1
|
Identification of serine/threonine kinases that regulate metabolism and sporulation in Clostridium beijerinckii. Appl Microbiol Biotechnol 2022; 106:7563-7575. [DOI: 10.1007/s00253-022-12234-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 09/17/2022] [Accepted: 10/07/2022] [Indexed: 11/02/2022]
|
2
|
Wang X, Ge H, Zhang Y, Wang Y, Zhang P. Ser/Thr Protein Kinase SpkI Affects Photosynthetic Efficiency in Synechocystis sp. PCC 6803 upon Salt Stress. Life (Basel) 2022; 12:life12050713. [PMID: 35629380 PMCID: PMC9143257 DOI: 10.3390/life12050713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 04/26/2022] [Accepted: 05/02/2022] [Indexed: 11/16/2022] Open
Abstract
High salinity is a common environmental factor that limits productivity and growth for photosynthetic organisms. Here, we identified a mutant defected in gene sll1770, which encodes a Ser/Thr protein kinase SpkI, with a significantly low maximal quantum yield of PSII under high salt condition in Synechocystis sp. PCC 6803. Physiological characterization demonstrated that the ΔspkI mutant had normal growth and photosynthesis under control condition. And a significantly higher NPQ capacity was also observed in ΔspkI when grown under control condition. However, when grown under high salt condition, ΔspkI exhibited apparently slower growth as well as decreased net photosynthesis and PSII activity. Western blot analysis demonstrated that the amount of major photosynthetic proteins declined sharply in ΔspkI when cells grown under high salt condition. Redox kinetics measurement suggested that the activities of PSI and cytochrome b6f complex were modified in ΔspkI under high salt condition, which resulted in a more reduced PQ pool in ΔspkI. Chlorophyll fluorescence traces suggested that the OA− reoxidation and state transition was also impaired in ΔspkI under high salt condition. Above all, we propose that Ser/Thr protein kinase SpkI plays a role in maintaining high-effective photosynthesis during high-salt acclimation process in Synechocystis.
Collapse
Affiliation(s)
- Xiaoting Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.W.); (Y.Z.)
| | - Haitao Ge
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; (H.G.); (Y.W.)
| | - Ye Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.W.); (Y.Z.)
| | - Yingchun Wang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; (H.G.); (Y.W.)
| | - Pengpeng Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.W.); (Y.Z.)
- Correspondence:
| |
Collapse
|
3
|
Ren L, Shen D, Liu C, Ding Y. Protein Tyrosine and Serine/Threonine Phosphorylation in Oral Bacterial Dysbiosis and Bacteria-Host Interaction. Front Cell Infect Microbiol 2022; 11:814659. [PMID: 35087767 PMCID: PMC8787120 DOI: 10.3389/fcimb.2021.814659] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 12/13/2021] [Indexed: 02/05/2023] Open
Abstract
The human oral cavity harbors approximately 1,000 microbial species, and dysbiosis of the microflora and imbalanced microbiota-host interactions drive many oral diseases, such as dental caries and periodontal disease. Oral microbiota homeostasis is critical for systemic health. Over the last two decades, bacterial protein phosphorylation systems have been extensively studied, providing mounting evidence of the pivotal role of tyrosine and serine/threonine phosphorylation in oral bacterial dysbiosis and bacteria-host interactions. Ongoing investigations aim to discover novel kinases and phosphatases and to understand the mechanism by which these phosphorylation events regulate the pathogenicity of oral bacteria. Here, we summarize the structures of bacterial tyrosine and serine/threonine kinases and phosphatases and discuss the roles of tyrosine and serine/threonine phosphorylation systems in Porphyromonas gingivalis and Streptococcus mutans, emphasizing their involvement in bacterial metabolism and virulence, community development, and bacteria-host interactions.
Collapse
Affiliation(s)
- Liang Ren
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Daonan Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chengcheng Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yi Ding
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
King A, Blackledge MS. Evaluation of small molecule kinase inhibitors as novel antimicrobial and antibiofilm agents. Chem Biol Drug Des 2021; 98:1038-1064. [PMID: 34581492 PMCID: PMC8616828 DOI: 10.1111/cbdd.13962] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/24/2021] [Accepted: 09/15/2021] [Indexed: 12/25/2022]
Abstract
Antibiotic resistance is a global and pressing concern. Our current therapeutic arsenal is increasingly limited as bacteria are developing resistance at a rate that far outpaces our ability to create new treatments. Novel approaches to treating and curing bacterial infections are urgently needed. Bacterial kinases have been increasingly explored as novel drug targets and are poised for development into novel therapeutic agents to combat bacterial infections. This review describes several general classes of bacterial kinases that play important roles in bacterial growth, antibiotic resistance, and biofilm formation. General features of these kinase classes are discussed and areas of particular interest for the development of inhibitors will be highlighted. Small molecule kinase inhibitors are described and organized by phenotypic effect, spotlighting particularly interesting inhibitors with novel functions and potential therapeutic benefit. Finally, we provide our perspective on the future of bacterial kinase inhibition as a viable strategy to combat bacterial infections and overcome the pressures of increasing antibiotic resistance.
Collapse
Affiliation(s)
- Ashley King
- Department of Chemistry, High Point University, One University Parkway, High Point, NC 27268
| | - Meghan S. Blackledge
- Department of Chemistry, High Point University, One University Parkway, High Point, NC 27268
| |
Collapse
|
5
|
Djorić D, Minton NE, Kristich CJ. The enterococcal PASTA kinase: A sentinel for cell envelope stress. Mol Oral Microbiol 2020; 36:132-144. [PMID: 32945615 DOI: 10.1111/omi.12313] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/05/2020] [Accepted: 09/08/2020] [Indexed: 12/12/2022]
Abstract
Enterococci are Gram-positive, opportunistic pathogens that reside throughout the gastrointestinal tracts of most terrestrial organisms. Enterococci are resistant to many antibiotics, which makes enterococcal infections difficult to treat. Enterococci are also particularly hardy bacteria that can tolerate a variety of environmental stressors. Understanding how enterococci sense and respond to the extracellular environment to enact adaptive biological responses may identify new targets that can be exploited for development of treatments for enterococcal infections. Bacterial eukaryotic-like serine/threonine kinases (eSTKs) and cognate phosphatases (STPs) are important signaling systems that mediate biological responses to extracellular stimuli. Some bacterial eSTKs are transmembrane proteins that contain a series of extracellular repeats of the penicillin-binding and Ser/Thr kinase-associated (PASTA) domain, leading to their designation as "PASTA kinases." Enterococcal genomes encode a single PASTA kinase and its cognate phosphatase. Investigations of the enterococcal PASTA kinase revealed its importance in resistance to antibiotics and other cell wall stresses, in enterococcal colonization of the mammalian gut, clues about its mechanism of signal transduction, and its integration with other enterococcal signal transduction systems. In this review, we describe the current state of knowledge of PASTA kinase signaling in enterococci and describe important gaps that still need to be addressed to provide a better understanding of this important signaling system.
Collapse
Affiliation(s)
- Dušanka Djorić
- Department of Microbiology and Immunology, Center for Infectious Disease Research, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Nicole E Minton
- Department of Microbiology and Immunology, Center for Infectious Disease Research, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Christopher J Kristich
- Department of Microbiology and Immunology, Center for Infectious Disease Research, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
6
|
Martinez E, Huc-Brandt S, Brelle S, Allombert J, Cantet F, Gannoun-Zaki L, Burette M, Martin M, Letourneur F, Bonazzi M, Molle V. The secreted protein kinase CstK from Coxiella burnetii influences vacuole development and interacts with the GTPase-activating host protein TBC1D5. J Biol Chem 2020; 295:7391-7403. [PMID: 32303638 PMCID: PMC7247299 DOI: 10.1074/jbc.ra119.010112] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 04/14/2020] [Indexed: 03/01/2024] Open
Abstract
The intracellular bacterial pathogen Coxiella burnetii is the etiological agent of the emerging zoonosis Q fever. Crucial to its pathogenesis is type 4b secretion system-mediated secretion of bacterial effectors into host cells that subvert host cell membrane trafficking, leading to the biogenesis of a parasitophorous vacuole for intracellular replication. The characterization of prokaryotic serine/threonine protein kinases in bacterial pathogens is emerging as an important strategy to better understand host-pathogen interactions. In this study, we investigated CstK (for Coxiella Ser/Thr kinase), a protein kinase identified in C. burnetii by in silico analysis. We demonstrate that this putative protein kinase undergoes autophosphorylation on Thr and Tyr residues and phosphorylates a classical eukaryotic protein kinase substrate in vitro This dual Thr-Tyr kinase activity is also observed for a eukaryotic dual-specificity Tyr phosphorylation-regulated kinase class. We found that CstK is translocated during infections and localizes to Coxiella-containing vacuoles (CCVs). Moreover, a CstK-overexpressing C. burnetii strain displayed a severe CCV development phenotype, suggesting that CstK fine-tunes CCV biogenesis during the infection. Protein-protein interaction experiments identified the Rab7 GTPase-activating protein TBC1D5 as a candidate CstK-specific target, suggesting a role for this host GTPase-activating protein in Coxiella infections. Indeed, CstK co-localized with TBC1D5 in noninfected cells, and TBC1D5 was recruited to CCVs in infected cells. Accordingly, TBC1D5 depletion from infected cells significantly affected CCV development. Our results indicate that CstK functions as a bacterial effector protein that interacts with the host protein TBC1D5 during vacuole biogenesis and intracellular replication.
