1
|
Mesas Vaz C, Guembe Mülberger A, Torrent Burgas M. The battle within: how Pseudomonas aeruginosa uses host-pathogen interactions to infect the human lung. Crit Rev Microbiol 2024:1-36. [PMID: 39381985 DOI: 10.1080/1040841x.2024.2407378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 08/11/2024] [Accepted: 09/17/2024] [Indexed: 10/10/2024]
Abstract
Pseudomonas aeruginosa is a versatile Gram-negative pathogen known for its ability to invade the respiratory tract, particularly in cystic fibrosis patients. This review provides a comprehensive analysis of the multifaceted strategies for colonization, virulence, and immune evasion used by P. aeruginosa to infect the host. We explore the extensive protein arsenal of P. aeruginosa, including adhesins, exotoxins, secreted proteases, and type III and VI secretion effectors, detailing their roles in the infective process. We also address the unique challenge of treating diverse lung conditions that provide a natural niche for P. aeruginosa on the airway surface, with a particular focus in cystic fibrosis. The review also discusses the current limitations in treatment options due to antibiotic resistance and highlights promising future approaches that target host-pathogen protein-protein interactions. These approaches include the development of new antimicrobials, anti-attachment therapies, and quorum-sensing inhibition molecules. In summary, this review aims to provide a holistic understanding of the pathogenesis of P. aeruginosa in the respiratory system, offering insights into the underlying molecular mechanisms and potential therapeutic interventions.
Collapse
Affiliation(s)
- Carmen Mesas Vaz
- The Systems Biology of Infection Lab, Department of Biochemistry and Molecular Biology, Biosciences Faculty, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Alba Guembe Mülberger
- The Systems Biology of Infection Lab, Department of Biochemistry and Molecular Biology, Biosciences Faculty, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Marc Torrent Burgas
- The Systems Biology of Infection Lab, Department of Biochemistry and Molecular Biology, Biosciences Faculty, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| |
Collapse
|
2
|
Pachaiappan R, Rajamuthu TP, Sarkar A, Natrajan P, Krishnan N, Sakthivelu M, Velusamy P, Ramasamy P, Gopinath SC. N-acyl-homoserine lactone mediated virulence factor(s) of Pseudomonas aeruginosa inhibited by flavonoids and isoflavonoids. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.02.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
3
|
Kuang Z, Bennett RC, Lin J, Hao Y, Zhu L, Akinbi HT, Lau GW. Surfactant phospholipids act as molecular switches for premature induction of quorum sensing-dependent virulence in Pseudomonas aeruginosa. Virulence 2021; 11:1090-1107. [PMID: 32842850 PMCID: PMC7549932 DOI: 10.1080/21505594.2020.1809327] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The virulence behaviors of many Gram-negative bacterial pathogens are governed by quorum-sensing (QS), a hierarchical system of gene regulation that relies on population density by producing and detecting extracellular signaling molecules. Although extensively studied under in vitro conditions, adaptation of QS system to physiologically relevant host environment is not fully understood. In this study, we investigated the influence of lung environment on the regulation of Pseudomonas aeruginosa virulence factors by QS in a mouse model of acute pneumonia. When cultured under laboratory conditions in lysogeny broth, wild-type P. aeruginosa strain PAO1 began to express QS-regulated virulence factors elastase B (LasB) and rhamnolipids (RhlA) during transition from late-exponential into stationary growth phase. In contrast, during acute pneumonia as well as when cultured in mouse bronchial alveolar lavage fluids (BALF), exponential phase PAO1 bacteria at low population density prematurely expressed QS regulatory genes lasI-lasR and rhlI-rhlR and their downstream virulence genes lasB and rhlA. Further analysis indicated that surfactant phospholipids were the primary components within BALF that induced the synthesis of N-(3-oxododecanoyl)-L-homoserine lactone (C12-HSL), which triggered premature expression of LasB and RhlA. Both phenol extraction and phospholipase A2 digestion abolished the ability of mouse BALF to promote LasB and RhlA expression. In contrast, provision of the major surfactant phospholipid dipalmitoylphosphatidylcholine (DPPC) restored the expression of both virulence factors. Collectively, our study demonstrates P. aeruginosa modulates its QS to coordinate the expression of virulence factors during acute pneumonia by recognizing pulmonary surfactant phospholipids.
