1
|
Sarwar A, Lee EY. Methanol-based biomanufacturing of fuels and chemicals using native and synthetic methylotrophs. Synth Syst Biotechnol 2023; 8:396-415. [PMID: 37384124 PMCID: PMC10293595 DOI: 10.1016/j.synbio.2023.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 06/03/2023] [Accepted: 06/04/2023] [Indexed: 06/30/2023] Open
Abstract
Methanol has recently gained significant attention as a potential carbon substrate for the production of fuels and chemicals, owing to its high degree of reduction, abundance, and low price. Native methylotrophic yeasts and bacteria have been investigated for the production of fuels and chemicals. Alternatively, synthetic methylotrophic strains are also being developed by reconstructing methanol utilization pathways in model microorganisms, such as Escherichia coli. Owing to the complex metabolic pathways, limited availability of genetic tools, and methanol/formaldehyde toxicity, the high-level production of target products for industrial applications are still under development to satisfy commercial feasibility. This article reviews the production of biofuels and chemicals by native and synthetic methylotrophic microorganisms. It also highlights the advantages and limitations of both types of methylotrophs and provides an overview of ways to improve their efficiency for the production of fuels and chemicals from methanol.
Collapse
Affiliation(s)
- Arslan Sarwar
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Eun Yeol Lee
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| |
Collapse
|
2
|
Arevalo Villa C, Marienhagen J, Noack S, Wahl SA. Achieving net zero CO 2 emission in the biobased production of reduced platform chemicals using defined co-feeding of methanol. Curr Opin Biotechnol 2023; 82:102967. [PMID: 37441841 DOI: 10.1016/j.copbio.2023.102967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/13/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023]
Abstract
Next-generation bioprocesses of a future bio-based economy will rely on a flexible mix of readily available feedstocks. Renewable energy can be used to generate sustainable CO2-derived substrates. Metabolic engineering already enables the functional implementation of different pathways for the assimilation of C1 substrates in various microorganisms. In addition to feedstocks, the benchmark for all future bioprocesses will be sustainability, including the avoidance of CO2 emissions. Here we review recent advances in the utilization of C1-compounds from different perspectives, considering both strain and bioprocess engineering technologies. In particular, we evaluate methanol as a co-feed for enabling the CO2 emission-free production of acetyl-CoA-derived compounds. The possible metabolic strategies are analyzed using stoichiometric modeling combined with thermodynamic analysis and prospects for industrial-scale implementation are discussed.
Collapse
Affiliation(s)
- Carlos Arevalo Villa
- Lehrstuhl für Bioverfahrenstechnik, Friedrich Alexander Universität Erlangen-Nürnberg, D-91052 Erlangen, Germany
| | - Jan Marienhagen
- Institute of Bio, and Geosciences (IBG-1): Biotechnology, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany; Institute of Biotechnology, RWTH Aachen University, D-52074 Aachen, Germany
| | - Stephan Noack
- Institute of Bio, and Geosciences (IBG-1): Biotechnology, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
| | - Sebastian Aljoscha Wahl
- Lehrstuhl für Bioverfahrenstechnik, Friedrich Alexander Universität Erlangen-Nürnberg, D-91052 Erlangen, Germany.
| |
Collapse
|
3
|
Abstract
Wetlands are the major natural source of methane, an important greenhouse gas. The sulfur and methane cycles in wetlands are linked—e.g., a strong sulfur cycle can inhibit methanogenesis. Although there has historically been a clear distinction drawn between methane and sulfur oxidizers, here, we isolated a methanotroph that also performed respiratory oxidization of sulfur compounds. We experimentally demonstrated that thiotrophy and methanotrophy are metabolically compatible, and both metabolisms could be expressed simultaneously in a single microorganism. These findings suggest that mixotrophic methane/sulfur-oxidizing bacteria are a previously overlooked component of environmental methane and sulfur cycles. This creates a framework for a better understanding of these redox cycles in natural and engineered wetlands. Natural and anthropogenic wetlands are major sources of the atmospheric greenhouse gas methane. Methane emissions from wetlands are mitigated by methanotrophic bacteria at the oxic–anoxic interface, a zone of intense redox cycling of carbon, sulfur, and nitrogen compounds. Here, we report on the isolation of an aerobic methanotrophic bacterium, ‘Methylovirgula thiovorans' strain HY1, which possesses metabolic capabilities never before found in any methanotroph. Most notably, strain HY1 is the first bacterium shown to aerobically oxidize both methane and reduced sulfur compounds for growth. Genomic and proteomic analyses showed that soluble methane monooxygenase and XoxF-type alcohol dehydrogenases are responsible for methane and methanol oxidation, respectively. Various pathways for respiratory sulfur oxidation were present, including the Sox–rDsr pathway and the S4I system. Strain HY1 employed the Calvin–Benson–Bassham cycle for CO2 fixation during chemolithoautotrophic growth on reduced sulfur compounds. Proteomic and microrespirometry analyses showed that the metabolic pathways for methane and thiosulfate oxidation were induced in the presence of the respective substrates. Methane and thiosulfate could therefore be independently or simultaneously oxidized. The discovery of this versatile bacterium demonstrates that methanotrophy and thiotrophy are compatible in a single microorganism and underpins the intimate interactions of methane and sulfur cycles in oxic–anoxic interface environments.
Collapse
|
4
|
Farhan Ul Haque M, Xu HJ, Murrell JC, Crombie A. Facultative methanotrophs - diversity, genetics, molecular ecology and biotechnological potential: a mini-review. MICROBIOLOGY (READING, ENGLAND) 2020; 166:894-908. [PMID: 33085587 PMCID: PMC7660913 DOI: 10.1099/mic.0.000977] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/20/2020] [Indexed: 12/18/2022]
Abstract
Methane-oxidizing bacteria (methanotrophs) play a vital role in reducing atmospheric methane emissions, and hence mitigating their potent global warming effects. A significant proportion of the methane released is thermogenic natural gas, containing associated short-chain alkanes as well as methane. It was one hundred years following the description of methanotrophs that facultative strains were discovered and validly described. These can use some multi-carbon compounds in addition to methane, often small organic acids, such as acetate, or ethanol, although Methylocella strains can also use short-chain alkanes, presumably deriving a competitive advantage from this metabolic versatility. Here, we review the diversity and molecular ecology of facultative methanotrophs. We discuss the genetic potential of the known strains and outline the consequent benefits they may obtain. Finally, we review the biotechnological promise of these fascinating microbes.
Collapse
Affiliation(s)
| | - Hui-Juan Xu
- School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
- Present address: Joint Institute for Environmental Research & Education, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, PR China
| | - J. Colin Murrell
- School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Andrew Crombie
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
- Present address: School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| |
Collapse
|
5
|
Wang Y, Fan L, Tuyishime P, Zheng P, Sun J. Synthetic Methylotrophy: A Practical Solution for Methanol-Based Biomanufacturing. Trends Biotechnol 2020; 38:650-666. [PMID: 31932066 DOI: 10.1016/j.tibtech.2019.12.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/25/2019] [Accepted: 12/06/2019] [Indexed: 10/25/2022]
Abstract
The increasing availability and affordability of natural gas has renewed interest in using methanol for bioproduction of useful chemicals. Engineering synthetic methylotrophy based on natural or artificial methanol assimilation pathways and genetically tractable platform microorganisms for methanol-based biomanufacturing is drawing particular attention. Recently, intensive efforts have been devoted to demonstrating the feasibility and improving the efficiency of synthetic methylotrophy. Various fuel, bulk, and fine chemicals have been synthesized using methanol as a feedstock. However, fully synthetic methylotrophs utilizing methanol as the sole carbon source and commercially viable bioproduction from methanol remain to be developed. Here, we review ongoing efforts to identify limiting factors, optimize synthetic methylotrophs, and implement methanol-based biomanufacturing. Future challenges and prospects are also discussed.