Collapse
Affiliation(s)
- Eric Martinez
- Institut de Recherche en Infectiologie de Montpellier, Université de Montpellier, CNRS, UMR 9004, Montpellier, France
| | - Sylvaine Huc-Brandt
- Laboratory of Pathogen Host Interactions, Université de Montpellier, CNRS, UMR 5235, Montpellier, France
| | - Solène Brelle
- Laboratory of Pathogen Host Interactions, Université de Montpellier, CNRS, UMR 5235, Montpellier, France
| | - Julie Allombert
- Institut de Recherche en Infectiologie de Montpellier, Université de Montpellier, CNRS, UMR 9004, Montpellier, France
| | - Franck Cantet
- Institut de Recherche en Infectiologie de Montpellier, Université de Montpellier, CNRS, UMR 9004, Montpellier, France
| | - Laila Gannoun-Zaki
- Laboratory of Pathogen Host Interactions, Université de Montpellier, CNRS, UMR 5235, Montpellier, France
| | - Mélanie Burette
- Institut de Recherche en Infectiologie de Montpellier, Université de Montpellier, CNRS, UMR 9004, Montpellier, France
| | - Marianne Martin
- Laboratory of Pathogen Host Interactions, Université de Montpellier, CNRS, UMR 5235, Montpellier, France
| | - François Letourneur
- Laboratory of Pathogen Host Interactions, Université de Montpellier, CNRS, UMR 5235, Montpellier, France
| | - Matteo Bonazzi
- Institut de Recherche en Infectiologie de Montpellier, Université de Montpellier, CNRS, UMR 9004, Montpellier, France.
| | - Virginie Molle
- Laboratory of Pathogen Host Interactions, Université de Montpellier, CNRS, UMR 5235, Montpellier, France.
| |
Collapse
|
7
|
Senpuku H, Mohri S, Mihara M, Arai T, Suzuki Y, Saeki Y. Effects of 7S globulin 3 derived from the adzuki bean [Vigna angularis] on the CSP- and eDNA- dependent biofilm formation of Streptococcus mutans. Arch Oral Biol 2019; 102:256-265. [PMID: 31100490 DOI: 10.1016/j.archoralbio.2019.04.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 03/18/2019] [Accepted: 04/15/2019] [Indexed: 01/31/2023]
Abstract
OBJECTIVE Streptococcus mutans is a principal bacterium that forms pathogenic biofilm involved in the development of dental caries. S. mutans possesses a quorum sensing system (QS) stimulated by competence stimulating peptide (CSP), which is associated with bacteriocin production, genetic competency and biofilm formation. Inhibiting CSP-dependent QS is one of the aims leading to the inhibition of biofilm formation and is useful for establishing new prevention systems for dental caries. DESIGN In this study, we selected adzuki bean [Vigna angularis] extract as a candidate component to inhibit CSP-dependent biofilm formation among various foods. To purify an inhibitory component from the adzuki extracts, we performed the salting-out method, two rounds of ion-exchange chromatography, and SDS and native PAGE. RESULTS A primary protein band that inhibits CSP-dependent biofilm formation appeared at approximately 50 kDa and was identified as 7S globulin 3 (7S3), a major seed storage protein in adzuki bean. To determine the characteristics of 7S3 as an inhibitory component, aggregated proteins were extracted from the adzuki crude extracts at pH values lower than 6. The aggregated proteins inhibited CSP- and eDNA-dependent biofilm formation and showed 50 kDa band, which is identical with 7S3 in the purified sample. Moreover, 7S globulin 3 in the adzuki bean extract directly interacted with CSP at low pH conditions but not at neutral conditions, and inhibited CSP-dependent bacteriocin production. CONCLUSION It was suggested that 7S3 might be a safe and useful material to prevent pathogenic activities in the biofilm formation of S. mutans.
Collapse
Affiliation(s)
- Hidenobu Senpuku
- Department of Bacteriology I, National Institute of infectious Diseases, Shinjuku-ku, Tokyo, Japan.
| | - Shota Mohri
- Department of Bacteriology I, National Institute of infectious Diseases, Shinjuku-ku, Tokyo, Japan; Health Science Section, Central Laboratory, Lotte Co., Ltd, Saitama-Shi, Saitama, Japan
| | - Mamiko Mihara
- Department of Bacteriology I, National Institute of infectious Diseases, Shinjuku-ku, Tokyo, Japan; Health Science Section, Central Laboratory, Lotte Co., Ltd, Saitama-Shi, Saitama, Japan
| | - Toshiaki Arai
- Department of Bacteriology I, National Institute of infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Yusuke Suzuki
- Department of Bacteriology I, National Institute of infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Yoji Saeki
- Department of Bacteriology I, National Institute of infectious Diseases, Shinjuku-ku, Tokyo, Japan; Health Science Section, Central Laboratory, Lotte Co., Ltd, Saitama-Shi, Saitama, Japan
| |
Collapse
|
8
|
Miller DP, Lamont RJ. Signaling Systems in Oral Bacteria. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1197:27-43. [PMID: 31732932 DOI: 10.1007/978-3-030-28524-1_3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The supra- and subgingival plaque biofilm communities of plaque are composed of hundreds of different microbes. These communities are spatially and temporally structured, largely due to cell-cell communications that coordinate synergistic interactions, and intracellular signaling systems to sense changes in the surrounding environment. Homeostasis is maintained through metabolic communication, mutualistic cross-feeding, and cross-respiration. These nutritional symbioses can reciprocally influence the local microenvironments by altering the pH and by detoxifying oxidative compounds. Signal transduction mechanisms include two-component systems, tyrosine phosphorelays, quorum sensing systems, and cyclic nucleotide secondary messengers. Signaling converges on transcriptional programs and can result in synergistic or antagonistic interbacterial interactions that sculpt community development. The sum of all these interactions can be a well-organized polymicrobial community that remains in homeostasis with the host, or a dysbiotic community that provokes pathogenic responses in the host.
Collapse
Affiliation(s)
- Daniel P Miller
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, USA
| | - Richard J Lamont
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, USA.
| |
Collapse
|
9
|
Janczarek M, Vinardell JM, Lipa P, Karaś M. Hanks-Type Serine/Threonine Protein Kinases and Phosphatases in Bacteria: Roles in Signaling and Adaptation to Various Environments. Int J Mol Sci 2018; 19:ijms19102872. [PMID: 30248937 PMCID: PMC6213207 DOI: 10.3390/ijms19102872] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/17/2018] [Accepted: 09/19/2018] [Indexed: 12/19/2022] Open
Abstract
Reversible phosphorylation is a key mechanism that regulates many cellular processes in prokaryotes and eukaryotes. In prokaryotes, signal transduction includes two-component signaling systems, which involve a membrane sensor histidine kinase and a cognate DNA-binding response regulator. Several recent studies indicate that alternative regulatory pathways controlled by Hanks-type serine/threonine kinases (STKs) and serine/threonine phosphatases (STPs) also play an essential role in regulation of many different processes in bacteria, such as growth and cell division, cell wall biosynthesis, sporulation, biofilm formation, stress response, metabolic and developmental processes, as well as interactions (either pathogenic or symbiotic) with higher host organisms. Since these enzymes are not DNA-binding proteins, they exert the regulatory role via post-translational modifications of their protein targets. In this review, we summarize the current knowledge of STKs and STPs, and discuss how these enzymes mediate gene expression in prokaryotes. Many studies indicate that regulatory systems based on Hanks-type STKs and STPs play an essential role in the regulation of various cellular processes, by reversibly phosphorylating many protein targets, among them several regulatory proteins of other signaling cascades. These data show high complexity of bacterial regulatory network, in which the crosstalk between STK/STP signaling enzymes, components of TCSs, and the translational machinery occurs. In this regulation, the STK/STP systems have been proved to play important roles.
Collapse
Affiliation(s)
- Monika Janczarek
- Department of Genetics and Microbiology, Institute of Microbiology and Biotechnology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland.
| | - José-María Vinardell
- Department of Microbiology, Faculty of Biology, University of Sevilla, Avda. Reina Mercedes 6, 41012 Sevilla, Spain.
| | - Paulina Lipa
- Department of Genetics and Microbiology, Institute of Microbiology and Biotechnology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland.
| | - Magdalena Karaś
- Department of Genetics and Microbiology, Institute of Microbiology and Biotechnology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland.
| |
Collapse
|
10
|
Li Y, Shao S, Xu X, Su X, Sun Y, Wei S. MapZ Forms a Stable Ring Structure That Acts As a Nanotrack for FtsZ Treadmilling in Streptococcus mutans. ACS NANO 2018; 12:6137-6146. [PMID: 29812902 DOI: 10.1021/acsnano.8b02469] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Bacterial binary cell division requires accurate placement of division machinery. FtsZ, a vital component of the division machinery, can assemble into filaments and self-organize into a ring structure (Z ring) at the appropriate site for cell division. MapZ, a recently identified FtsZ regulator in Streptococcaceae, has been found to localize at the midcell where it helps to properly position the FtsZ ring. However, its mechanism is still unclear. Here, by using total internal reflection fluorescence microscopy, super-resolution imaging, and single molecule tracking, we investigated the mechanism by which MapZ controls the position of the FtsZ ring. Our results show that FtsZ exhibits a dynamic treadmilling motion in S. mutans. Importantly, depletion of MapZ leads to the unconstrained movement of treadmilling FtsZ filaments and a shorter lifetime of the constricting FtsZ ring, which is frequently misplaced. Furthermore, by revealing that MapZ forms an immobile ring-like nanostructure at the division site, our study suggests that MapZ forms a stable ring that acts as a nanotrack to guide and restrict treadmilling FtsZ filaments in S. mutans.
Collapse
Affiliation(s)
- Yongliang Li
- Department of Oral and Maxillofacial Surgery/Central Laboratory, School and Hospital of Stomatology , Peking University, National Engineering Laboratory for Digital and Material Technology of Stomatology , 22 Zhonguancun South Road , Haidian District, Beijing 100081 , China
| | - Shipeng Shao
- State Key Laboratory of Membrane Biology, Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences , Peking University , 5 Yiheyuan Road , Beijing 100871 , China
| | - Xiao Xu
- Department of Oral and Maxillofacial Surgery/Central Laboratory, School and Hospital of Stomatology , Peking University, National Engineering Laboratory for Digital and Material Technology of Stomatology , 22 Zhonguancun South Road , Haidian District, Beijing 100081 , China
| | - Xiaodong Su
- Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences , Peking University , Beijing 100871 , China
| | - Yujie Sun
- State Key Laboratory of Membrane Biology, Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences , Peking University , 5 Yiheyuan Road , Beijing 100871 , China
| | - Shicheng Wei
- Department of Oral and Maxillofacial Surgery/Central Laboratory, School and Hospital of Stomatology , Peking University, National Engineering Laboratory for Digital and Material Technology of Stomatology , 22 Zhonguancun South Road , Haidian District, Beijing 100081 , China
| |
Collapse
|
11
|
Squeglia F, Ruggiero A, De Simone A, Berisio R. A structural overview of mycobacterial adhesins: Key biomarkers for diagnostics and therapeutics. Protein Sci 2017; 27:369-380. [PMID: 29139177 DOI: 10.1002/pro.3346] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 11/09/2017] [Accepted: 11/09/2017] [Indexed: 01/14/2023]
Abstract
Adherence, colonization, and survival of mycobacteria in host cells require surface adhesins, which are attractive pharmacotherapeutic targets. A large arsenal of pilus and non-pilus adhesins have been identified in mycobacteria. These adhesins are capable of interacting with host cells, including macrophages and epithelial cells and are essential to microbial pathogenesis. In the last decade, several structures of mycobacterial adhesins responsible for adhesion to either macrophages or extra cellular matrix proteins have been elucidated. In addition, key structural and functional information have emerged for the process of mycobacterial adhesion to epithelial cells, mediated by the Heparin-binding hemagglutinin (HBHA). In this review, we provide an overview of the structural and functional features of mycobacterial adhesins and discuss their role as important biomarkers for diagnostics and therapeutics. Based on the reported data, it appears clear that adhesins are endowed with a variety of different structures and functions. Most adhesins play important roles in the cell life of mycobacteria and are key virulence factors. However, they have adapted to an extracellular life to exert a role in host-pathogen interaction. The type of interactions they form with the host and the adhesin regions involved in binding is partly known and is described in this review.
