1
|
Ramón Roth I, Kats P, Fiebig T, Routier F, Fedorov R, Dirr L, Führing JI. Identification and characterization of the functional tetrameric UDP-glucose pyrophosphorylase from Klebsiella pneumoniae. mBio 2024:e0207124. [PMID: 39704542 DOI: 10.1128/mbio.02071-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/25/2024] [Indexed: 12/21/2024] Open
Abstract
In all kingdoms of life, the enzyme uridine diphosphate-glucose pyrophosphorylase (UGP) occupies a central role in metabolism, as its reaction product uridine diphosphate-glucose (UDP-Glc) is involved in various crucial cellular processes. Pathogens, including fungi, parasites, and bacteria, depend on UGP for the synthesis of virulence factors; in particular, various bacterial species utilize UDP-Glc and its derivatives for the synthesis of lipopolysaccharides, capsular polysaccharides, and biofilm exopolysaccharides. UGPs have, therefore, gained attention as anti-bacterial drug target candidates, prompting us to study their structure-function relationships to provide a basis for the rational development of specific inhibitors. UGP function is tied to its oligomeric state, and the majority of bacterial homologs have been described as tetramers encoded by the galU gene. Uniquely, enterobacterial species harbor a second gene, galF, encoding a protein with high homology to UGP, whose function is somewhat controversial. Here, we show that the galF gene of the opportunistic pathogen Klebsiella pneumoniae encodes a dimeric protein that has lost UGP activity, likely due to a combination of active site mutations and an inability to tetramerize, whereas the functional K. pneumoniae UGP, encoded by galU, is an active tetramer. Our AlphaFold-assisted structure-function relationship studies underline that tetramerization is essential for bacterial UGP function and is facilitated by a common mechanism utilizing conserved key residues. Targeting the respective molecular interfaces, which are absent in human UGP, could provide a means of selectively inhibiting the bacterial virulence factor UGP and potentially rendering pathogenic species avirulent.IMPORTANCEThe enzyme uridine diphosphate-glucose pyrophosphorylase (UGP) is important for the virulence of bacterial pathogens and, therefore, a potential drug target. In this study, we identify the gene encoding the functional UGP in Klebsiella pneumoniae, a bacterium notoriously causing severe antibiotic-resistant infections in humans, and reveal structural and functional features that may aid in the development of new antibiotics.
Collapse
Affiliation(s)
- Isabel Ramón Roth
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Pavel Kats
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Timm Fiebig
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Françoise Routier
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Roman Fedorov
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
- Division for Structural Biochemistry, Hannover Medical School, Hannover, Germany
| | - Larissa Dirr
- Institute for Biomedicine and Glycomics, Griffith University, Gold Coast, Southport, Australia
| | - Jana I Führing
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| |
Collapse
|
2
|
Wang L, Wang Z, Zhang H, Jin Q, Fan S, Liu Y, Huang X, Guo J, Cai C, Zhang JR, Wu H. A novel esterase regulates Klebsiella pneumoniae hypermucoviscosity and virulence. PLoS Pathog 2024; 20:e1012675. [PMID: 39480904 PMCID: PMC11556721 DOI: 10.1371/journal.ppat.1012675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 11/12/2024] [Accepted: 10/18/2024] [Indexed: 11/02/2024] Open
Abstract
Klebsiella pneumoniae, an emerging multidrug-resistant pathogen, exhibits hypermucoviscosity (HMV) as a critical virulence trait mediated by its capsular polysaccharide (CPS). Recent discoveries have determined acetylation as a significant modification for CPS, although its impact on HMV and virulence was previously unknown. This study elucidates the roles of two enzymes: Klebsiella pneumoniae Acetylated CPS Esterase (KpACE), an esterase that removes acetyl groups from CPS, and WcsU, an acetyltransferase that adds acetyl groups to CPS. KpACE is highly upregulated in an ompR-deficient mutant lacking HMV, and its overexpression consistently reduces HMV and diminishes virulence in a mouse model of pneumonia. The esterase domain-containing KpACE effectively deacetylates model sugar substrates and CPS-K2. Site-directed mutagenesis of the conserved catalytic histidine residue at position 370 significantly reduces its enzymatic activity. This reduction correlates with decreased HMV, affecting key virulence traits including biofilm formation and serum resistance. Similarly, a deficiency in the wcsU gene abolishes CPS acetylation, and reduces HMV and virulence. These results highlight the importance of the delicate balance between CPS acetylation by WcsU and deacetylation by KpACE in regulating the pathogenicity of K. pneumoniae. Understanding this balance provides new insights into the modulation of virulence traits and potential therapeutic targets for combating K. pneumoniae infections.
Collapse
Affiliation(s)
- Lijun Wang
- Department of Laboratory Medicine, Beijing Xiaotangshan Hospital, Beijing, China
- Center for Infectious Disease Research, School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing, China
| | - Zhe Wang
- Shandong Key Laboratory of Glycoscience and Glycotherapeutics, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Hua Zhang
- Oregon Health and Science University School of Dentistry, Portland, Oregon, United States of America
| | - Qian Jin
- Center for Infectious Disease Research, School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing, China
| | - Shuaihua Fan
- Tsinghua Medicine, Tsinghua University, Department of Respiratory and Critical Care Medicine, Beijing Tsinghua Changgung Hospital, Beijing, China
| | - Yanni Liu
- Center for Infectious Disease Research, School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing, China
| | - Xueting Huang
- Center for Infectious Disease Research, School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing, China
| | - Jun Guo
- Department of Geriatric Medicine, Beijing Tsinghua Changgung Hospital, Tsinghua Medicine, Tsinghua University, Beijing, China
| | - Chao Cai
- Shandong Key Laboratory of Glycoscience and Glycotherapeutics, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Jing-Ren Zhang
- Center for Infectious Disease Research, School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing, China
| | - Hui Wu
- Oregon Health and Science University School of Dentistry, Portland, Oregon, United States of America
| |
Collapse
|
3
|
Hussein M, Allobawi R, Zhao J, Yu H, Neville SL, Wilksch J, Wong LJM, Baker M, McDevitt CA, Rao GG, Li J, Velkov T. Integrated Transcriptomic and Metabolomic Mapping Reveals the Mechanism of Action of Ceftazidime/Avibactam against Pan-Drug-Resistant Klebsiella pneumoniae. ACS Infect Dis 2023; 9:2409-2422. [PMID: 37878861 PMCID: PMC10714405 DOI: 10.1021/acsinfecdis.3c00264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/02/2023] [Accepted: 10/11/2023] [Indexed: 10/27/2023]
Abstract
Here, we employed an integrated metabolomics and transcriptomics approach to investigate the molecular mechanism(s) of action of ceftazidime/avibactam against a pan-drug-resistant K. pneumoniae clinical isolate from a patient with urinary tract infection. Ceftazidime/avibactam induced time-dependent perturbations in the metabolome and transcriptome of the bacterium, mainly at 6 h, with minimal effects at 1 and 3 h. Metabolomics analysis revealed a notable reduction in essential lipids involved in outer membrane glycerolipid biogenesis. This disruption effect extended to peptidoglycan and lipopolysaccharide biosynthetic pathways, including lipid A and O-antigen assembly. Importantly, ceftazidime/avibactam not only affected the final steps of peptidoglycan biosynthesis in the periplasm, a common mechanism of ceftazidime action, but also influenced the synthesis of lipid-linked intermediates and early stages of cytoplasmic peptidoglycan synthesis. Furthermore, ceftazidime/avibactam substantially inhibited central carbon metabolism (e.g., the pentose phosphate pathway and tricarboxylic acid cycle). Consistently, the dysregulation of genes governing these metabolic pathways aligned with the metabolomics findings. Certain metabolomics and transcriptomics signatures associated with ceftazidime resistance were also perturbed. Consistent with the primary target of antibiotic activity, biochemical assays also confirmed the direct impact of ceftazidime/avibactam on peptidoglycan production. This study explored the intricate interactions of ceftazidime and avibactam within bacterial cells, including their impact on cell envelope biogenesis and central carbon metabolism. Our findings revealed the complexities of how ceftazidime/avibactam operates, such as hindering peptidoglycan formation in different cellular compartments. In summary, this study confirms the existing hypotheses about the antibacterial and resistance mechanisms of ceftazidime/avibactam while uncovering novel insights, including its impact on lipopolysaccharide formation.
Collapse
Affiliation(s)
- Maytham Hussein
- Monash
Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Rafah Allobawi
- Monash
Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Jinxin Zhao
- Monash
Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Heidi Yu
- Monash
Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Stephanie L. Neville
- Department
of Microbiology and Immunology, The Peter Doherty Institute for Infection
and Immunity, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Jonathan Wilksch
- Department
of Microbiology and Immunology, The Peter Doherty Institute for Infection
and Immunity, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Labell J. M. Wong
- Monash
Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Mark Baker
- Discipline
of Biological Sciences, Priority Research Centre in Reproductive Biology,
Faculty of Science and IT, University of
Newcastle, University
Drive, Callaghan, NSW 2308, Australia
| | - Christopher A. McDevitt
- Department
of Microbiology and Immunology, The Peter Doherty Institute for Infection
and Immunity, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Gauri G. Rao
- Division
of Pharmacotherapy and Experimental Therapeutics, Eshelman School
of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599-7355, United
States
| | - Jian Li
- Monash
Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Tony Velkov
- Monash
Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
4
|
Kelly SD, Ovchinnikova OG, Müller F, Steffen M, Braun M, Sweeney RP, Kowarik M, Follador R, Lowary TL, Serventi F, Whitfield C. Identification of a second glycoform of the clinically prevalent O1 antigen from Klebsiella pneumoniae. Proc Natl Acad Sci U S A 2023; 120:e2301302120. [PMID: 37428935 PMCID: PMC10629545 DOI: 10.1073/pnas.2301302120] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 05/15/2023] [Indexed: 07/12/2023] Open
Abstract
Carbapenemase and extended β-lactamase-producing Klebsiella pneumoniae isolates represent a major health threat, stimulating increasing interest in immunotherapeutic approaches for combating Klebsiella infections. Lipopolysaccharide O antigen polysaccharides offer viable targets for immunotherapeutic development, and several studies have described protection with O-specific antibodies in animal models of infection. O1 antigen is produced by almost half of clinical Klebsiella isolates. The O1 polysaccharide backbone structure is known, but monoclonal antibodies raised against the O1 antigen showed varying reactivity against different isolates that could not be explained by the known structure. Reinvestigation of the structure by NMR spectroscopy revealed the presence of the reported polysaccharide backbone (glycoform O1a), as well as a previously unknown O1b glycoform composed of the O1a backbone modified with a terminal pyruvate group. The activity of the responsible pyruvyltransferase (WbbZ) was confirmed by western immunoblotting and in vitro chemoenzymatic synthesis of the O1b terminus. Bioinformatic data indicate that almost all O1 isolates possess genes required to produce both glycoforms. We describe the presence of O1ab-biosynthesis genes in other bacterial species and report a functional O1 locus on a bacteriophage genome. Homologs of wbbZ are widespread in genetic loci for the assembly of unrelated glycostructures in bacteria and yeast. In K. pneumoniae, simultaneous production of both O1 glycoforms is enabled by the lack of specificity of the ABC transporter that exports the nascent glycan, and the data reported here provide mechanistic understanding of the capacity for evolution of antigenic diversity within an important class of biomolecules produced by many bacteria.