Collapse
Affiliation(s)
- Yu Wang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Liwen Fan
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; School of Life Sciences, University of Science and Technology of China, Hefei, 230026, China
| | - Philibert Tuyishime
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Ping Zheng
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; School of Life Sciences, University of Science and Technology of China, Hefei, 230026, China.
| | - Jibin Sun
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| |
Collapse
|
6
|
Lanthanide-Dependent Methylotrophs of the Family Beijerinckiaceae: Physiological and Genomic Insights. Appl Environ Microbiol 2019; 86:AEM.01830-19. [PMID: 31604774 DOI: 10.1128/aem.01830-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 10/07/2019] [Indexed: 01/07/2023] Open
Abstract
Methylotrophic bacteria use methanol and related C1 compounds as carbon and energy sources. Methanol dehydrogenases are essential for methanol oxidation, while lanthanides are important cofactors of many pyrroloquinoline quinone-dependent methanol dehydrogenases and related alcohol dehydrogenases. We describe here the physiological and genomic characterization of newly isolated Beijerinckiaceae bacteria that rely on lanthanides for methanol oxidation. A broad physiological diversity was indicated by the ability to metabolize a wide range of multicarbon substrates, including various sugars, and organic acids, as well as diverse C1 substrates such as methylated amines and methylated sulfur compounds. Methanol oxidation was possible only in the presence of low-mass lanthanides (La, Ce, and Nd) at submicromolar concentrations (>100 nM). In a comparison with other Beijerinckiaceae, genomic and transcriptomic analyses revealed the usage of a glutathione- and tetrahydrofolate-dependent pathway for formaldehyde oxidation and channeling methyl groups into the serine cycle for carbon assimilation. Besides a single xoxF gene, we identified two additional genes for lanthanide-dependent alcohol dehydrogenases, including one coding for an ExaF-type alcohol dehydrogenase, which was so far not known in Beijerinckiaceae Homologs for most of the gene products of the recently postulated gene cluster linked to lanthanide utilization and transport could be detected, but for now it remains unanswered how lanthanides are sensed and taken up by our strains. Studying physiological responses to lanthanides under nonmethylotrophic conditions in these isolates as well as other organisms is necessary to gain a more complete understanding of lanthanide-dependent metabolism as a whole.IMPORTANCE We supplemented knowledge of the broad metabolic diversity of the Beijerinckiaceae by characterizing new members of this family that rely on lanthanides for methanol oxidation and that possess additional lanthanide-dependent enzymes. Considering that lanthanides are critical resources for many modern applications and that recovering them is expensive and puts a heavy burden on the environment, lanthanide-dependent metabolism in microorganisms is an exploding field of research. Further research into how isolated Beijerinckiaceae and other microbes utilize lanthanides is needed to increase our understanding of lanthanide-dependent metabolism. The diversity and widespread occurrence of lanthanide-dependent enzymes make it likely that lanthanide utilization varies in different taxonomic groups and is dependent on the habitat of the microbes.
Collapse
|
7
|
Rossmassler K, Kim S, Broeckling CD, Galloway S, Prenni J, De Long SK. Impact of primary carbon sources on microbiome shaping and biotransformation of pharmaceuticals and personal care products. Biodegradation 2019; 30:127-145. [PMID: 30820709 DOI: 10.1007/s10532-019-09871-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 02/14/2019] [Indexed: 12/26/2022]
Abstract
Knowledge of the conditions that promote the growth and activity of pharmaceutical and personal care product (PPCP)-degrading microorganisms within mixed microbial systems are needed to shape microbiomes in biotreatment reactors and manage process performance. Available carbon sources influence microbial community structure, and specific carbon sources could potentially be added to end-of-treatment train biotreatment systems (e.g., soil aquifer treatment [SAT]) to select for the growth and activity of a range of microbial phylotypes that collectively degrade target PPCPs. Herein, the impacts of primary carbon sources on PPCP biodegradation and microbial community structure were explored to identify promising carbon sources for PPCP biotreatment application. Six types of primary carbon sources were investigated: casamino acids, two humic acid and peptone mixtures (high and low amounts of humic acid), molasses, an organic acids mixture, and phenol. Biodegradation was tracked for five PPCPs (diclofenac, 5-fluorouracil, gemfibrozil, ibuprofen, and triclosan). Primary carbon sources were found to differentially impact microbial community structures and rates and efficiencies of PPCP biotransformation. Of the primary carbon sources tested, casamino acids, organic acids, and phenol showed the fastest biotransformation; however, on a biomass-normalized basis, both humic acid-peptone mixtures showed comparable or superior biotransformation. By comparing microbial communities for the different primary carbon sources, abundances of unclassified Beijerinckiaceae, Beijerinckia, Sphingomonas, unclassified Sphingomonadaceae, Flavobacterium, unclassified Rhizobiales, and Nevskia were statistically linked with biotransformation of specific PPCPs.
Collapse
Affiliation(s)
- Karen Rossmassler
- Department of Civil and Environmental Engineering, Colorado State University, 1301 Campus Delivery, Fort Collins, CO, 80523, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Sunah Kim
- Department of Civil and Environmental Engineering, Colorado State University, 1301 Campus Delivery, Fort Collins, CO, 80523, USA
- Department of Civil and Environmental Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Corey D Broeckling
- Proteomics and Metabolomics Facility, Colorado State University, Fort Collins, CO, USA
| | - Sarah Galloway
- Proteomics and Metabolomics Facility, Colorado State University, Fort Collins, CO, USA
| | - Jessica Prenni
- Proteomics and Metabolomics Facility, Colorado State University, Fort Collins, CO, USA
| | - Susan K De Long
- Department of Civil and Environmental Engineering, Colorado State University, 1301 Campus Delivery, Fort Collins, CO, 80523, USA.
| |
Collapse
|
8
|
Zhang T, Wang X, Zhou J, Zhang Y. Enrichments of methanotrophic-heterotrophic cultures with high poly-β-hydroxybutyrate (PHB) accumulation capacities. J Environ Sci (China) 2018; 65:133-143. [PMID: 29548384 DOI: 10.1016/j.jes.2017.03.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 03/09/2017] [Accepted: 03/13/2017] [Indexed: 06/08/2023]
Abstract
Methanotrophic-heterotrophic communities were selectively enriched from sewage sludge to obtain a mixed culture with high levels of poly-β-hydroxybutyrate (PHB) accumulation capacity from methane. Methane was used as the carbon source, N2 as sole nitrogen source, and oxygen and Cu content were varied. Copper proved essential for PHB synthesis. All cultures enriched with Cu could accumulate high content of PHB (43.2%-45.9%), while only small amounts of PHB were accumulated by cultures enriched without Cu (11.9%-17.5%). Batch assays revealed that communities grown with Cu and a higher O2 content synthesized more PHB, which had a wider optimal CH4:O2 range and produced a high PHB content (48.7%) even though in the presence of N2. In all methanotrophic-heterotrophic communities, both methanotrophic and heterotrophic populations showed the ability to accumulate PHB. Although methane was added as the sole carbon source, heterotrophs dominated with abundances between 77.2% and 85.6%. All methanotrophs detected belonged to type II genera, which formed stable communities with heterotrophs of different PHB production capacities.
Collapse
Affiliation(s)
- Tingting Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Xiaowei Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jiti Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Yu Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
9
|
Kim S, Rossmassler K, Broeckling CD, Galloway S, Prenni J, De Long SK. Impact of inoculum sources on biotransformation of pharmaceuticals and personal care products. WATER RESEARCH 2017; 125:227-236. [PMID: 28865372 DOI: 10.1016/j.watres.2017.08.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 08/04/2017] [Accepted: 08/18/2017] [Indexed: 05/25/2023]
Abstract
Limited knowledge of optimal microbial community composition for PPCP biotreatment, and of the microbial phylotypes that drive biotransformation within mixed microbial communities, has hindered the rational design and operation of effective and reliable biological PPCP treatment technologies. Herein, bacterial community composition was investigated as an isolated variable within batch biofilm reactors via comparison of PPCP removals for three distinct inocula. Inocula pre-acclimated to model PPCPs were derived from activated sludge (AS), ditch sediment historically-impacted by wastewater treatment plant effluent (Sd), and material from laboratory-scale soil aquifer treatment (SAT) columns. PPCP removals were found to be substantially higher for AS- and Sd-derived inocula compared to the SAT-derived inocula despite comparable biomass. Removal patterns differed among the 6 model compounds examined (diclofenac, 5-fluorouracil, gabapentin, gemfibrozil, ibuprofen, and triclosan) indicating differences in biotransformation mechanisms. Sphingomonas, Beijerinckia, Methylophilus, and unknown Cytophagaceae were linked with successful PPCP biodegradation via next-generation sequencing of 16S rRNA genes over time. Results indicate the criticality of applying engineering approaches to control bacterial community compositions in biotreatment systems.