Collapse
Affiliation(s)
- Flavia Squeglia
- Institute of Biostructures and Bioimaging, CNR, Via Mezzocannone 16, Napoli, I-80134, Italy
| | - Alessia Ruggiero
- Institute of Biostructures and Bioimaging, CNR, Via Mezzocannone 16, Napoli, I-80134, Italy
| | - Alfonso De Simone
- Division of Molecular Biosciences, Imperial College London, SW7 2AZ, UK
| | - Rita Berisio
- Institute of Biostructures and Bioimaging, CNR, Via Mezzocannone 16, Napoli, I-80134, Italy
| |
Collapse
|
12
|
Mattos-Graner RO, Duncan MJ. Two-component signal transduction systems in oral bacteria. J Oral Microbiol 2017; 9:1400858. [PMID: 29209465 PMCID: PMC5706477 DOI: 10.1080/20002297.2017.1400858] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 11/01/2017] [Indexed: 01/03/2023] Open
Abstract
We present an overview of how members of the oral microbiota respond to their environment by regulating gene expression through two-component signal transduction systems (TCSs) to support conditions compatible with homeostasis in oral biofilms or drive the equilibrium toward dysbiosis in response to environmental changes. Using studies on the sub-gingival Gram-negative anaerobe Porphyromonas gingivalis and Gram-positive streptococci as examples, we focus on the molecular mechanisms involved in activation of TCS and species specificities of TCS regulons.
Collapse
Affiliation(s)
- Renata O. Mattos-Graner
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas – UNICAMP, São Paulo, Brazil
| | - Margaret J. Duncan
- Department of Oral Medicine, Infection and Immunity, The Forsyth Institute, Cambridge, MA, USA
| |
Collapse
|
13
|
Growth- and Stress-Induced PASTA Kinase Phosphorylation in Enterococcus faecalis. J Bacteriol 2017; 199:JB.00363-17. [PMID: 28808126 DOI: 10.1128/jb.00363-17] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 08/04/2017] [Indexed: 12/22/2022] Open
Abstract
Transmembrane Ser/Thr kinases containing extracellular PASTA domains are ubiquitous among Actinobacteria and Firmicutes Such PASTA kinases regulate critical processes, including antibiotic resistance, cell division, toxin production, and virulence, and are essential for viability in certain organisms. Based on in vitro studies with purified extracellular and intracellular fragments of PASTA kinases, a model for signaling has been proposed, in which the extracellular PASTA domains bind currently undefined ligands (typically thought to be peptidoglycan, or fragments thereof) to drive kinase dimerization, which leads to enhanced kinase autophosphorylation and enhanced phosphorylation of substrates. However, this model has not been rigorously tested in vivoEnterococcus faecalis is a Gram-positive intestinal commensal and major antibiotic-resistant opportunistic pathogen. In E. faecalis, the PASTA kinase IreK drives intrinsic resistance to cell wall-active antimicrobials, suggesting that such antimicrobials may trigger IreK signaling. Here we show that IreK responds to cell wall stress in vivo by enhancing its phosphorylation and that of a downstream substrate. This response requires both the extracellular PASTA domains and specific phosphorylatable residues in the kinase domain. Thus, our results provide in vivo evidence, with an intact full-length PASTA kinase in its native physiological environment, that supports the prevailing model of PASTA kinase signaling. In addition, we show that IreK responds to a signal associated with growth and/or cell division, in the absence of cell wall-active antimicrobials. Surprisingly, the ability of IreK to respond to growth and/or division does not require the extracellular PASTA domains, suggesting that IreK monitors multiple parameters for sensory input in vivoIMPORTANCE Transmembrane Ser/Thr kinases containing extracellular PASTA domains are ubiquitous among Actinobacteria and Firmicutes and regulate critical processes. The prevailing model for signaling by PASTA kinases proposes that the extracellular PASTA domains bind ligands to drive kinase dimerization, enhanced autophosphorylation, and enhanced phosphorylation of substrates. However, this model has not been rigorously tested in vivo We show that the PASTA kinase IreK of Enterococcus faecalis responds to cell wall stress in vivo by enhancing its phosphorylation and that of a downstream substrate. This response requires the PASTA domains and phosphorylatable residues in the kinase domain. Thus, our results provide in vivo evidence, with an intact full-length PASTA kinase in its native physiological environment, that supports the prevailing model of PASTA kinase signaling.
Collapse
|
14
|
Pensinger DA, Schaenzer AJ, Sauer JD. Do Shoot the Messenger: PASTA Kinases as Virulence Determinants and Antibiotic Targets. Trends Microbiol 2017; 26:56-69. [PMID: 28734616 DOI: 10.1016/j.tim.2017.06.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 06/15/2017] [Accepted: 06/27/2017] [Indexed: 01/14/2023]
Abstract
All domains of life utilize protein phosphorylation as a mechanism of signal transduction. In bacteria, protein phosphorylation was classically thought to be mediated exclusively by histidine kinases as part of two-component signaling systems. However, it is now well appreciated that eukaryotic-like serine/threonine kinases (eSTKs) control essential processes in bacteria. A subset of eSTKs are single-pass transmembrane proteins that have extracellular penicillin-binding-protein and serine/threonine kinase-associated (PASTA) domains which bind muropeptides. In a variety of important pathogens, PASTA kinases have been implicated in regulating biofilms, antibiotic resistance, and ultimately virulence. Although there are limited examples of direct regulation of virulence factors, PASTA kinases are critical for virulence due to their roles in regulating bacterial physiology in the context of stress. This review focuses on the role of PASTA kinases in virulence for a variety of important Gram-positive pathogens and concludes with a discussion of current efforts to develop kinase inhibitors as novel antimicrobials.
Collapse
Affiliation(s)
- Daniel A Pensinger
- Microbiology Doctoral Training Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Adam J Schaenzer
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA; Molecular and Cellular Pharmacology Doctoral Training Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - John-Demian Sauer
- Microbiology Doctoral Training Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA; Molecular and Cellular Pharmacology Doctoral Training Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
15
|
Zhang C, Sun W, Tan M, Dong M, Liu W, Gao T, Li L, Xu Z, Zhou R. The Eukaryote-Like Serine/Threonine Kinase STK Regulates the Growth and Metabolism of Zoonotic Streptococcus suis. Front Cell Infect Microbiol 2017; 7:66. [PMID: 28326294 PMCID: PMC5339665 DOI: 10.3389/fcimb.2017.00066] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 02/21/2017] [Indexed: 12/21/2022] Open
Abstract
Like eukaryotes, bacteria express one or more serine/threonine kinases (STKs) that initiate diverse signaling networks. The STK from Streptococcus suis is encoded by a single-copy stk gene, which is crucial in stress response and virulence. To further understand the regulatory mechanism of STK in S. suis, a stk deletion strain (Δstk) and its complementary strain (CΔstk) were constructed to systematically decode STK characteristics by applying whole transcriptome RNA sequencing (RNA-Seq) and phosphoproteomic analysis. Numerous genes were differentially expressed in Δstk compared with the wild-type parental strain SC-19, including 320 up-regulated and 219 down-regulated genes. Particularly, 32 virulence-associated genes (VAGs) were significantly down-regulated in Δstk. Seven metabolic pathways relevant to bacterial central metabolism and translation are significantly repressed in Δstk. Phosphoproteomic analysis further identified 12 phosphoproteins that exhibit differential phosphorylation in Δstk. These proteins are associated with cell growth and division, glycolysis, and translation. Consistently, phenotypic assays confirmed that the Δstk strain displayed deficient growth and attenuated pathogenicity. Thus, STK is a central regulator that plays an important role in cell growth and division, as well as S. suis metabolism.
Collapse
Affiliation(s)
- Chunyan Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University Wuhan, China
| | - Wen Sun
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University Wuhan, China
| | - Meifang Tan
- Veterinary Medicine Laboratory, Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences Nanchang, China
| | - Mengmeng Dong
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University Wuhan, China
| | - Wanquan Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University Wuhan, China
| | - Ting Gao
- Veterinary Medicine Laboratory, Institute of Animal Husbandry and Veterinary Science, Hubei Academy of Agricultural Sciences Wuhan, China
| | - Lu Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China; Cooperative Innovation Center of Sustainable Pig ProductionWuhan, China
| | - Zhuofei Xu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China; Cooperative Innovation Center of Sustainable Pig ProductionWuhan, China
| | - Rui Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China; Cooperative Innovation Center of Sustainable Pig ProductionWuhan, China
| |
Collapse
|
16
|
Liu X, Luo Y, Li Z, Wei G. Functional analysis of PrkA - a putative serine protein kinase from Mesorhizobium alhagi CCNWXJ12-2 - in stress resistance. BMC Microbiol 2016; 16:227. [PMID: 27686068 PMCID: PMC5041497 DOI: 10.1186/s12866-016-0849-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 09/24/2016] [Indexed: 01/12/2023] Open
Abstract
Background Serine/threonine protein kinases are highly conserved kinases with a wide distribution in microbes and with multiple functions. Mesorhizobium alhagi CCNWXJ12-2, a α-proteobacterium which could be able to form symbiosis with Alhagi sparsifolia in northwest of China, contains a putative PrkA-family serine protein kinase, PrkA. In our previous study, the expression of prkA was found to be downregulated in high-salt conditions. To elucidate the function of M. alhagi PrkA, a prkA deletion mutant was constructed and the phenotypes of the mutant were analyzed. Results The salt and alkaline tolerance and antioxidant capacity of the wild-type strain and the prkA deletion mutant was measured. Our results showed that the deletion mutant had higher salt and alkaline tolerance than the wild-type strain. The total cellular Na+ content was measured and showed no significant difference between the wild-type strain and the mutant. The prkA deletion mutant also showed a higher H2O2 tolerance than the wild-type strain. Therefore the activities of antioxidant enzymes were measured. Catalase activity was similar in the wild-type and the deletion mutant, while the superoxide dismutase activity in the mutant was higher than that in the wild-type. Conclusions We firstly analyze the function of a serine protein kinase, PrkA, in M. alhagi. Our data indicate that PrkA could reduce the survival of M. alhagi under environmental stress and deletion of prkA dramatically improved the salt and alkaline tolerance and antioxidant capacity of M. alhagi.