Collapse
Affiliation(s)
- Steven D. Kelly
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ONN1G 2W1, Canada
| | - Olga G. Ovchinnikova
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ONN1G 2W1, Canada
| | | | | | - Martin Braun
- LimmaTech Biologics AG, Schlieren8952, Switzerland
| | - Ryan P. Sweeney
- Department of Chemistry, University of Alberta, Edmonton, ABT6G 2G2, Canada
| | | | | | - Todd L. Lowary
- Department of Chemistry, University of Alberta, Edmonton, ABT6G 2G2, Canada
- Institute of Biological Chemistry, Academia Sinica, Taipei, Nangang11529, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei10617, Taiwan
| | | | - Chris Whitfield
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ONN1G 2W1, Canada
| |
Collapse
|
5
|
Chen D, Srivastava AK, Dubrochowska J, Liu L, Li T, Hoffmann JP, Kolls JK, Boons GJ. A Bioactive Synthetic Outer-Core Oligosaccharide Derived from a Klebsiella pneumonia Lipopolysaccharide for Bacteria Recognition. Chemistry 2023; 29:e202203408. [PMID: 36662447 PMCID: PMC10159924 DOI: 10.1002/chem.202203408] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/21/2023]
Abstract
There is an urgent need for new treatment options for carbapenem-resistant Klebsiella pneumoniae (K. pneumoniae), which is a common cause of life-threatening hospital- and community-acquired infections. Prophylactic or therapeutic vaccination may offer an approach to control these infections, however, none has yet been approved for human use. Here, we report the chemical synthesis of an outer core tetra- and pentasaccharide derived from the lipopolysaccharide of K. pneumoniae. The oligosaccharides were equipped with an aminopentyl linker, which facilitated conjugation to the carrier proteins CRM197 and BSA. Mice immunized with the glycoconjugate vaccine candidates elicited antibodies that recognized isolated LPS as well as various strains of K. pneumoniae. The successful preparation of the oligosaccharides relied on the selection of monosaccharide building blocks equipped with orthogonal hydroxyl and amino protecting groups. It allowed the differentiation of three types of amines of the target compounds and the installation of a crowded 4,5-branched Kdo moiety.
Collapse
Affiliation(s)
- Dushen Chen
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Akhilesh K Srivastava
- Department of Medicine and Pediatrics, Tulane School of Medicine, New Orleans, LA, USA
| | - Justyna Dubrochowska
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Lin Liu
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Tiehai Li
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Joseph P Hoffmann
- Department of Medicine and Pediatrics, Tulane School of Medicine, New Orleans, LA, USA
| | - Jay K Kolls
- Department of Medicine and Pediatrics, Tulane School of Medicine, New Orleans, LA, USA
| | - Geert-Jan Boons
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, The Netherlands
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
- Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
- Chemistry Department, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
6
|
Palusiak A. Proteus mirabilis and Klebsiella pneumoniae as pathogens capable of causing co-infections and exhibiting similarities in their virulence factors. Front Cell Infect Microbiol 2022; 12:991657. [PMID: 36339335 PMCID: PMC9630907 DOI: 10.3389/fcimb.2022.991657] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/03/2022] [Indexed: 09/23/2023] Open
Abstract
The genera Klebsiella and Proteus were independently described in 1885. These Gram-negative rods colonize the human intestinal tract regarded as the main reservoir of these opportunistic pathogens. In favorable conditions they cause infections, often hospital-acquired ones. The activity of K. pneumoniae and P. mirabilis, the leading pathogens within each genus, results in infections of the urinary (UTIs) and respiratory tracts, wounds, bacteremia, affecting mainly immunocompromised patients. P. mirabilis and K. pneumoniae cause polymicrobial UTIs, which are often persistent due to the catheter biofilm formation or increasing resistance of the bacteria to antibiotics. In this situation a need arises to find the antigens with features common to both species. Among many virulence factors produced by both pathogens urease shows some structural similarities but the biggest similarities have been observed in lipids A and the core regions of lipopolysaccharides (LPSs). Both species produce capsular polysaccharides (CPSs) but only in K. pneumoniae these antigens play a crucial role in the serological classification scheme, which in Proteus spp. is based on the structural and serological diversity of LPS O-polysaccharides (OPSs). Structural and serological similarities observed for Klebsiella spp. and Proteus spp. polysaccharides are important in the search for the cross-reacting vaccine antigens.
Collapse
Affiliation(s)
- Agata Palusiak
- Laboratory of General Microbiology, Department of Biology of Bacteria, Institute of Microbiology, Biotechnology and Immunology, University of Łódź, Łódź, Poland
| |
Collapse
|
7
|
Coya JM, Fraile-Ágreda V, de Tapia L, García-Fojeda B, Sáenz A, Bengoechea JA, Kronqvist N, Johansson J, Casals C. Cooperative action of SP-A and its trimeric recombinant fragment with polymyxins against Gram-negative respiratory bacteria. Front Immunol 2022; 13:927017. [PMID: 36159837 PMCID: PMC9493720 DOI: 10.3389/fimmu.2022.927017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 08/10/2022] [Indexed: 11/19/2022] Open
Abstract
The exploration of therapies combining antimicrobial lung proteins and conventional antibiotics is important due to the growing problem of multidrug-resistant bacteria. The aim of this study was to investigate whether human SP-A and a recombinant trimeric fragment (rfhSP-A) have cooperative antimicrobial activity with antibiotics against pathogenic Gram-negative bacteria. We found that SP-A bound the cationic peptide polymyxin B (PMB) with an apparent dissociation constant (K D) of 0.32 ± 0.04 µM. SP-A showed synergistic microbicidal activity with polymyxin B and E, but not with other antibiotics, against three SP-A-resistant pathogenic bacteria: Klebsiella pneumoniae, non-typable Haemophilus influenzae (NTHi), and Pseudomonas aeruginosa. SP-A was not able to bind to K. pneumoniae, NTHi, or to mutant strains thereof expressing long-chain lipopolysaccharides (or lipooligosaccharides) and/or polysaccharide capsules. In the presence of PMB, SP-A induced the formation of SP-A/PMB aggregates that enhance PMB-induced bacterial membrane permeabilization. Furthermore, SP-A bound to a molecular derivative of PMB lacking the acyl chain (PMBN) with a K D of 0.26 ± 0.02 μM, forming SP-A/PMBN aggregates. PMBN has no bactericidal activity but can bind to the outer membrane of Gram-negative bacteria. Surprisingly, SP-A and PMBN showed synergistic bactericidal activity against Gram-negative bacteria. Unlike native supratrimeric SP-A, the trimeric rfhSP-A fragment had small but significant direct bactericidal activity against K. pneumoniae, NTHi, and P. aeruginosa. rfhSP-A did not bind to PMB under physiological conditions but acted additively with PMB and other antibiotics against these pathogenic bacteria. In summary, our results significantly improve our understanding of the antimicrobial actions of SP-A and its synergistic action with PMB. A peptide based on SP-A may aid the therapeutic use of PMB, a relatively cytotoxic antibiotic that is currently being reintroduced into clinics due to the global problem of antibiotic resistance.
Collapse
Affiliation(s)
- Juan Manuel Coya
- Department of Biochemistry and Molecular Biology, Complutense University of Madrid, Madrid, Spain
| | - Víctor Fraile-Ágreda
- Department of Biochemistry and Molecular Biology, Complutense University of Madrid, Madrid, Spain
| | - Lidia de Tapia
- Department of Biochemistry and Molecular Biology, Complutense University of Madrid, Madrid, Spain
| | - Belén García-Fojeda
- Department of Biochemistry and Molecular Biology, Complutense University of Madrid, Madrid, Spain
| | - Alejandra Sáenz
- Department of Biochemistry and Molecular Biology, Complutense University of Madrid, Madrid, Spain
| | - José A. Bengoechea
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast, United Kingdom
| | - Nina Kronqvist
- Department of Biosciences and Nutrition, Neo, Karolinska Institutet, Huddinge, Sweden
| | - Jan Johansson
- Department of Biosciences and Nutrition, Neo, Karolinska Institutet, Huddinge, Sweden
| | - Cristina Casals
- Department of Biochemistry and Molecular Biology, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
8
|
Singh S, Wilksch JJ, Dunstan RA, Mularski A, Wang N, Hocking D, Jebeli L, Cao H, Clements A, Jenney AWJ, Lithgow T, Strugnell RA. LPS O Antigen Plays a Key Role in Klebsiella pneumoniae Capsule Retention. Microbiol Spectr 2022; 10:e0151721. [PMID: 35913154 PMCID: PMC9431683 DOI: 10.1128/spectrum.01517-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 06/14/2022] [Indexed: 11/24/2022] Open
Abstract
Despite the importance of encapsulation in bacterial pathogenesis, the biochemical mechanisms and forces that underpin retention of capsule by encapsulated bacteria are poorly understood. In Gram-negative bacteria, there may be interactions between lipopolysaccharide (LPS) core and capsule polymers, between capsule polymers with retained acyl carriers and the outer membrane, and in some bacteria, between the capsule polymers and Wzi, an outer membrane protein lectin. Our transposon studies in Klebsiella pneumoniae B5055 identified additional genes that, when insertionally inactivated, resulted in reduced encapsulation. Inactivation of the gene waaL, which encodes the ligase responsible for attaching the repeated O antigen of LPS to the LPS core, resulted in a significant reduction in capsule retention, measured by atomic force microscopy. This reduction in encapsulation was associated with increased sensitivity to human serum and decreased virulence in a murine model of respiratory infection and, paradoxically, with increased biofilm formation. The capsule in the WaaL mutant was physically smaller than that of the Wzi mutant of K. pneumoniae B5055. These results suggest that interactions between surface carbohydrate polymers may enhance encapsulation, a key phenotype in bacterial virulence, and provide another target for the development of antimicrobials that may avoid resistance issues associated with growth inhibition. IMPORTANCE Bacterial capsules, typically comprised of complex sugars, enable pathogens to avoid key host responses to infection, including phagocytosis. These capsules are synthesized within the bacteria, exported through the outer envelope, and then secured to the external surface of the organism by a force or forces that are incompletely described. This study shows that in the important hospital pathogen Klebsiella pneumoniae, the polysaccharide capsule is retained by interactions with other surface sugars, especially the repeated sugar molecule of the LPS molecule in Gram-negative bacteria known as "O antigen." This O antigen is joined to the LPS molecule by ligation, and loss of the enzyme responsible for ligation, a protein called WaaL, results in reduced encapsulation. Since capsules are essential to the virulence of many pathogens, WaaL might provide a target for new antimicrobial development, critical to the control of pathogens like K. pneumoniae that have become highly drug resistant.
