San Vicente del Raspeig, E-03690 Alicante, Spain
- Multidisciplinary Institute for Environmental Studies "Ramón Margalef", University of Alicante, Ap. 99, E-03080 Alicante, Spain
| |
Collapse
|
2
|
Jang Y, Lee YJ, Gong G, Lee SM, Um Y, Kim KH, Ko JK. Carbon dioxide valorization into resveratrol via lithoautotrophic fermentation using engineered Cupriavidus necator H16. Microb Cell Fact 2024; 23:122. [PMID: 38678199 PMCID: PMC11055273 DOI: 10.1186/s12934-024-02398-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/19/2024] [Indexed: 04/29/2024] Open
Abstract
BACKGROUND Industrial biomanufacturing of value-added products using CO2 as a carbon source is considered more sustainable, cost-effective and resource-efficient than using common carbohydrate feedstocks. Cupriavidus necator H16 is a representative H2-oxidizing lithoautotrophic bacterium that can be utilized to valorize CO2 into valuable chemicals and has recently gained much attention as a promising platform host for versatile C1-based biomanufacturing. Since this microbial platform is genetically tractable and has a high-flux carbon storage pathway, it has been engineered to produce a variety of valuable compounds from renewable carbon sources. In this study, the bacterium was engineered to produce resveratrol autotrophically using an artificial phenylpropanoid pathway. RESULTS The heterologous genes involved in the resveratrol biosynthetic pathway-tyrosine ammonia lyase (TAL), 4-coumaroyl CoA ligase (4CL), and stilbene synthase (STS) -were implemented in C. necator H16. The overexpression of acetyl-CoA carboxylase (ACC), disruption of the PHB synthetic pathway, and an increase in the copy number of STS genes enhanced resveratrol production. In particular, the increased copies of VvSTS derived from Vitis vinifera resulted a 2-fold improvement in resveratrol synthesis from fructose. The final engineered CR-5 strain produced 1.9 mg/L of resveratrol from CO2 and tyrosine via lithoautotrophic fermentation. CONCLUSIONS To the best of our knowledge, this study is the first to describe the valorization of CO2 into polyphenolic compounds by engineering a phenylpropanoid pathway using the lithoautotrophic bacterium C. necator H16, demonstrating the potential of this strain a platform for sustainable chemical production.
Collapse
Affiliation(s)
- Yongjae Jang
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Yeon Ji Lee
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Gyeongtaek Gong
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Division of Energy and Environment Technology, KIST School, University of Science and Technology, Seoul, 02792, Republic of Korea
| | - Sun-Mi Lee
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Division of Energy and Environment Technology, KIST School, University of Science and Technology, Seoul, 02792, Republic of Korea
| | - Youngsoon Um
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Division of Energy and Environment Technology, KIST School, University of Science and Technology, Seoul, 02792, Republic of Korea
| | - Kyoung Heon Kim
- Department of Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Ja Kyong Ko
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.
- Division of Energy and Environment Technology, KIST School, University of Science and Technology, Seoul, 02792, Republic of Korea.
| |
Collapse
|
3
|
Beaver K, Dantanarayana A, Liou W, Babst M, Minteer SD. Extracellular Poly(hydroxybutyrate) Bioplastic Production Using Surface Display Techniques. ACS MATERIALS AU 2024; 4:174-178. [PMID: 38496045 PMCID: PMC10941272 DOI: 10.1021/acsmaterialsau.3c00059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 03/19/2024]
Abstract
Poly(hydroxybutyrate) is a biocompatible, biodegradable polyester synthesized naturally in a variety of microbial species. A greener alternative to petroleum-based plastics and sought after for biomedical applications, poly(hydroxybutyrate) has failed to break through as a leading material in the plastic industry due to its high cost of production. Specifically, the extraction of this material from within bacterial cells requires lysis of cells, which takes time, uses harsh chemicals, and starts the process again with growing new living cells. Recently, surface display of enzymes on bacterial membranes has become an emerging technique for extracellular biocatalysis. In this work, a fusion protein lpp-ompA-phaC was expressed in Escherichia coli to display the enzyme poly(hydroxyalkanoate) synthase on the cell surface. The resulting poly(hydroxybutyrate) product was chemically characterized by nuclear magnetic resonance and infrared spectroscopy. Finally, the extracellular synthesis of the bioplastic granules was demonstrated qualitatively via microscopy and quantitatively by flow cytometry. The results of this work are the first demonstration of extracellular synthesis of poly(hydroxybutyrate), showing promise for continuous and scalable synthesis of materials using surface display.
Collapse
Affiliation(s)
- Kevin Beaver
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112, United
States
| | - Ashwini Dantanarayana
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112, United
States
| | - Willisa Liou
- Electron
Microscopy Core Laboratory, University of
Utah, Salt Lake City, Utah 84112, United States
| | - Markus Babst
- Center
for Cell & Genome Science, University
of Utah, Salt Lake City, Utah 84112, United States
| | - Shelley D. Minteer
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112, United
States
- Kummer
Institute Center for Resource Sustainability, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| |
Collapse
|
4
|
Baruah N, Haajanen R, Rahman MT, Pirttilä AM, Koskimäki JJ. Biosynthesis of polyhydroxybutyrate by Methylorubrum extorquens DSM13060 is essential for intracellular colonization in plant endosymbiosis. FRONTIERS IN PLANT SCIENCE 2024; 15:1302705. [PMID: 38390299 PMCID: PMC10883064 DOI: 10.3389/fpls.2024.1302705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/15/2024] [Indexed: 02/24/2024]
Abstract
Methylorubrum extorquens DSM13060 is an endosymbiont that lives in the cells of shoot tip meristems. The bacterium is methylotrophic and consumes plant-derived methanol for the production of polyhydroxybutyrate (PHB). The PHB provides protection against oxidative stress for both host and endosymbiont cells through its fragments, methyl-esterified 3-hydroxybutyrate (ME-3HB) oligomers. We evaluated the role of the genes involved in the production of ME-3HB oligomers in the host colonization by the endosymbiont M. extorquens DSM13060 through targeted genetic mutations. The strains with deletions in PHB synthase (phaC), PHB depolymerase (phaZ1), and a transcription factor (phaR) showed altered PHB granule characteristics, as ΔphaC had a significantly low number of granules, ΔphaR had a significantly increased number of granules, and ΔphaZ1 had significantly large PHB granules in the bacterial cells. When the deletion strains were exposed to oxidative stress, the ΔphaC strain was sensitive to 10 mM HO· and 20 mM H2O2. The colonization of the host, Scots pine (Pinus sylvestris L.), by the deletion strains varied greatly. The deletion strain ΔphaR colonized the host mainly intercellularly, whereas the ΔphaZ1 strain was a slightly poorer colonizer than the control. The deletion strain ΔphaC lacked the colonization potential, living mainly on the surfaces of the epidermis of pine roots and shoots in contrast to the control, which intracellularly colonized all pine tissues within the study period. In earlier studies, deletions within the PHB metabolic pathway have had a minor effect on plant colonization by rhizobia. We have previously shown the association between ME-3HB oligomers, produced by PhaC and PhaZ1, and the ability to alleviate host-generated oxidative stress during plant infection by the endosymbiont M. extorquens DSM13060. Our current results show that the low capacity for PHB synthesis leads to poor tolerance of oxidative stress and loss of colonization potential by the endosymbiont. Altogether, our findings demonstrate that the metabolism of PHB in M. extorquens DSM13060 is an important trait in the non-rhizobial endosymbiosis.
Collapse
Affiliation(s)
- Namrata Baruah
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| | - Roosa Haajanen
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| | - Mohammad Tanvir Rahman
- Disease Networks, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | | | - Janne J Koskimäki
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| |
Collapse
|
5
|
Lobo-da-Cunha A, Alves Â, Rodrigues A. Gill histology and ultrastructure in Aplysia depilans (Mollusca, Euopisthobranchia). J Morphol 2023; 284:e21562. [PMID: 36719273 DOI: 10.1002/jmor.21562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/22/2023] [Accepted: 01/28/2023] [Indexed: 02/01/2023]
Abstract
The gill of Aplysia depilans consists of several wedge-shaped pinnules with a highly folded structure, differing from the typical ctenidial gills of mollusks. Light microscopy and transmission electron microscopy were used to investigate this organ in juveniles and adults. In this species, the gill epithelium comprised ciliated, unciliated, and secretory cells. The ultrastructural analysis suggests other functions for the gill besides respiration. The deep cell membrane invaginations associated with mitochondria in the basal region of epithelium point to a role in ion regulation. Endocytosis and intracellular digestion were other activities detected in epithelial cells. In juveniles, an intranuclear crystalline structure was seen in some ciliated cells. The presence of an intranuclear crystalline structure was frequently associated with chromatin decondensation, swelling of the nuclear envelope and endoplasmic reticulum cisternae, and abundance of Golgi stacks. As these intranuclear inclusions were not found in the gill of the adult specimens, their occurrence in the two juveniles seems likely to be an anomalous condition whose cause cannot be established at the moment. Mucous cells were the most abundant secretory cells in the epithelium, but a few epithelial serous cells were also found. In addition, large protein-secreting subepithelial cells had the main cell body inserted in the connective tissue and a long thin neck crossing the epithelium. Mucous cells can be considered responsible for the production of the mucus layer that protects the epithelium, but the specific functions of the epithelial and subepithelial protein-secreting cells remain elusive. Below the epithelium, a layer of connective tissue with muscle cells lined the narrow hemolymph space. The connective tissue included cells with a large amount of rough endoplasmic reticulum cisternae. Bacteria were found on the surface of the gill, and the most abundant had a thin stalk for attachment to the epithelial cells.
Collapse
Affiliation(s)
- Alexandre Lobo-da-Cunha
- Departamento de Microscopia, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Matosinhos, Portugal
| | - Ângela Alves
- Departamento de Microscopia, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
- Unidade Multidisciplinar de Investigação Biomédica (UMIB), ICBAS, Universidade do Porto, Porto, Portugal
| | - Aurora Rodrigues
- Serviço de Anatomia Patológica/Unidade Neuropatologia, Centro Hospitalar Universitário do Porto, Porto, Portugal
| |
Collapse
|
6
|
Minimizing the Lag Phase of Cupriavidus necator Growth under Autotrophic, Heterotrophic, and Mixotrophic Conditions. Appl Environ Microbiol 2023; 89:e0200722. [PMID: 36719244 PMCID: PMC9972949 DOI: 10.1128/aem.02007-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Cupriavidus necator has the unique metabolic capability to grow under heterotrophic, autotrophic, and mixotrophic conditions. In the current work, we examined the effect of growth conditions on the metabolic responses of C. necator. In our lab-scale experiments, autotrophic growth was rapid, with a short lag phase as the exponential growth stage was initiated in 6 to 12 h. The lag phase extended significantly (>22 h) at elevated O2 and CO2 partial pressures, while the duration of the lag phase was independent of the H2 or N2 partial pressure. Under heterotrophic conditions with acetate as the organic substrate, the lag phase length was short (<12 h), but it increased with increasing acetate concentrations. When glucose and glycerol were provided as the organic substrate, the lag phase was consistently long (>12 h) regardless of the examined substrate concentrations (up to 10.0 g/L). In the transition experiments, C. necator cells showed rapid transitions from autotrophic to heterotrophic growth in less than 12 h and vice versa. Our experimental results indicate that C. necator can rapidly grow with both autotrophic and heterotrophic substrates, while the lag time substantially increases with nonacetate organic substrates (e.g., glucose or glycerol), high acetate concentrations, and high O2 and CO2 partial pressures. IMPORTANCE The current work investigated the inhibition of organic and gaseous substrates on the microbial adaption of Cupriavidus necator under several metabolic conditions commonly employed for commercial polyhydroxyalkanoate production. We also proposed a two-stage cultivation system to minimize the lag time required to change over between the heterotrophic, autotrophic, and mixotrophic pathways.