Collapse
Affiliation(s)
- Sunah Kim
- Colorado State University, Department of Civil and Environmental Engineering, USA
| | - Karen Rossmassler
- Colorado State University, Department of Civil and Environmental Engineering, USA
| | | | - Sarah Galloway
- Colorado State University, Proteomics and Metabolomics Facility, USA
| | - Jessica Prenni
- Colorado State University, Proteomics and Metabolomics Facility, USA
| | - Susan K De Long
- Colorado State University, Department of Civil and Environmental Engineering, USA.
| |
Collapse
|
10
|
Morawe M, Hoeke H, Wissenbach DK, Lentendu G, Wubet T, Kröber E, Kolb S. Acidotolerant Bacteria and Fungi as a Sink of Methanol-Derived Carbon in a Deciduous Forest Soil. Front Microbiol 2017; 8:1361. [PMID: 28790984 PMCID: PMC5523551 DOI: 10.3389/fmicb.2017.01361] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 07/05/2017] [Indexed: 02/03/2023] Open
Abstract
Methanol is an abundant atmospheric volatile organic compound that is released from both living and decaying plant material. In forest and other aerated soils, methanol can be consumed by methanol-utilizing microorganisms that constitute a known terrestrial sink. However, the environmental factors that drive the biodiversity of such methanol-utilizers have been hardly resolved. Soil-derived isolates of methanol-utilizers can also often assimilate multicarbon compounds as alternative substrates. Here, we conducted a comparative DNA stable isotope probing experiment under methylotrophic (only [13C1]-methanol was supplemented) and combined substrate conditions ([12C1]-methanol and alternative multi-carbon [13Cu]-substrates were simultaneously supplemented) to (i) identify methanol-utilizing microorganisms of a deciduous forest soil (European beech dominated temperate forest in Germany), (ii) assess their substrate range in the soil environment, and (iii) evaluate their trophic links to other soil microorganisms. The applied multi-carbon substrates represented typical intermediates of organic matter degradation, such as acetate, plant-derived sugars (xylose and glucose), and a lignin-derived aromatic compound (vanillic acid). An experimentally induced pH shift was associated with substantial changes of the diversity of active methanol-utilizers suggesting that soil pH was a niche-defining factor of these microorganisms. The main bacterial methanol-utilizers were members of the Beijerinckiaceae (Bacteria) that played a central role in a detected methanol-based food web. A clear preference for methanol or multi-carbon substrates as carbon source of different Beijerinckiaceae-affiliated phylotypes was observed suggesting a restricted substrate range of the methylotrophic representatives. Apart from Bacteria, we also identified the yeasts Cryptococcus and Trichosporon as methanol-derived carbon-utilizing fungi suggesting that further research is needed to exclude or prove methylotrophy of these fungi.
Collapse
Affiliation(s)
- Mareen Morawe
- Department of Ecological Microbiology, University of BayreuthBayreuth, Germany
| | - Henrike Hoeke
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental ResearchLeipzig, Germany.,Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of LeipzigLeipzig, Germany
| | - Dirk K Wissenbach
- Institute of Forensic Medicine, University Hospital JenaJena, Germany
| | - Guillaume Lentendu
- Department of Ecology, University of KaiserslauternKaiserslautern, Germany
| | - Tesfaye Wubet
- Department of Soil Ecology, Helmholtz Centre for Environmental ResearchLeipzig, Germany
| | - Eileen Kröber
- Institute of Landscape Biogeochemistry, Leibniz Centre for Landscape ResearchMüncheberg, Germany
| | - Steffen Kolb
- Department of Ecological Microbiology, University of BayreuthBayreuth, Germany.,Institute of Landscape Biogeochemistry, Leibniz Centre for Landscape ResearchMüncheberg, Germany
| |
Collapse
|
11
|
Alfreider A, Baumer A, Bogensperger T, Posch T, Salcher MM, Summerer M. CO 2 assimilation strategies in stratified lakes: Diversity and distribution patterns of chemolithoautotrophs. Environ Microbiol 2017; 19:2754-2768. [PMID: 28474482 PMCID: PMC5619642 DOI: 10.1111/1462-2920.13786] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 04/18/2017] [Accepted: 04/21/2017] [Indexed: 11/23/2022]
Abstract
While mechanisms of different carbon dioxide (CO2) assimilation pathways in chemolithoautotrohic prokaryotes are well understood for many isolates under laboratory conditions, the ecological significance of diverse CO2 fixation strategies in the environment is mostly unexplored. Six stratified freshwater lakes were chosen to study the distribution and diversity of the Calvin-Benson-Bassham (CBB) cycle, the reductive tricarboxylic acid (rTCA) cycle, and the recently discovered archaeal 3-hydroxypropionate/4-hydroxybutyrate (HP/HB) pathway. Eleven primer sets were used to amplify and sequence genes coding for selected key enzymes in the three pathways. Whereas the CBB pathway with different forms of RubisCO (IA, IC and II) was ubiquitous and related to diverse bacterial taxa, encompassing a wide range of potential physiologies, the rTCA cycle in Epsilonproteobacteria and Chloribi was exclusively detected in anoxic water layers. Nitrifiying Nitrosospira and Thaumarchaeota, using the rTCA and HP/HB cycle respectively, are important residents in the aphotic and (micro-)oxic zone of deep lakes. Both taxa were of minor importance in surface waters and in smaller lakes characterized by an anoxic hypolimnion. Overall, this study provides a first insight on how different CO2 fixation strategies and chemical gradients in lakes are associated to the distribution of chemoautotrophic prokaryotes with different functional traits.
Collapse
Affiliation(s)
- Albin Alfreider
- Institute for Ecology, University of Innsbruck, Innsbruck, Austria
| | - Andreas Baumer
- Institute for Ecology, University of Innsbruck, Innsbruck, Austria
| | | | - Thomas Posch
- Limnological Station, Department of Plant and Microbial Biology, University of Zurich, Kilchberg, Switzerland
| | - Michaela M Salcher
- Limnological Station, Department of Plant and Microbial Biology, University of Zurich, Kilchberg, Switzerland.,Institute of Hydrobiology, Biology Centre CAS, České Budějovice, Czech Republic
| | - Monika Summerer
- Institute for Ecology, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
12
|
Emended description of the family Beijerinckiaceae and transfer of the genera Chelatococcus and Camelimonas to the family Chelatococcaceae fam. nov. Int J Syst Evol Microbiol 2016; 66:3177-3182. [DOI: 10.1099/ijsem.0.001167] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
13
|
Wu X, Ge T, Wang W, Yuan H, Wegner CE, Zhu Z, Whiteley AS, Wu J. Cropping systems modulate the rate and magnitude of soil microbial autotrophic CO2 fixation in soil. Front Microbiol 2015; 6:379. [PMID: 26005435 PMCID: PMC4424977 DOI: 10.3389/fmicb.2015.00379] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Accepted: 04/13/2015] [Indexed: 11/26/2022] Open
Abstract
The effect of different cropping systems on CO2 fixation by soil microorganisms was studied by comparing soils from three exemplary cropping systems after 10 years of agricultural practice. Studied cropping systems included: continuous cropping of paddy rice (rice-rice), rotation of paddy rice and rapeseed (rice-rapeseed), and rotated cropping of rapeseed and corn (rapeseed-corn). Soils from different cropping systems were incubated with continuous 14C-CO2 labeling for 110 days. The CO2-fixing bacterial communities were investigated by analyzing the cbbL gene encoding ribulose-1,5-bisphosphate carboxylase oxygenase (RubisCO). Abundance, diversity and activity of cbbL-carrying bacteria were analyzed by quantitative PCR, cbbL clone libraries and enzyme assays. After 110 days incubation, substantial amounts of 14C-CO2 were incorporated into soil organic carbon (14C-SOC) and microbial biomass carbon (14C-MBC). Rice-rice rotated soil showed stronger incorporation rates when looking at 14C-SOC and 14C-MBC contents. These differences in incorporation rates were also reflected by determined RubisCO activities. 14C-MBC, cbbL gene abundances and RubisCO activity were found to correlate significantly with 14C-SOC, indicating cbbL-carrying bacteria to be key players for CO2 fixation in these soils. The analysis of clone libraries revealed distinct cbbL-carrying bacterial communities for the individual soils analyzed. Most of the identified operational taxonomic units (OTU) were related to Nitrobacter hamburgensis, Methylibium petroleiphilum, Rhodoblastus acidophilus, Bradyrhizobium, Cupriavidus metallidurans, Rubrivivax, Burkholderia, Stappia, and Thiobacillus thiophilus. OTUs related to Rubrivivax gelatinosus were specific for rice-rice soil. OTUs linked to Methylibium petroleiphilum were exclusively found in rice-rapeseed soil. Observed differences could be linked to differences in soil parameters such as SOC. We conclude that the long-term application of cropping systems alters underlying soil parameters, which in turn selects for distinct autotrophic communities.