Collapse
Affiliation(s)
- Xiaodong Liu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Yantao Luo
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Zhefei Li
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Gehong Wei
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
17
|
Shree S, Singh AK, Saxena R, Kumar H, Agarwal A, Sharma VK, Srivastava K, Srivastava KK, Sanyal S, Ramachandran R. The M. tuberculosis HAD phosphatase (Rv3042c) interacts with host proteins and is inhibited by Clofazimine. Cell Mol Life Sci 2016; 73:3401-17. [PMID: 26984196 PMCID: PMC11108430 DOI: 10.1007/s00018-016-2177-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 02/18/2016] [Accepted: 03/03/2016] [Indexed: 02/06/2023]
Abstract
Mycobacterium tuberculosis codes for a HAD-phosphatase, Rv3042c (MtSerB2), that has earlier been characterized as a metabolic enzyme. Here we demonstrate that MtSerB2 is secreted into the cytosol of infected macrophages and is found in bronchoalveolar lavage samples of tuberculosis patients. MtSerB2 induces significant cytoskeleton rearrangements through cofilin activation and affects the expression of genes that regulate actin dynamics. It specifically interacts with HSP90, HSP70 and HSP27 that block apoptotic pathways and not with other HSPs. It actively dephosphorylates MAPK-p38 and NF-kappa B p65 that play crucial roles in inflammatory and immune responses. This in turn leads to down-regulation of Interleukin 8, a chemotactic and inflammatory cytokine. Finally, during evaluation of inhibitors against MtSerB2 we found that Clofazimine, a drug being evaluated for XDR and MDR tuberculosis, inhibits MtSerB2 phosphatase activity and reverses the above effects and interactions with host proteins. Overall, the study identifies that MtSerB2 has new functions that might help the pathogen to evade the host's immune response.
Collapse
Affiliation(s)
- Sonal Shree
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, Uttar Pradesh, India
| | - Abhishek Kumar Singh
- Biochemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, Uttar Pradesh, India
| | - Richa Saxena
- Microbiology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, Uttar Pradesh, India
| | - Harish Kumar
- Biochemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, Uttar Pradesh, India
| | - Aparna Agarwal
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, Uttar Pradesh, India
| | - Vijay Kumar Sharma
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, Uttar Pradesh, India
| | - Kanchan Srivastava
- Microbiology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, Uttar Pradesh, India
| | - Kishore Kumar Srivastava
- Microbiology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, Uttar Pradesh, India
| | - Sabyasachi Sanyal
- Biochemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, Uttar Pradesh, India
| | - Ravishankar Ramachandran
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, Uttar Pradesh, India.
| |
Collapse
|
18
|
Kawarai T, Narisawa N, Suzuki Y, Nagasawa R, Senpuku H. Streptococcus mutans biofilm formation is dependent on extracellular DNA in primary low pH conditions. J Oral Biosci 2016. [DOI: 10.1016/j.job.2015.12.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Cheng X, Zheng X, Zhou X, Zeng J, Ren Z, Xu X, Cheng L, Li M, Li J, Li Y. Regulation of oxidative response and extracellular polysaccharide synthesis by a diadenylate cyclase in Streptococcus mutans. Environ Microbiol 2015; 18:904-22. [PMID: 26548332 DOI: 10.1111/1462-2920.13123] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/29/2015] [Accepted: 11/01/2015] [Indexed: 02/05/2023]
Abstract
Cyclic diadenosine monophosphate (c-di-AMP) has been implicated in the control of many important bacterial activities. However, the function of this molecule in Streptococcus mutans, the primary aetiological agent of human dental caries, is unknown. In this study, we identified and characterized a diadenylate cyclase, named CdaA, in S. mutans. Furthermore, we showed that in-frame deletion of the cdaA gene in S. mutans causes decreased c-di-AMP levels, increased sensitivity to hydrogen peroxide and increased production of extracellular polysaccharides. Global gene expression profiling revealed that more than 200 genes were significantly upregulated or downregulated (> 2.0-fold) in the cdaA mutant. Interestingly, genes with increased or decreased expression were clustered in cellular polysaccharide biosynthetic processes and oxidoreductase activity respectively. Notably, the expression of several genomic islands, such as GTF-B/C, TnSmu, CRISPR1-Cas and CRISPR2-Cas, was found to be altered in the cdaA mutant, indicating a possible link between these genomic islands and c-di-AMP signalling. Collectively, the results reported here show that CdaA is an important global modulator in S. mutans and is required for optimal growth and environmental adaption. This report also paves the way to unveil further the roles of c-di-AMP signalling networks in the biology and pathogenicity of S. mutans.
Collapse
Affiliation(s)
- Xingqun Cheng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin Zheng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jumei Zeng
- Department of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Zhi Ren
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin Xu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mingyun Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiyao Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuqing Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
20
|
Sajid A, Arora G, Singhal A, Kalia VC, Singh Y. Protein Phosphatases of Pathogenic Bacteria: Role in Physiology and Virulence. Annu Rev Microbiol 2015; 69:527-47. [DOI: 10.1146/annurev-micro-020415-111342] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Andaleeb Sajid
- Institute of Genomics and Integrative Biology, Council of Scientific and Industrial Research, Delhi 110007, India;
| | - Gunjan Arora
- Institute of Genomics and Integrative Biology, Council of Scientific and Industrial Research, Delhi 110007, India;
| | - Anshika Singhal
- Institute of Genomics and Integrative Biology, Council of Scientific and Industrial Research, Delhi 110007, India;
| | - Vipin C. Kalia
- Institute of Genomics and Integrative Biology, Council of Scientific and Industrial Research, Delhi 110007, India;
| | - Yogendra Singh
- Institute of Genomics and Integrative Biology, Council of Scientific and Industrial Research, Delhi 110007, India;
| |
Collapse
|
21
|
Fontaine L, Wahl A, Fléchard M, Mignolet J, Hols P. Regulation of competence for natural transformation in streptococci. INFECTION GENETICS AND EVOLUTION 2015; 33:343-60. [DOI: 10.1016/j.meegid.2014.09.010] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Revised: 08/28/2014] [Accepted: 09/07/2014] [Indexed: 02/02/2023]
|
22
|
Jain CK, Gupta M, Prasad Y, Wadhwa G, Sharma SK. Homology modelling and molecular dynamics simulations of a protein serine/threonine phosphatase stp1 in Staphylococcus aureusN315: a potential drug target. MOLECULAR SIMULATION 2015. [DOI: 10.1080/08927022.2014.902535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
23
|
Bahieldin A, Atef A, Sabir JSM, Gadalla NO, Edris S, Alzohairy AM, Radhwan NA, Baeshen MN, Ramadan AM, Eissa HF, Hassan SM, Baeshen NA, Abuzinadah O, Al-Kordy MA, El-Domyati FM, Jansen RK. RNA-Seq analysis of the wild barley (H. spontaneum) leaf transcriptome under salt stress. C R Biol 2015; 338:285-97. [PMID: 25882349 DOI: 10.1016/j.crvi.2015.03.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 03/10/2015] [Accepted: 03/12/2015] [Indexed: 11/16/2022]
Abstract
Wild salt-tolerant barley (Hordeum spontaneum) is the ancestor of cultivated barley (Hordeum vulgare or H. vulgare). Although the cultivated barley genome is well studied, little is known about genome structure and function of its wild ancestor. In the present study, RNA-Seq analysis was performed on young leaves of wild barley treated with salt (500mM NaCl) at four different time intervals. Transcriptome sequencing yielded 103 to 115 million reads for all replicates of each treatment, corresponding to over 10 billion nucleotides per sample. Of the total reads, between 74.8 and 80.3% could be mapped and 77.4 to 81.7% of the transcripts were found in the H. vulgare unigene database (unigene-mapped). The unmapped wild barley reads for all treatments and replicates were assembled de novo and the resulting contigs were used as a new reference genome. This resulted in 94.3 to 95.3% of the unmapped reads mapping to the new reference. The number of differentially expressed transcripts was 9277, 3861 of which were unigene-mapped. The annotated unigene- and de novo-mapped transcripts (5100) were utilized to generate expression clusters across time of salt stress treatment. Two-dimensional hierarchical clustering classified differential expression profiles into nine expression clusters, four of which were selected for further analysis. Differentially expressed transcripts were assigned to the main functional categories. The most important groups were "response to external stimulus" and "electron-carrier activity". Highly expressed transcripts are involved in several biological processes, including electron transport and exchanger mechanisms, flavonoid biosynthesis, reactive oxygen species (ROS) scavenging, ethylene production, signaling network and protein refolding. The comparisons demonstrated that mRNA-Seq is an efficient method for the analysis of differentially expressed genes and biological processes under salt stress.