Collapse
|
7
|
Angra V, Sehgal R, Gupta R. Trends in PHA Production by Microbially Diverse and Functionally Distinct Communities. MICROBIAL ECOLOGY 2023; 85:572-585. [PMID: 35333950 DOI: 10.1007/s00248-022-01995-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
Along with the wide applications of conventional plastics, they have a large number of disadvantages like their non-biodegradable nature, dependency on fossil fuels and the release of large amounts of toxic materials in the environment. Therefore, to resolve these problems, a number of bioplastics are studied, out of which polyhydroxyalkanoates are considered as the best alternatives. Polyhydroxyalkanoates (PHAs) are produced by microorganisms as intracellular granules during stressful conditions. Though a wide range of organisms can naturally produce PHAs, only a few of them can be used for commercial production. Therefore, more diverse organisms that accumulate a considerable amount of PHAs and also reduce the production cost need to be exploited. Transgenic plants, recombinant bacteria, algae and extremophiles are some diverse organisms that produce a high amount of PHAs at a low cost. So, if potential organisms are used for PHA production, bioplastics will be able to completely replace petroleum-based polymers. Therefore, our review mainly focuses on production of PHAs using potential organisms so that amount of PHAs produced is high and cost-effective which would further help in the commercialization of PHAs.
Collapse
Affiliation(s)
- Vani Angra
- Department of Biotechnology, Himachal Pradesh University, Summerhill, Shimla, 171005, India
| | - Rutika Sehgal
- Department of Biotechnology, Himachal Pradesh University, Summerhill, Shimla, 171005, India
| | - Reena Gupta
- Department of Biotechnology, Himachal Pradesh University, Summerhill, Shimla, 171005, India.
| |
Collapse
|
8
|
Co-Culture of Halotolerant Bacteria to Produce Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Using Sewage Wastewater Substrate. Polymers (Basel) 2022; 14:polym14224963. [PMID: 36433088 PMCID: PMC9699070 DOI: 10.3390/polym14224963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 11/18/2022] Open
Abstract
The focus of the current study was the use of sewage wastewater to obtain PHA from a co-culture to produce a sustainable polymer. Two halotolerant bacteria, Bacillus halotolerans 14SM (MZ801771) and Bacillus aryabhattai WK31 (MT453992), were grown in a consortium to produce PHA. Sewage wastewater (SWW) was used to produce PHA, and glucose was used as a reference substrate to compare the growth and PHA production parameters. Both bacterial strains produced PHA in monoculture, but a copolymer was obtained when the co-cultures were used. The co-culture accumulated a maximum of 54% after 24 h of incubation in 10% SWW. The intracellular granules indicated the presence of nucleation sites for granule initiation. The average granule size was recorded to be 231 nm; micrographs also indicated the presence of extracellular polymers and granule-associated proteins. Fourier transform infrared spectroscopy (FTIR) analysis of the polymer produced by the consortium showed a significant peak at 1731 cm-1, representing the C=O group. FTIR also presented peaks in the region of 2800 cm-1 to 2900 cm-1, indicating C-C stretching. Proton nuclear magnetic resonance (1HNMR) of the pure polymer indicated chemical shifts resulting from the proton of hydroxy valerate and hydroxybutyrate, confirming the production of poly(3-hydroxybutyrate-co-3-hydroxy valerate) (P3HBV). A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay showed that the copolymer was biocompatible, even at a high concentration of 5000 µg mL-1. The results of this study show that bacterial strains WK31 and 14SM can be used to synthesize a copolymer of butyrate and valerate using the volatile fatty acids present in the SWW, such as propionic acid or pentanoic acid. P3HBV can also be used to provide an extracellular matrix for cell-line growth without causing any cytotoxic effects.
Collapse
|
9
|
In vivo quantification of polyhydroxybutyrate (PHB) in the alphaproteobacterial methanotroph, Methylocystis sp. Rockwell. Appl Microbiol Biotechnol 2021; 106:811-819. [PMID: 34921330 DOI: 10.1007/s00253-021-11732-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/29/2021] [Accepted: 12/05/2021] [Indexed: 10/19/2022]
Abstract
Methane is a common industrial by-product that can be used as feedstock for production of the biopolymer polyhydroxybutyrate (PHB) by alphaproteobacterial methanotrophs. In vivo assessment of PHB production would shed light on the biosynthesis process and guide design of improved production strategies, but it is currently difficult to perform efficiently. In this study, the alphaproteobacterial methanotroph Methylocystis sp. Rockwell was grown on methane with three different nitrogen sources (ammonium, nitrate, and atmospheric nitrogen), and biomass samples were harvested at defined time points during lag, exponential, and stationary growth phases. PHB cell content was analyzed at these sampling points via a standard gas chromatography-flame ionization detector method, which requires hydrolysis of PHB and esterification of the resulting monomer under acidic conditions, and a novel, rapid, cost-effective approach based on fixation and staining of bacterial cells via Nile Blue A fluorescent dye enabling differential staining of cell membranes and intracellular PHB granules for single-cell analysis through fluorescence microscopy. Overall, the two PHB quantification approaches were in agreement at all stages of growth and in all three growing conditions tested. The PHB cell content was greatest with atmospheric nitrogen as a nitrogen source, followed by ammonium and nitrate. Under atmospheric nitrogen and ammonium conditions, PHB cell content decreased with growth progression, while under nitrate conditions PHB cell content remained unchanged in all growth phases. In addition to presenting a rapid, efficient method enabling in vivo quantification of PHB production, the present study highlights the impact of nitrogen source on PHB production by Methylocystis sp. Rockwell. KEY POINTS: • A novel fluorescence microscopy method to quantify PHB in single cells was developed • The microscopy method was validated by the derivation/gas chromatography method • Methylocystis sp. Rockwell synthesizes PHB granules without nutrient stress.
Collapse
|
10
|
Samrot AV, Samanvitha SK, Shobana N, Renitta ER, Senthilkumar P, Kumar SS, Abirami S, Dhiva S, Bavanilatha M, Prakash P, Saigeetha S, Shree KS, Thirumurugan R. The Synthesis, Characterization and Applications of Polyhydroxyalkanoates (PHAs) and PHA-Based Nanoparticles. Polymers (Basel) 2021; 13:3302. [PMID: 34641118 PMCID: PMC8512352 DOI: 10.3390/polym13193302] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/31/2021] [Accepted: 08/31/2021] [Indexed: 12/22/2022] Open
Abstract
Polyhydroxyalkanoates (PHAs) are storage granules found in bacteria that are essentially hydroxy fatty acid polyesters. PHA molecules appear in variety of structures, and amongst all types of PHAs, polyhydroxybutyrate (PHB) is used in versatile fields as it is a biodegradable, biocompatible, and ecologically safe thermoplastic. The unique physicochemical characteristics of these PHAs have made them applicable in nanotechnology, tissue engineering, and other biomedical applications. In this review, the optimization, extraction, and characterization of PHAs are described. Their production and application in nanotechnology are also portrayed in this review, and the precise and various production methods of PHA-based nanoparticles, such as emulsion solvent diffusion, nanoprecipitation, and dialysis are discussed. The characterization techniques such as UV-Vis, FTIR, SEM, Zeta Potential, and XRD are also elaborated.
Collapse
Affiliation(s)
- Antony V. Samrot
- School of Bioscience, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jalan SP2, Bandar Saujana Putra, Jenjarom 42610, Selangor, Malaysia
| | - Sree K. Samanvitha
- Department of Biotechnology, Shanmugha Arts, Science, Technology & Research Academy, Thanjavur 613401, Tamil Nadu, India;
| | - N. Shobana
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India; (N.S.); (M.B.); (P.P.); (S.S.); (K.S.S.)
| | - Emilin R. Renitta
- Department of Food Processing Technology, School of Agriculture and Biosciences, Karunya Institute of Science and Technology, Karunya Nagar, Coimbatore, 641114, Tamil Nadu, India;
| | - P. Senthilkumar
- Department of Chemical Engineering, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India;
| | - Suresh S. Kumar
- Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Chennai 600126, Tamil Nadu, India
| | - S. Abirami
- Department of Microbiology, Kamaraj College, Thoothukudi 628003, Tamil Nadu, India;
| | - S. Dhiva
- Department of Microbiology, Sree Narayana College, Alathur, Palakkad 678682, Kerala, India;
| | - M. Bavanilatha
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India; (N.S.); (M.B.); (P.P.); (S.S.); (K.S.S.)
| | - P. Prakash
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India; (N.S.); (M.B.); (P.P.); (S.S.); (K.S.S.)
| | - S. Saigeetha
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India; (N.S.); (M.B.); (P.P.); (S.S.); (K.S.S.)
| | - Krithika S. Shree
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India; (N.S.); (M.B.); (P.P.); (S.S.); (K.S.S.)
| | - R. Thirumurugan
- Department of Transfusion Medicine, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry 605006, India;
| |
Collapse
|
11
|
Kumar AN, Katakojwala R, Amulya K, Mohan SV. Polyhydroxybutyrate production from dark-fermentative effluent and composite grafting with bagasse derived α-cellulose in a biorefinery approach. CHEMOSPHERE 2021; 279:130563. [PMID: 34134408 DOI: 10.1016/j.chemosphere.2021.130563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 03/20/2021] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
The study evaluated the preparation of a biocomposite using waste-derived polyhydroxybutyrate (PHB) and bagasse cellulose (α-cellulose) in a biorefinery approach. PHB was produced using dark fermentation effluent rich in volatile fatty acids (VFA) derived from vegetable waste and α-cellulose was extracted from sugarcane bagasse (SCB). Nutrient limitation induced microbial PHB accumulation, wherein maximum production of 0.28 ± 0.06 g PHB/g DCW (28%) was observed. Confocal examination showed the deposition of PHB granules in the cell cytoplasm and NMR spectrum exhibited a structural correlation. α-Cellulose (0.22 ± 0.02 g α-cellulose/g SCB) was extracted through SCB pretreatment. Thereafter, grafting α-cellulose with PHB offered intermolecular bonding, which resulted in enhanced thermal stability of the biocomposite than corresponding pristine PHB. FE-SEM morphological examination of biocomposite depicted that α-cellulose functioned as a filler to PHB. XRD profiles showed significant decrement in PHB crystallinity, signifying the functional role of α-cellulose as an effective reinforcing agent. Additionally, ether functional group of α-cellulose and ester group of PHB also appeared in XPS analysis of the composite, thus authorizing the effective blending of α-cellulose and PHB. Utilization of bagasse-derived cellulose for strengthening biologically produced PHB expands its applications, while simultaneously addressing the plastic pollution issues. Additional value from this process was further achieved by incorporating the concept of biorefinery, wherein acidogenic fermentation effluents were used for the production of PHA, which enabled the re-entry of products (VFA) to the production cycle, thus achieving circularity.