Collapse
Affiliation(s)
- Shweta Singh
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Jonathan J. Wilksch
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Rhys A. Dunstan
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Anna Mularski
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Nancy Wang
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Dianna Hocking
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Leila Jebeli
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Hanwei Cao
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Abigail Clements
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Adam W. J. Jenney
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Trevor Lithgow
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Richard A. Strugnell
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| |
Collapse
|
9
|
Kim H, Jang JH, Jung IY, Cho JH. A Novel Peptide as a Specific and Selective Probe for Klebsiella pneumoniae Detection. BIOSENSORS 2022; 12:bios12030153. [PMID: 35323423 PMCID: PMC8946155 DOI: 10.3390/bios12030153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/25/2022] [Accepted: 02/28/2022] [Indexed: 11/25/2022]
Abstract
Klebsiella pneumoniae is infamous for generating hospital-acquired infections, many of which are difficult to treat due to the bacterium’s multidrug resistance. A sensitive and robust detection method of K. pneumoniae can help prevent a disease outbreak. Herein, we used K. pneumoniae cells as bait to screen a commercially available phage-displayed random peptide library for peptides that could be used to detect K. pneumoniae. The biopanning-derived peptide TSATKFMMNLSP, named KP peptide, displayed a high selectivity for the K. pneumoniae with low cross-reactivity to related Gram-negative bacteria. The specific interaction between KP peptide and K. pneumoniae lipopolysaccharide resulted in the peptide’s selectivity against K. pneumoniae. Quantitative analysis of this interaction by enzyme-linked immunosorbent assay revealed that the KP peptide possessed higher specificity and sensitivity toward K. pneumoniae than commercially available anti-Klebsiella spp. antibodies and could detect K. pneumoniae at a detection limit of 104 CFU/mL. These results suggest that KP peptide can be a promising alternative to antibodies in developing a biosensor system for K. pneumoniae detection.
Collapse
Affiliation(s)
- Hyun Kim
- Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Korea; (H.K.); (J.H.J.)
| | - Ju Hye Jang
- Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Korea; (H.K.); (J.H.J.)
| | - In Young Jung
- Division of Applied Life Science (BK21Four), Gyeongsang National University, Jinju 52828, Korea;
| | - Ju Hyun Cho
- Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Korea; (H.K.); (J.H.J.)
- Division of Applied Life Science (BK21Four), Gyeongsang National University, Jinju 52828, Korea;
- Division of Life Science, Gyeongsang National University, Jinju 52828, Korea
- Correspondence: ; Tel.: +82-55-772-1347; Fax: +82-55-772-1349
| |
Collapse
|
10
|
Palusiak A. The Contribution of Polysaccharide Antigens From Clinical Proteus spp. and Klebsiella spp. Isolates to the Serological Cross-Reactions. Front Cell Infect Microbiol 2021; 11:707578. [PMID: 34513729 PMCID: PMC8428971 DOI: 10.3389/fcimb.2021.707578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/30/2021] [Indexed: 11/17/2022] Open
Abstract
Klebsiella spp. and Proteus spp. cause hospital-acquired urinary tract infections (UTIs), which are often related to the use of catheters. To create a vaccine preventing UTI, immunogenic bacterial antigens with common epitopes are still being looked for. In this work, the role of polysaccharide antigens of four Klebsiella spp. and eight Proteus spp. strains in serological cross-reactions with specific antisera was examined. Enzyme-linked immunosorbent assay (ELISA), Western blotting, and silver staining by Tsai method were performed. The Klebsiella and Proteus spp. LPSs and cells were used as antigens. Polyclonal rabbit sera specific to Klebsiella oxytoca 0.023 and 0.062 strains and four Klebsiella spp. LPSs were obtained. The ELISA and Western blotting results showed the strongest cross-reactions occurring between lipopolysaccharides (LPSs) from four Klebsiella strains and P. vulgaris O42 antiserum. The silver-staining procedure revealed the patterns typical of both slow- and fast-migrating mass species of the Klebsiella LPSs. The Klebsiella spp. antigens also cross-reacted with four P. penneri antisera, and most of the reactions were observed as low-migrating patterns. From two K. oxytoca antisera obtained in this work, only one, the K. oxytoca 0.062 antiserum, cross-reacted with satisfactory strength with P. penneri LPSs (19, 22, and 60). Obtaining cross-reactions between the antigens of Klebsiella strains and Proteus antisera and in the opposite systems is important for proving the immunogenic role of polysaccharide antigens in triggering the immunological response.
Collapse
Affiliation(s)
- Agata Palusiak
- Department of Biology of Bacteria, Laboratory of General Microbiology, Institute of Microbiology, Biotechnology and Immunology, University of Łódź, Banacha, Poland
| |
Collapse
|
11
|
Zheng Z, Gorden PJ, Xia X, Zheng Y, Li G. Whole-genome analysis of Klebsiella pneumoniae from bovine mastitis milk in the U.S. Environ Microbiol 2021; 24:1183-1199. [PMID: 34398526 DOI: 10.1111/1462-2920.15721] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/21/2021] [Accepted: 08/10/2021] [Indexed: 12/14/2022]
Abstract
Dairy cattle mastitis has long been one of the most common and costly diseases in the dairy industry worldwide, due to its significant impact on milk production and animal welfare. Among all mastitis causing bacterial pathogens, Klebsiella pneumoniae causes the largest milk loss. To better understand the genomic features of this population, 180 K. pneumoniae strains isolated from dairy cattle mastitis milk in 11 U.S. states were sequenced. The phylogenetic analysis classified all mastitis-causing K. pneumoniae into two major phylogroups, with exclusive predominance in phylogroup KpI. Analysis of more than 61 sequence types, 51 capsular types and 12 lipopolysaccharide O-antigen types revealed great genomic diversity of this K. pneumoniae population. Approximately 100 gene units in accessory genomes were detected with significantly higher prevalence in bovine mastitis strains, compared to human-sourced or dairy environmental strains. The most notable genes were identified associated with ferric citrate uptake, lactose fermentation and resistance to heavy metals. The acquired antimicrobial resistance genes were identified in sporadic mastitis strains. This comprehensive genomic epidemiological study provides insights for a better understanding of the virulence of mastitis-causing K. pneumoniae strains and may lead to the development of novel diagnostic tools and preventive strategies.
Collapse
Affiliation(s)
- Zhiyi Zheng
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, 50011, USA
| | - Patrick J Gorden
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, 50011, USA
| | - Xiaoqin Xia
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Ying Zheng
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, 50011, USA
| | - Ganwu Li
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, 50011, USA
| |
Collapse
|
12
|
Arato V, Raso MM, Gasperini G, Berlanda Scorza F, Micoli F. Prophylaxis and Treatment against Klebsiella pneumoniae: Current Insights on This Emerging Anti-Microbial Resistant Global Threat. Int J Mol Sci 2021; 22:4042. [PMID: 33919847 PMCID: PMC8070759 DOI: 10.3390/ijms22084042] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/06/2021] [Accepted: 04/12/2021] [Indexed: 02/07/2023] Open
Abstract
Klebsiella pneumoniae (Kp) is an opportunistic pathogen and the leading cause of healthcare-associated infections, mostly affecting subjects with compromised immune systems or suffering from concurrent bacterial infections. However, the dramatic increase in hypervirulent strains and the emergence of new multidrug-resistant clones resulted in Kp occurrence among previously healthy people and in increased morbidity and mortality, including neonatal sepsis and death across low- and middle-income countries. As a consequence, carbapenem-resistant and extended spectrum β-lactamase-producing Kp have been prioritized as a critical anti-microbial resistance threat by the World Health Organization and this has renewed the interest of the scientific community in developing a vaccine as well as treatments alternative to the now ineffective antibiotics. Capsule polysaccharide is the most important virulence factor of Kp and plays major roles in the pathogenesis but its high variability (more than 100 different types have been reported) makes the identification of a universal treatment or prevention strategy very challenging. However, less variable virulence factors such as the O-Antigen, outer membrane proteins as fimbriae and siderophores might also be key players in the fight against Kp infections. Here, we review elements of the current status of the epidemiology and the molecular pathogenesis of Kp and explore specific bacterial antigens as potential targets for both prophylactic and therapeutic solutions.
Collapse
Affiliation(s)
| | | | | | | | - Francesca Micoli
- GSK Vaccines Institute for Global Health (GVGH) S.r.l., via Fiorentina 1, 53100 Siena, Italy; (V.A.); (M.M.R.); (G.G.); (F.B.S.)
| |
Collapse
|
13
|
Liu Y, Shi J, Tong Z, Jia Y, Yang B, Wang Z. The revitalization of antimicrobial peptides in the resistance era. Pharmacol Res 2020; 163:105276. [PMID: 33161137 DOI: 10.1016/j.phrs.2020.105276] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 01/14/2023]
Abstract
The antibiotic resistance crisis is becoming incredibly thorny due to the indiscriminate employment of antibiotics in agriculture and aquaculture, such as growth promoters, and the emergence of bacteria that are capable of enduring antibiotic treatment in an endless stream. Hence, to reverse this situation, vigorous efforts should be made in the process of identifying other alternative strategies with a lower frequency of resistance. Antimicrobial peptides (AMPs), originated from host defense peptides, are generally produced by a variety of organisms as defensive weapons to protect the host from other pathogenic bacteria. The unique ability of AMPs to control bacterial infections, as well as low propensity to acquire resistance, provides the basis for it to become one of the promising antibacterial substances. Herein, we present new insights into the biological functions, structural properties, distinct mechanisms of action of AMPs and their resistance determinants. Besides, we separately discuss natural and synthetic AMPs, including their source, screening pathway and antibacterial activity. Lastly, challenges and perspectives to identify novel potent AMPs are highlighted, which will expand our understanding of the chemical space of antimicrobials and provide a pipeline for discovering the next-generation of AMPs.
Collapse
Affiliation(s)
- Yuan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China; Institute of Comparative Medicine, Yangzhou University, Yangzhou, 225009, China.
| | - Jingru Shi
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Ziwen Tong
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Yuqian Jia
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Bingqing Yang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Zhiqiang Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
14
|
Ali MH, Anwar S, Toma NJ, Rafid I, Hasan MK, Foysal MJ. Molecular Detection and PCR-RFLP Analysis of Mucoviscosity-Associated Gene A (magA) in Clinical Isolates of Multidrug-Resistant Klebsiella pneumoniae in Bangladesh. Open Microbiol J 2020. [DOI: 10.2174/1874285802014010196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background and Objective:
The mucoviscosity associated gene A (magA) in the hypermucoviscous variants of K. pneumoniae is reported to be associated with invasive infections and considered a virulence factor. We sought to analyze the magA genes in K. pneumoniae isolates in the clinical specimen collected from Bangladesh.