Collapse
Affiliation(s)
- Ahmed Bahieldin
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, 21589 Jeddah, Saudi Arabia; Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo, Egypt.
| | - Ahmed Atef
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, 21589 Jeddah, Saudi Arabia
| | - Jamal S M Sabir
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, 21589 Jeddah, Saudi Arabia
| | - Nour O Gadalla
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, 21589 Jeddah, Saudi Arabia; Genetics and Cytology Department, Genetic Engineering and Biotechnology Division, National Research Center, Dokki, Egypt
| | - Sherif Edris
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, 21589 Jeddah, Saudi Arabia; Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Ahmed M Alzohairy
- Genetics Department, Faculty of Agriculture, Zagazig University, 44511 Zagazig, Egypt
| | - Nezar A Radhwan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, 21589 Jeddah, Saudi Arabia
| | - Mohammed N Baeshen
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, 21589 Jeddah, Saudi Arabia
| | - Ahmed M Ramadan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, 21589 Jeddah, Saudi Arabia; Agricultural Genetic Engineering Research Institute (AGERI), Agriculture Research Center (ARC), Giza, Egypt
| | - Hala F Eissa
- Agricultural Genetic Engineering Research Institute (AGERI), Agriculture Research Center (ARC), Giza, Egypt; Faculty of Biotechnology, Misr University for Science and Technology (MUST), 6th October City, Egypt
| | - Sabah M Hassan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, 21589 Jeddah, Saudi Arabia; Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Nabih A Baeshen
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, 21589 Jeddah, Saudi Arabia
| | - Osama Abuzinadah
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, 21589 Jeddah, Saudi Arabia
| | - Magdy A Al-Kordy
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, 21589 Jeddah, Saudi Arabia; Genetics and Cytology Department, Genetic Engineering and Biotechnology Division, National Research Center, Dokki, Egypt
| | - Fotouh M El-Domyati
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, 21589 Jeddah, Saudi Arabia; Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Robert K Jansen
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, 21589 Jeddah, Saudi Arabia; Department of Integrative Biology, University of Texas at Austin, 78712 Austin, USA
| |
Collapse
|
24
|
Mearls EB, Lynd LR. The identification of four histidine kinases that influence sporulation in Clostridium thermocellum. Anaerobe 2014; 28:109-19. [PMID: 24933585 DOI: 10.1016/j.anaerobe.2014.06.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 05/29/2014] [Accepted: 06/05/2014] [Indexed: 02/03/2023]
Abstract
In this study, we sought to identify genes involved in the onset of spore formation in Clostridium thermocellum via targeted gene deletions, gene over-expression, and transcriptional analysis. We determined that three putative histidine kinases, clo1313_0286, clo1313_2735 and clo1313_1942 were positive regulators of sporulation, while a fourth kinase, clo1313_1973, acted as a negative regulator. Unlike Bacillus or other Clostridium species, the deletion of a single positively regulating kinase was sufficient to abolish sporulation in this organism. Sporulation could be restored in these asporogenous strains via overexpression of any one of the positive regulators, indicating a high level of redundancy between these kinases. In addition to having a sporulation defect, deletion of clo1313_2735 produced L-forms. Thus, this kinase may play an additional role in repressing L-form formation. This work suggests that C. thermocellum enters non-growth states based on the sensory input from multiple histidine kinases. The ability to control the development of non-growth states at the genetic level has the potential to inform strategies for improved strain development, as well as provide valuable insight into C. thermocellum biology.
Collapse
Affiliation(s)
- Elizabeth B Mearls
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA; BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Lee R Lynd
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA; BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
| |
Collapse
|
25
|
Selective pharmacologic inhibition of a PASTA kinase increases Listeria monocytogenes susceptibility to β-lactam antibiotics. Antimicrob Agents Chemother 2014; 58:4486-94. [PMID: 24867981 DOI: 10.1128/aac.02396-14] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
While β-lactam antibiotics are a critical part of the antimicrobial arsenal, they are frequently compromised by various resistance mechanisms, including changes in penicillin binding proteins of the bacterial cell wall. Genetic deletion of the penicillin binding protein and serine/threonine kinase-associated protein (PASTA) kinase in methicillin-resistant Staphylococcus aureus (MRSA) has been shown to restore β-lactam susceptibility. However, the mechanism remains unclear, and whether pharmacologic inhibition would have the same effect is unknown. In this study, we found that deletion or pharmacologic inhibition of the PASTA kinase in Listeria monocytogenes by the nonselective kinase inhibitor staurosporine results in enhanced susceptibility to both aminopenicillin and cephalosporin antibiotics. Resistance to vancomycin, another class of cell wall synthesis inhibitors, or antibiotics that inhibit protein synthesis was unaffected by staurosporine treatment. Phosphorylation assays with purified kinases revealed that staurosporine selectively inhibited the PASTA kinase of L. monocytogenes (PrkA). Importantly, staurosporine did not inhibit a L. monocytogenes kinase without a PASTA domain (Lmo0618) or the PASTA kinase from MRSA (Stk1). Finally, inhibition of PrkA with a more selective kinase inhibitor, AZD5438, similarly led to sensitization of L. monocytogenes to β-lactam antibiotics. Overall, these results suggest that pharmacologic targeting of PASTA kinases can increase the efficacy of β-lactam antibiotics.
Collapse
|
26
|
Sudhakar P, Reck M, Wang W, He FQ, Wagner-Döbler I, Dobler IW, Zeng AP. Construction and verification of the transcriptional regulatory response network of Streptococcus mutans upon treatment with the biofilm inhibitor carolacton. BMC Genomics 2014; 15:362. [PMID: 24884510 PMCID: PMC4048456 DOI: 10.1186/1471-2164-15-362] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 04/17/2014] [Indexed: 11/26/2022] Open
Abstract
Background Carolacton is a newly identified secondary metabolite causing altered cell morphology and death of Streptococcus mutans biofilm cells. To unravel key regulators mediating these effects, the transcriptional regulatory response network of S. mutans biofilms upon carolacton treatment was constructed and analyzed. A systems biological approach integrating time-resolved transcriptomic data, reverse engineering, transcription factor binding sites, and experimental validation was carried out. Results The co-expression response network constructed from transcriptomic data using the reverse engineering algorithm called the Trend Correlation method consisted of 8284 gene pairs. The regulatory response network inferred by superimposing transcription factor binding site information into the co-expression network comprised 329 putative transcriptional regulatory interactions and could be classified into 27 sub-networks each co-regulated by a transcription factor. These sub-networks were significantly enriched with genes sharing common functions. The regulatory response network displayed global hierarchy and network motifs as observed in model organisms. The sub-networks modulated by the pyrimidine biosynthesis regulator PyrR, the glutamine synthetase repressor GlnR, the cysteine metabolism regulator CysR, global regulators CcpA and CodY and the two component system response regulators VicR and MbrC among others could putatively be related to the physiological effect of carolacton. The predicted interactions from the regulatory network between MbrC, known to be involved in cell envelope stress response, and the murMN-SMU_718c genes encoding peptidoglycan biosynthetic enzymes were experimentally confirmed using Electro Mobility Shift Assays. Furthermore, gene deletion mutants of five predicted key regulators from the response networks were constructed and their sensitivities towards carolacton were investigated. Deletion of cysR, the node having the highest connectivity among the regulators chosen from the regulatory network, resulted in a mutant which was insensitive to carolacton thus demonstrating not only the essentiality of cysR for the response of S. mutans biofilms to carolacton but also the relevance of the predicted network. Conclusion The network approach used in this study revealed important regulators and interactions as part of the response mechanisms of S. mutans biofilm cells to carolacton. It also opens a door for further studies into novel drug targets against streptococci. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-362) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | - Irene W Dobler
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, 21073 Hamburg, Germany.
| | | |
Collapse
|
27
|
Zhu H, Zhou J, Ni Y, Yu Z, Mao A, Hu Y, Wang W, Zhang X, Wen L, Li B, Wang X, Yu Y, Lv L, Guo R, Lu C, He K. Contribution of eukaryotic-type serine/threonine kinase to stress response and virulence of Streptococcus suis. PLoS One 2014; 9:e91971. [PMID: 24637959 PMCID: PMC3956855 DOI: 10.1371/journal.pone.0091971] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Accepted: 02/16/2014] [Indexed: 11/18/2022] Open
Abstract
Streptococcus suis serotype 2 (SS2) is an important swine and human pathogen responsible for septicemia and meningitis. The bacterial homologues of eukaryotic-type serine/threonine kinases (ESTKs) have been reported to play critical roles in various cellular processes. To investigate the role of STK in SS2, an isogenic stk mutant strain (Δstk) and a complemented strain (CΔstk) were constructed. The Δstk showed a significant decrease in adherence to HEp-2 cells, compared with the wild-type strain, and a reduced survival ratio in whole blood. In addition, the Δstk exhibited a notable reduced tolerance of environmental stresses including high temperature, acidic pH, oxidative stress, and high osmolarity. More importantly, the Δstk was attenuated in both the CD1 mouse and piglet models of infection. The results of quantitative reverse transcription-PCR (qRT-PCR) analysis indicated that the expressions of a few genes involving in adherence, stress response and virulence were clearly decreased in the Δstk mutant strain. Our data suggest that SsSTK is required for virulence and stress response in SS2.
Collapse
Affiliation(s)
- Haodan Zhu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Junming Zhou
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yanxiu Ni
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Zhengyu Yu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Aihua Mao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yiyi Hu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Wei Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Xuehan Zhang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Libin Wen
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Bin Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Xiaomin Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yang Yu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Lixin Lv
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Rongli Guo
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Chengping Lu
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Kongwang He
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- * E-mail:
| |
Collapse
|
28
|
Canova MJ, Molle V. Bacterial serine/threonine protein kinases in host-pathogen interactions. J Biol Chem 2014; 289:9473-9. [PMID: 24554701 DOI: 10.1074/jbc.r113.529917] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In bacterial pathogenesis, monitoring and adapting to the dynamically changing environment in the host and an ability to disrupt host immune responses are critical. The virulence determinants of pathogenic bacteria include the sensor/signaling proteins of the serine/threonine protein kinase (STPK) family that have a dual role of sensing the environment and subverting specific host defense processes. STPKs can sense a wide range of signals and coordinate multiple cellular processes to mount an appropriate response. Here, we review some of the well studied bacterial STPKs that are essential virulence factors and that modify global host responses during infection.
Collapse
Affiliation(s)
- Marc J Canova
- From the Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Universités de Montpellier II et I, CNRS, UMR 5235, 34095 Montpellier Cedex 05, France
| | | |
Collapse
|
29
|
IreB, a Ser/Thr kinase substrate, influences antimicrobial resistance in Enterococcus faecalis. Antimicrob Agents Chemother 2013; 57:6179-86. [PMID: 24080657 DOI: 10.1128/aac.01472-13] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enterococcus faecalis is a Gram-positive bacterium that is a major cause of hospital-acquired infections, in part due to its intrinsic resistance to cephalosporins. The mechanism that confers intrinsic cephalosporin resistance in enterococci remains incompletely defined. Previously, we have shown that the Ser/Thr protein kinase and phosphatase pair IreK and IreP act antagonistically to regulate cephalosporin resistance in E. faecalis. We hypothesize that IreK senses antibiotic-induced cell wall damage and activates a signaling pathway leading to antibiotic resistance. However, the factors downstream of IreK have not yet been identified. To discover such factors, suppressor mutations that restored resistance to a ΔireK kinase mutant were identified. Mutations were found in IreB, a highly conserved gene of unknown function that is widespread among low-GC Gram-positive bacteria. We show that IreB plays a negative regulatory role in cephalosporin resistance and is an endogenous substrate of both IreK and IreP. IreB is phosphorylated on conserved threonine residues, and mutations at these sites impair cephalosporin resistance. Our results are consistent with a model in which the activity of IreB is modulated by IreK-dependent phosphorylation in a signaling pathway required for cephalosporin resistance and begin to shed light on the function of this previously uncharacterized protein.