Collapse
Affiliation(s)
- A Naresh Kumar
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, 500007, India
| | - Ranaprathap Katakojwala
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - K Amulya
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - S Venkata Mohan
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
12
|
Bordel S, van Spanning RJM, Santos-Beneit F. Imaging and modelling of poly(3-hydroxybutyrate) synthesis in Paracoccus denitrificans. AMB Express 2021; 11:113. [PMID: 34370106 PMCID: PMC8353029 DOI: 10.1186/s13568-021-01273-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 07/26/2021] [Indexed: 11/10/2022] Open
Abstract
Poly(3-hydroxybutyrate) (PHB) granule formation in Paracoccus denitrificans Pd1222 was investigated by laser scanning confocal microscopy (LSCM) and gas chromatography analysis. Cells that had been starved for 2 days were free of PHB granules but resynthesized them within 30 min of growth in fresh medium with succinate. In most cases, the granules were distributed randomly, although in some cases they appeared in a more organized pattern. The rates of growth and PHB accumulation were analyzed within the frame of a Genome-Scale Metabolic Model (GSMM) containing 781 metabolic genes, 1403 reactions and 1503 metabolites. The model was used to obtain quantitative predictions of biomass yields and PHB synthesis during aerobic growth on succinate as sole carbon and energy sources. The results revealed an initial fast stage of PHB accumulation, during which all of the acetyl-CoA originating from succinate was diverted to PHB production. The next stage was characterized by a tenfold lower PHB production rate and the simultaneous onset of exponential growth, during which acetyl-CoA was predominantly drained into the TCA cycle. Previous research has shown that PHB accumulation correlates with cytosolic acetyl-CoA concentration. It has also been shown that PHB accumulation is not transcriptionally regulated. Our results are consistent with the mentioned findings and suggest that, in absence of cell growth, most of the cellular acetyl-CoA is channeled to PHB synthesis, while during exponential growth, it is drained to the TCA cycle, causing a reduction of the cytosolic acetyl-CoA pool and a concomitant decrease of the synthesis of acetoacetyl-CoA (the precursor of PHB synthesis).
Collapse
|
13
|
Shin G, Jeong DW, Kim H, Park SA, Kim S, Lee JY, Hwang SY, Park J, Oh DX. Biosynthesis of Polyhydroxybutyrate with Cellulose Nanocrystals Using Cupriavidus necator. Polymers (Basel) 2021; 13:2604. [PMID: 34451143 PMCID: PMC8398664 DOI: 10.3390/polym13162604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 11/16/2022] Open
Abstract
Polyhydroxybutyrate (PHB) is a natural polyester synthesized by several microorganisms. Moreover, it has excellent biodegradability and is an eco-friendly material because it converts water and carbon dioxide as final decomposition products. However, the applications of PHB are limited because of its stiffness and brittleness. Because cellulose nanocrystals (CNCs) have excellent intrinsic mechanical properties such as high specific strength and modulus, they may compensate for the insufficient physical properties of PHB by producing their nanocomposites. In this study, natural polyesters were extracted from Cupriavidus necator fermentation with CNCs, which were well-dispersed in nitrogen-limited liquid culture media. Fourier-transform infrared spectroscopy results revealed that the additional O-H peak originating from cellulose at 3500-3200 cm-1 was observed for PHB along with the C=O and -COO bands at 1720 cm-1. This suggests that PHB-CNC nanocomposites could be readily obtained using C. necator fermented in well-dispersed CNC-supplemented culture media.
Collapse
Affiliation(s)
- Giyoung Shin
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Korea
| | - Da-Woon Jeong
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Korea
| | - Hyeri Kim
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Korea
| | - Seul-A Park
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Korea
| | - Semin Kim
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Korea
| | - Ju Young Lee
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Korea
| | - Sung Yeon Hwang
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Korea
- Advanced Materials and Chemical Engineering, University of Science and Technology (UST), Daejeon 34113, Korea
| | - Jeyoung Park
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Korea
- Advanced Materials and Chemical Engineering, University of Science and Technology (UST), Daejeon 34113, Korea
| | - Dongyeop X Oh
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Korea
- Advanced Materials and Chemical Engineering, University of Science and Technology (UST), Daejeon 34113, Korea
| |
Collapse
|
14
|
Nygaard D, Yashchuk O, Hermida ÉB. PHA granule formation and degradation by Cupriavidus necator under different nutritional conditions. J Basic Microbiol 2021; 61:825-834. [PMID: 34342882 DOI: 10.1002/jobm.202100184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/08/2021] [Accepted: 07/16/2021] [Indexed: 11/05/2022]
Abstract
Polyhydroxyalkanoates (PHA) are polymers produced by microorganisms with increasing commercialization potential; Cupriavidus necator has been the model microorganism to research PHA production. Despite many contributions concerning the formation and degradation of PHA granules, as well as the morphological changes in cells, these phenomena have not been univocally explained yet. Thus, this study aims to integrate the microscopic and analytical analysis to characterize changes in bacterial cell/PHA granules morphology, PHA content, and yield coefficients under different cultivation strategies of C. necator ATCC 17697. The cell size and morphology, granule size and amount, residual biomass, and PHA concentration along the fermentation and degradation depend greatly on nutritional conditions and cultivation time of C. necator. It was proposed to calculate a yield coefficient for the residual biomass production in the PHA utilization stage, related to the bacteria's ability to survive without a carbon source in the culture medium by utilizing the accumulated PHA previously. Maximum granule length reached 1.07 µm after 72 h of PHA accumulation stage under optimum nutritional conditions. This value is twice the values previously reported for C. necator. It is important since the larger PHA granules facilitate the recovery of PHA and different application development.
Collapse
Affiliation(s)
- Daiana Nygaard
- Laboratorio de Biomateriales, Biomecánica y Bioinstrumentación, Instituto de Tecnologías Emergentes y Ciencias Aplicadas (ITECA), UNSAM-CONICET, Escuela de Ciencia y Tecnología, San Martín, Provincia de Buenos Aires, Argentina
| | - Oxana Yashchuk
- Laboratorio de Biomateriales, Biomecánica y Bioinstrumentación, Instituto de Tecnologías Emergentes y Ciencias Aplicadas (ITECA), UNSAM-CONICET, Escuela de Ciencia y Tecnología, San Martín, Provincia de Buenos Aires, Argentina
| | - Élida B Hermida
- Laboratorio de Biomateriales, Biomecánica y Bioinstrumentación, Instituto de Tecnologías Emergentes y Ciencias Aplicadas (ITECA), UNSAM-CONICET, Escuela de Ciencia y Tecnología, San Martín, Provincia de Buenos Aires, Argentina
| |
Collapse
|
15
|
Three-dimensional label-free visualization and quantification of polyhydroxyalkanoates in individual bacterial cell in its native state. Proc Natl Acad Sci U S A 2021; 118:2103956118. [PMID: 34312231 DOI: 10.1073/pnas.2103956118] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Polyhydroxyalkanoates (PHAs) are biodegradable polyesters that are intracellularly accumulated as distinct insoluble granules by various microorganisms. PHAs have attracted much attention as sustainable substitutes for petroleum-based plastics. However, the formation of PHA granules and their characteristics, such as localization, volume, weight, and density of granules, in an individual live bacterial cell are not well understood. Here, we report the results of three-dimensional (3D) quantitative label-free analysis of PHA granules in individual live bacterial cells through measuring the refractive index distributions by optical diffraction tomography (ODT). The formation and growth of PHA granules in the cells of Cupriavidus necator, the best-studied native PHA producer, and recombinant Escherichia coli harboring C. necator poly(3-hydroxybutyrate) (PHB) biosynthesis pathway are comparatively examined. Through the statistical ODT analyses of the bacterial cells, the distinctive characteristics for density and localization of PHB granules in vivo could be observed. The PHB granules in recombinant E. coli show higher density and localization polarity compared with those of C. necator, indicating that polymer chains are more densely packed and granules tend to be located at the cell poles, respectively. The cells were investigated in more detail through real-time 3D analyses, showing how differently PHA granules are processed in relation to the cell division process in native and nonnative PHA-producing strains. We also show that PHA granule-associated protein PhaM of C. necator plays a key role in making these differences between C. necator and recombinant E. coli strains. This study provides spatiotemporal insights into PHA accumulation inside the native and recombinant bacterial cells.
Collapse
|
16
|
Lim H, Chuah JA, Chek MF, Tan HT, Hakoshima T, Sudesh K. Identification of regions affecting enzyme activity, substrate binding, dimer stabilization and polyhydroxyalkanoate (PHA) granule morphology in the PHA synthase of Aquitalea sp. USM4. Int J Biol Macromol 2021; 186:414-423. [PMID: 34246679 DOI: 10.1016/j.ijbiomac.2021.07.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 05/23/2021] [Accepted: 07/05/2021] [Indexed: 11/28/2022]
Abstract
Polyhydroxyalkanoates (PHAs) are biopolyesters synthesized by microorganisms as intracellular energy reservoirs under stressful environmental conditions. PHA synthase (PhaC) is the key enzyme responsible for PHA biosynthesis, but the importance of its N- and C-terminal ends still remains elusive. Six plasmid constructs expressing truncation variants of Aquitalea sp. USM4 PhaC (PhaC1As) were generated and heterologously expressed in Cupriavidus necator PHB-4. Removal of the first six residues at the N-terminus enabled the modulation of PHA composition without altering the PHA content in cells. Meanwhile, deletion of 13 amino acids from the C-terminus greatly affected the catalytic activity of PhaC1As, retaining only 1.1-7.4% of the total activity. Truncation(s) at the N- and/or C-terminus of PhaC1As gradually diminished the incorporation of comonomer units, and revealed that the N-terminal region is essential for PhaC1As dimerization whereas the C-terminal region is required for stabilization. Notably, transmission electron microscopy analysis showed that PhaC modification affected the morphology of intracellular PHA granules, which until now is only known to be regulated by phasins. This study provided substantial evidence and highlighted the significance of both the N- and C-termini of PhaC1As in regulating intracellular granule morphology, activity, substrate specificity, dimerization and stability of the synthase.