Methods:
We established a multicenter cohort of patients with Klebsiella infection hospitalized at 05 different hospitals between September 2016 and April 2017. We collected 313 K. pneumoniae isolates from patients who consented to participate in the study. The isolates were evaluated for harboring the magA genes using a single-tube multiplexed polymerase chain reaction. The magA genes were analyzed by PCR-RFLP technique using two enzymes, namely PciI and SmaI. Antibiogram assay using 12 commercially available antibiotic discs was performed on all the isolates.
Results:
The presence of K. pneumoniae specific gene (ureD) was confirmed in all the isolates. The percentage of isolates harboring the magA gene was 7.34%(23 isolates), the majority of which was collected from the patients admitted in intensive care units (16 isolates, 69.6%), and infectious diseases wards (5 isolates, 21.7%). PCR-RFLP analysis revealed that for 7 out of 23 isolates, where Sma1 could not cleave the magA gene. All the isolates showed resistance to ampicillin, carbenicillin cefradine, chloramphenicol, erythromycin, kanamycin, and sulphamethoxazole, though the extent was varying. However, imipenem showed 100% sensitivity to all the tested isolates.
Conclusion:
This study demonstrates the presence of the magA gene in multidrug-resistant clinical isolates of K. pneumoniae collected from Bangladesh.
Collapse
|
15
|
Cesur MF, Siraj B, Uddin R, Durmuş S, Çakır T. Network-Based Metabolism-Centered Screening of Potential Drug Targets in Klebsiella pneumoniae at Genome Scale. Front Cell Infect Microbiol 2020; 9:447. [PMID: 31993376 PMCID: PMC6970976 DOI: 10.3389/fcimb.2019.00447] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 12/12/2019] [Indexed: 01/28/2023] Open
Abstract
Klebsiella pneumoniae is an opportunistic bacterial pathogen leading to life-threatening nosocomial infections. Emergence of highly resistant strains poses a major challenge in the management of the infections by healthcare-associated K. pneumoniae isolates. Thus, despite intensive efforts, the current treatment strategies remain insufficient to eradicate such infections. Failure of the conventional infection-prevention and treatment efforts explicitly indicates the requirement of new therapeutic approaches. This prompted us to systematically analyze the K. pneumoniae metabolism to investigate drug targets. Genome-scale metabolic networks (GMNs) facilitating the systematic analysis of the metabolism are promising platforms. Thus, we used a GMN of K. pneumoniae MGH 78578 to determine putative targets through gene- and metabolite-centric approaches. To develop more realistic infection models, we performed the bacterial growth simulations within different host-mimicking media, using an improved biomass formation reaction. We selected more suitable targets based on several property-based prioritization procedures. KdsA was identified as the high-ranked putative target satisfying most of the target prioritization criteria specified under the gene-centric approach. Through a structure-based virtual screening protocol, we identified potential KdsA inhibitors. In addition, the metabolite-centric approach extended the drug target list based on synthetic lethality. This revealed the importance of combined metabolic analyses for a better understanding of the metabolism. To our knowledge, this is the first comprehensive effort on the investigation of the K. pneumoniae metabolism for drug target prediction through the constraint-based analysis of its GMN in conjunction with several bioinformatic approaches. This study can guide the researchers for the future drug designs by providing initial findings regarding crucial components of the Klebsiella metabolism.
Collapse
Affiliation(s)
- Müberra Fatma Cesur
- Computational Systems Biology Group, Department of Bioengineering, Gebze Technical University, Gebze, Turkey
| | - Bushra Siraj
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Reaz Uddin
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Saliha Durmuş
- Computational Systems Biology Group, Department of Bioengineering, Gebze Technical University, Gebze, Turkey
| | - Tunahan Çakır
- Computational Systems Biology Group, Department of Bioengineering, Gebze Technical University, Gebze, Turkey
| |
Collapse
|
16
|
Patro LPP, Rathinavelan T. Targeting the Sugary Armor of Klebsiella Species. Front Cell Infect Microbiol 2019; 9:367. [PMID: 31781512 PMCID: PMC6856556 DOI: 10.3389/fcimb.2019.00367] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 10/09/2019] [Indexed: 12/25/2022] Open
Abstract
The emergence of multidrug-resistant strains of Gram-negative Klebsiella species is an urgent global threat. The World Health Organization has listed Klebsiella pneumoniae as one of the global priority pathogens in critical need of next-generation antibiotics. Compared to other Gram-negative pathogens, K. pneumoniae accumulates a greater diversity of antimicrobial-resistant genes at a higher frequency. The evolution of a hypervirulent phenotype of K. pneumoniae is yet another concern. It has a broad ecological distribution affecting humans, agricultural animals, plants, and aquatic animals. Extracellular polysaccharides of Klebsiella, such as lipopolysaccharides, capsular polysaccharides, and exopolysaccharides, play crucial roles in conferring resistance against the host immune response, as well as in colonization, surface adhesion, and for protection against antibiotics and bacteriophages. These extracellular polysaccharides are major virulent determinants and are highly divergent with respect to their antigenic properties. Wzx/Wzy-, ABC-, and synthase-dependent proteinaceous nano-machineries are involved in the biosynthesis, transport, and cell surface expression of these sugar molecules. Although the proteins involved in the biosynthesis and surface expression of these sugar molecules represent potential drug targets, variation in the amino acid sequences of some of these proteins, in combination with diversity in their sugar composition, poses a major challenge to the design of a universal drug for Klebsiella infections. This review discusses the challenges in universal Klebsiella vaccine and drug development from the perspective of antigen sugar compositions and the proteins involved in extracellular antigen transport.
Collapse
|
17
|
Identification and Characterization of Two Klebsiella pneumoniae lpxL Lipid A Late Acyltransferases and Their Role in Virulence. Infect Immun 2017; 85:IAI.00068-17. [PMID: 28652313 DOI: 10.1128/iai.00068-17] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 06/20/2017] [Indexed: 01/18/2023] Open
Abstract
Klebsiella pneumoniae causes a wide range of infections, from urinary tract infections to pneumonia. The lipopolysaccharide is a virulence factor of this pathogen, although there are gaps in our understanding of its biosynthesis. Here we report on the characterization of K. pneumoniaelpxL, which encodes one of the enzymes responsible for the late secondary acylation of immature lipid A molecules. Analysis of the available K. pneumoniae genomes revealed that this pathogen's genome encodes two orthologues of Escherichia coli LpxL. Using genetic methods and mass spectrometry, we demonstrate that LpxL1 catalyzes the addition of laureate and LpxL2 catalyzes the addition of myristate. Both enzymes acylated E. coli lipid A, whereas only LpxL2 mediated K. pneumoniae lipid A acylation. We show that LpxL1 is negatively regulated by the two-component system PhoPQ. The lipid A produced by the lpxL2 mutant lacked the 2-hydroxymyristate, palmitate, and 4-aminoarabinose decorations found in the lipid A synthesized by the wild type. The lack of 2-hydroxymyristate was expected since LpxO modifies the myristate transferred by LpxL2 to the lipid A. The absence of the other two decorations is most likely caused by the downregulation of phoPQ and pmrAB expression. LpxL2-dependent lipid A acylation protects Klebsiella from polymyxins, mediates resistance to phagocytosis, limits the activation of inflammatory responses by macrophages, and is required for pathogen survival in the wax moth (Galleria mellonella). Our findings indicate that the LpxL2 contribution to virulence is dependent on LpxO-mediated hydroxylation of the LpxL2-transferred myristate. Our studies suggest that LpxL2 might be a candidate target in the development of anti-K. pneumoniae drugs.
Collapse
|
18
|
Structural Characterization of Core Region in Erwinia amylovora Lipopolysaccharide. Int J Mol Sci 2017; 18:ijms18030559. [PMID: 28273861 PMCID: PMC5372575 DOI: 10.3390/ijms18030559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 02/24/2017] [Accepted: 02/28/2017] [Indexed: 11/23/2022] Open
Abstract
Erwinia amylovora (E. amylovora) is the first bacterial plant pathogen described and demonstrated to cause fire blight, a devastating plant disease affecting a wide range of species including a wide variety of Rosaceae. In this study, we reported the lipopolysaccharide (LPS) core structure from E. amylovora strain CFBP1430, the first one for an E. amylovora highly pathogenic strain. The chemical characterization was performed on the mutants waaL (lacking only the O-antigen LPS with a complete LPS-core), wabH and wabG (outer-LPS core mutants). The LPSs were isolated from dry cells and analyzed by means of chemical and spectroscopic methods. In particular, they were subjected to a mild acid hydrolysis and/or a hydrazinolysis and investigated in detail by one and two dimensional Nuclear Magnetic Resonance (NMR) spectroscopy and ElectroSpray Ionization Fourier Transform-Ion Cyclotron Resonance (ESI FT-ICR) mass spectrometry.
Collapse
|
19
|
Follador R, Heinz E, Wyres KL, Ellington MJ, Kowarik M, Holt KE, Thomson NR. The diversity of Klebsiella pneumoniae surface polysaccharides. Microb Genom 2016; 2:e000073. [PMID: 28348868 PMCID: PMC5320592 DOI: 10.1099/mgen.0.000073] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 06/09/2016] [Indexed: 11/24/2022] Open
Abstract
Klebsiella pneumoniae is considered an urgent health concern due to the emergence of multi-drug-resistant strains for which vaccination offers a potential remedy. Vaccines based on surface polysaccharides are highly promising but need to address the high diversity of surface-exposed polysaccharides, synthesized as O-antigens (lipopolysaccharide, LPS) and K-antigens (capsule polysaccharide, CPS), present in K. pneumoniae. We present a comprehensive and clinically relevant study of the diversity of O- and K-antigen biosynthesis gene clusters across a global collection of over 500 K. pneumoniae whole-genome sequences and the seroepidemiology of human isolates from different infection types. Our study defines the genetic diversity of O- and K-antigen biosynthesis cluster sequences across this collection, identifying sequences for known serotypes as well as identifying novel LPS and CPS gene clusters found in circulating contemporary isolates. Serotypes O1, O2 and O3 were most prevalent in our sample set, accounting for approximately 80 % of all infections. In contrast, K serotypes showed an order of magnitude higher diversity and differ among infection types. In addition we investigated a potential association of O or K serotypes with phylogenetic lineage, infection type and the presence of known virulence genes. K1 and K2 serotypes, which are associated with hypervirulent K. pneumoniae, were associated with a higher abundance of virulence genes and more diverse O serotypes compared to other common K serotypes.