Collapse
Affiliation(s)
- Xiaohong Wu
- Key Laboratory of Agro-ecological Processes in Subtropical Region and Changsha Research Station for Agricultural and Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences Changsha, China ; ISA-CAS and UWA Joint Laboratory for Soil Systems Biology Changsha, China
| | - Tida Ge
- Key Laboratory of Agro-ecological Processes in Subtropical Region and Changsha Research Station for Agricultural and Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences Changsha, China ; ISA-CAS and UWA Joint Laboratory for Soil Systems Biology Changsha, China
| | - Wei Wang
- Key Laboratory of Agro-ecological Processes in Subtropical Region and Changsha Research Station for Agricultural and Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences Changsha, China
| | - Hongzhao Yuan
- Key Laboratory of Agro-ecological Processes in Subtropical Region and Changsha Research Station for Agricultural and Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences Changsha, China
| | - Carl-Eric Wegner
- Department of Biogeochemistry, Max Planck Institute for Terrestrial Microbiology Marburg, Germany
| | - Zhenke Zhu
- Key Laboratory of Agro-ecological Processes in Subtropical Region and Changsha Research Station for Agricultural and Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences Changsha, China ; ISA-CAS and UWA Joint Laboratory for Soil Systems Biology Changsha, China
| | - Andrew S Whiteley
- ISA-CAS and UWA Joint Laboratory for Soil Systems Biology Changsha, China ; School of Earth and Environment, The University of Western Australia Crawley, WA, Australia
| | - Jinshui Wu
- Key Laboratory of Agro-ecological Processes in Subtropical Region and Changsha Research Station for Agricultural and Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences Changsha, China ; ISA-CAS and UWA Joint Laboratory for Soil Systems Biology Changsha, China
| |
Collapse
|
14
|
Illumina MiSeq Sequencing Reveals Diverse Microbial Communities of Activated Sludge Systems Stimulated by Different Aromatics for Indigo Biosynthesis from Indole. PLoS One 2015; 10:e0125732. [PMID: 25928424 PMCID: PMC4416020 DOI: 10.1371/journal.pone.0125732] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 03/25/2015] [Indexed: 11/24/2022] Open
Abstract
Indole, as a typical N-heteroaromatic compound existed in coking wastewater, can be used for bio-indigo production. The microbial production of indigo from indole has been widely reported during the last decades using culture-dependent methods, but few studies have been carried out by microbial communities. Herein, three activated sludge systems stimulated by different aromatics, i.e. naphthalene plus indole (G1), phenol plus indole (G2) and indole only (G3), were constructed for indigo production from indole. During the operation, G1 produced the highest indigo yield in the early stage, but it switched to G3 in the late stage. Based on LC-MS analysis, indigo was the major product in G1 and G3, while the purple product 2-(7-oxo-1H-indol-6(7H)-ylidene) indolin-3-one was dominant in G2. Illumina MiSeq sequencing of 16S rRNA gene amplicons was applied to analyze the microbial community structure and composition. Detrended correspondence analysis (DCA) and dissimilarity tests showed that the overall community structures of three groups changed significantly during the operation (P<0.05). Nevertheless, the bacteria assigned to phylum Proteobacteria, family Comamonadaceae, and genera Diaphorobacter, Comamonas and Aquamicrobium were commonly shared dominant populations. Pearson correlations were calculated to discern the relationship between microbial communities and indigo yields. The typical indigo-producing populations Comamonas and Pseudomonas showed no positive correlations with indigo yields, while there emerged many other genera that exhibited positive relationships, such as Aquamicrobium, Truepera and Pusillimonas, which had not been reported for indigo production previously. The present study should provide new insights into indigo bio-production by microbial communities from indole.
Collapse
|
15
|
McIlroy SJ, Lapidus A, Thomsen TR, Han J, Haynes M, Lobos E, Huntemann M, Pati A, Ivanova NN, Markowitz V, Verbarg S, Woyke T, Klenk HP, Kyrpides N, Nielsen PH. High quality draft genome sequence of Meganema perideroedes str. Gr1(T) and a proposal for its reclassification to the family Meganemaceae fam. nov. Stand Genomic Sci 2015. [PMID: 26203335 PMCID: PMC4511698 DOI: 10.1186/s40793-015-0013-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Meganema perideroedes Gr1(T) is a filamentous bacterium isolated from an activated sludge wastewater treatment plant where it is implicated in poor sludge settleability (bulking). M. perideroedes is the sole described species of the genus Meganema and of the proposed novel family "Meganemaceae". Here we describe the features of the type strain Gr1(T) along with its annotated genome sequence. The 3,409,949 bp long draft genome consists of 22 scaffolds with 3,033 protein-coding and 59 RNA genes and is a part of Genomic Encyclopedia of Type Strains, Phase I: the one thousand microbial genomes KMG project. Notably, genome annotation indicated the potential for facultative methylotrophy. However, the ability to utilize methanol as a carbon source could not be empirically demonstrated for the type strain or for in situ Meganema spp. strains.
Collapse
Affiliation(s)
- Simon J McIlroy
- Department of Chemistry and Bioscience, Centre for Microbial Communities, Aalborg University, Aalborg, Denmark
| | - Alla Lapidus
- Theodosius Dobzhansky Center for Genome Bionformatics, St. Petersburg State University, St. Petersburg, Russia ; Algorithmic Biology Lab, St. Petersburg Academic University, St. Petersburg, Russia
| | - Trine R Thomsen
- Department of Chemistry and Bioscience, Centre for Microbial Communities, Aalborg University, Aalborg, Denmark
| | - James Han
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Matthew Haynes
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | | | | | - Amrita Pati
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | | | - Victor Markowitz
- Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Susanne Verbarg
- DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany
| | - Tanja Woyke
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Hans-Peter Klenk
- School of Biology, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Nikos Kyrpides
- DOE Joint Genome Institute, Walnut Creek, California, USA ; Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Per H Nielsen
- Department of Chemistry and Bioscience, Centre for Microbial Communities, Aalborg University, Aalborg, Denmark
| |
Collapse
|
16
|
Bao Z, Sato Y, Fujimura R, Ohta H. Alsobacter metallidurans gen. nov., sp. nov., a thallium-tolerant soil bacterium in the order Rhizobiales. Int J Syst Evol Microbiol 2013; 64:775-780. [PMID: 24221990 DOI: 10.1099/ijs.0.054783-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A thallium-tolerant, aerobic bacterium, designated strain SK200a-9(T), isolated from a garden soil sample was characterized using a polyphasic approach. Comparative analysis of 16S rRNA gene sequences revealed that strain SK200a-9(T) was affiliated with an uncultivated lineage within the Alphaproteobacteria and the nearest cultivated neighbours were bacteria in genera in the family Methylocystaceae (93.3-94.4% 16S rRNA gene sequence similarity) and the family Beijerinckiaceae (92.3-93.1%) in the order Rhizobiales. Cells of strain SK200a-9(T) were Gram-stain-negative, non-motile, non-spore-forming, poly-β-hydroxybutyrate-accumulating rods. The strain was a chemo-organotrophic bacterium, which was incapable of growth on C1 substrates. Catalase and oxidase were positive. Atmospheric nitrogen fixation and nitrate reduction were negative. The strain contained ubiquinone Q-10 and cellular fatty acids C18 : 1ω7c, C18 : 0, C16 : 1ω7c and C16 : 0 as predominant components. The major polar lipids were diphosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine and phosphatidylglycerol. The DNA G+C content was 64.8 mol%. On the basis of the information described above, strain SK200a-9(T) is considered to represent a novel species of a new genus in the order Rhizobiales, for which the name Alsobacter metallidurans gen. nov., sp. nov. is proposed. The type strain of Alsobacter metallidurans is SK200a-9(T) ( = NBRC 107718(T) = CGMCC 1.12214(T)).
Collapse
Affiliation(s)
- Zhihua Bao
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.,Ibaraki University College of Agriculture, 3-21-1 Chuou, Ami, Ibaraki 300-0393, Japan
| | - Yoshinori Sato
- Institute for Global Change Adaptation Science, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512, Japan.,Ibaraki University College of Agriculture, 3-21-1 Chuou, Ami, Ibaraki 300-0393, Japan
| | - Reiko Fujimura
- Ibaraki University College of Agriculture, 3-21-1 Chuou, Ami, Ibaraki 300-0393, Japan
| | - Hiroyuki Ohta
- Institute for Global Change Adaptation Science, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512, Japan.,United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.,Ibaraki University College of Agriculture, 3-21-1 Chuou, Ami, Ibaraki 300-0393, Japan
| |
Collapse
|
17
|
Tomczyk-Żak K, Kaczanowski S, Drewniak Ł, Dmoch Ł, Sklodowska A, Zielenkiewicz U. Bacteria diversity and arsenic mobilization in rock biofilm from an ancient gold and arsenic mine. THE SCIENCE OF THE TOTAL ENVIRONMENT 2013; 461-462:330-340. [PMID: 23743145 DOI: 10.1016/j.scitotenv.2013.04.087] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 04/23/2013] [Accepted: 04/28/2013] [Indexed: 06/02/2023]
Abstract
In this paper we characterize the biofilm community from an ancient Złoty Stok gold and arsenic mine. Bacterial diversity was examined using a culture-independent technique based on 16S rRNA gene amplification, cloning and sequencing. We show that unexpectedly the microbial diversity of this community was extremely high (more than 190 OTUs detected), with the most numerous members from Rhizobiales (α-Proteobacteria). Although the level of rock biofilm diversity was similar to the microbial mat community we have previously characterized in the same adit, its taxonomic composition was completely different. Detailed analysis of functional arrA and aioA genes, chemical properties of siderophores found in pore water as well as the biofilm chemical composition suggest that the biofilm community contributes to arsenic pollution of surrounding water in a biogeochemical cycle similar to the one observed in bacterial mats. To interpret our results concerning the biological arsenic cycle, we applied the theory of ecological pyramids of Charles Elton.