Collapse
Affiliation(s)
- Hui Lim
- Ecobiomaterial Research Laboratory, School of Biological Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Jo-Ann Chuah
- Ecobiomaterial Research Laboratory, School of Biological Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Min Fey Chek
- Structural Biology Laboratory, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Hua Tiang Tan
- Ecobiomaterial Research Laboratory, School of Biological Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Toshio Hakoshima
- Structural Biology Laboratory, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Kumar Sudesh
- Ecobiomaterial Research Laboratory, School of Biological Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia.
| |
Collapse
|
17
|
Gascoyne JL, Bommareddy RR, Heeb S, Malys N. Engineering Cupriavidus necator H16 for the autotrophic production of (R)-1,3-butanediol. Metab Eng 2021; 67:262-276. [PMID: 34224897 PMCID: PMC8449065 DOI: 10.1016/j.ymben.2021.06.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/08/2021] [Accepted: 06/30/2021] [Indexed: 11/20/2022]
Abstract
Butanediols are widely used in the synthesis of polymers, specialty chemicals and important chemical intermediates. Optically pure R-form of 1,3-butanediol (1,3-BDO) is required for the synthesis of several industrial compounds and as a key intermediate of β-lactam antibiotic production. The (R)-1,3-BDO can only be produced by application of a biocatalytic process. Cupriavidus necator H16 is an established production host for biosynthesis of biodegradable polymer poly-3-hydroxybutryate (PHB) via acetyl-CoA intermediate. Therefore, the utilisation of acetyl-CoA or its upstream precursors offers a promising strategy for engineering biosynthesis of value-added products such as (R)-1,3-BDO in this bacterium. Notably, C. necator H16 is known for its natural capacity to fix carbon dioxide (CO2) using hydrogen as an electron donor. Here, we report engineering of this facultative lithoautotrophic bacterium for heterotrophic and autotrophic production of (R)-1,3-BDO. Implementation of (R)-3-hydroxybutyraldehyde-CoA- and pyruvate-dependent biosynthetic pathways in combination with abolishing PHB biosynthesis and reducing flux through the tricarboxylic acid cycle enabled to engineer strain, which produced 2.97 g/L of (R)-1,3-BDO and achieved production rate of nearly 0.4 Cmol Cmol−1 h−1 autotrophically. This is first report of (R)-1,3-BDO production from CO2. Engineering of chemolithoautotroph C. necator H16 for (R)-1,3-butanediol production. Implementation of (R)-3-hydroxybutyraldehyde-CoA- and pyruvate-dependent pathways for (R)-1,3-butanediol biosynthesis. Redirecting carbon flux for (R)-1,3-butanediol biosynthesis. Achieved 2.97 g/L of (R)-1,3-butanediol with production rate of nearly 0.4 Cmol/(Cmol h) autotrophically. First report of (R)-1,3-butanediol production from carbon dioxide.
Collapse
Affiliation(s)
- Joshua Luke Gascoyne
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, Biodiscovery Institute, The University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Rajesh Reddy Bommareddy
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, Biodiscovery Institute, The University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Stephan Heeb
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, Biodiscovery Institute, The University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Naglis Malys
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, Biodiscovery Institute, The University of Nottingham, Nottingham, NG7 2RD, United Kingdom.
| |
Collapse
|
18
|
Analysis of Polyhydroxyalkanoates Granules in Haloferax mediterranei by Double-Fluorescence Staining with Nile Red and SYBR Green by Confocal Fluorescence Microscopy. Polymers (Basel) 2021; 13:polym13101582. [PMID: 34069083 PMCID: PMC8156647 DOI: 10.3390/polym13101582] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/04/2021] [Accepted: 05/12/2021] [Indexed: 11/20/2022] Open
Abstract
Haloferaxmediterranei is a haloarchaeon of high interest in biotechnology because it produces and mobilizes intracellular polyhydroxyalkanoate (PHA) granules during growth under stress conditions (limitation of phosphorous in the culture media), among other interesting metabolites (enzymes, carotenoids, etc.). The capability of PHA production by microbes can be monitored with the use of staining-based methods. However, the staining of haloarchaea cells is a challenging task; firstly, due to the high ionic strength of the medium, which is inappropriate for most of dyes, and secondly, due to the low permeability of the haloarchaea S-layer to macromolecules. In this work, Haloferax mediterranei is used as a halophilic archaeon model to describe an optimized protocol for the visualization and analysis of intracellular PHA granules in living cells. The method is based on double-fluorescence staining using Nile red and SYBR Green by confocal fluorescence microscopy. Thanks to this method, the capability of PHA production by new haloarchaea isolates could be easily monitored.
Collapse
|
19
|
Guo Y, Shi W, Zhang B, Li W, Lens PNL. Effect of voltage intensity on the nutrient removal performance and microbial community in the iron electrolysis-integrated aerobic granular sludge system. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 274:116604. [PMID: 33548671 DOI: 10.1016/j.envpol.2021.116604] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/19/2021] [Accepted: 01/24/2021] [Indexed: 06/12/2023]
Abstract
The effects of voltage intensity on the nutrient removal performance and microbial community in the iron electrolysis-integrated aerobic granular sludge (AGS) system were investigated over a period of 15 weeks. Results revealed that the application outcomes of iron electrolysis for AGS systems relied on voltage intensity. When a constant voltage of 1.5 V was applied, the sludge granulation was most obviously accelerated with a specific growth rate of the sludge diameter of 0.078 day-1, and the removal efficiencies of total nitrogen (TN) and total phosphorus (TP) increased by 14.1% and 20.2%, respectively, compared to the control reactor (without the iron electrolysis-integration). Moreover, the AGS developed at different voltages included different microbial communities, whose shifts were driven by the Fe content and the average diameter of AGS. Both heterotrophic nitrifiers and mixotrophic denitrifiers were significantly enriched in the AGS developed at 1.5 V, which effectively enhanced TN removal. Together with the response of the functional genes involved in Fe, N, and P metabolism, the electrolytic iron-driven nutrient degradation pathway was further elaborated. Overall, this study clarified the optimum voltage condition when iron electrolysis was integrated into the AGS system, and revealed the enhancement mechanism of this coupling technology on nutrient removal during the treatment of low-strength municipal wastewater.
Collapse
Affiliation(s)
- Yuan Guo
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Wenxin Shi
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China; College of Environment and Ecology, Chongqing University, Chongqing, 400044, China.
| | - Bing Zhang
- College of Environment and Ecology, Chongqing University, Chongqing, 400044, China.
| | - Weiguang Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Piet N L Lens
- UNESCO-IHE, Institute for Water Education, Westvest 7, 2601, DA Delft, the Netherlands
| |
Collapse
|
20
|
Asplund-Samuelsson J, Hudson EP. Wide range of metabolic adaptations to the acquisition of the Calvin cycle revealed by comparison of microbial genomes. PLoS Comput Biol 2021; 17:e1008742. [PMID: 33556078 PMCID: PMC7895386 DOI: 10.1371/journal.pcbi.1008742] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/19/2021] [Accepted: 01/25/2021] [Indexed: 11/21/2022] Open
Abstract
Knowledge of the genetic basis for autotrophic metabolism is valuable since it relates to both the emergence of life and to the metabolic engineering challenge of incorporating CO2 as a potential substrate for biorefining. The most common CO2 fixation pathway is the Calvin cycle, which utilizes Rubisco and phosphoribulokinase enzymes. We searched thousands of microbial genomes and found that 6.0% contained the Calvin cycle. We then contrasted the genomes of Calvin cycle-positive, non-cyanobacterial microbes and their closest relatives by enrichment analysis, ancestral character estimation, and random forest machine learning, to explore genetic adaptations associated with acquisition of the Calvin cycle. The Calvin cycle overlaps with the pentose phosphate pathway and glycolysis, and we could confirm positive associations with fructose-1,6-bisphosphatase, aldolase, and transketolase, constituting a conserved operon, as well as ribulose-phosphate 3-epimerase, ribose-5-phosphate isomerase, and phosphoglycerate kinase. Additionally, carbohydrate storage enzymes, carboxysome proteins (that raise CO2 concentration around Rubisco), and Rubisco activases CbbQ and CbbX accompanied the Calvin cycle. Photorespiration did not appear to be adapted specifically for the Calvin cycle in the non-cyanobacterial microbes under study. Our results suggest that chemoautotrophy in Calvin cycle-positive organisms was commonly enabled by hydrogenase, and less commonly ammonia monooxygenase (nitrification). The enrichment of specific DNA-binding domains indicated Calvin-cycle associated genetic regulation. Metabolic regulatory adaptations were illustrated by negative correlation to AraC and the enzyme arabinose-5-phosphate isomerase, which suggests a downregulation of the metabolite arabinose-5-phosphate, which may interfere with the Calvin cycle through enzyme inhibition and substrate competition. Certain domains of unknown function that were found to be important in the analysis may indicate yet unknown regulatory mechanisms in Calvin cycle-utilizing microbes. Our gene ranking provides targets for experiments seeking to improve CO2 fixation, or engineer novel CO2-fixing organisms.
Collapse
Affiliation(s)
- Johannes Asplund-Samuelsson
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Solna, Sweden
| | - Elton P. Hudson
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Solna, Sweden
| |
Collapse
|
21
|
Panich J, Fong B, Singer SW. Metabolic Engineering of Cupriavidus necator H16 for Sustainable Biofuels from CO 2. Trends Biotechnol 2021; 39:412-424. [PMID: 33518389 DOI: 10.1016/j.tibtech.2021.01.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 02/08/2023]
Abstract
Decelerating global warming is one of the predominant challenges of our time and will require conversion of CO2 to usable products and commodity chemicals. Of particular interest is the production of fuels, because the transportation sector is a major source of CO2 emissions. Here, we review recent technological advances in metabolic engineering of the hydrogen-oxidizing bacterium Cupriavidus necator H16, a chemolithotroph that naturally consumes CO2 to generate biomass. We discuss recent successes in biofuel production using this organism, and the implementation of electrolysis/artificial photosynthesis approaches that enable growth of C. necator using renewable electricity and CO2. Last, we discuss prospects of improving the nonoptimal growth of C. necator in ambient concentrations of CO2.