Collapse
Affiliation(s)
| | - Eva Heinz
- The Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Kelly L. Wyres
- Centre for Systems Genomics, University of Melbourne, Parkville, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | | | | | - Kathryn E. Holt
- Centre for Systems Genomics, University of Melbourne, Parkville, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Nicholas R. Thomson
- The Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
- London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
20
|
Affiliation(s)
- José A Bengoechea
- a Center for Experimental Medicine, Queen's University Belfast , Belfast , Northern Ireland , UK
| |
Collapse
|
21
|
Li B, Zhao Y, Liu C, Chen Z, Zhou D. Molecular pathogenesis of Klebsiella pneumoniae. Future Microbiol 2015; 9:1071-81. [PMID: 25340836 DOI: 10.2217/fmb.14.48] [Citation(s) in RCA: 214] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Typical Klebsiella pneumoniae is an opportunistic pathogen, which mostly affects those with weakened immune systems and tends to cause nosocomial infections. A subset of hypervirulent K. pneumoniae serotypes with elevated production of capsule polysaccharide can affect previously healthy persons and cause life-threatening community-acquired infections, such as pyogenic liver abscess, meningitis, necrotizing fasciitis, endophthalmitis and severe pneumonia. K. pneumoniae utilizes a variety of virulence factors, especially capsule polysaccharide, lipopolysaccharide, fimbriae, outer membrane proteins and determinants for iron acquisition and nitrogen source utilization, for survival and immune evasion during infection. This article aims to present the state-of-the-art understanding of the molecular pathogenesis of K. pneumoniae.
Collapse
Affiliation(s)
- Bei Li
- Department of Dermatology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | | | | | | | | |
Collapse
|
22
|
Tomás A, Lery L, Regueiro V, Pérez-Gutiérrez C, Martínez V, Moranta D, Llobet E, González-Nicolau M, Insua JL, Tomas JM, Sansonetti PJ, Tournebize R, Bengoechea JA. Functional Genomic Screen Identifies Klebsiella pneumoniae Factors Implicated in Blocking Nuclear Factor κB (NF-κB) Signaling. J Biol Chem 2015; 290:16678-97. [PMID: 25971969 PMCID: PMC4505419 DOI: 10.1074/jbc.m114.621292] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Indexed: 01/01/2023] Open
Abstract
Klebsiella pneumoniae is an etiologic agent of community-acquired and nosocomial pneumonia. It has been shown that K. pneumoniae infections are characterized by reduced early inflammatory response. Recently our group has shown that K. pneumoniae dampens the activation of inflammatory responses by antagonizing the activation of the NF-κB canonical pathway. Our results revealed that K. pneumoniae capsule polysaccharide (CPS) was necessary but not sufficient to attenuate inflammation. To identify additional Klebsiella factors required to dampen inflammation, we standardized and applied a high-throughput gain-of-function screen to examine a Klebsiella transposon mutant library. We identified 114 mutants that triggered the activation of NF-κB. Two gene ontology categories accounted for half of the loci identified in the screening: metabolism and transport genes (32% of the mutants) and envelope-related genes (17%). Characterization of the mutants revealed that the lack of the enterobactin siderophore was linked to a reduced CPS expression, which in turn underlined the NF-κB activation induced by the mutant. The lipopolysaccharide (LPS) O-polysaccharide and the pullulanase (PulA) type 2 secretion system (T2SS) are required for full effectiveness of the immune evasion. Importantly, these factors do not play a redundant role. The fact that LPS O-polysaccharide and T2SS mutant-induced responses were dependent on TLR2-TLR4-MyD88 activation suggested that LPS O-polysaccharide and PulA perturbed Toll-like receptor (TLR)-dependent recognition of K. pneumoniae. Finally, we demonstrate that LPS O-polysaccharide and pulA mutants are attenuated in the pneumonia mouse model. We propose that LPS O-polysaccharide and PulA T2SS could be new targets for the design of new antimicrobials. Increasing TLR-governed defense responses might provide also selective alternatives for the management of K. pneumoniae pneumonia.
Collapse
Affiliation(s)
- Anna Tomás
- From the Infection and Immunity Program, Fundación de Investigación Sanitaria de las Islas Baleares (FISIB), 07110 Mallorca, Spain, the Instituto de Investigación Sanitaria de Palma (IdisPa), 07120 Mallorca, Spain, the Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| | - Leticia Lery
- the Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, 75724 Paris, France, INSERM U786, 75724 Paris, France
| | - Verónica Regueiro
- From the Infection and Immunity Program, Fundación de Investigación Sanitaria de las Islas Baleares (FISIB), 07110 Mallorca, Spain, the Instituto de Investigación Sanitaria de Palma (IdisPa), 07120 Mallorca, Spain, the Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| | - Camino Pérez-Gutiérrez
- From the Infection and Immunity Program, Fundación de Investigación Sanitaria de las Islas Baleares (FISIB), 07110 Mallorca, Spain, the Instituto de Investigación Sanitaria de Palma (IdisPa), 07120 Mallorca, Spain, the Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| | - Verónica Martínez
- From the Infection and Immunity Program, Fundación de Investigación Sanitaria de las Islas Baleares (FISIB), 07110 Mallorca, Spain, the Instituto de Investigación Sanitaria de Palma (IdisPa), 07120 Mallorca, Spain, the Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| | - David Moranta
- From the Infection and Immunity Program, Fundación de Investigación Sanitaria de las Islas Baleares (FISIB), 07110 Mallorca, Spain, the Instituto de Investigación Sanitaria de Palma (IdisPa), 07120 Mallorca, Spain, the Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| | - Enrique Llobet
- From the Infection and Immunity Program, Fundación de Investigación Sanitaria de las Islas Baleares (FISIB), 07110 Mallorca, Spain, the Instituto de Investigación Sanitaria de Palma (IdisPa), 07120 Mallorca, Spain, the Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| | - Mar González-Nicolau
- From the Infection and Immunity Program, Fundación de Investigación Sanitaria de las Islas Baleares (FISIB), 07110 Mallorca, Spain, the Instituto de Investigación Sanitaria de Palma (IdisPa), 07120 Mallorca, Spain, the Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| | - Jose L Insua
- the Centre for Infection and Immunity, Queen's University Belfast, Belfast BT9 7AE, United Kingdom
| | - Juan M Tomas
- the Departamento de Microbiología, Facultad de Biología, Universidad de Barcelona, 08028 Barcelona, Spain
| | - Philippe J Sansonetti
- the Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, 75724 Paris, France, INSERM U786, 75724 Paris, France, Chaire de Microbiologie et Maladies Infectieuses, Collège de France, 75231 Paris, France
| | - Régis Tournebize
- the Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, 75724 Paris, France, INSERM U786, 75724 Paris, France, Imagopole, Plateforme d'Imagerie Dynamique, Institut Pasteur, 75724 Paris, France, and
| | - José A Bengoechea
- the Centre for Infection and Immunity, Queen's University Belfast, Belfast BT9 7AE, United Kingdom, the Consejo Superior de Investigaciones Científicas (CSIC), 28008 Madrid, Spain
| |
Collapse
|
23
|
Campanero-Rhodes MA, Llobet E, Bengoechea JA, Solís D. Bacteria microarrays as sensitive tools for exploring pathogen surface epitopes and recognition by host receptors. RSC Adv 2015. [DOI: 10.1039/c4ra14570d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We have developed a readily adaptable microarray technology for high-throughput screening of pathogen-binding biomolecules and inhibitors of pathogen–counter-receptor interactions, based on the generation of bacteria microarrays.
Collapse
Affiliation(s)
- María Asunción Campanero-Rhodes
- Instituto de Química Física Rocasolano
- CSIC
- Madrid
- Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES)
| | - Enrique Llobet
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES)
- Madrid
- Spain
- Programa Infección e Inmunidad
- Fundación de Investigación Sanitaria de las Illes Balears Ramón Llull (FISIB)
| | - José Antonio Bengoechea
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES)
- Madrid
- Spain
- Centre for Infection and Immunity
- Queen's University
| | - Dolores Solís
- Instituto de Química Física Rocasolano
- CSIC
- Madrid
- Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES)
| |
Collapse
|
24
|
Amraie H, Shakib P, Rouhi S, Bakhshandeh N, Zamanzad B. Prevalence assessment of magA gene and antimicrobial susceptibility of Klebsiella pneumoniae isolated from clinical specimens in Shahrekord, Iran. IRANIAN JOURNAL OF MICROBIOLOGY 2014; 6:311-6. [PMID: 25848520 PMCID: PMC4385570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND AND OBJECTIVES Klebsiella pneumoniae (K. pneumoniae) is an opportunistic microorganism. This study aimed to investigate the presence of magA gene and antimicrobial susceptibility in K. pneumoniae. MATERIALS AND METHODS clinical specimens were collected from hospitals of Shahrekord, Iran. Bacterial culture, biochemical diagnostic standard test, determination of antibiotic sensitivity, phenotypic testing hypermucoviscosity (HV) and polymerase chain reaction (PCR) was performed for isolation and characterization of K. pneumoniae. RESULTS 173 samples were positive for K. pneumoniae. The highest and lowest rates of resistance were related to amoxicillin 79.19% and ciprofloxacin 15.60%, respectively. Also 4 samples were positive for magA gene. CONCLUSION Based on our results, K. pneumoniae strains were resistant to different antibiotics. Knowing how to identify strains of K. pneumoniae, spreading of its virulence and also antimicrobial resistance genes can be useful in treatment of infection caused by this bacterium.
Collapse
Affiliation(s)
- Hadis Amraie
- Department of Microbiology, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Pegah Shakib
- Cellular & Molecular Research Center and Microbiology Department, Member of Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Samaneh Rouhi
- Cellular & Molecular Research Center and Microbiology Department, Member of Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Neda Bakhshandeh
- Applied Agriculture Branch, Semnan Applied Sciences and Technology University, Semnan, Iran
| | - Behnam Zamanzad
- Department of Microbiology, Shahrekord University of Medical Sciences, ShahreKord, Iran,Corresponding author: Dr. Behnam Zamanzad., Address: Department of Microbiology, Shahrekord University of Medical Sciences, ShahreKord, Iran. Tel: +989353929575,
| |
Collapse
|
25
|
Functional identification of Proteus mirabilis eptC gene encoding a core lipopolysaccharide phosphoethanolamine transferase. Int J Mol Sci 2014; 15:6689-702. [PMID: 24756091 PMCID: PMC4013655 DOI: 10.3390/ijms15046689] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 03/03/2014] [Accepted: 04/09/2014] [Indexed: 12/13/2022] Open
Abstract
By comparison of the Proteus mirabilis HI4320 genome with known lipopolysaccharide (LPS) phosphoethanolamine transferases, three putative candidates (PMI3040, PMI3576, and PMI3104) were identified. One of them, eptC (PMI3104) was able to modify the LPS of two defined non-polar core LPS mutants of Klebsiella pneumoniae that we use as surrogate substrates. Mass spectrometry and nuclear magnetic resonance showed that eptC directs the incorporation of phosphoethanolamine to the O-6 of l-glycero-d-mano-heptose II. The eptC gene is found in all the P. mirabilis strains analyzed in this study. Putative eptC homologues were found for only two additional genera of the Enterobacteriaceae family, Photobacterium and Providencia. The data obtained in this work supports the role of the eptC (PMI3104) product in the transfer of PEtN to the O-6 of l,d-HepII in P. mirabilis strains.