Collapse
|
30
|
Ruggiero A, De Simone P, Smaldone G, Squeglia F, Berisio R. Bacterial cell division regulation by Ser/Thr kinases: a structural perspective. Curr Protein Pept Sci 2013; 13:756-66. [PMID: 23305362 PMCID: PMC3601408 DOI: 10.2174/138920312804871201] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 07/16/2012] [Accepted: 08/03/2012] [Indexed: 12/17/2022]
Abstract
Recent genetic, biochemical and structural studies have established that eukaryotic-like Ser/Thr protein-kinases are critical mediators of developmental changes and host pathogen interactions in bacteria. Although with lower abundance compared to their homologues from eukaryotes, Ser/Thr protein-kinases are widespread in gram-positive bacteria. These data underline a key role of reversible Ser/Thr phosphorylation in bacterial physiology and virulence. Numerous studies have revealed how phosphorylation/dephosphorylation of Ser/Thr protein-kinases governs cell division and cell wall biosynthesis and that Ser/Thr protein kinases are responsible for distinct phenotypes, dependent on different environmental signals. In this review we discuss the current understandings of Ser/Thr protein-kinases functional processes based on structural data.
Collapse
Affiliation(s)
- Alessia Ruggiero
- Institute of Biostructure and Bioimaging, CNR, Via Mezzocannone, 16. I-80134, Napoli, Italy.
| | | | | | | | | |
Collapse
|
31
|
Morlot C, Bayle L, Jacq M, Fleurie A, Tourcier G, Galisson F, Vernet T, Grangeasse C, Di Guilmi AM. Interaction of Penicillin-Binding Protein 2x and Ser/Thr protein kinase StkP, two key players in Streptococcus pneumoniae R6 morphogenesis. Mol Microbiol 2013; 90:88-102. [PMID: 23899042 DOI: 10.1111/mmi.12348] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2013] [Indexed: 11/30/2022]
Abstract
Bacterial cell growth and division require the co-ordinated action of peptidoglycan biosynthetic enzymes and cell morphogenesis proteins. However, the regulatory mechanisms that allow generating proper bacterial shape and thus preserving cell integrity remain largely uncharacterized, especially in ovococci. Recently, the conserved eukaryotic-like Ser/Thr protein kinase of Streptococcus pneumoniae (StkP) was demonstrated to play a major role in cell shape and division. Here, we investigate the molecular mechanisms underlying the regulatory function(s) of StkP and show that it involves one of the essential actors of septal peptidoglycan synthesis, Penicillin-Binding Protein 2x (PBP2x). We demonstrate that StkP and PBP2x interact directly and are present in the same membrane-associated complex in S. pneumoniae. We further show that they both display a late-division localization pattern at the division site and that the positioning of PBP2x depends on the presence of the extracellular PASTA domains of StkP. We demonstrate that StkP and PBP2x interaction is mediated by their extracellular regions and that the complex formation is inhibited in vitro in the presence of cell wall fragments. These data suggest that the role of StkP in cell division is modulated by an interaction with PBP2x.
Collapse
Affiliation(s)
- C Morlot
- Univ. Grenoble Alpes, IBS, F-38027, Grenoble, France; CNRS, IBS, F-38027, Grenoble, France; CEA, IBS, Institut de Biologie Structurale, Pneumococcus Group, F-38027, Grenoble, France
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Massidda O, Nováková L, Vollmer W. From models to pathogens: how much have we learned about Streptococcus pneumoniae cell division? Environ Microbiol 2013; 15:3133-57. [PMID: 23848140 DOI: 10.1111/1462-2920.12189] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 06/08/2013] [Accepted: 06/09/2013] [Indexed: 12/22/2022]
Abstract
Streptococcus pneumoniae is an oval-shaped Gram-positive coccus that lives in intimate association with its human host, both as a commensal and pathogen. The seriousness of pneumococcal infections and the spread of multi-drug resistant strains call for new lines of intervention. Bacterial cell division is an attractive target to develop antimicrobial drugs. This review discusses the recent advances in understanding S. pneumoniae growth and division, in comparison with the best studied rod-shaped models, Escherichia coli and Bacillus subtilis. To maintain their shape, these bacteria propagate by peripheral and septal peptidoglycan synthesis, involving proteins that assemble into distinct complexes called the elongasome and the divisome, respectively. Many of these proteins are conserved in S. pneumoniae, supporting the notion that the ovococcal shape is also achieved by rounds of elongation and division. Importantly, S. pneumoniae and close relatives with similar morphology differ in several aspects from the model rods. Overall, the data support a model in which a single large machinery, containing both the peripheral and septal peptidoglycan synthesis complexes, assembles at midcell and governs growth and division. The mechanisms generating the ovococcal or coccal shape in lactic-acid bacteria have likely evolved by gene reduction from a rod-shaped ancestor of the same group.
Collapse
Affiliation(s)
- Orietta Massidda
- Department of Surgical Sciences, University of Cagliari, Via Porcell, 4, 09100, Cagliari, Italy
| | | | | |
Collapse
|
33
|
Wright CJ, Burns LH, Jack AA, Back CR, Dutton LC, Nobbs AH, Lamont RJ, Jenkinson HF. Microbial interactions in building of communities. Mol Oral Microbiol 2013; 28:83-101. [PMID: 23253299 PMCID: PMC3600090 DOI: 10.1111/omi.12012] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2012] [Indexed: 12/31/2022]
Abstract
Establishment of a community is considered to be essential for microbial growth and survival in the human oral cavity. Biofilm communities have increased resilience to physical forces, antimicrobial agents and nutritional variations. Specific cell-to-cell adherence processes, mediated by adhesin-receptor pairings on respective microbial surfaces, are able to direct community development. These interactions co-localize species in mutually beneficial relationships, such as streptococci, veillonellae, Porphyromonas gingivalis and Candida albicans. In transition from the planktonic mode of growth to a biofilm community, microorganisms undergo major transcriptional and proteomic changes. These occur in response to sensing of diffusible signals, such as autoinducer molecules, and to contact with host tissues or other microbial cells. Underpinning many of these processes are intracellular phosphorylation events that regulate a large number of microbial interactions relevant to community formation and development.
Collapse
Affiliation(s)
- Christopher J. Wright
- Department of Oral Health and Systemic Disease, University of Louisville, 570 South Preston Street, Louisville, Kentucky, 40202, USA
| | - Logan H. Burns
- Department of Oral Health and Systemic Disease, University of Louisville, 570 South Preston Street, Louisville, Kentucky, 40202, USA
| | - Alison A. Jack
- School of Oral and Dental Sciences, University of Bristol, Lower Maudlin Street, Bristol BS12LY, UK
| | - Catherine R. Back
- School of Oral and Dental Sciences, University of Bristol, Lower Maudlin Street, Bristol BS12LY, UK
| | - Lindsay C. Dutton
- School of Oral and Dental Sciences, University of Bristol, Lower Maudlin Street, Bristol BS12LY, UK
| | - Angela H. Nobbs
- School of Oral and Dental Sciences, University of Bristol, Lower Maudlin Street, Bristol BS12LY, UK
| | - Richard J. Lamont
- Department of Oral Health and Systemic Disease, University of Louisville, 570 South Preston Street, Louisville, Kentucky, 40202, USA
| | - Howard F. Jenkinson
- School of Oral and Dental Sciences, University of Bristol, Lower Maudlin Street, Bristol BS12LY, UK
| |
Collapse
|
34
|
Fleurie A, Cluzel C, Guiral S, Freton C, Galisson F, Zanella-Cleon I, Di Guilmi AM, Grangeasse C. Mutational dissection of the S/T-kinase StkP reveals crucial roles in cell division of Streptococcus pneumoniae. Mol Microbiol 2012; 83:746-58. [DOI: 10.1111/j.1365-2958.2011.07962.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
35
|
Burnside K, Rajagopal L. Aspects of eukaryotic-like signaling in Gram-positive cocci: a focus on virulence. Future Microbiol 2011; 6:747-61. [PMID: 21797690 DOI: 10.2217/fmb.11.62] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Living organisms adapt to the dynamic external environment for their survival. Environmental adaptation in prokaryotes is thought to be primarily accomplished by signaling events mediated by two-component systems, consisting of histidine kinases and response regulators. However, eukaryotic-like serine/threonine kinases (STKs) have recently been described to regulate growth, antibiotic resistance and virulence of pathogenic bacteria. This article summarizes the role of STKs and their cognate phosphatases (STPs) in Gram-positive cocci that cause invasive infections in humans. Given that a large number of inhibitors to eukaryotic STKs are approved for use in humans, understanding how serine/threonine phosphorylation regulates virulence and antibiotic resistance will be beneficial for the development of novel therapeutic strategies against bacterial infections.
Collapse
Affiliation(s)
- Kellie Burnside
- Department of Pediatric Infectious Diseases, University of Washington & Seattle Children's Hospital Research Institute, 1900 Ninth Avenue, Seattle, WA 98101-1304, USA
| | | |
Collapse
|
36
|
Liu Q, Fan J, Niu C, Wang D, Wang J, Wang X, Villaruz AE, Li M, Otto M, Gao Q. The eukaryotic-type serine/threonine protein kinase Stk is required for biofilm formation and virulence in Staphylococcus epidermidis. PLoS One 2011; 6:e25380. [PMID: 21966513 PMCID: PMC3179523 DOI: 10.1371/journal.pone.0025380] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Accepted: 09/02/2011] [Indexed: 01/15/2023] Open
Abstract
Background Serine/threonine kinases are involved in gene regulation and signal transduction in prokaryotes and eukaryotes. Here, we investigated the role of the serine/threonine kinase Stk in the opportunistic pathogen Staphylococcus epidermidis. Methodology/Principal Findings We constructed an isogenic stk mutant of a biofilm-forming clinical S. epidermidis isolate. Presence of stk was important for biofilm formation in vitro and virulence in a murine subcutaneous foreign body infection model. Furthermore, the stk mutant exhibited phenotypes indicating an impact of stk on metabolic pathways. Using different constructs for the genetic complementation of the stk mutant strain with full-length Stk or specific Stk domains, we determined that the Stk intracellular kinase domain is important for biofilm formation and regulation of purine metabolism. Site-specific inactivation of the Stk kinase domain led to defective biofilm formation, in further support of the notion that the kinase activity of Stk regulates biofilm formation of S. epidermidis. According to immunological detection of the biofilm exopolysaccharide PIA and real-time PCR of the PIA biosynthesis genes, the impact of stk on biofilm formation is mediated, at least in part, by a strong influence on PIA expression. Conclusions Our study identifies Stk as an important regulator of biofilm formation and virulence of S. epidermidis, with additional involvement in purine metabolism and the bacterial stress response.