Collapse
Affiliation(s)
- Justin Panich
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | - Bonnie Fong
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Steven W Singer
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| |
Collapse
|
22
|
Boonyawanich S, Tanikkul P, Thenchartanan P, Pisutpaisal N. Productivity of Pseudomonas putida TISTR 1522 in polyhydroxyalkanoates (PHAs) production from saponified palm oil. Appl Biochem Biotechnol 2021; 193:1086-1098. [PMID: 33405009 DOI: 10.1007/s12010-020-03481-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 11/30/2020] [Indexed: 02/04/2023]
Abstract
Polyhydroxyalkanoates (PHAs) have attracted attention as an environmentally degradable bioplastic which potentially replaces synthetic polymers used in a wide range of industries. One of most promising microorganisms for the production of PHAs is Pseudomonas putida. In this study, we purpose to develop sustainable processes to convert abundant palm oil available in local market to high value PHAs and optimize PHAs production by Pseudomonas putida TISTR 1522 from saponified palm oil. We found that the highest yield of PHAs production (0.95 g/L, 40.15%) was obtained in culture medium supplemented with 1% (w/v) fatty acid salt by P. putida TISTR 1522 after 24-h cultivation. The intracellular PHAs were located in granules inside the cells, which fluoresced bright yellow by staining with Nile red. The physical appearance of intracellular PHAs investigated by transmission electron microscope (TEM) revealed that PHAs accumulate in granules, about 3-10 granules per cell. These granules are white and roundish-shaped with 0.3-0.5-μm diameter. The 1H NMR spectrum represented the typical characters of medium-chain length-PHAs. This variation of all parameters was successfully demonstrated a good intracellular PHAs accumulation in P. putida TISTR 1522 by fatty acid salt utilization.
Collapse
Affiliation(s)
- Siriorn Boonyawanich
- Department of Agro-Industrial, Food, and Environmental Technology (AFET), King Mongkut's University of Technology North Bangkok (KMUTNB), Bangkok, Thailand.,The Biosensor and Bioelectronics Technology Centre, The Research and Technology Center for Renewable Products and Energy, King Mongkut's University of Technology North Bangkok, Bangkok, 10800, Thailand
| | - Pinanong Tanikkul
- Department of Environmental Science, Faculty of Science and Technology, Rajamangala University of Technology Rattanakosin, Salaya Campus, Salaya, 73170, Thailand
| | - Pornpanna Thenchartanan
- Department of Agro-Industrial, Food, and Environmental Technology (AFET), King Mongkut's University of Technology North Bangkok (KMUTNB), Bangkok, Thailand
| | - Nipon Pisutpaisal
- Department of Agro-Industrial, Food, and Environmental Technology (AFET), King Mongkut's University of Technology North Bangkok (KMUTNB), Bangkok, Thailand. .,The Biosensor and Bioelectronics Technology Centre, The Research and Technology Center for Renewable Products and Energy, King Mongkut's University of Technology North Bangkok, Bangkok, 10800, Thailand.
| |
Collapse
|
23
|
Justen AM, Hodges HL, Kim LM, Sadecki PW, Porfirio S, Ultee E, Black I, Chung GS, Briegel A, Azadi P, Kiessling LL. Polysaccharide length affects mycobacterial cell shape and antibiotic susceptibility. SCIENCE ADVANCES 2020; 6:6/38/eaba4015. [PMID: 32938674 PMCID: PMC7494350 DOI: 10.1126/sciadv.aba4015] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 08/05/2020] [Indexed: 05/04/2023]
Abstract
Bacteria control the length of their polysaccharides, which can control cell viability, physiology, virulence, and immune evasion. Polysaccharide chain length affects immunomodulation, but its impact on bacterial physiology and antibiotic susceptibility was unclear. We probed the consequences of truncating the mycobacterial galactan, an essential linear polysaccharide of about 30 residues. Galactan covalently bridges cell envelope layers, with the outermost cell wall linkage point occurring at residue 12. Reducing galactan chain length by approximately half compromises fitness, alters cell morphology, and increases the potency of hydrophobic antibiotics. Systematic variation of the galactan chain length revealed that it determines periplasm size. Thus, glycan chain length can directly affect cellular physiology and antibiotic activity, and mycobacterial glycans, not proteins, regulate periplasm size.
Collapse
Affiliation(s)
- Alexander M Justen
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706-1544, USA
| | - Heather L Hodges
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706-1322, USA
| | - Lili M Kim
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706-1544, USA
| | - Patric W Sadecki
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706-1322, USA
| | - Sara Porfirio
- Complex Carbohydrate Research Center, 315 Riverbend Rd, Athens, GA 30602, USA
| | - Eveline Ultee
- Institute of Biology, University of Leiden, 2333 BE Leiden, Netherlands
| | - Ian Black
- Complex Carbohydrate Research Center, 315 Riverbend Rd, Athens, GA 30602, USA
| | - Grace S Chung
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706-1544, USA
| | - Ariane Briegel
- Institute of Biology, University of Leiden, 2333 BE Leiden, Netherlands
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, 315 Riverbend Rd, Athens, GA 30602, USA
| | - Laura L Kiessling
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA.
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706-1544, USA
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706-1322, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
24
|
Song HS, Jeon JM, Bhatia SK, Choi TR, Lee SM, Park SL, Lee HS, Yoon JJ, Ahn J, Lee H, Brigham CJ, Choi KY, Yang YH. Enhanced isobutanol production by co-production of polyhydroxybutyrate and cofactor engineering. J Biotechnol 2020; 320:66-73. [DOI: 10.1016/j.jbiotec.2020.06.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 05/29/2020] [Accepted: 06/18/2020] [Indexed: 01/17/2023]
|
25
|
Growth associated polyhydroxybutyrate production by the novel Zobellellae tiwanensis strain DD5 from banana peels under submerged fermentation. Int J Biol Macromol 2020; 153:461-469. [DOI: 10.1016/j.ijbiomac.2020.03.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/02/2020] [Accepted: 03/02/2020] [Indexed: 11/22/2022]
|
26
|
Novel unexpected functions of PHA granules. Appl Microbiol Biotechnol 2020; 104:4795-4810. [PMID: 32303817 DOI: 10.1007/s00253-020-10568-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/10/2020] [Accepted: 03/20/2020] [Indexed: 10/24/2022]
Abstract
Polyhydroxyalkanoates (PHA), polyesters accumulated by numerous prokaryotes in the form of intracellular granules, have been for decades considered being predominantly storage molecules. However, numerous recent discoveries revealed and emphasized their complex biological role for microbial cells. Most of all, it was repeatedly reported and confirmed that the presence of PHA granules in prokaryotic cells enhances stress resistance and robustness of microbes against various environmental stress factors such as high or low temperature, freezing, oxidative, and osmotic pressure. It seems that protective mechanisms of PHA granules are associated with their extraordinary architecture and biophysical properties as well as with the complex and deeply interconnected nature of PHA metabolism. Therefore, this review aims at describing novel and unexpected properties of PHA granules with respect to their contribution to stress tolerance of various prokaryotes including common mesophilic heterotrophic bacteria, but also extremophiles or photo-autotrophic cyanobacteria. KEY POINTS: • PHA granules present in bacterial cells reveal unique properties and functions. • PHA enhances stress robustness of bacterial cells.
Collapse
|
27
|
|
28
|
Elsayed NS, Aboshanab KM, Yassien MA, Hassouna NH. New insight into poly (3-hydroxybutyrate) production by Azomonas macrocytogenes isolate KC685000: large scale production, kinetic modeling, recovery and characterization. Mol Biol Rep 2019; 46:3357-3370. [PMID: 30997598 DOI: 10.1007/s11033-019-04798-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 04/03/2019] [Indexed: 11/28/2022]
Abstract
About 24 h incubation of Azomonas (A.) macrocytogenes isolate KC685000 in 14L fermenter produced 22% poly (3-hydroxybutyrate) (PHB) per cell dry weight (CDW) biopolymer using 1 vvm aeration, 10% inoculum size, and initial pH of 7.2. To control the fermentation process, Logistic and Leudeking-Piret models were used to describe the cell growth and PHB production, respectively. These two models were in good agreement with the experimental data confirming the growth associated nature of PHB production. The best method for recovery of PHB was chemical digestion using sodium hypochlorite alone. The characterization of the produced polymer was carried out using FT-IR, 1HNMR spectroscopy, gel permeation chromatography and transmission electron microscope. The analysis of the nucleotide sequences of PHA synthase enzyme revealed class III identity. The putative tertiary structure of PHA synthase enzyme was analyzed using Modular Approach to Structural class prediction software, Tied Mixture Hidden Markov Model server, and Swiss model software. It was deduced that PHA synthases' structural class was multidomain protein (α/β) containing a conserved cysteine residue and lipase box as characteristic features of α/β hydrolase super family. Taken together, all the results of molecular characterization and transmission electron microscope images supported that the PHB formation was attained by the micelle model. To the best of our knowledge, this is the first report on production of growth associated PHB polymer using A. macrocytogenes isolate KC685000, and its class III PHA synthase.
Collapse
Affiliation(s)
- Noha S Elsayed
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Organization of African Unity St., Abbassia, 11566, Cairo, Egypt
| | - Khaled M Aboshanab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Organization of African Unity St., Abbassia, 11566, Cairo, Egypt.
| | - Mahmoud A Yassien
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Organization of African Unity St., Abbassia, 11566, Cairo, Egypt
| | - Nadia H Hassouna
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Organization of African Unity St., Abbassia, 11566, Cairo, Egypt
| |
Collapse
|
29
|
Tian B, Shah M, Choi MH, Rho JK, Lee SY, Yoon SC. Calcium Involved Directional Organization of Polymer Chains in Polyester Nanogranules in Bacterial Cells. Sci Rep 2019; 9:3429. [PMID: 30837614 PMCID: PMC6401383 DOI: 10.1038/s41598-019-40097-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 02/06/2019] [Indexed: 12/04/2022] Open
Abstract
Soil bacteria accumulate polyesters (typically poly([R]-3-hydroxybutyrate (PHB), in which one end of the chain terminates with a carboxyl group) in the form of hydrated, amorphous nanogranules in cells. However, it is not clear what drives the structure of these biomaterials inside bacterial cells. Here, we determined that calcium guides intracellular formation of PHB nanogranules. Our systematic study using the surface zeta potential measurement and the carboxyl-specific SYTO-62 dye binding assay showed that the terminal carboxyl is not exposed to the granule surface but is buried inside native “unit-granules” comprising the mature granule. Extracellular Ca2+ was found to mediate the formation of these PHB unit-granules, with uptaken Ca2+ stored inside the granules. Comparative [Ca2+]-dependent fluorescence spectroscopy revealed that the native granules in Cupriavidus necator H16 act as a Ca2+ storage system, presumably for the regulation of its cytosolic Ca2+ level, but those from recombinant Escherichia coli do not. This study reveals intimate links between Ca2+ and native granule formation, and establishes a novel mechanism that intracellular PHB granules function as Ca2+ storage in order to relieve soil bacteria from Ca2+ stress.