Collapse
Affiliation(s)
- Karolina Tomczyk-Żak
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | | | | | | | | | |
Collapse
|
18
|
The (d)evolution of methanotrophy in the Beijerinckiaceae--a comparative genomics analysis. ISME JOURNAL 2013; 8:369-82. [PMID: 23985741 DOI: 10.1038/ismej.2013.145] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 07/17/2013] [Accepted: 07/24/2013] [Indexed: 01/26/2023]
Abstract
The alphaproteobacterial family Beijerinckiaceae contains generalists that grow on a wide range of substrates, and specialists that grow only on methane and methanol. We investigated the evolution of this family by comparing the genomes of the generalist organotroph Beijerinckia indica, the facultative methanotroph Methylocella silvestris and the obligate methanotroph Methylocapsa acidiphila. Highly resolved phylogenetic construction based on universally conserved genes demonstrated that the Beijerinckiaceae forms a monophyletic cluster with the Methylocystaceae, the only other family of alphaproteobacterial methanotrophs. Phylogenetic analyses also demonstrated a vertical inheritance pattern of methanotrophy and methylotrophy genes within these families. Conversely, many lateral gene transfer (LGT) events were detected for genes encoding carbohydrate transport and metabolism, energy production and conversion, and transcriptional regulation in the genome of B. indica, suggesting that it has recently acquired these genes. A key difference between the generalist B. indica and its specialist methanotrophic relatives was an abundance of transporter elements, particularly periplasmic-binding proteins and major facilitator transporters. The most parsimonious scenario for the evolution of methanotrophy in the Alphaproteobacteria is that it occurred only once, when a methylotroph acquired methane monooxygenases (MMOs) via LGT. This was supported by a compositional analysis suggesting that all MMOs in Alphaproteobacteria methanotrophs are foreign in origin. Some members of the Beijerinckiaceae subsequently lost methanotrophic functions and regained the ability to grow on multicarbon energy substrates. We conclude that B. indica is a recidivist multitroph, the only known example of a bacterium having completely abandoned an evolved lifestyle of specialized methanotrophy.
Collapse
|
19
|
Lau E, Fisher MC, Steudler PA, Cavanaugh CM. The methanol dehydrogenase gene, mxaF, as a functional and phylogenetic marker for proteobacterial methanotrophs in natural environments. PLoS One 2013; 8:e56993. [PMID: 23451130 PMCID: PMC3579938 DOI: 10.1371/journal.pone.0056993] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 01/16/2013] [Indexed: 11/27/2022] Open
Abstract
The mxaF gene, coding for the large (α) subunit of methanol dehydrogenase, is highly conserved among distantly related methylotrophic species in the Alpha-, Beta- and Gammaproteobacteria. It is ubiquitous in methanotrophs, in contrast to other methanotroph-specific genes such as the pmoA and mmoX genes, which are absent in some methanotrophic proteobacterial genera. This study examined the potential for using the mxaF gene as a functional and phylogenetic marker for methanotrophs. mxaF and 16S rRNA gene phylogenies were constructed based on over 100 database sequences of known proteobacterial methanotrophs and other methylotrophs to assess their evolutionary histories. Topology tests revealed that mxaF and 16S rDNA genes of methanotrophs do not show congruent evolutionary histories, with incongruencies in methanotrophic taxa in the Methylococcaceae, Methylocystaceae, and Beijerinckiacea. However, known methanotrophs generally formed coherent clades based on mxaF gene sequences, allowing for phylogenetic discrimination of major taxa. This feature highlights the mxaF gene's usefulness as a biomarker in studying the molecular diversity of proteobacterial methanotrophs in nature. To verify this, PCR-directed assays targeting this gene were used to detect novel methanotrophs from diverse environments including soil, peatland, hydrothermal vent mussel tissues, and methanotroph isolates. The placement of the majority of environmental mxaF gene sequences in distinct methanotroph-specific clades (Methylocystaceae and Methylococcaceae) detected in this study supports the use of mxaF as a biomarker for methanotrophic proteobacteria.
Collapse
Affiliation(s)
- Evan Lau
- Department of Natural Sciences and Mathematics, West Liberty University, West Liberty, West Virginia, United States of America.
| | | | | | | |
Collapse
|
20
|
Alfreider A, Schirmer M, Vogt C. Diversity and expression of different forms of RubisCO genes in polluted groundwater under different redox conditions. FEMS Microbiol Ecol 2011; 79:649-60. [PMID: 22092659 DOI: 10.1111/j.1574-6941.2011.01246.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 10/17/2011] [Accepted: 11/02/2011] [Indexed: 11/27/2022] Open
Affiliation(s)
- Albin Alfreider
- Institute of Ecology; University of Innsbruck; Innsbruck; Austria
| | - Mario Schirmer
- Eawag - Swiss Federal Institute of Aquatic Science and Technology; Department Water Resources and Drinking Water (W+T); Dübendorf; Switzerland
| | - Carsten Vogt
- Department of Isotope Biogeochemistry; Helmholtz Centre for Environmental Research - UFZ; Leipzig; Germany
| |
Collapse
|
21
|
Vorobev AV, Baani M, Doronina NV, Brady AL, Liesack W, Dunfield PF, Dedysh SN. Methyloferula stellata gen. nov., sp. nov., an acidophilic, obligately methanotrophic bacterium that possesses only a soluble methane monooxygenase. Int J Syst Evol Microbiol 2011; 61:2456-2463. [DOI: 10.1099/ijs.0.028118-0] [Citation(s) in RCA: 203] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Two strains of aerobic methanotrophic bacteria, AR4T and SOP9, were isolated from acidic (pH 3.8–4.0) Sphagnum peat bogs in Russia. Another phenotypically similar isolate, strain LAY, was obtained from an acidic (pH 4.0) forest soil in Germany. Cells of these strains were Gram-negative, non-pigmented, non-motile, thin rods that multiplied by irregular cell division and formed rosettes or amorphous cell conglomerates. Similar to Methylocella species, strains AR4T, SOP9 and LAY possessed only a soluble form of methane monooxygenase (sMMO) and lacked intracytoplasmic membranes. Growth occurred only on methane and methanol; the latter was the preferred growth substrate. mRNA transcripts of sMMO were detectable in cells when either methane or both methane and methanol were available. Carbon was assimilated via the serine and ribulose-bisphosphate (RuBP) pathways; nitrogen was fixed via an oxygen-sensitive nitrogenase. Strains AR4T, SOP9 and LAY were moderately acidophilic, mesophilic organisms capable of growth between pH 3.5 and 7.2 (optimum pH 4.8–5.2) and at 4–33 °C (optimum 20–23 °C). The major cellular fatty acid was 18 : 1ω7c and the quinone was Q-10. The DNA G+C content was 55.6–57.5 mol%. The isolates belonged to the family Beijerinckiaceae of the class Alphaproteobacteria and were most closely related to the sMMO-possessing methanotrophs of the genus Methylocella (96.4–97.0 % 16S rRNA gene sequence similarity), particulate MMO (pMMO)-possessing methanotrophs of the genus Methylocapsa (96.1–97.0 %), facultative methylotrophs of the genus Methylovirgula (96.1–96.3 %) and non-methanotrophic organotrophs of the genus Beijerinckia (96.5–97.0 %). Phenotypically, strains AR4T, SOP9 and LAY were most similar to Methylocella species, but differed from members of this genus by cell morphology, greater tolerance of low pH, detectable activities of RuBP pathway enzymes and inability to grow on multicarbon compounds. Therefore, we propose a novel genus and species, Methyloferula stellata gen. nov., sp. nov., to accommodate strains AR4T, SOP9 and LAY. Strain AR4T ( = DSM 22108T = LMG 25277T = VKM B-2543T) is the type strain of Methyloferula stellata.