Collapse
|
26
|
Genomic and proteomic studies on Plesiomonas shigelloides lipopolysaccharide core biosynthesis. J Bacteriol 2013; 196:556-67. [PMID: 24244003 DOI: 10.1128/jb.01100-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We report here the identification of waa clusters with the genes required for the biosynthesis of the core lipopolysaccharides (LPS) of two Plesiomonas shigelloides strains. Both P. shigelloides waa clusters shared all of the genes besides the ones flanking waaL. In both strains, all of the genes were found in the waa gene cluster, although one common core biosynthetic gene (wapG) was found in a different chromosome location outside the cluster. Since P. shigelloides and Klebsiella pneumoniae share a core LPS carbohydrate backbone extending up at least to the second outer-core residue, the functions of the common P. shigelloides genes were elucidated by genetic complementation studies using well-defined K. pneumoniae mutants. The function of strain-specific inner- or outer-core genes was identified by using as a surrogate acceptor LPS from three well-defined K. pneumoniae core LPS mutants. Using this strategy, we were able to assign a proteomic function to all of the P. shigelloides waa genes identified in the two strains encoding six new glycosyltransferases (WapA, -B, -C, -D, -F, and -G). P. shigelloides demonstrated an important variety of core LPS structures, despite being a single species of the genus, as well as high homologous recombination in housekeeping genes.
Collapse
|
27
|
Immunochemical properties of Proteus penneri lipopolysaccharides—one of the major Proteus sp. virulence factors. Carbohydr Res 2013; 380:16-22. [DOI: 10.1016/j.carres.2013.06.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 06/25/2013] [Accepted: 06/27/2013] [Indexed: 11/22/2022]
|
28
|
Role of bacterial surface structures on the interaction of Klebsiella pneumoniae with phagocytes. PLoS One 2013; 8:e56847. [PMID: 23457627 PMCID: PMC3574025 DOI: 10.1371/journal.pone.0056847] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 01/15/2013] [Indexed: 12/16/2022] Open
Abstract
Phagocytosis is a key process of the immune system. The human pathogen Klebsiella pneumoniae is a well known example of a pathogen highly resistant to phagocytosis. A wealth of evidence demonstrates that the capsule polysaccharide (CPS) plays a crucial role in resistance to phagocytosis. The amoeba Dictyostelium discoideum shares with mammalian macrophages the ability to phagocytose and kill bacteria. The fact that K. pneumoniae is ubiquitous in nature and, therefore, should avoid predation by amoebae, poses the question whether K. pneumoniae employs similar means to counteract amoebae and mammalian phagocytes. Here we developed an assay to evaluate K. pneumoniae-D. discoideum interaction. The richness of the growth medium affected the threshold at which the cps mutant was permissive for Dictyostelium and only at lower nutrient concentrations the cps mutant was susceptible to predation by amoebae. Given the critical role of bacterial surface elements on host-pathogen interactions, we explored the possible contribution of the lipopolysaccharide (LPS) and outer membrane proteins (OMPs) to combat phagoyctosis by D. discoideum. We uncover that, in addition to the CPS, the LPS O-polysaccharide and the first core sugar participate in Klebsiella resistance to predation by D. discoideum. K. pneumoniae LPS lipid A decorations are also necessary to avoid predation by amoebae although PagP-dependent palmitoylation plays a more important role than the lipid A modification with aminoarabinose. Mutants lacking OMPs OmpA or OmpK36 were also permissive for D. discoideium growth. Except the LPS O-polysaccharide mutants, all mutants were more susceptible to phagocytosis by mouse alveolar macrophages. Finally, we found a correlation between virulence, using the pneumonia mouse model, and resistance to phagocytosis. Altogether, this work reveals novel K. pneumoniae determinants involved in resistance to phagocytosis and supports the notion that Dictyostelium amoebae might be useful as host model to measure K. pneumoniae virulence and not only phagocytosis.
Collapse
|
29
|
Effects of lipopolysaccharide biosynthesis mutations on K1 polysaccharide association with the Escherichia coli cell surface. J Bacteriol 2012; 194:3356-67. [PMID: 22522903 DOI: 10.1128/jb.00329-12] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The presence of cell-bound K1 capsule and K1 polysaccharide in culture supernatants was determined in a series of in-frame nonpolar core biosynthetic mutants from Escherichia coli KT1094 (K1, R1 core lipopolysaccharide [LPS] type) for which the major core oligosaccharide structures were determined. Cell-bound K1 capsule was absent from mutants devoid of phosphoryl modifications on L-glycero-D-manno-heptose residues (HepI and HepII) of the inner-core LPS and reduced in mutants devoid of phosphoryl modification on HepII or devoid of HepIII. In contrast, in all of the mutants, K1 polysaccharide was found in culture supernatants. These results were confirmed by using a mutant with a deletion spanning from the hldD to waaQ genes of the waa gene cluster to which individual genes were reintroduced. A nuclear magnetic resonance (NMR) analysis of core LPS from HepIII-deficient mutants showed an alteration in the pattern of phosphoryl modifications. A cell extract containing both K1 capsule polysaccharide and LPS obtained from an O-antigen-deficient mutant could be resolved into K1 polysaccharide and core LPS by column chromatography only when EDTA and deoxycholate (DOC) buffer were used. These results suggest that the K1 polysaccharide remains cell associated by ionically interacting with the phosphate-negative charges of the core LPS.
Collapse
|
30
|
A UDP-HexNAc:polyprenol-P GalNAc-1-P transferase (WecP) representing a new subgroup of the enzyme family. J Bacteriol 2011; 193:1943-52. [PMID: 21335454 DOI: 10.1128/jb.01441-10] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Aeromonas hydrophila AH-3 WecP represents a new class of UDP-HexNAc:polyprenol-P HexNAc-1-P transferases. These enzymes use a membrane-associated polyprenol phosphate acceptor (undecaprenyl phosphate [Und-P]) and a cytoplasmic UDP-d-N-acetylhexosamine sugar nucleotide as the donor substrate. Until now, all the WecA enzymes tested were able to transfer UDP-GlcNAc to the Und-P. In this study, we present in vitro and in vivo proofs that A. hydrophila AH-3 WecP transfers GalNAc to Und-P and is unable to transfer GlcNAc to the same enzyme substrate. The molecular topology of WecP is more similar to that of WbaP (UDP-Gal polyprenol-P transferase) than to that of WecA (UDP-GlcNAc polyprenol-P transferase). WecP is the first UDP-HexNAc:polyprenol-P GalNAc-1-P transferase described.
Collapse
|
31
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: an update for the period 2005-2006. MASS SPECTROMETRY REVIEWS 2011; 30:1-100. [PMID: 20222147 DOI: 10.1002/mas.20265] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
This review is the fourth update of the original review, published in 1999, on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2006. The review covers fundamental studies, fragmentation of carbohydrate ions, method developments, and applications of the technique to the analysis of different types of carbohydrate. Specific compound classes that are covered include carbohydrate polymers from plants, N- and O-linked glycans from glycoproteins, glycated proteins, glycolipids from bacteria, glycosides, and various other natural products. There is a short section on the use of MALDI-TOF mass spectrometry for the study of enzymes involved in glycan processing, a section on industrial processes, particularly the development of biopharmaceuticals and a section on the use of MALDI-MS to monitor products of chemical synthesis of carbohydrates. Large carbohydrate-protein complexes and glycodendrimers are highlighted in this final section.
Collapse
Affiliation(s)
- David J Harvey
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford OX1 3QU, UK.
| |
Collapse
|
32
|
Reckseidler-Zenteno SL, Viteri DF, Moore R, Wong E, Tuanyok A, Woods DE. Characterization of the type III capsular polysaccharide produced by Burkholderia pseudomallei. J Med Microbiol 2010; 59:1403-1414. [DOI: 10.1099/jmm.0.022202-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Burkholderia pseudomallei has been shown to produce more than one capsular polysaccharide (CPS). Analysis of the B. pseudomallei genome has revealed that the organism contains four CPS operons (I–IV). One of these operons (CPS III) was selected for further study. Comparative sequencing analysis revealed that the genes encoding CPS III are present in B. pseudomallei and Burkholderia thailandensis but not in Burkholderia mallei. In this study, CPS III was not found to contribute to the virulence of B. pseudomallei. Strains containing mutations in CPS III had the same LD50 value as the wild-type when tested in an animal infection model. Production of CPS III was shown to be induced in water but inhibited in 30 % normal human serum using a lux reporter fusion assay. Microarray analysis of capsule gene expression in infected hamsters revealed that the genes encoding CPS III were not significantly expressed in vivo compared with the genes encoding the previously characterized mannoheptose capsule (CPS I), which is an important virulence factor in B. pseudomallei. Glycosyl-composition analysis by combined GC/MS indicated that the CPS III genes are involved in the synthesis of a capsule composed of galactose, glucose, mannose and xylose.
Collapse
Affiliation(s)
- Shauna L. Reckseidler-Zenteno
- Centre for Science, Athabasca University, Athabasca, AB T9S 9Z9, Canada
- Department of Microbiology and Infectious Diseases, University of Calgary Health Sciences Center, Calgary, AB T2N 4N1, Canada
| | - Duber-Frey Viteri
- Department of Microbiology and Infectious Diseases, University of Calgary Health Sciences Center, Calgary, AB T2N 4N1, Canada
| | - Richard Moore
- Department of Microbiology and Infectious Diseases, University of Calgary Health Sciences Center, Calgary, AB T2N 4N1, Canada
| | - Erica Wong
- Department of Microbiology and Infectious Diseases, University of Calgary Health Sciences Center, Calgary, AB T2N 4N1, Canada
| | - Apichai Tuanyok
- Department of Microbiology and Infectious Diseases, University of Calgary Health Sciences Center, Calgary, AB T2N 4N1, Canada
| | - Donald E. Woods
- Department of Microbiology and Infectious Diseases, University of Calgary Health Sciences Center, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
33
|
Kabanov DS, Prokhorenko IR. Structural analysis of lipopolysaccharides from Gram-negative bacteria. BIOCHEMISTRY (MOSCOW) 2010; 75:383-404. [PMID: 20618127 DOI: 10.1134/s0006297910040012] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
This review covers data on composition and structure of lipid A, core, and O-polysaccharide of the known lipopolysaccharides from Gram-negative bacteria. The relationship between the structure and biological activity of lipid A is discussed. The data on roles of core and O-polysaccharide in biological activities of lipopolysaccharides are presented. The structural homology of some oligosaccharide sequences of lipopolysaccharides to gangliosides of human cell membranes is considered.