Collapse
Affiliation(s)
- Baoxia Tian
- Nano-Biomaterials Science Laboratory, Division of Applied Life Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea.,Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 23003, People's Republic of China
| | - Mohsin Shah
- Nano-Biomaterials Science Laboratory, Division of Applied Life Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea.,Department of Physiology, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, 40000, Pakistan
| | - Mun Hwan Choi
- Nano-Biomaterials Science Laboratory, Division of Applied Life Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Jong Kook Rho
- Nano-Biomaterials Science Laboratory, Division of Applied Life Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Sang Yeol Lee
- Systems & Synthetic Agrobiotech Center, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Sung Chul Yoon
- Nano-Biomaterials Science Laboratory, Division of Applied Life Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea. .,Systems & Synthetic Agrobiotech Center, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| |
Collapse
|
30
|
Sagong HY, Son HF, Choi SY, Lee SY, Kim KJ. Structural Insights into Polyhydroxyalkanoates Biosynthesis. Trends Biochem Sci 2018; 43:790-805. [PMID: 30139647 DOI: 10.1016/j.tibs.2018.08.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 07/27/2018] [Accepted: 08/04/2018] [Indexed: 12/25/2022]
Abstract
Polyhydroxyalkanoates (PHAs) are diverse biopolyesters produced by numerous microorganisms and have attracted much attention as a substitute for petroleum-based polymers. Despite several decades of study, the detailed molecular mechanisms of PHA biosynthesis have remained unknown due to the lack of structural information on the key PHA biosynthetic enzyme PHA synthase. The recently determined crystal structure of PHA synthase, together with the structures of acetyl-coenzyme A (CoA) acetyltransferase and reductase, have changed this situation. Structural and biochemical studies provided important clues for the molecular mechanisms of each enzyme as well as the overall mechanism of PHA biosynthesis from acetyl-CoA. This new information and knowledge is expected to facilitate production of designed novel PHAs and also enhanced production of PHAs.
Collapse
Affiliation(s)
- Hye-Young Sagong
- School of Life Sciences, KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea; KNU Institute for Microorganisms, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hyeoncheol Francis Son
- School of Life Sciences, KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea; KNU Institute for Microorganisms, Kyungpook National University, Daegu 41566, Republic of Korea
| | - So Young Choi
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), BioProcess Engineering Research Center, Center for Systems and Synthetic Biotechnology, and Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), BioProcess Engineering Research Center, Center for Systems and Synthetic Biotechnology, and Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Kyung-Jin Kim
- School of Life Sciences, KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea; KNU Institute for Microorganisms, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
31
|
Sakthiselvan P, Madhumathi R. Kinetic evaluation on cell growth and biosynthesis of polyhydroxybutyrate (PHB) by Bacillus safensis EBT1 from sugarcane bagasse. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.eaef.2018.03.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
32
|
Gérard E, De Goeyse S, Hugoni M, Agogué H, Richard L, Milesi V, Guyot F, Lecourt L, Borensztajn S, Joseph MB, Leclerc T, Sarazin G, Jézéquel D, Leboulanger C, Ader M. Key Role of Alphaproteobacteria and Cyanobacteria in the Formation of Stromatolites of Lake Dziani Dzaha (Mayotte, Western Indian Ocean). Front Microbiol 2018; 9:796. [PMID: 29872424 PMCID: PMC5972316 DOI: 10.3389/fmicb.2018.00796] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 04/09/2018] [Indexed: 01/09/2023] Open
Abstract
Lake Dziani Dzaha is a thalassohaline tropical crater lake located on the "Petite Terre" Island of Mayotte (Comoros archipelago, Western Indian Ocean). Stromatolites are actively growing in the shallow waters of the lake shores. These stromatolites are mainly composed of aragonite with lesser proportions of hydromagnesite, calcite, dolomite, and phyllosilicates. They are morphologically and texturally diverse ranging from tabular covered by a cauliflower-like crust to columnar ones with a smooth surface. High-throughput sequencing of bacterial and archaeal 16S rRNA genes combined with confocal laser scanning microscopy (CLSM) analysis revealed that the microbial composition of the mats associated with the stromatolites was clearly distinct from that of the Arthrospira-dominated lake water. Unicellular-colonial Cyanobacteria belonging to the Xenococcus genus of the Pleurocapsales order were detected in the cauliflower crust mats, whereas filamentous Cyanobacteria belonging to the Leptolyngbya genus were found in the smooth surface mats. Observations using CLSM, scanning electron microscopy (SEM) and Raman spectroscopy indicated that the cauliflower texture consists of laminations of aragonite, magnesium-silicate phase and hydromagnesite. The associated microbial mat, as confirmed by laser microdissection and whole-genome amplification (WGA), is composed of Pleurocapsales coated by abundant filamentous and coccoid Alphaproteobacteria. These phototrophic Alphaproteobacteria promote the precipitation of aragonite in which they become incrusted. In contrast, the Pleurocapsales are not calcifying but instead accumulate silicon and magnesium in their sheaths, which may be responsible for the formation of the Mg-silicate phase found in the cauliflower crust. We therefore propose that Pleurocapsales and Alphaproteobacteria are involved in the formation of two distinct mineral phases present in the cauliflower texture: Mg-silicate and aragonite, respectively. These results point out the role of phototrophic Alphaproteobacteria in the formation of stromatolites, which may open new perspective for the analysis of the fossil record.
Collapse
Affiliation(s)
- Emmanuelle Gérard
- UMR CNRS 7154 Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Université Paris Diderot, Centre National de la Recherche Scientifique, Paris, France
| | - Siham De Goeyse
- UMR CNRS 7154 Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Université Paris Diderot, Centre National de la Recherche Scientifique, Paris, France
| | - Mylène Hugoni
- Université Lyon 1, UMR CNRS 5557 / INRA 1418, Ecologie Microbienne, Villeurbanne, France
| | - Hélène Agogué
- UMR 7266 CNRS-Université de la Rochelle, LIttoral ENvironnement Et Sociétés, La Rochelle, France
| | - Laurent Richard
- School of Mining and Geosciences, Nazarbayev University, Astana, Kazakhstan
| | - Vincent Milesi
- UMR CNRS 7154 Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Université Paris Diderot, Centre National de la Recherche Scientifique, Paris, France
| | - François Guyot
- Museum National d’Histoire Naturelle, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UMR 7590 CNRS Sorbonne Universités, Université Pierre et Marie Curie, Institut de Recherche pour le Développement UMR 206, Paris, France
| | - Léna Lecourt
- UMR CNRS 7154 Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Université Paris Diderot, Centre National de la Recherche Scientifique, Paris, France
| | - Stephan Borensztajn
- UMR CNRS 7154 Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Université Paris Diderot, Centre National de la Recherche Scientifique, Paris, France
| | - Marie-Béatrice Joseph
- UMR CNRS 7154 Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Université Paris Diderot, Centre National de la Recherche Scientifique, Paris, France
| | - Thomas Leclerc
- UMR CNRS 7154 Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Université Paris Diderot, Centre National de la Recherche Scientifique, Paris, France
| | - Gérard Sarazin
- UMR CNRS 7154 Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Université Paris Diderot, Centre National de la Recherche Scientifique, Paris, France
| | - Didier Jézéquel
- UMR CNRS 7154 Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Université Paris Diderot, Centre National de la Recherche Scientifique, Paris, France
| | | | - Magali Ader
- UMR CNRS 7154 Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Université Paris Diderot, Centre National de la Recherche Scientifique, Paris, France
| |
Collapse
|
33
|
Biosynthesis of polyhydroxyalkanoates using Cupriavidus necator H16 and its application for particleboard production. JOURNAL OF POLYMER RESEARCH 2018. [DOI: 10.1007/s10965-018-1521-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
34
|
Sabaneyeva E, Castelli M, Szokoli F, Benken K, Lebedeva N, Salvetti A, Schweikert M, Fokin S, Petroni G. Host and symbiont intraspecific variability: The case of Paramecium calkinsi and "Candidatus Trichorickettsia mobilis". Eur J Protistol 2017; 62:79-94. [PMID: 29287245 DOI: 10.1016/j.ejop.2017.12.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 10/17/2017] [Accepted: 12/04/2017] [Indexed: 01/08/2023]
Abstract
Newly isolated strains of the ciliate Paramecium calkinsi and their cytoplasmic bacterial endosymbionts were characterized by a multidisciplinary approach, including live observation, ultrastructural investigation, and molecular analysis. Despite morphological resemblance, the characterized P. calkinsi strains showed a significant molecular divergence compared to conspecifics, possibly hinting for a cryptic speciation. The endosymbionts were clearly found to be affiliated to the species "Candidatus Trichorickettsia mobilis" (Rickettsiales, Rickettsiaceae), currently encompassing only bacteria retrieved in an obligate intracellular association with other ciliates. However, a relatively high degree of intraspecific divergence was observed as well, thus it was possible to split "Candidatus Trichorickettsia" into three subspecies, one of which represented so far only by the newly characterized endosymbionts of P. calkinsi. Other features distinguished the members of each different subspecies. In particular, the endosymbionts of P. calkinsi resided in the cytoplasm and possessed numerous peritrichous flagella, although no motility was evidenced, whereas their conspecifics in other hosts were either cytoplasmic and devoid of flagella, or macronuclear, displaying flagellar-driven motility. Moreover, contrarily to previously analyzed "Candidatus Trichorickettsia" hosts, infected P. calkinsi cells frequently became amicronucleate and demonstrated abnormal cell division, eventually leading to decline of the laboratory culture.
Collapse
Affiliation(s)
- E Sabaneyeva
- Department of Cytology and Histology, St. Petersburg State University, Russian Federation.
| | - M Castelli
- Department of Veterinary Medicine, University of Milan, Italy; Department of Biosciences, University of Milan, Italy
| | - F Szokoli
- Dipartimento di Biologia, Università di Pisa, Italy; Institut für Hydrobiologie, Technische Universität Dresden, Germany
| | - K Benken
- Core Facility Center for Microscopy and Microanalysis, St. Petersburg State University, Russian Federation
| | - N Lebedeva
- Core Facility Center for Cultivation of Microorganisms, St. Petersburg State University, Russian Federation
| | - A Salvetti
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Italy
| | - M Schweikert
- Institut of Biomaterials and Biomolecular Systems, Stuttgart University, Germany
| | - S Fokin
- Dipartimento di Biologia, Università di Pisa, Italy; Department of Invertebrate Zoology, St. Petersburg State University, Russian Federation
| | - G Petroni
- Dipartimento di Biologia, Università di Pisa, Italy.
| |
Collapse
|
35
|
Fernández-Castané A, Li H, Thomas ORT, Overton TW. Flow cytometry as a rapid analytical tool to determine physiological responses to changing O 2 and iron concentration by Magnetospirillum gryphiswaldense strain MSR-1. Sci Rep 2017; 7:13118. [PMID: 29030621 PMCID: PMC5640647 DOI: 10.1038/s41598-017-13414-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 09/21/2017] [Indexed: 12/16/2022] Open
Abstract
Magnetotactic bacteria (MTB) are a diverse group of bacteria that synthesise magnetosomes, magnetic membrane-bound nanoparticles that have a variety of diagnostic, clinical and biotechnological applications. We present the development of rapid methods using flow cytometry to characterize several aspects of the physiology of the commonly-used MTB Magnetospirillum gryphiswaldense MSR-1. Flow cytometry is an optical technique that rapidly measures characteristics of individual bacteria within a culture, thereby allowing determination of population heterogeneity and also permitting direct analysis of bacteria. Scatter measurements were used to measure and compare bacterial size, shape and morphology. Membrane permeability and polarization were measured using the dyes propidium iodide and bis-(1,3-dibutylbarbituric acid) trimethine oxonol to determine the viability and ‘health’ of bacteria. Dyes were also used to determine changes in concentration of intracellular free iron and polyhydroxylakanoate (PHA), a bacterial energy storage polymer. These tools were then used to characterize the responses of MTB to different O2 concentrations and iron-sufficient or iron-limited growth. Rapid analysis of MTB physiology will allow development of bioprocesses for the production of magnetosomes, and will increase understanding of this fascinating and useful group of bacteria.