Collapse
Affiliation(s)
- Alexey V. Vorobev
- S. N. Winogradsky Institute of Microbiology, Russian Academy of Sciences, Moscow 117312, Russia
| | - Mohamed Baani
- Max-Planck-Institut für terrestrische Mikrobiologie, D-35043 Marburg, Germany
| | - Nina V. Doronina
- G. K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow region 142292, Russia
| | - Allyson L. Brady
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Werner Liesack
- Max-Planck-Institut für terrestrische Mikrobiologie, D-35043 Marburg, Germany
| | - Peter F. Dunfield
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
- Max-Planck-Institut für terrestrische Mikrobiologie, D-35043 Marburg, Germany
| | - Svetlana N. Dedysh
- S. N. Winogradsky Institute of Microbiology, Russian Academy of Sciences, Moscow 117312, Russia
| |
Collapse
|
22
|
Dedysh SN. Cultivating uncultured bacteria from northern wetlands: knowledge gained and remaining gaps. Front Microbiol 2011; 2:184. [PMID: 21954394 PMCID: PMC3174395 DOI: 10.3389/fmicb.2011.00184] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2011] [Accepted: 08/19/2011] [Indexed: 01/22/2023] Open
Abstract
Northern wetlands play a key role in the global carbon budget, particularly in the budgets of the greenhouse gas methane. These ecosystems also determine the hydrology of northern rivers and represent one of the largest reservoirs of fresh water in the Northern Hemisphere. Sphagnum-dominated peat bogs and fens are the most extensive types of northern wetlands. In comparison to many other terrestrial ecosystems, the bacterial diversity in Sphagnum-dominated wetlands remains largely unexplored. As demonstrated by cultivation-independent studies, a large proportion of the indigenous microbial communities in these acidic, cold, nutrient-poor, and water-saturated environments is composed of as-yet-uncultivated bacteria with unknown physiologies. Most of them are slow-growing, oligotrophic microorganisms that are difficult to isolate and to manipulate in the laboratory. Yet, significant breakthroughs in cultivation of these elusive organisms have been made during the last decade. This article describes the major prerequisites for successful cultivation of peat-inhabiting microbes, gives an overview of the currently captured bacterial diversity from northern wetlands and discusses the unique characteristics of the newly discovered organisms.
Collapse
Affiliation(s)
- Svetlana N. Dedysh
- Winogradsky Institute of Microbiology, Russian Academy of SciencesMoscow, Russia
| |
Collapse
|
23
|
Berestovskaya JJ, Kotsyurbenko OR, Tourova TP, Kolganova TV, Doronina NV, Golyshin PN, Vasilyeva LV. Methylorosula polaris gen. nov., sp. nov., an aerobic, facultatively methylotrophic psychrotolerant bacterium from tundra wetland soil. Int J Syst Evol Microbiol 2011; 62:638-646. [PMID: 21551336 DOI: 10.1099/ijs.0.007005-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Three strains of Gram-negative, aerobic, motile bacteria with bipolar flagella were isolated from acidic tundra wetland soils near the city of Vorkuta and from the Chukotka and Yugorsky Peninsulas and designated strains V-022(T), Ch-022 and Ju-022. The cells were rod-shaped, 0.5-0.6 µm in width and 1.3-4.5 µm in length and reproduced by irregular fission. These bacteria were facultative methylotrophs that used methanol, methylamines and a wide range of other sources of carbon and energy such as sugars and polysaccharides, ethanol and amino acids. The isolates used the Calvin-Benson pathway for the assimilation of one-carbon compounds and were unable to fix nitrogen. The new strains were moderately acidophilic and psychrotolerant, capable of growth over a pH range of 4.0 to 7.8, with optimum growth at pH 5.5-6.0. Growth occurred between 4 and 30 °C (optimum 20-25 °C). The principal phospholipid fatty acid was C(18:1)ω7c. The DNA G+C content of strain V-022(T) was 65.2 mol%. Analysis of the 16S rRNA gene sequences revealed that all three isolates V-022(T), Ch-022 and Yu-022 exhibited almost identical 16S rRNA gene sequences (99.9% gene sequence similarity) and formed a new lineage within the class Alphaproteobacteria. The name Methylorosula polaris is suggested to accommodate this new genus and novel species with strain V-022(T) (=DSM 22001(T)=VKM V-2485(T)) as the type strain of the type species.
Collapse
Affiliation(s)
- Julia Ju Berestovskaya
- S. N. Winogradsky Institute of Microbiology, Russian Academy of Sciences, Prospect 60-let Octyabrya 7/2, Moscow 117312, Russia
| | - Oleg R Kotsyurbenko
- Technical University Braunschweig, Spielmannstrasse 7, Braunschweig, Germany
| | - Tatyana P Tourova
- S. N. Winogradsky Institute of Microbiology, Russian Academy of Sciences, Prospect 60-let Octyabrya 7/2, Moscow 117312, Russia
| | - Tatyana V Kolganova
- S. N. Winogradsky Institute of Microbiology, Russian Academy of Sciences, Prospect 60-let Octyabrya 7/2, Moscow 117312, Russia
| | - Nina V Doronina
- G. K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Russia
| | - Peter N Golyshin
- School of Biological Sciences, Bangor University, Bangor LL57 2UW, Gwynedd, Wales, UK
| | - Lina V Vasilyeva
- S. N. Winogradsky Institute of Microbiology, Russian Academy of Sciences, Prospect 60-let Octyabrya 7/2, Moscow 117312, Russia
| |
Collapse
|
24
|
|
25
|
Abstract
Beijerinckia indica subsp. indica is an aerobic, acidophilic, exopolysaccharide-producing, N(2)-fixing soil bacterium. It is a generalist chemoorganotroph that is phylogenetically closely related to facultative and obligate methanotrophs of the genera Methylocella and Methylocapsa. Here we report the full genome sequence of this bacterium.
Collapse
|
26
|
Babbitt CW, Pacheco A, Lindner AS. Methanol removal efficiency and bacterial diversity of an activated carbon biofilter. BIORESOURCE TECHNOLOGY 2009; 100:6207-6216. [PMID: 19665889 DOI: 10.1016/j.biortech.2009.06.110] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Revised: 06/29/2009] [Accepted: 06/29/2009] [Indexed: 05/28/2023]
Abstract
Motivated by the need to establish an economical and environmentally friendly methanol control technology for the pulp and paper industry, a bench-scale activated carbon biofiltration system was developed. This system was evaluated for its performance in removing methanol from an artificially contaminated air stream and characterized for its bacterial diversity over time, under varied methanol loading rates, and in different spatial regions of the filter. The biofilter system, composed of a novel packing mixture, provided an excellent support for growth and activity of methanol-degrading bacteria, resulting in approximately 100% methanol removal efficiency for loading rates of 1-17 g/m(3) packing/h, when operated both with and without inoculum containing enriched methanol-degrading bacteria. Although bacterial diversity and abundance varied over the length of the biofilter, the populations present rapidly formed a stable community that was maintained over the entire 138-day operation of the system and through variable operating conditions, as observed by PCR-DGGE methods that targeted all bacteria as well as specific methanol-oxidizing microorganisms. Phylogenetic analysis of bands excised and sequenced from DGGE gels indicated that the biofilter system supported a diverse community of methanol-degrading bacteria, with high similarity to species in the genera Methylophilus (beta-proteobacteria), Hyphomicrobium and Methylocella (both alpha-proteobacteria).
Collapse
Affiliation(s)
- Callie W Babbitt
- School of Human Evolution and Social Change, Arizona State University, P.O. Box 872402, Tempe, AZ 85287-2402, USA.
| | | | | |
Collapse
|
27
|
Vorob'ev AV, de Boer W, Folman LB, Bodelier PLE, Doronina NV, Suzina NE, Trotsenko YA, Dedysh SN. Methylovirgula ligni gen. nov., sp. nov., an obligately acidophilic, facultatively methylotrophic bacterium with a highly divergent mxaF gene. Int J Syst Evol Microbiol 2009; 59:2538-45. [PMID: 19622650 DOI: 10.1099/ijs.0.010074-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two strains of Gram-negative, aerobic, non-pigmented, non-motile, rod-shaped bacteria were isolated from beechwood blocks during decay by the white-rot fungus Hypholoma fasciculare and were designated strains BW863(T) and BW872. They are capable of methylotrophic growth and assimilate carbon via the ribulose-bisphosphate pathway. In addition to methanol, the novel isolates utilized ethanol, pyruvate and malate. Strains BW863(T) and BW872 are obligately acidophilic, mesophilic organisms capable of growth at pH 3.1-6.5 (with an optimum at pH 4.5-5.0) and at 4-30 degrees C. Phospholipid fatty acid profiles of these bacteria contain unusually large amounts (about 90 %) of C(18 : 1)omega7c, thereby resembling the profiles of Methylobacterium strains. The predominant quinone is Q-10. The DNA G+C content of the novel isolates is 61.8-62.8 mol%. On the basis of 16S rRNA gene sequence similarity, strains BW863(T) and BW872 are most closely related to the acidophilic methanotroph Methylocapsa acidiphila B2(T) (96.5-97 %). Comparative sequence analysis of mxaF, the gene encoding the large subunit of methanol dehydrogenase, placed the MxaF sequences of the two novel strains in a cluster that is distinct from all previously described MxaF sequences of cultivated methylotrophs. The identity between the MxaF sequences of the acidophilic isolates and those from known alpha-, beta- and gammaproteobacterial methylotrophs was respectively 69-75, 61-63 and 64-67 %. The data therefore suggest that strains BW863(T) and BW872 represent a novel genus and species of methylotrophic bacteria, for which the name Methylovirgula ligni gen. nov., sp. nov. is proposed. Strain BW863(T) (=DSM 19998(T) =NCIMB 14408(T)) is the type strain of Methylovirgula ligni.