Collapse
Affiliation(s)
- D S Kabanov
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | | |
Collapse
|
34
|
Aquilini E, Azevedo J, Merino S, Jimenez N, Tomás JM, Regué M. Three enzymatic steps required for the galactosamine incorporation into core lipopolysaccharide. J Biol Chem 2010; 285:39739-49. [PMID: 20959463 DOI: 10.1074/jbc.m110.168385] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The core lipopolysaccharides (LPS) of Proteus mirabilis as well as those of Klebsiella pneumoniae and Serratia marcescens are characterized by the presence of a hexosamine-galacturonic acid disaccharide (αHexN-(1,4)-αGalA) attached by an α1,3 linkage to L-glycero-D-manno-heptopyranose II (L-glycero-α-D-manno-heptosepyranose II). In K. pneumoniae, S. marcescens, and some P. mirabilis strains, HexN is D-glucosamine, whereas in other P. mirabilis strains, it corresponds to D-galactosamine. Previously, we have shown that two enzymes are required for the incorporation of D-glucosamine into the core LPS of K. pneumoniae; the WabH enzyme catalyzes the incorporation of GlcNAc from UDP-GlcNAc to outer core LPS, and WabN catalyzes the deacetylation of the incorporated GlcNAc. Here we report the presence of two different HexNAc transferases depending on the nature of the HexN in P. mirabilis core LPS. In vivo and in vitro assays using LPS truncated at the level of galacturonic acid as acceptor show that these two enzymes differ in their specificity for the transfer of GlcNAc or GalNAc. By contrast, only one WabN homologue was found in the studied P. mirabilis strains. Similar assays suggest that the P. mirabilis WabN homologue is able to deacetylate both GlcNAc and GalNAc. We conclude that incorporation of d-galactosamine requires three enzymes: Gne epimerase for the generation of UDP-GalNAc from UDP-GlcNAc, N-acetylgalactosaminyltransferase (WabP), and LPS:HexNAc deacetylase.
Collapse
Affiliation(s)
- Eleonora Aquilini
- Departamento de Microbiología y Parasitología Sanitarias, Facultad de Farmacia, Universidad de Barcelona, 08028 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
35
|
Functional identification of the Proteus mirabilis core lipopolysaccharide biosynthesis genes. J Bacteriol 2010; 192:4413-24. [PMID: 20622068 DOI: 10.1128/jb.00494-10] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study, we report the identification of genes required for the biosynthesis of the core lipopolysaccharides (LPSs) of two strains of Proteus mirabilis. Since P. mirabilis and Klebsiella pneumoniae share a core LPS carbohydrate backbone extending up to the second outer-core residue, the functions of the common P. mirabilis genes was elucidated by genetic complementation studies using well-defined mutants of K. pneumoniae. The functions of strain-specific outer-core genes were identified by using as surrogate acceptors LPSs from two well-defined K. pneumoniae core LPS mutants. This approach allowed the identification of two new heptosyltransferases (WamA and WamC), a galactosyltransferase (WamB), and an N-acetylglucosaminyltransferase (WamD). In both strains, most of these genes were found in the so-called waa gene cluster, although one common core biosynthetic gene (wabO) was found outside this cluster.
Collapse
|
36
|
Pinta E, Duda KA, Hanuszkiewicz A, Salminen TA, Bengoechea JA, Hyytiäinen H, Lindner B, Radziejewska-Lebrecht J, Holst O, Skurnik M. Characterization of the six glycosyltransferases involved in the biosynthesis of Yersinia enterocolitica serotype O:3 lipopolysaccharide outer core. J Biol Chem 2010; 285:28333-42. [PMID: 20595390 DOI: 10.1074/jbc.m110.111336] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Yersinia enterocolitica (Ye) is a gram-negative bacterium; Ye serotype O:3 expresses lipopolysaccharide (LPS) with a hexasaccharide branch known as the outer core (OC). The OC is important for the resistance of the bacterium to cationic antimicrobial peptides and also functions as a receptor for bacteriophage phiR1-37 and enterocoliticin. The biosynthesis of the OC hexasaccharide is directed by the OC gene cluster that contains nine genes (wzx, wbcKLMNOPQ, and gne). In this study, we inactivated the six OC genes predicted to encode glycosyltransferases (GTase) one by one by nonpolar mutations to assign functions to their gene products. The mutants expressed no OC or truncated OC oligosaccharides of different lengths. The truncated OC oligosaccharides revealed that the minimum structural requirements for the interactions of OC with bacteriophage phiR1-37, enterocoliticin, and OC-specific monoclonal antibody 2B5 were different. Furthermore, using chemical and structural analyses of the mutant LPSs, we could assign specific functions to all six GTases and also revealed the exact order in which the transferases build the hexasaccharide. Comparative modeling of the catalytic sites of glucosyltransferases WbcK and WbcL followed by site-directed mutagenesis allowed us to identify Asp-182 and Glu-181, respectively, as catalytic base residues of these two GTases. In general, conclusive evidence for specific GTase functions have been rare due to difficulties in accessibility of the appropriate donors and acceptors; however, in this work we were able to utilize the structural analysis of LPS to get direct experimental evidence for five different GTase specificities.
Collapse
Affiliation(s)
- Elise Pinta
- Department of Bacteriology and Immunology, Infection Biology Research Program, Haartman Institute, University of Helsinki, FIN-00014 Helsinki, Finland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Pechorsky A, Nitzan Y, Lazarovitch T. Identification of pathogenic bacteria in blood cultures: comparison between conventional and PCR methods. J Microbiol Methods 2009; 78:325-30. [PMID: 19616588 DOI: 10.1016/j.mimet.2009.07.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 06/24/2009] [Accepted: 07/08/2009] [Indexed: 11/26/2022]
Abstract
Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa, Acinetobacter baumanii, and Klebsiella pneumoniae were found to be the most prevalent bacteremia-causing bacteria in a survey in a medical center. A PCR method for identification of these five most common pathogens in blood cultures was developed. A unique sequence was chosen for each pathogen and used for primer design. Sixty-one blood samples (from hospitalized patients) in which bacterial growth was detected were processed in parallel by conventional microbiological methods and by the PCR method. The results obtained by PCR were identical to those obtained by conventional methods in 93.4% of the cases. PCR failed to identify bacteria which were found conventionally in only 6.6% of the cases (mostly bacteria not included in the PCR cassette). Another group of eighty-eight blood samples from patients were processed immediately upon their arrival at the laboratory by taking aliquots for the PCR method. The blood sample bottles were processed in parallel by conventional methods. In 78.4% of the cases the results of both methods were identical. In 12.5% of the cases, PCR afforded identification of bacteria but conventional methods showed no bacteria in the sample. On the other hand, PCR afforded 9.1% negative results while conventional methods identified bacteria not included in the PCR cassette. It is concluded that the molecular method appears to be a specific and precise method for identifying pathogenic bacteria in blood samples.
Collapse
Affiliation(s)
- Alina Pechorsky
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | | | | |
Collapse
|
38
|
Clements A, Gaboriaud F, Duval JFL, Farn JL, Jenney AW, Lithgow T, Wijburg OLC, Hartland EL, Strugnell RA. The major surface-associated saccharides of Klebsiella pneumoniae contribute to host cell association. PLoS One 2008; 3:e3817. [PMID: 19043570 PMCID: PMC2583945 DOI: 10.1371/journal.pone.0003817] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Accepted: 10/31/2008] [Indexed: 12/05/2022] Open
Abstract
Analysing the pathogenic mechanisms of a bacterium requires an understanding of the composition of the bacterial cell surface. The bacterial surface provides the first barrier against innate immune mechanisms as well as mediating attachment to cells/surfaces to resist clearance. We utilised a series of Klebsiella pneumoniae mutants in which the two major polysaccharide layers, capsule and lipopolysaccharide (LPS), were absent or truncated, to investigate the ability of these layers to protect against innate immune mechanisms and to associate with eukaryotic cells. The capsule alone was found to be essential for resistance to complement mediated killing while both capsule and LPS were involved in cell-association, albeit through different mechanisms. The capsule impeded cell-association while the LPS saccharides increased cell-association in a non-specific manner. The electrohydrodynamic characteristics of the strains suggested the differing interaction of each bacterial strain with eukaryotic cells could be partly explained by the charge density displayed by the outermost polysaccharide layer. This highlights the importance of considering not only specific adhesin:ligand interactions commonly studied in adherence assays but also the initial non-specific interactions governed largely by the electrostatic interaction forces.
Collapse
Affiliation(s)
- Abigail Clements
- Australian Bacterial Pathogenesis Program, The University of Melbourne, Parkville, Victoria, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Jimenez N, Canals R, Lacasta A, Kondakova AN, Lindner B, Knirel YA, Merino S, Regué M, Tomás JM. Molecular analysis of three Aeromonas hydrophila AH-3 (serotype O34) lipopolysaccharide core biosynthesis gene clusters. J Bacteriol 2008; 190:3176-84. [PMID: 18310345 PMCID: PMC2347379 DOI: 10.1128/jb.01874-07] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Accepted: 02/17/2008] [Indexed: 01/21/2023] Open
Abstract
By the isolation of three different Aeromonas hydrophila strain AH-3 (serotype O34) mutants with an altered lipopolysaccharide (LPS) migration in gels, three genomic regions encompassing LPS core biosynthesis genes were identified and characterized. When possible, mutants were constructed using each gene from the three regions, containing seven, four, and two genes (regions 1 to 3, respectively). The mutant LPS core structures were elucidated by using mass spectrometry, methylation analysis, and comparison with the full core structure of an O-antigen-lacking AH-3 mutant previously established by us. Combining the gene sequence and complementation test data with the structural data and phenotypic characterization of the mutant LPSs enabled a presumptive assignment of all LPS core biosynthesis gene functions in A. hydrophila AH-3. The three regions and the genes contained are in complete agreement with the recently sequenced genome of A. hydrophila ATCC 7966. The functions of the A. hydrophila genes waaC in region 3 and waaF in region 2 were completely established, allowing the genome annotations of the two heptosyl transferase products not previously assigned. Having the functions of all genes involved with the LPS core biosynthesis and most corresponding single-gene mutants now allows experimental work on the role of the LPS core in the virulence of A. hydrophila.
Collapse
Affiliation(s)
- Natalia Jimenez
- Departamento Microbiología, Facultad Biología, Universidad Barcelona, Diagonal 645, 08071 Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Holst O. The structures of core regions from enterobacterial lipopolysaccharides â an update. FEMS Microbiol Lett 2007; 271:3-11. [PMID: 17403049 DOI: 10.1111/j.1574-6968.2007.00708.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
To the major virulence factors of Gram-negative bacteria belong the lipopolysaccharides (endotoxins), which are very well characterized for their immunological, pharmacological and pathophysiological effects displayed in eucaryotic cells and organisms. In general, these amphiphilic lipopolysaccharides comprise three regions, which can be differentiated by their structures, function, genetics and biosynthesis: lipid A, the core region and a polysaccharide portion, which may be the O-specific polysaccharide, Enterobacterial Common Antigen (ECA) or a capsular polysaccharide. In the past, much emphasis has been laid on the elucidation of the structure-function relation. The lipid A was proven to represent the toxic principle of endotoxic active lipopolysaccharides, however, its toxicity depends not only on its structure but also on that of the core region, which is covalently linked to lipid A. Thus, and since the core region possesses immunogenic properties, complete structural analyses of lipopolysaccharides core regions and of structure-function relation are highly important for a better understanding of lipopolysaccharides action. To date, quite a number of core structures from lipopolysaccharides of various Gram-negative bacteria have been published and summarized in several overviews. This short review adds to this knowledge those structures of enterobacterial lipopolysaccharides that were published between January 2002 and October 2006.