Collapse
Affiliation(s)
- Alfred Fernández-Castané
- School of Chemical Engineering, College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.,Institute for Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.,School of Engineering and Applied Science, Aston University, Birmingham, B4 7ET, UK
| | - Hong Li
- School of Chemical Engineering, College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Owen R T Thomas
- School of Chemical Engineering, College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Tim W Overton
- School of Chemical Engineering, College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK. .,Institute for Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
36
|
Arikawa H, Sato S, Fujiki T, Matsumoto K. Simple and rapid method for isolation and quantitation of polyhydroxyalkanoate by SDS-sonication treatment. J Biosci Bioeng 2017; 124:250-254. [DOI: 10.1016/j.jbiosc.2017.03.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/08/2017] [Indexed: 10/19/2022]
|
37
|
Mohapatra S, Samantaray D, Samantaray S, Mishra B, Das S, Majumdar S, Pradhan S, Rath S, Rath C, Akthar J, Achary K. Structural and thermal characterization of PHAs produced by Lysinibacillus sp. through submerged fermentation process. Int J Biol Macromol 2016; 93:1161-1167. [DOI: 10.1016/j.ijbiomac.2016.09.077] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 08/28/2016] [Accepted: 09/20/2016] [Indexed: 10/21/2022]
|
38
|
Kim YJ, Choi SY, Kim J, Jin KS, Lee SY, Kim KJ. Structure and function of the N-terminal domain of Ralstonia eutropha
polyhydroxyalkanoate synthase, and the proposed structure and mechanisms of the whole enzyme. Biotechnol J 2016; 12. [DOI: 10.1002/biot.201600649] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 10/31/2016] [Accepted: 11/02/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Yeo-Jin Kim
- School of Life Sciences, KNU Creative BioResearch Group; Kyungpook National University; Daegu Republic of Korea
| | - So Young Choi
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), BioProcess Engineering Research Center, Center for Systems and Synthetic Biotechnology, and Institute for the BioCentury; Korea Advanced Institute of Science and Technology (KAIST); Daejeon Republic of Korea
| | - Jieun Kim
- School of Life Sciences, KNU Creative BioResearch Group; Kyungpook National University; Daegu Republic of Korea
| | - Kyeong Sik Jin
- Pohang Accelerator Laboratory; Pohang University of Science and Technology; Pohang Republic of Korea
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), BioProcess Engineering Research Center, Center for Systems and Synthetic Biotechnology, and Institute for the BioCentury; Korea Advanced Institute of Science and Technology (KAIST); Daejeon Republic of Korea
| | - Kyung-Jin Kim
- School of Life Sciences, KNU Creative BioResearch Group; Kyungpook National University; Daegu Republic of Korea
| |
Collapse
|
39
|
Vadlja D, Koller M, Novak M, Braunegg G, Horvat P. Footprint area analysis of binary imaged Cupriavidus necator cells to study PHB production at balanced, transient, and limited growth conditions in a cascade process. Appl Microbiol Biotechnol 2016; 100:10065-10080. [PMID: 27695913 PMCID: PMC5102984 DOI: 10.1007/s00253-016-7844-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 08/21/2016] [Accepted: 09/07/2016] [Indexed: 12/22/2022]
Abstract
Statistical distribution of cell and poly[3-(R)-hydroxybutyrate] (PHB) granule size and number of granules per cell are investigated for PHB production in a five-stage cascade (5CSTR). Electron microscopic pictures of cells from individual cascade stages (R1-R5) were converted to binary pictures to visualize footprint areas for polyhydroxyalkanoate (PHA) and non-PHA biomass. Results for each stage were correlated to the corresponding experimentally determined kinetics (specific growth rate μ and specific productivity π). Log-normal distribution describes PHA granule size dissimilarity, whereas for R1 and R4, gamma distribution best reflects the situation. R1, devoted to balanced biomass synthesis, predominately contains cells with rather small granules, whereas with increasing residence time τ, maximum and average granule sizes by trend increase, approaching an upper limit determined by the cell's geometry. Generally, an increase of intracellular PHA content and ratio of granule to cell area slow down along the cascade. Further, the number of granules per cell decreases with increasing τ. Data for μ and π obtained by binary picture analysis correlate well with the experimental results. The work describes long-term continuous PHA production under balanced, transient, and nutrient-deficient conditions, as well as their reflection on the granules size, granule number, and cell structure on the microscopic level.
Collapse
Affiliation(s)
- Denis Vadlja
- Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000, Zagreb, Croatia
| | - Martin Koller
- Office of Research Management and Service, c/o Institute of Chemistry, NAWI Graz, University of Graz, Heinrichstrasse 28/III, 8010, Graz, Austria. .,ARENA Arbeitsgemeinschaft für Ressourcenschonende & Nachhaltige Technologien, Inffeldgasse 21b, 8010, Graz, Austria.
| | - Mario Novak
- Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000, Zagreb, Croatia
| | - Gerhart Braunegg
- ARENA Arbeitsgemeinschaft für Ressourcenschonende & Nachhaltige Technologien, Inffeldgasse 21b, 8010, Graz, Austria
| | - Predrag Horvat
- Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000, Zagreb, Croatia
| |
Collapse
|
40
|
Tao Z, Peng L, Zhang P, Li YQ, Wang G. Probing the Kinetic Anabolism of Poly-Beta-Hydroxybutyrate in Cupriavidus necator H16 Using Single-Cell Raman Spectroscopy. SENSORS 2016; 16:s16081257. [PMID: 27509509 PMCID: PMC5017422 DOI: 10.3390/s16081257] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 07/28/2016] [Accepted: 08/03/2016] [Indexed: 01/28/2023]
Abstract
Poly-beta-hydroxybutyrate (PHB) can be formed in large amounts in Cupriavidus necator and is important for the industrial production of biodegradable plastics. In this investigation, laser tweezers Raman spectroscopy (LTRS) was used to characterize dynamic changes in PHB content—as well as in the contents of other common biomolecule—in C. necator during batch growth at both the population and single-cell levels. PHB accumulation began in the early stages of bacterial growth, and the maximum PHB production rate occurred in the early and middle exponential phases. The active biosynthesis of DNA, RNA, and proteins occurred in the lag and early exponential phases, whereas the levels of these molecules decreased continuously during the remaining fermentation process until the minimum values were reached. The PHB content inside single cells was relatively homogenous in the middle stage of fermentation; during the late growth stage, the variation in PHB levels between cells increased. In addition, bacterial cells in various growth phases could be clearly discriminated when principle component analysis was performed on the spectral data. These results suggest that LTRS is a valuable single-cell analysis tool that can provide more comprehensive information about the physiological state of a growing microbial population.
Collapse
Affiliation(s)
- Zhanhua Tao
- Guangxi Academy of Sciences, Nanning 530007, Guangxi, China.
| | - Lixin Peng
- Guangxi Academy of Sciences, Nanning 530007, Guangxi, China.
| | - Pengfei Zhang
- Optical Imaging Laboratory at Washington University in St. Louis, One Brookings Drive, St Louis, MO 63130, USA.
| | - Yong-Qing Li
- Department of Physics, East Carolina University, Greenville, NC 27858, USA.
| | - Guiwen Wang
- Guangxi Academy of Sciences, Nanning 530007, Guangxi, China.
| |
Collapse
|
41
|
Wang X, Li Z, Li X, Qian H, Cai X, Li X, He J. Poly-β-hydroxybutyrate Metabolism Is Unrelated to the Sporulation and Parasporal Crystal Protein Formation in Bacillus thuringiensis. Front Microbiol 2016; 7:836. [PMID: 27379025 PMCID: PMC4908106 DOI: 10.3389/fmicb.2016.00836] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 05/18/2016] [Indexed: 01/24/2023] Open
Abstract
Poly-3-hydroxybutyrate (PHB) is a natural polymer synthesized by many bacteria as a carbon-energy storage material. It was accumulated maximally prior to the spore formation but was degraded during the process of sporulation in Bacillus thuringiensis. Intriguingly, B. thuringiensis also accumulates large amounts of insecticidal crystal proteins (ICPs) during sporulation, which requires considerable input of carbon and energy sources. How PHB accumulation affects sporulation and ICP formation remains unclear to date. Intuitively, one would imagine that accumulated PHB provides the energy required for ICP formation. Yet our current data indicate that this is not the case. First, growth curves of the deletion mutants of phaC (encoding the PHB synthase) and phaZ (encoding the PHB depolymerase) were found to be similar to the parent strain BMB171; no difference in growth rate could be observed. In addition we further constructed the cry1Ac10 ICP gene overexpression strains of BMB171 (BMB171-cry), as well as its phaC and phaZ deletion mutants ΔphaC-cry and ΔphaZ-cry to compare their spore and ICP production rates. Again, not much change of ICP production was observed among these strains either. In fact, PHB was still degraded in most ΔphaZ-cry cells as observed by transmission electron microscopy. Together these results indicated that there is no direct association between the PHB accumulation and the sporulation and ICP formation in B. thuringiensis. Some other enzymes for PHB degradation or other energy source may be responsible for the sporulation and/or ICP formation in B. thuringiensis.