Collapse
Affiliation(s)
- Alexey V Vorob'ev
- S. N. Winogradsky Institute of Microbiology, Russian Academy of Sciences, Moscow 117312, Russia
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Methanol is an atmospheric compound that is primarily released from plant polymers and impacts ozone formation. The global methanol emission rate from terrestrial ecosystems is of the same order of magnitude (4.9 x 10(12) mol year(-1)) as that of methane (10 x 10(12) mol year(-1)). The major proportion of the annual plant-released methanol does not enter the atmosphere, but may be reoxidized by biological methanol oxidation, which is catalyzed by methanol-oxidizing prokaryotes. Fifty-six aerobic methanol-oxidizing species have been isolated from soils. These methylotrophs belong to the Alpha-, Beta-, and Gammaproteobacteria, Verrucomicrobia, Firmicutes, and Actinobacteria. Their ecological niches are determined by oxygen and methanol concentration, temperature, pH, the capability to utilize nitrate as an electron acceptor, and the spectrum of nitrogen sources and utilizable multicarbon substrates. Recently discovered interactions with eukaryotes indicate that their ecological niches may not solely be defined by physicochemical parameters. Nonetheless, there are still gaps in knowledge; based on global methanol budgets, methanol oxidation in soil is important, but has not been addressed adequately by biogeochemical studies. Ratios of above-ground and soil-internal methanol oxidation are not known. The contribution to methanol-oxidation by aerobic and anaerobic methylotrophs in situ also needs further research.
Collapse
Affiliation(s)
- Steffen Kolb
- Department of Ecological Microbiology, University of Bayreuth, Bayreuth, Germany.
| |
Collapse
|
29
|
Abstract
'Replaying the tape' is an intriguing 'would it happen again?' exercise. With respect to broad evolutionary innovations, such as photosynthesis, the answers are central to our search for life elsewhere. Photosynthesis permits a large planetary biomass on Earth. Specifically, oxygenic photosynthesis has allowed an oxygenated atmosphere and the evolution of large metabolically demanding creatures, including ourselves. There are at least six prerequisites for the evolution of biological carbon fixation: a carbon-based life form; the presence of inorganic carbon; the availability of reductants; the presence of light; a light-harvesting mechanism to convert the light energy into chemical energy; and carboxylating enzymes. All were present on the early Earth. To provide the evolutionary pressure, organic carbon must be a scarce resource in contrast to inorganic carbon. The probability of evolving a carboxylase is approached by creating an inventory of carbon-fixation enzymes and comparing them, leading to the conclusion that carbon fixation in general is basic to life and has arisen multiple times. Certainly, the evolutionary pressure to evolve new pathways for carbon fixation would have been present early in evolution. From knowledge about planetary systems and extraterrestrial chemistry, if organic carbon-based life occurs elsewhere, photosynthesis -- although perhaps not oxygenic photosynthesis -- would also have evolved.
Collapse
|
30
|
Boden R, Thomas E, Savani P, Kelly DP, Wood AP. Novel methylotrophic bacteria isolated from the River Thames (London, UK). Environ Microbiol 2008; 10:3225-36. [PMID: 18681896 DOI: 10.1111/j.1462-2920.2008.01711.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Enrichment and elective culture for methylotrophs from sediment of the River Thames in central London yielded a diversity of pure cultures representing several genera of Gram-negative and Gram-positive bacteria, which were mainly of organisms not generally regarded as typically methylotrophic. Substrates leading to successful isolations included methanol, monomethylamine, dimethylamine, trimethylamine, methanesulfonate and dimethylsulfone. Several isolates were studied in detail and shown by their biochemical and morphological properties and 16S rRNA gene sequencing to be Sphingomonas melonis strain ET35, Mycobacterium fluoranthenivorans strain DSQ3, Rhodococcus erythropolis strain DSQ4, Brevibacterium casei strain MSQ5, Klebsiella oxytoca strains MMA/F and MMA/1, Pseudomonas mendocina strain TSQ4, and Flavobacterium sp. strains MSA/1 and MMA/2. The results show that facultative methylotrophy is present across a wide range of Bacteria, suggesting that turnover of diverse C(1)-compounds is of much greater microbiological and environmental significance than is generally thought. The origins of the genes encoding the enzymes of methylotrophy in diverse heterotrophs need further study, and could further our understanding of the phylogeny and antiquity of methylotrophic systems.
Collapse
Affiliation(s)
- Rich Boden
- Department of Life Sciences, King's College London, Franklin Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
| | | | | | | | | |
Collapse
|
31
|
Dick GJ, Podell S, Johnson HA, Rivera-Espinoza Y, Bernier-Latmani R, McCarthy JK, Torpey JW, Clement BG, Gaasterland T, Tebo BM. Genomic insights into Mn(II) oxidation by the marine alphaproteobacterium Aurantimonas sp. strain SI85-9A1. Appl Environ Microbiol 2008; 74:2646-58. [PMID: 18344346 PMCID: PMC2394881 DOI: 10.1128/aem.01656-07] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Accepted: 03/02/2008] [Indexed: 01/06/2023] Open
Abstract
Microbial Mn(II) oxidation has important biogeochemical consequences in marine, freshwater, and terrestrial environments, but many aspects of the physiology and biochemistry of this process remain obscure. Here, we report genomic insights into Mn(II) oxidation by the marine alphaproteobacterium Aurantimonas sp. strain SI85-9A1, isolated from the oxic/anoxic interface of a stratified fjord. The SI85-9A1 genome harbors the genetic potential for metabolic versatility, with genes for organoheterotrophy, methylotrophy, oxidation of sulfur and carbon monoxide, the ability to grow over a wide range of O(2) concentrations (including microaerobic conditions), and the complete Calvin cycle for carbon fixation. Although no growth could be detected under autotrophic conditions with Mn(II) as the sole electron donor, cultures of SI85-9A1 grown on glycerol are dramatically stimulated by addition of Mn(II), suggesting an energetic benefit from Mn(II) oxidation. A putative Mn(II) oxidase is encoded by duplicated multicopper oxidase genes that have a complex evolutionary history including multiple gene duplication, loss, and ancient horizontal transfer events. The Mn(II) oxidase was most abundant in the extracellular fraction, where it cooccurs with a putative hemolysin-type Ca(2+)-binding peroxidase. Regulatory elements governing the cellular response to Fe and Mn concentration were identified, and 39 targets of these regulators were detected. The putative Mn(II) oxidase genes were not among the predicted targets, indicating that regulation of Mn(II) oxidation is controlled by other factors yet to be identified. Overall, our results provide novel insights into the physiology and biochemistry of Mn(II) oxidation and reveal a genome specialized for life at the oxic/anoxic interface.