Collapse
Affiliation(s)
- Qian Liu
- Key Laboratory of Medical Molecular Virology, Institutes of Biomedical Sciences, and Institute of Medical Microbiology, Fudan University, Shanghai, People's Republic of China
| | - Jiajia Fan
- Key Laboratory of Medical Molecular Virology, Institutes of Biomedical Sciences, and Institute of Medical Microbiology, Fudan University, Shanghai, People's Republic of China
| | - Chen Niu
- Key Laboratory of Medical Molecular Virology, Institutes of Biomedical Sciences, and Institute of Medical Microbiology, Fudan University, Shanghai, People's Republic of China
| | - Decheng Wang
- Key Laboratory of Medical Molecular Virology, Institutes of Biomedical Sciences, and Institute of Medical Microbiology, Fudan University, Shanghai, People's Republic of China
| | - Jianping Wang
- Key Laboratory of Medical Molecular Virology, Institutes of Biomedical Sciences, and Institute of Medical Microbiology, Fudan University, Shanghai, People's Republic of China
| | - Xing Wang
- Key Laboratory of Medical Molecular Virology, Institutes of Biomedical Sciences, and Institute of Medical Microbiology, Fudan University, Shanghai, People's Republic of China
| | - Amer E. Villaruz
- National Institute of Allergy and Infectious Diseases, The National Institutes of Health, Bethesda, Maryland, United States of America
| | - Min Li
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Michael Otto
- National Institute of Allergy and Infectious Diseases, The National Institutes of Health, Bethesda, Maryland, United States of America
| | - Qian Gao
- Key Laboratory of Medical Molecular Virology, Institutes of Biomedical Sciences, and Institute of Medical Microbiology, Fudan University, Shanghai, People's Republic of China
- * E-mail:
| |
Collapse
|
37
|
Goldová J, Ulrych A, Hercík K, Branny P. A eukaryotic-type signalling system of Pseudomonas aeruginosa contributes to oxidative stress resistance, intracellular survival and virulence. BMC Genomics 2011; 12:437. [PMID: 21880152 PMCID: PMC3224232 DOI: 10.1186/1471-2164-12-437] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 08/31/2011] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The genome of Pseudomonas aeruginosa contains at least three genes encoding eukaryotic-type Ser/Thr protein kinases, one of which, ppkA, has been implicated in P. aeruginosa virulence. Together with the adjacent pppA phosphatase gene, they belong to the type VI secretion system (H1-T6SS) locus, which is important for bacterial pathogenesis. To determine the biological function of this protein pair, we prepared a pppA-ppkA double mutant and characterised its phenotype and transcriptomic profiles. RESULTS Phenotypic studies revealed that the mutant grew slower than the wild-type strain in minimal media and exhibited reduced secretion of pyoverdine. In addition, the mutant had altered sensitivity to oxidative and hyperosmotic stress conditions. Consequently, mutant cells had an impaired ability to survive in murine macrophages and an attenuated virulence in the plant model of infection. Whole-genome transcriptome analysis revealed that pppA-ppkA deletion affects the expression of oxidative stress-responsive genes, stationary phase σ-factor RpoS-regulated genes, and quorum-sensing regulons. The transcriptome of the pppA-ppkA mutant was also analysed under conditions of oxidative stress and showed an impaired response to the stress, manifested by a weaker induction of stress adaptation genes as well as the genes of the SOS regulon. In addition, expression of either RpoS-regulated genes or quorum-sensing-dependent genes was also affected. Complementation analysis confirmed that the transcription levels of the differentially expressed genes were specifically restored when the pppA and ppkA genes were expressed ectopically. CONCLUSIONS Our results suggest that in addition to its crucial role in controlling the activity of P. aeruginosa H1-T6SS at the post-translational level, the PppA-PpkA pair also affects the transcription of stress-responsive genes. Based on these data, it is likely that the reduced virulence of the mutant strain results from an impaired ability to survive in the host due to the limited response to stress conditions.
Collapse
Affiliation(s)
- Jana Goldová
- Cell and Molecular Microbiology Division, Institute of Microbiology of the ASCR, v.v.i., Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Aleš Ulrych
- Cell and Molecular Microbiology Division, Institute of Microbiology of the ASCR, v.v.i., Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Kamil Hercík
- Cell and Molecular Microbiology Division, Institute of Microbiology of the ASCR, v.v.i., Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20 Prague 4, Czech Republic
- Laboratory of Molecular Genetics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Pavel Branny
- Cell and Molecular Microbiology Division, Institute of Microbiology of the ASCR, v.v.i., Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| |
Collapse
|
38
|
The biofilm inhibitor carolacton disturbs membrane integrity and cell division of Streptococcus mutans through the serine/threonine protein kinase PknB. J Bacteriol 2011; 193:5692-706. [PMID: 21840978 DOI: 10.1128/jb.05424-11] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Carolacton, a secondary metabolite isolated from the myxobacterium Sorangium cellulosum, disturbs Streptococcus mutans biofilm viability at nanomolar concentrations. Here we show that carolacton causes leakage of cytoplasmic content (DNA and proteins) in growing cells at low pH and provide quantitative data on the membrane damage. Furthermore, we demonstrate that the biofilm-specific activity of carolacton is due to the strong acidification occurring during biofilm growth. The chemical conversion of the ketocarbonic function of the molecule to a carolacton methylester did not impact its activity, indicating that carolacton is not functionally activated at low pH by a change of its net charge. A comparative time series microarray analysis identified the VicKRX and ComDE two-component signal transduction systems and genes involved in cell wall metabolism as playing essential roles in the response to carolacton treatment. A sensitivity testing of mutants with deletions of all 13 viable histidine kinases and the serine/threonine protein kinase PknB of S. mutans identified only the ΔpknB deletion mutant as being insensitive to carolacton treatment. A strong overlap between the regulon of PknB in S. mutans and the genes affected by carolacton treatment was found. The data suggest that carolacton acts by interfering with PknB-mediated signaling in growing cells. The resulting altered cell wall morphology causes membrane damage and cell death at low pH.
Collapse
|
39
|
Abstract
Genomic studies have revealed the presence of Ser/Thr kinases and phosphatases in many bacterial species, although their physiological roles have largely been unclear. Here we review bacterial Ser/Thr kinases (eSTKs) that show homology in their catalytic domains to eukaryotic Ser/Thr kinases and their partner phosphatases (eSTPs) that are homologous to eukaryotic phosphatases. We first discuss insights into the enzymatic mechanism of eSTK activation derived from structural studies on both the ligand-binding and catalytic domains. We then turn our attention to the identified substrates of eSTKs and eSTPs for a number of species and to the implications of these findings for understanding their physiological roles in these organisms.
Collapse
|
40
|
Liang C, Zhang X, Chi X, Guan X, Li Y, Qin S, Shao HB. Serine/threonine protein kinase SpkG is a candidate for high salt resistance in the unicellular cyanobacterium Synechocystis sp. PCC 6803. PLoS One 2011; 6:e18718. [PMID: 21637338 PMCID: PMC3102658 DOI: 10.1371/journal.pone.0018718] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 03/08/2011] [Indexed: 11/20/2022] Open
Abstract
Background Seven serine/threonine kinase genes have been predicted in unicellular cyanobacterium Synechocystis sp. PCC6803. SpkA and SpkB were shown to be required for cell motility and SpkE has no kinase activity. There is no report whether the other four STKs are involved in stress-mediated signaling in Synechocystis PCC6803. Methodology/Principal Findings In this paper, we examined differential expression of the other four serine/threonine kinases, SpkC, SpkD, SpkF and SpkG, at seven different stress conditions. The transcriptional level was up-regulated of spkG and down-regulated of spkC under high salt stress condition. Two spk deletion mutants, ΔspkC and ΔspkG, were constructed and their growth characteristic were examined compared to the wild strain. The wild strain and ΔspkC mutant were not affected under high salt stress conditions. In contrast, growth of spkG mutant was completely impaired. To further confirm the function of spkG, we also examined the effect of mutation of spkG on the expression of salt stress-inducible genes. We compared genome-wide patterns of transcription between wild-type Synechocystis sp. PCC6803 and cells with a mutation in the SpkG with DNA microarray analysis. Conclusion In this study, we first study the spkG gene as sensor of high salt signal. We consider that SpkG play essential roles in Synechocystis sp. for sensing the high salt signal directly, rather than mediating signals among other kinases. Our microarray experiment may help select relatively significant genes for further research on mechanisms of signal transduction of Synechocystis sp. PCC6803 under high salt stress.
Collapse
Affiliation(s)
- Chengwei Liang
- Qingdao University of Science and Technology, Qingdao, China
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Xiaowen Zhang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Xiaoyuan Chi
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | | | - Youxun Li
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Song Qin
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- * E-mail:
| | - Hong bo Shao
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| |
Collapse
|
41
|
Comparative proteogenomic analysis of the Leptospira interrogans virulence-attenuated strain IPAV against the pathogenic strain 56601. Cell Res 2011; 21:1210-29. [PMID: 21423275 DOI: 10.1038/cr.2011.46] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The virulence-attenuated Leptospira interrogans serovar Lai strain IPAV was derived by prolonged laboratory passage from a highly virulent ancestral strain isolated in China. We studied the genetic variations of IPAV that render it avirulent via comparative analysis against the pathogenic L. interrogans serovar Lai strain 56601. The complete genome sequence of the IPAV strain was determined and used to compare with, and then rectify and reannotate the genome sequence of strain 56601. Aside from their highly similar genomic structure and gene order, a total of 33 insertions, 53 deletions and 301 single-nucleotide variations (SNVs) were detected throughout the genome of IPAV directly affecting 101 genes, either in their 5' upstream region or within their coding region. Among them, the majority of the 44 functional genes are involved in signal transduction, stress response, transmembrane transport and nitrogen metabolism. Comparative proteomic analysis based on quantitative liquid chromatography (LC)-MS/MS data revealed that among 1 627 selected pairs of orthologs, 174 genes in the IPAV strain were upregulated, with enrichment mainly in classes of energy production and lipid metabolism. In contrast, 228 genes in strain 56601 were upregulated, with the majority enriched in the categories of protein translation and DNA replication/repair. The combination of genomic and proteomic approaches illustrated that altered expression or mutations in critical genes, such as those encoding a Ser/Thr kinase, carbon-starvation protein CstA, glutamine synthetase, GTP-binding protein BipA, ribonucleotide-diphosphate reductase and phosphate transporter, and alterations in the translational profile of lipoproteins or outer membrane proteins are likely to account for the virulence attenuation in strain IPAV.