Collapse
Affiliation(s)
- Xun Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University Wuhan, China
| | - Zhou Li
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University Wuhan, China
| | - Xin Li
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University Wuhan, China
| | - Hongliang Qian
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University Wuhan, China
| | - Xia Cai
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University Wuhan, China
| | - Xinfeng Li
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University Wuhan, China
| | - Jin He
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural UniversityWuhan, China; Key Laboratory of Agro-Microbial Resource and Development, Ministry of AgricultureWuhan, China
| |
Collapse
|
42
|
Mravec F, Obruca S, Krzyzanek V, Sedlacek P, Hrubanova K, Samek O, Kucera D, Benesova P, Nebesarova J. Accumulation of PHA granules inCupriavidus necatoras seen by confocal fluorescence microscopy. FEMS Microbiol Lett 2016; 363:fnw094. [DOI: 10.1093/femsle/fnw094] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2016] [Indexed: 11/12/2022] Open
|
43
|
|
44
|
Xiao Z, Zhang Y, Xi L, Huo F, Zhao JY, Li J. Thermophilic production of polyhydroxyalkanoates by a novel Aneurinibacillus strain isolated from Gudao oilfield, China. J Basic Microbiol 2015; 55:1125-33. [PMID: 25832555 DOI: 10.1002/jobm.201400843] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 03/13/2015] [Indexed: 11/06/2022]
Abstract
Polyhydroxyalkanoates (PHAs) are usually biosynthesized using mesophilic strains, but the fermentation processes often suffer from bacterial contamination. This work reports the screening of thermophilic bacteria capable of producing PHAs under elevated temperatures to reduce the contamination risk. Strain XH2 was isolated from an oilfield and identified as Aneurinibacillus sp. by morphology, physiological-biochemical characterization, and 16S rDNA phylogenetic analysis. This strain can produce PHA granules, which was detected by Nile red staining and transmission electron microscopic imaging. At 55 °C, 111.6 mg l(-1) of PHA was produced in a fermentation medium containing glucose, peptone, and yeast extract. If peptone was removed from the medium, the yield of PHA would be enhanced by 2.4 times. The main monomers of the PHA product were identified to be 3-hydroxybutyrate and 3-hydroxyvalerate with a molar ratio of 17.2:1 by gas chromatography-mass spectroscopy (GC-MS) and nuclear magnetic resonance analyses. Two minor homologues, 3-hydroxyoctanoate, and 3-hydroxy-4-phenylbutanoate, were tentatively identified by GC-MS as well. This is the first report of thermophilic PHA bacterial producer from the Firmicutes phylum.
Collapse
Affiliation(s)
- Zijun Xiao
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering & Biotechnology, China University of Petroleum, Qingdao, China
| | - Yu Zhang
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering & Biotechnology, China University of Petroleum, Qingdao, China
| | - Lijun Xi
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering & Biotechnology, China University of Petroleum, Qingdao, China
| | - Fangfang Huo
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering & Biotechnology, China University of Petroleum, Qingdao, China
| | - Jing-yi Zhao
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering & Biotechnology, China University of Petroleum, Qingdao, China
| | - Jing Li
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering & Biotechnology, China University of Petroleum, Qingdao, China
| |
Collapse
|
45
|
Integration of poly-3-(hydroxybutyrate-co-hydroxyvalerate) production by Haloferax mediterranei through utilization of stillage from rice-based ethanol manufacture in India and its techno-economic analysis. World J Microbiol Biotechnol 2015; 31:717-27. [PMID: 25690843 DOI: 10.1007/s11274-015-1823-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 02/10/2015] [Indexed: 10/24/2022]
Abstract
Haloferax mediterranei has potential for economical industrial-scale production of polyhydroxyalkanoate (PHA) as it can utilize cheap carbon sources, has capacity for nonsterile cultivation and allows simple product recovery. Molasses-based Indian distilleries are converting themselves to cereal-based distilleries. Waste stillage (14 l) of rice-based ethanol industry was used for the production of PHA by H. mediterranei in the simple plug-flow reactor configuration of the activated sludge process. Cells utilized stillage and accumulated 63 ± 3 % PHA of dry cell weight and produced 13.12 ± 0.05 g PHA/l. The product yield coefficient was 0.27 while 0.14 g/l h volumetric productivity was reached. Simultaneous lowering of 5-day biochemical oxygen demand and chemical oxygen demand values of stillage by 82 % was attained. The biopolymer was characterized as poly-3-(hydroxybutyrate-co-17.9 mol%-hydroxyvalerate) (PHBV). Directional properties of decanoic acid jointly with temperature-dependent water solubility in decanoic acid were employed for two-step desalination of the spent stillage medium in a cylindrical baffled-tank with an immersed heater and a stirrer holding axial and radial impellers. 99.3 % of the medium salts were recovered and re-used for PHA production. The cost of PHBV was estimated as US$2.05/kg when the annual production was simulated as 1890 tons. Desalination contributed maximally to the overall cost. Technology and cost-analysis demonstrate that PHA production integrated with ethanol manufacture is feasible in India. This study could be the basis for construction of a pilot plant.
Collapse
|
46
|
Comparative proteome analysis reveals four novel polyhydroxybutyrate (PHB) granule-associated proteins in Ralstonia eutropha H16. Appl Environ Microbiol 2014; 81:1847-58. [PMID: 25548058 DOI: 10.1128/aem.03791-14] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Identification of proteins that were present in a polyhydroxybutyrate (PHB) granule fraction isolated from Ralstonia eutropha but absent in the soluble, membrane, and membrane-associated fractions revealed the presence of only 12 polypeptides with PHB-specific locations plus 4 previously known PHB-associated proteins with multiple locations. None of the previously postulated PHB depolymerase isoenzymes (PhaZa2 to PhaZa5, PhaZd1, and PhaZd2) and none of the two known 3-hydroxybutyrate oligomer hydrolases (PhaZb and PhaZc) were significantly present in isolated PHB granules. Four polypeptides were found that had not yet been identified in PHB granules. Three of the novel proteins are putative α/β-hydrolases, and two of those (A0671 and B1632) have a PHB synthase/depolymerase signature. The third novel protein (A0225) is a patatin-like phospholipase, a type of enzyme that has not been described for PHB granules of any PHB-accumulating species. No function has been ascribed to the fourth protein (A2001), but its encoding gene forms an operon with phaB2 (acetoacetyl-coenzyme A [CoA] reductase) and phaC2 (PHB synthase), and this is in line with a putative function in PHB metabolism. The localization of the four new proteins at the PHB granule surface was confirmed in vivo by fluorescence microscopy of constructed fusion proteins with enhanced yellow fluorescent protein (eYFP). Deletion of A0671 and B1632 had a minor but detectable effect on the PHB mobilization ability in the stationary growth phase of nutrient broth (NB)-gluconate cells, confirming the functional involvement of both proteins in PHB metabolism.
Collapse
|
47
|
Xiao N, Jiao N, Liu Y. In vivo and in vitro observations of polyhydroxybutyrate granules formed by Dinoroseobacter sp. JL 1447. Int J Biol Macromol 2014; 74:467-75. [PMID: 25498348 DOI: 10.1016/j.ijbiomac.2014.11.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 11/24/2014] [Accepted: 11/25/2014] [Indexed: 12/01/2022]
Abstract
Polyhydroxybutyrate (PHB) granules formed by a marine aerobic anoxygenic phototrophic bacterial strain Dinoroseobacter sp. JL 1447 were detected using transmission electron microscopy and atomic force microscopy. When Dinoroseobacter sp. JL 1447 was inoculated into a medium with glucose as the sole carbon source, the formation of PHB granules occurred and accumulated with incubation time, reaching their maximum in the stationary phase cultures. PHB granules, formed in the cytoplasm at the cell poles or future cell poles, were remobilized and used by the cells in late stationary complex cultures. When PHB granules formed, cell length elongated from 0.5 to 1.5 μm and spherical protrusions appeared on the cell surface. The French press method was used to break the cells and isolate the PHB granules. The freshly prepared and intact PHB granules were spherical with a soft, smooth outer envelope without visible substructures. Upon treating PHB granules with sodium dodecyl sulfate, the envelope was destroyed and nearly parted from the granules, and uniform, spherical structures with a central pore appeared on the granule surface.
Collapse
Affiliation(s)
- Na Xiao
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100085, China
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China.
| | - Yongqin Liu
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
48
|
A novel DNA-binding protein, PhaR, plays a central role in the regulation of polyhydroxyalkanoate accumulation and granule formation in the haloarchaeon Haloferax mediterranei. Appl Environ Microbiol 2014; 81:373-85. [PMID: 25344243 DOI: 10.1128/aem.02878-14] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Polyhydroxyalkanoates (PHAs) are synthesized and assembled as PHA granules that undergo well-regulated formation in many microorganisms. However, this regulation remains unclear in haloarchaea. In this study, we identified a PHA granule-associated regulator (PhaR) that negatively regulates the expression of both its own gene and the granule structural gene phaP in the same operon (phaRP) in Haloferax mediterranei. Chromatin immunoprecipitation-quantitative PCR (ChIP-qPCR) assays demonstrated a significant interaction between PhaR and the phaRP promoter in vivo. Scanning mutagenesis of the phaRP promoter revealed a specific cis-element as the possible binding position of the PhaR. The haloarchaeal homologs of the PhaR contain a novel conserved domain that belongs to a swapped-hairpin barrel fold family found in AbrB-like proteins. Amino acid substitution indicated that this AbrB-like domain is critical for the repression activity of PhaR. In addition, the phaRP promoter had a weaker activity in the PHA-negative strains, implying a function of the PHA granules in titration of the PhaR. Moreover, the H. mediterranei strain lacking phaR was deficient in PHA accumulation and produced granules with irregular shapes. Interestingly, the PhaR itself can promote PHA synthesis and granule formation in a PhaP-independent manner. Collectively, our results demonstrated that the haloarchaeal PhaR is a novel bifunctional protein that plays the central role in the regulation of PHA accumulation and granule formation in H. mediterranei.
Collapse
|
49
|
Laycock B, Halley P, Pratt S, Werker A, Lant P. The chemomechanical properties of microbial polyhydroxyalkanoates. Prog Polym Sci 2014. [DOI: 10.1016/j.progpolymsci.2013.06.008] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
50
|
Jendrossek D, Pfeiffer D. New insights in the formation of polyhydroxyalkanoate granules (carbonosomes) and novel functions of poly(3-hydroxybutyrate). Environ Microbiol 2014; 16:2357-73. [PMID: 24329995 DOI: 10.1111/1462-2920.12356] [Citation(s) in RCA: 163] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 11/27/2013] [Accepted: 12/05/2013] [Indexed: 12/18/2022]
Abstract
The metabolism of polyhydroxybutyrate (PHB) and related polyhydroxyalkanoates (PHAs) has been investigated by many groups for about three decades, and good progress was obtained in understanding the mechanisms of biosynthesis and biodegradation of this class of storage molecules. However, the molecular events that happen at the onset of PHB synthesis and the details of the initiation of PHB/PHA granule formation, as well as the complex composition of the proteinaceous surface layer of PHB/PHA granules, have only recently come into the focus of research and were not reviewed yet. In this contribution, we summarize the progress in understanding the initiation and formation of the PHA granule complex at the example of Ralstonia eutropha H16 (model organism of PHB-accumulating bacteria). Where appropriate, we include information on PHA granules of Pseudomonas putida as a representative species for medium-chain-length PHA-accumulating bacteria. We suggest to replace the previous micelle mode of PHB granule formation by the Scaffold Model in which the PHB synthase initiation complex is bound to the bacterial nucleoid. In the second part, we highlight data on other forms of PHB: oligo-PHB with ≈100 to 200 3-hydroxybutyrate (3HB) units and covalently bound PHB (cPHB) are unrelated in function to storage PHB but are presumably present in all living organisms, and therefore must be of fundamental importance.
Collapse
|