Collapse
Affiliation(s)
- Gregory J Dick
- Department of Environmental and Biomolecular Systems, OGI School of Science & Engineering, Oregon Health & Sciences University, 20000 NW Walker Rd., Beaverton, OR 97006, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Sorokin DY, Trotsenko YA, Doronina NV, Tourova TP, Galinski EA, Kolganova TV, Muyzer G. Methylohalomonas lacus gen. nov., sp. nov. and Methylonatrum kenyense gen. nov., sp. nov., methylotrophic gammaproteobacteria from hypersaline lakes. Int J Syst Evol Microbiol 2007; 57:2762-2769. [DOI: 10.1099/ijs.0.64955-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Aerobic enrichment at 4 M NaCl, pH 7.5, with methanol as carbon and energy source from sediments of hypersaline chloride–sulfate lakes in Kulunda Steppe (Altai, Russia) resulted in the isolation of a moderately halophilic and obligately methylotrophic bacterium, strain HMT 1T. The bacterium grew with methanol and methylamine within a pH range of 6.8–8.2 with an optimum at pH 7.5 and at NaCl concentrations of 0.5–4 M with an optimum at 2 M. In addition to methanol and methylamine, it can oxidize ethanol, formate, formaldehyde and dimethylamine. Carbon is assimilated via the serine pathway. The main compatible solute is glycine betaine. 16S rRNA gene sequence analysis placed the isolate as a new lineage in the familyEctothiorhodospiraceae(Gammaproteobacteria). It is proposed, therefore, to accommodate this bacterium within a novel genus and species,Methylohalomonas lacusgen. nov., sp. nov., with HMT 1T(=DSM 15733T=NCCB 100208T=UNIQEM U237T) as the type strain. Two strains were obtained in pure culture from sediments of soda lake Magadi in Kenya and the Kulunda Steppe (Russia) on a mineral medium at pH 10 containing 0.6 M total Na+using methanol as a substrate. Strain AMT 1Twas enriched with methanol, while strain AMT 3 originated from an enrichment culture with CO. The isolates are restricted facultative methylotrophs, capable of growth with methanol, formate and acetate as carbon and energy sources. With methanol, the strains grew within a broad salinity range from 0.3 to 3.5–4 M total Na+, with an optimum at 0.5–1 M. The pH range for growth was between 8.3 and 10.5, with an optimum at pH 9.5, which characterized the soda lake isolates as obligate haloalkaliphiles. Carbon is assimilated autotrophically via the Calvin–Benson cycle. Sequence analysis of the gene coding for the key enzyme RuBisCO demonstrated that strain AMT 1Tpossessed a singlecbbLgene of the ‘green’ form I, clustering with members of the familyEctothiorhodospiraceae. Analysis of the 16S rRNA gene sequence showed that strains AMT 1Tand AMT 3 belong to a single species that forms a separate lineage within the familyEctothiorhodospiraceae. On the basis of phenotypic and genetic data, the novel haloalkaliphilic methylotrophs are described as representing a novel genus and species,Methylonatrum kenyensegen. nov., sp. nov. (type strain AMT 1T=DSM 15732T=NCCB 100209T=UNIQEM U238T).
Collapse
Affiliation(s)
- Dimitry Yu. Sorokin
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
- Winogradsky Institute of Microbiology, Russian Academy of Sciences, Prospect 60-let Octyabrya 7/2, 117811 Moscow, Russia
| | - Yuri A. Trotsenko
- G. K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Russia
| | - Nina V. Doronina
- G. K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Russia
| | - Tatjana P. Tourova
- Winogradsky Institute of Microbiology, Russian Academy of Sciences, Prospect 60-let Octyabrya 7/2, 117811 Moscow, Russia
| | - Erwin A. Galinski
- Institute of Microbiology and Biotechnology, Rheinische Friedrich-Wilhelms University, Meckenheimer Allee 168, 53115 Bonn, Germany
| | - Tatjana V. Kolganova
- Center Bioengineering, Russian Academy of Sciences, Prospect 60-let Octyabrya 7/1, 117312 Moscow, Russia
| | - Gerard Muyzer
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| |
Collapse
|
33
|
Kallistova AY, Kevbrina MV, Nekrasova VK, Shnyrev NA, Einola JKM, Kulomaa MS, Rintala JA, Nozhevnikova AN. Enumeration of methanotrophic bacteria in the cover soil of an aged municipal landfill. MICROBIAL ECOLOGY 2007; 54:637-45. [PMID: 17323117 DOI: 10.1007/s00248-007-9219-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2006] [Revised: 12/28/2006] [Accepted: 01/24/2007] [Indexed: 05/14/2023]
Abstract
The enumeration of methanotrophic bacteria in the cover soil of an aged municipal landfill was carried out using (1) fluorescent in situ hybridization (FISH) with horseradish peroxidase-labeled oligonucleotide probes and tyramide signal amplification, also known as catalyzed reporter deposition-FISH (CARD-FISH), and (2) most probable number (MPN) method. The number of methanotrophs was determined in cover soil samples collected during April-November 2003 from a point with low CH(4) emission. The number of types I and II methanotrophs obtained by CARD-FISH varied from 15 +/- 2 to 56 +/- 7 x 10(8) cells g(-1) absolute dry mass (adm) of soil and methanotrophs of type I dominated over type II. The average number of methanotrophs throughout the cover soil profile was highest during May-September when the cover soil temperature was above 13 degrees C. Methanotrophs accounted for about 50% of the total bacterial population in the deepest cover soil layer owing to higher availability of substrate (CH(4)). A lower number of methanotrophs (7 x 10(2) to 17 x 10(5) cells g(-1) adm of soil) was determined by the MPN method compared to the CARD-FISH counts, thus confirming previous results that the MPN method is limited to the estimation of the culturable species that can be grown under the incubation conditions used. The number of culturable methanotrophs correlated with the methane-oxidizing activity measured in laboratory assays. In comparison to the incubation-based measurements, the number of methanotrophs determined by CARD-FISH better reflected the actual characteristics of the environment, such as release and uptake of CH(4), temperature, and moisture, and availability of substrates.
Collapse
Affiliation(s)
- A Yu Kallistova
- Winogradsky Institute of Microbiology, Russian Academy of Sciences, Prospect 60-letiya Octyabrya 7, b. 2, 117312, Moscow, Russia.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Kulichevskaya IS, Guzev VS, Gorlenko VM, Liesack W, Dedysh SN. Rhodoblastus sphagnicola sp. nov., a novel acidophilic purple non-sulfur bacterium from Sphagnum peat bog. Int J Syst Evol Microbiol 2006; 56:1397-1402. [PMID: 16738120 DOI: 10.1099/ijs.0.63962-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An isolate of purple non-sulfur bacteria was obtained from an acidicSphagnumpeat bog and designated strain RST. The colour of cell suspensions of this bacterium growing in the light under anaerobic conditions is purplish red. Cells of strain RSTare rod-shaped, 0.8–1.0 μm wide and 2.0–6.0 μm long, motile by means of polar flagella, reproduce by budding and have a tendency to form rosette-like clusters in older cultures. The cells contain lamellar intracytoplasmic membranes underlying, and parallel to, the cytoplasmic membrane. The photosynthetic pigments are bacteriochlorophyllaand carotenoids; the absorption spectrum of living cells shows maxima at 377, 463, 492, 527, 592, 806 and 867 nm. The cells grow photoheterotrophically under anaerobic or microaerobic conditions with various organic carbon sources or grow photolithoautotrophically with H2and CO2. Strain RSTis a moderately acidophilic organism exhibiting growth at pH values between 4.8 and 7.0 (with an optimum at pH 5.2–5.5). The major fatty acids are 16 : 1ω7cand 18 : 1ω7c; the major quinones are Q-10 and Q-9. The DNA G+C content of strain RSTis 62.6 mol%. Analysis of the 16S rRNA gene sequence revealed that the novel isolate is most closely related (97.3 % sequence similarity) to the type strain ATCC 25092Tof the moderately acidophilic purple non-sulfur bacteriumRhodoblastus acidophilus, formerly namedRhodopseudomonas acidophila. However, in contrast toRbl. acidophilus, strain RSTis not capable of aerobic growth in the dark, has no spirilloxanthin among the carotenoids and differs in the pattern of substrate utilization. The value for DNA–DNA hybridization between strain RSTandRbl. acidophilusATCC 25092Tis only 22 %. Thus, strain RSTrepresents a novel species of the genusRhodoblastus, for which the nameRhodoblastus sphagnicolasp. nov. is proposed. Strain RST(=DSM 16996T=VKM B-2361T) is the type strain.
Collapse
Affiliation(s)
- Irina S Kulichevskaya
- S. N. Winogradsky Institute of Microbiology, Russian Academy of Sciences, Prospect 60-letya Octyabrya 7/2, Moscow 117312, Russia
| | - Vladimir S Guzev
- M. V. Lomonosov Moscow State University, Faculty of Soil Science, GSP-2, Leninskie Gory, Moscow 119992, Russia
| | - Vladimir M Gorlenko
- S. N. Winogradsky Institute of Microbiology, Russian Academy of Sciences, Prospect 60-letya Octyabrya 7/2, Moscow 117312, Russia
| | - Werner Liesack
- Max Planck Institute for Terrestrial Microbiology, D-35043 Marburg, Germany
| | - Svetlana N Dedysh
- S. N. Winogradsky Institute of Microbiology, Russian Academy of Sciences, Prospect 60-letya Octyabrya 7/2, Moscow 117312, Russia
| |
Collapse
|
35
|
Smirnova KV, Dedysh SN, Khmelenina VN, Trotsenko YA. Methanol and Glucose Metabolism in Beijerinckia mobilis. Microbiology (Reading) 2005. [DOI: 10.1007/s11021-005-0111-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|