Collapse
|
42
|
Autoregulatory characteristics of a Bacillus anthracis serine/threonine kinase. J Bacteriol 2011; 193:1833-42. [PMID: 21296958 DOI: 10.1128/jb.01401-10] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BA-Stk1 is a serine/threonine kinase (STK) expressed by Bacillus anthracis. In previous studies, we found that BA-Stk1 activity is modulated through dephosphorylation by a partner phosphatase, BA-Stp1. In this study, we identified critical phosphorylation regions of BA-Stk1 and determined the contributions of these phosphodomains to autophosphorylation and substrate phosphorylation. The data indicate that BA-Stk1 undergoes trans-autophosphorylation within a regulatory domain, referred to as the activation loop, which carries eight putative regulatory serine and threonine residues. We identified activation loop mutants that impacted kinase activity in three different manners: regulation of autophosphorylation (T162), regulation of substrate phosphorylation (T159 and S169), and regulation of overall kinase activity (T163). Tandem mass spectrometry (MS/MS) analysis of the phosphorylation profile of each mutant revealed a second site of phosphorylation on the kinase that was influenced by the phosphorylation status of the activation loop. This second region of the kinase contained a single phosphorylation residue, S214. Previous work has shown S214 to be necessary for downstream substrate phosphorylation, and we have shown that this residue is subject to dephosphorylation by BA-Stp1. These findings indicate a connection between the phosphorylation status of the activation loop and phosphorylation of S214, and this suggests a previously undescribed model for how a bacterial STK shifts from a state of autophosphorylation to targeting downstream substrates.
Collapse
|
43
|
General and molecular microbiology and microbial genetics in the IM CAS. J Ind Microbiol Biotechnol 2010; 37:1227-39. [DOI: 10.1007/s10295-010-0859-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Accepted: 08/20/2010] [Indexed: 11/28/2022]
|
44
|
Tagourti J, Gautier V, Beaujouan JC, Gauchy C, Landoulsi A, Richarme G. Phosphorylation of a 65 kDa cytoplasmic protein by the Escherichia coli YeaG kinase. ANN MICROBIOL 2010. [DOI: 10.1007/s13213-010-0164-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
45
|
Barthe P, Mukamolova GV, Roumestand C, Cohen-Gonsaud M. The structure of PknB extracellular PASTA domain from mycobacterium tuberculosis suggests a ligand-dependent kinase activation. Structure 2010; 18:606-15. [PMID: 20462494 DOI: 10.1016/j.str.2010.02.013] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 02/10/2010] [Accepted: 02/17/2010] [Indexed: 10/19/2022]
Abstract
PknB is a transmembrane Ser/Thr protein kinase that defines and belongs to an ultraconserved kinase subfamily found in Gram-positive bacteria. Essential for Mycobacterium tuberculosis growth, its close homolog in Bacillus subtilis has been linked to exit from dormancy. The kinase possesses an extracellular region composed of a repetition of PASTA domains, believed to bind peptidoglycan fragments that might act as a signaling molecule. We report here the first solution structure of this extracellular region. Small-angle X-ray scattering and nuclear magnetic resonance studies show that the four PASTA domains display an unexpected linear organization, contrary to what is observed in the distant protein PBP2x from Streptococccus pneumoniae where two PASTA domains fold over in a compact structure. We propose a model for PknB activation based on a ligand-dependent dimerization of the extracellular PASTA domains that initiates multiple signaling pathways.
Collapse
Affiliation(s)
- Philippe Barthe
- Centre National de la Recherche Scientifique UMR 5048, Centre de Biochimie Structurale, 29 rue de Navacelles, 34090 Montpellier, France
| | | | | | | |
Collapse
|
46
|
Role of Porphyromonas gingivalis phosphoserine phosphatase enzyme SerB in inflammation, immune response, and induction of alveolar bone resorption in rats. Infect Immun 2010; 78:4560-9. [PMID: 20805334 DOI: 10.1128/iai.00703-10] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Porphyromonas gingivalis secretes a serine phosphatase enzyme, SerB, upon contact with gingival epithelial cells in vitro. The SerB protein plays a critical role in internalization and survival of the organism in epithelial cells. SerB is also responsible for the inhibition of interleukin-8 (IL-8) secretion from gingival epithelial cells infected with P. gingivalis. This study examined the ability of a P. gingivalis SerB mutant to colonize the oral cavity and induce gingival inflammation, immune responses, and alveolar bone resorption in a rat model of periodontal disease. Both P. gingivalis ATCC 33277 and an isogenic ΔSerB mutant colonized the oral cavities of rats during the 12-week experimental period. Both of the strains induced significant (P < 0.05) systemic levels of immunoglobulin G (IgG) and isotypes IgG1, IgG2a, and IgG2b, indicating the involvement of both T helper type 1 (Th1) and Th2 responses to infection. Both strains induced significantly (P < 0.05) higher levels of alveolar bone resorption in infected rats than in sham-infected control rats. However, horizontal and interproximal alveolar bone resorption induced by the SerB mutant was significantly (P < 0.05) lower than that induced by the parental strain. Rats infected with the ΔSerB mutant exhibited significantly higher levels of apical migration of the junctional epithelium (P < 0.01) and polymorphonuclear neutrophil (PMN) recruitment (P < 0.001) into the gingival tissues than rats infected with the wild type. In conclusion, in a rat model of periodontal disease, the SerB phosphatase of P. gingivalis is required for maximal alveolar bone resorption, and in the absence of SerB, more PMNs are recruited into the gingival tissues.
Collapse
|
47
|
Identification of multiple substrates of the StkP Ser/Thr protein kinase in Streptococcus pneumoniae. J Bacteriol 2010; 192:3629-38. [PMID: 20453092 DOI: 10.1128/jb.01564-09] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Monitoring the external environment and responding to its changes are essential for the survival of all living organisms. The transmission of extracellular signals in prokaryotes is mediated mainly by two-component systems. In addition, genomic analyses have revealed that many bacteria contain eukaryotic-type Ser/Thr protein kinases. The human pathogen Streptococcus pneumoniae encodes 13 two-component systems and has a single copy of a eukaryotic-like Ser/Thr protein kinase gene designated stkP. Previous studies demonstrated the pleiotropic role of the transmembrane protein kinase StkP in pneumococcal physiology. StkP regulates virulence, competence, and stress resistance and plays a role in the regulation of gene expression. To determine the intracellular signaling pathways controlled by StkP, we used a proteomic approach for identification of its substrates. We detected six proteins phosphorylated on threonine by StkP continuously during growth. We identified three new substrates of StkP: the Mn-dependent inorganic pyrophosphatase PpaC, the hypothetical protein spr0334, and the cell division protein DivIVA. Contrary to the results of a previous study, we did not confirm that the alpha-subunit of RNA polymerase is a target of StkP. We showed that StkP activation and substrate recognition depend on the presence of a peptidoglycan-binding domain comprising four extracellular penicillin-binding protein- and Ser/Thr kinase-associated domain (PASTA domain) repeats. We found that StkP is regulated in a growth-dependent manner and likely senses intracellular peptidoglycan subunits present in the cell division septa. In addition, stkP inactivation results in cell division defects. Thus, the data presented here suggest that StkP plays an important role in the regulation of cell division in pneumococcus.
Collapse
|
48
|
Zhu L, Kreth J. Role of Streptococcus mutans eukaryotic-type serine/threonine protein kinase in interspecies interactions with Streptococcus sanguinis. Arch Oral Biol 2010; 55:385-90. [PMID: 20381010 DOI: 10.1016/j.archoralbio.2010.03.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 03/11/2010] [Accepted: 03/12/2010] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Interspecies interactions of oral streptococci involve the production and excretion of antimicrobial compounds to compete successfully during colonization. Bacteriocin production by Streptococcus mutans and hydrogen peroxide (H2O2) production by Streptococcus sanguinis have been demonstrated as crucial for the clinical relevant antagonism between both species. A potential target of H2O2 is the cell-envelop of S. mutans. In the present study, the role of cell-envelop associated eukaryotic serine/threonine protein kinase (STPK) in S. mutans during interspecies competition has been investigated. DESIGN Allelic replacement via homologous recombination of the STPK encoding gene with a kanamycin resistant determinant has been constructed. The mutant has been screened for the susceptibility towards cell-envelope stress. A previously developed spotting assay was used to simulate interspecies competition. RESULTS The STPK(-) mutant showed an increased susceptibility towards envelop stress caused by H2O2 and was significantly more inhibited during interspecies competition assays. CONCLUSIONS S. mutans is able to sense antimicrobial compounds excreted by competing species and can potentially adjust the cell-envelop towards an increased resistance.
Collapse
Affiliation(s)
- Lin Zhu
- College of Dentistry, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | |
Collapse
|
49
|
The Streptococcus mutans serine/threonine kinase, PknB, regulates competence development, bacteriocin production, and cell wall metabolism. Infect Immun 2010; 78:2209-20. [PMID: 20231406 DOI: 10.1128/iai.01167-09] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteria can detect, transmit, and react to signals from the outside world by using two-component systems (TCS) and serine-threonine kinases and phosphatases. Streptococcus mutans contains one serine-threonine kinase, encoded by pknB. A gene encoding a serine-threonine phosphatase, pppL, is located upstream of pknB. In this study, the phenotypes of pknB and pppL single mutants and a pknB pppL double mutant were characterized. All mutants exhibited a reduction in genetic transformability and biofilm formation, showed abnormal cell shapes, grew slower than the wild-type strain in several complex media, and exhibited reduced acid tolerance. The mutants had reduced cariogenic capacity but no significant defects in colonization in a rat caries model. Whole-genome transcriptome analysis revealed that a pknB mutant showed reduced expression of genes involved in bacteriocin production and genetic competence. Among the genes that were differentially regulated in the pknB mutant, several were likely to be involved in cell wall metabolism. One such gene, SMU.2146c, and two genes encoding bacteriocins were shown to also be downregulated in a vicK mutant, which encodes a sensor kinase involved in the response to oxidative stress. Collectively, the results lead us to speculate that PknB may modulate the activity of the two-component signal transduction systems VicKR and ComDE. Real-time reverse transcriptase PCR (RT-PCR) showed that genes downregulated in the pknB mutant were upregulated in the pppL mutant, indicating that PppL serves to counteract PknB.
Collapse
|
50
|
Ohlsen K, Donat S. The impact of serine/threonine phosphorylation in Staphylococcus aureus. Int J Med Microbiol 2010; 300:137-41. [DOI: 10.1016/j.ijmm.2009.08.016] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|