Collapse
Affiliation(s)
- Otto Holst
- Division of Structural Biochemistry, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Borstel, Germany.
| |
Collapse
|
41
|
Clements A, Tull D, Jenney AW, Farn JL, Kim SH, Bishop RE, McPhee JB, Hancock REW, Hartland EL, Pearse MJ, Wijburg OLC, Jackson DC, McConville MJ, Strugnell RA. Secondary acylation of Klebsiella pneumoniae lipopolysaccharide contributes to sensitivity to antibacterial peptides. J Biol Chem 2007; 282:15569-77. [PMID: 17371870 PMCID: PMC5007121 DOI: 10.1074/jbc.m701454200] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Klebsiella pneumoniae is an important cause of nosocomial Gram-negative sepsis. Lipopolysaccharide (LPS) is considered to be a major virulence determinant of this encapsulated bacterium and most mutations to the lipid A anchor of LPS are conditionally lethal to the bacterium. We studied the role of LPS acylation in K. pneumoniae disease pathogenesis by using a mutation of lpxM (msbB/waaN), which encodes the enzyme responsible for late secondary acylation of immature lipid A molecules. A K. pneumoniae B5055 (K2:O1) lpxM mutant was found to be attenuated for growth in the lungs in a mouse pneumonia model leading to reduced lethality of the bacterium. B5055DeltalpxM exhibited similar sensitivity to phagocytosis or complement-mediated lysis than B5055, unlike the non-encapsulated mutant B5055nm. In vitro, B5055DeltalpxM showed increased permeability of the outer membrane and an increased susceptibility to certain antibacterial peptides suggesting that in vivo attenuation may be due in part to sensitivity to antibacterial peptides present in the lungs of BALB/c mice. These data support the view that lipopolysaccharide acylation plays a important role in providing Gram-negative bacteria some resistance to structural and innate defenses and especially the antibacterial properties of detergents (e.g. bile) and cationic defensins.
Collapse
Affiliation(s)
- Abigail Clements
- CRC for Vaccine Technology in the Department of Microbiology & Immunology, University of Melbourne, Parkville, Victoria 3010, Australia
- Australian Bacterial Pathogenesis Program in the Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Dedreia Tull
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Adam W. Jenney
- CRC for Vaccine Technology in the Department of Microbiology & Immunology, University of Melbourne, Parkville, Victoria 3010, Australia
- Australian Bacterial Pathogenesis Program in the Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jacinta L. Farn
- CRC for Vaccine Technology in the Department of Microbiology & Immunology, University of Melbourne, Parkville, Victoria 3010, Australia
- Australian Bacterial Pathogenesis Program in the Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Sang-Hyun Kim
- Department of Biochemistry, University of Toronto, Ontario M5S1A8, Canada
| | - Russell E. Bishop
- Department of Biochemistry, University of Toronto, Ontario M5S1A8, Canada
| | - Joseph B. McPhee
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada
| | - Robert E. W. Hancock
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada
| | - Elizabeth L. Hartland
- CRC for Vaccine Technology in the Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
- Australian Bacterial Pathogenesis Program in the Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3010, Australia
| | | | - Odilia L. C. Wijburg
- CRC for Vaccine Technology in the Department of Microbiology & Immunology, University of Melbourne, Parkville, Victoria 3010, Australia
- Australian Bacterial Pathogenesis Program in the Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - David C. Jackson
- CRC for Vaccine Technology in the Department of Microbiology & Immunology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Malcolm J. McConville
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Richard A. Strugnell
- CRC for Vaccine Technology in the Department of Microbiology & Immunology, University of Melbourne, Parkville, Victoria 3010, Australia
- Australian Bacterial Pathogenesis Program in the Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3010, Australia
- To whom correspondence should be addressed: Dept. of Microbiology & Immunology, University of Melbourne, Parkville VIC 3010, Australia. Tel.: 61-3-8344-5712; Fax: 61-3-9347-1540;
| |
Collapse
|
42
|
Fresno S, Jiménez N, Canals R, Merino S, Corsaro MM, Lanzetta R, Parrilli M, Pieretti G, Regué M, Tomás JM. A second galacturonic acid transferase is required for core lipopolysaccharide biosynthesis and complete capsule association with the cell surface in Klebsiella pneumoniae. J Bacteriol 2006; 189:1128-37. [PMID: 17142396 PMCID: PMC1797326 DOI: 10.1128/jb.01489-06] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The core lipopolysaccharide (LPS) of Klebsiella pneumoniae contains two galacturonic acid (GalA) residues, but only one GalA transferase (WabG) has been identified. Data from chemical and structural analysis of LPS isolated from a wabO mutant show the absence of the inner core beta-GalA residue linked to L-glycero-D-manno-heptose III (L,D-Hep III). An in vitro assay demonstrates that the purified WabO is able to catalyze the transfer of GalA from UDP-GalA to the acceptor LPS isolated from the wabO mutant, but not to LPS isolated from waaQ mutant (deficient in l,d-Hep III). The absence of this inner core beta-GalA residue results in a decrease in virulence in a capsule-dependent experimental mouse pneumonia model. In addition, this mutation leads to a strong reduction in cell-bound capsule. Interestingly, a K66 Klebsiella strain (natural isolate) without a functional wabO gene shows reduced levels of cell-bound capsule in comparison to those of other K66 strains. Thus, the WabO enzyme plays an important role in core LPS biosynthesis and determines the level of cell-bound capsule in Klebsiella pneumoniae.
Collapse
Affiliation(s)
- Sandra Fresno
- Departamento de Microbiología, Facultad de Biologia, Universidad de Barcelona, Diagonal 645, 08071 Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Fresno S, Jiménez N, Izquierdo L, Merino S, Corsaro MM, De Castro C, Parrilli M, Naldi T, Regué M, Tomás JM. The ionic interaction of Klebsiella pneumoniae K2 capsule and core lipopolysaccharide. Microbiology (Reading) 2006; 152:1807-1818. [PMID: 16735743 DOI: 10.1099/mic.0.28611-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The complete structures of LPS core types 1 and 2 fromKlebsiella pneumoniaehave been described by other authors. They are characterized by a lack of phosphoryl residues, but they contain galacturonic acid (GalA) residues, which contribute to the necessary negative charges. The presence of a capsule was determined in core-LPS non-polar mutants from strains 52145 (O1 : K2), DL1 (O1 : K1) and C3 (O8 : K66). O-antigen ligase (waaL) mutants produced a capsule. Core mutants containing the GalA residues were capsulated, while those lacking the residues were non capsulated. Since the proteins involved in the transfer of GalA (WabG) and glucosamine residues (WabH) are known, the chemical basis of the capsular-K2–cell-surface association was studied. Phenol/water extracts fromK. pneumoniae52145ΔwabH waaLand 52145ΔwaaLmutants, but not those from fromK. pneumoniae52145ΔwabG waaLmutant, contained both LPS and capsular polysaccharide, even after hydrophobic chromatography. The two polysaccharides were dissociated by gel-filtration chromatography, eluting with detergent and metal-ion chelators. From these results, it is concluded that the K2 capsular polysaccharide is associated by an ionic interaction to the LPS through the negative charge provided by the carboxyl groups of the GalA residues.
Collapse
Affiliation(s)
- Sandra Fresno
- Departamento de Microbiología, Facultad de Biología, Universidad de Barcelona, Diagonal 645, 08071 Barcelona, Spain
| | - Natalia Jiménez
- Departamento de Microbiología, Facultad de Biología, Universidad de Barcelona, Diagonal 645, 08071 Barcelona, Spain
| | - Luis Izquierdo
- Departamento de Microbiología, Facultad de Biología, Universidad de Barcelona, Diagonal 645, 08071 Barcelona, Spain
| | - Susana Merino
- Departamento de Microbiología, Facultad de Biología, Universidad de Barcelona, Diagonal 645, 08071 Barcelona, Spain
| | - Maria Michela Corsaro
- Dipartimento di Chimica e Biochimica, Università Federico II di Napoli, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Napoli, Italy
| | - Cristina De Castro
- Dipartimento di Chimica e Biochimica, Università Federico II di Napoli, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Napoli, Italy
| | - Michelangelo Parrilli
- Dipartimento di Chimica e Biochimica, Università Federico II di Napoli, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Napoli, Italy
| | - Teresa Naldi
- Dipartimento di Chimica e Biochimica, Università Federico II di Napoli, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Napoli, Italy
| | - Miguel Regué
- Departamento de Microbiología y Parasitología Sanitarias, Facultad de Farmacia, Universidad de Barcelona, Av. Joan XXIII s/n, 08028 Barcelona, Spain
| | - Juan M Tomás
- Departamento de Microbiología, Facultad de Biología, Universidad de Barcelona, Diagonal 645, 08071 Barcelona, Spain
| |
Collapse
|
44
|
Regué M, Izquierdo L, Fresno S, Jimenez N, Piqué N, Corsaro MM, Parrilli M, Naldi T, Merino S, Tomás JM. The Incorporation of Glucosamine into Enterobacterial Core Lipopolysaccharide. J Biol Chem 2005; 280:36648-56. [PMID: 16131489 DOI: 10.1074/jbc.m506278200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The core lipopolysaccharide (LPS) of Klebsiella pneumoniae is characterized by the presence of disaccharide alphaGlcN-(1,4)-alphaGalA attached by an alpha1,3 linkage to l-glycero-d-manno-heptopyranose II (ld-HeppII). Previously it has been shown that the WabH enzyme catalyzes the incorporation of GlcNAc from UDP-GlcNAc to outer core LPS. The presence of GlcNAc instead of GlcN and the lack of UDP-GlcN in bacteria indicate that an additional enzymatic step is required. In this work we identified a new gene (wabN) in the K. pneumoniae core LPS biosynthetic cluster. Chemical and structural analysis of K. pneumoniae non-polar wabN mutants showed truncated core LPS with GlcNAc instead of GlcN. In vitro assays using LPS truncated at the level of d-galacturonic acid (GalA) and cell-free extract containing WabH and WabN together led to the incorporation of GlcN, whereas none of them alone were able to do it. This result suggests that the later enzyme (WabN) catalyzes the deacetylation of the core LPS containing the GlcNAc residue. Thus, the incorporation of the GlcN residue to core LPS in K. pneumoniae requires two distinct enzymatic steps. WabN homologues are found in Serratia marcescens and some Proteus strains that show the same disaccharide alphaGlcN-(1,4)-alphaGalA attached by an alpha1,3 linkage to ld-HeppII.
Collapse
Affiliation(s)
- Miguel Regué
- Departamento de Microbiología y Parasitología Sanitarias, Facultad de Farmacia, Universidad de Barcelona, Av. Joan XXIII s/n, 08028 Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|