Collapse
Affiliation(s)
- Zhizhou Kuang
- Department of Pathobiology, University of Illinois at Urbana-Champaign , Urbana, IL, USA
| | - Richard C Bennett
- Department of Pathobiology, University of Illinois at Urbana-Champaign , Urbana, IL, USA
| | - Jingjun Lin
- Department of Pathobiology, University of Illinois at Urbana-Champaign , Urbana, IL, USA
| | - Yonghua Hao
- Department of Pathobiology, University of Illinois at Urbana-Champaign , Urbana, IL, USA
| | - Luchang Zhu
- Department of Pathobiology, University of Illinois at Urbana-Champaign , Urbana, IL, USA
| | - Henry T Akinbi
- Division of Pulmonary Medicine, Cincinnati Children Hospital , Cincinnati, OH, USA
| | - Gee W Lau
- Department of Pathobiology, University of Illinois at Urbana-Champaign , Urbana, IL, USA
| |
Collapse
|
4
|
Pseudomonas aeruginosa elastase (LasB) as a therapeutic target. Drug Discov Today 2021; 26:2108-2123. [PMID: 33676022 DOI: 10.1016/j.drudis.2021.02.026] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/03/2021] [Accepted: 02/17/2021] [Indexed: 02/08/2023]
Abstract
Why is P. aeruginosa LasB elastase an attractive target for antivirulence therapy and what is the state-of-the art in LasB inhibitor design and development?
Collapse
|
5
|
Identification of a Novel Elastin-Degrading Enzyme from the Fish Pathogen Flavobacterium psychrophilum. Appl Environ Microbiol 2019; 85:AEM.02535-18. [PMID: 30635380 PMCID: PMC6414381 DOI: 10.1128/aem.02535-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 12/21/2018] [Indexed: 11/20/2022] Open
Abstract
Elastin is an important proteinaceous component of vertebrate connective tissues (e.g., blood vessels, lung, and skin), to which it confers elasticity. Elastases have been identified in a number of pathogenic bacteria. They are thought to be required for tissue penetration and dissemination, acting as “spreading factors.” Flavobacterium psychrophilum is a devastating bacterial pathogen of salmonid fish (salmon and trout) that is responsible for severe economic losses worldwide. This pathogen displays strong proteolytic activities. Using a variety of techniques, including genome comparisons, we identified a gene encoding a novel elastase in F. psychrophilum. The encoded protein is predicted to be a cell-surface-exposed lipoprotein with no homology to previously reported elastases. In addition, this elastase likely belongs to a new family of proteases that seems to be present only in some members of this important group of bacteria. Hydrolytic extracellular enzymes degrading host tissues potentially play a role in bacterial pathogenesis. Flavobacterium psychrophilum is an important bacterial pathogen of salmonid fish reared in freshwater throughout the world. Diversity among isolates has been described at the phenotypic, serological, and genomic levels, but the links between these various traits remain poorly understood. Using a genome-wide association study, we identified a gene encoding a novel elastinolytic enzyme in F. psychrophilum. To formally demonstrate enzymatic activity, this gene (FP0506 from strain JIP 02/86) was expressed in the elastinolysis-deficient strain OSU THCO2-90, resulting in proficient elastin-degrading cells. The encoded protein is predicted to be a cell-surface-exposed lipoprotein with no homology to previously reported elastases. FP0506 might belong to the zincin tribe and gluzincin clan of metalloproteases, and this new elastase-encoding gene seems to be present only in some members of the family Flavobacteriaceae. IMPORTANCE Elastin is an important proteinaceous component of vertebrate connective tissues (e.g., blood vessels, lung, and skin), to which it confers elasticity. Elastases have been identified in a number of pathogenic bacteria. They are thought to be required for tissue penetration and dissemination, acting as “spreading factors.” Flavobacterium psychrophilum is a devastating bacterial pathogen of salmonid fish (salmon and trout) that is responsible for severe economic losses worldwide. This pathogen displays strong proteolytic activities. Using a variety of techniques, including genome comparisons, we identified a gene encoding a novel elastase in F. psychrophilum. The encoded protein is predicted to be a cell-surface-exposed lipoprotein with no homology to previously reported elastases. In addition, this elastase likely belongs to a new family of proteases that seems to be present only in some members of this important group of bacteria.
Collapse
|
6
|
Chen X, Liu J, Zhu M, Hu B, Bai F, Jin W, Zhou J, Chen C, Song Y, Pan J. Progranulin is a novel biomarker for predicting an acute exacerbation of chronic obstructive pulmonary disease. CLINICAL RESPIRATORY JOURNAL 2018; 12:2525-2533. [PMID: 30099848 DOI: 10.1111/crj.12952] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 05/14/2018] [Accepted: 07/30/2018] [Indexed: 01/13/2023]
Abstract
BACKGROUND Progranulin is a pleiotropic glycosylated protein precursor that plays an important role in inflammation. Limited data exist regarding the role of progranulin in the acute exacerbation of chronic obstructive pulmonary disease (AECOPD). OBJECTIVES The study is to assess the efficiency of progranulin as a circulating biomarker of AECOPD. METHODS The plasma progranulin levels were measured and compared in patients with AECOPD (n = 52), patients with stable COPD (n = 56), and healthy controls (n = 36). In patients with AECOPD, plasma progranulin levels were measured repeatedly on the last day of hospitalization. Demographical data, pulmonary function, and laboratory parameters were recorded. RESULTS Patients with AECOPD had higher plasma progranulin levels than both stable COPD patients and healthy controls (158.77 ± 48.17, 109.00 ± 25.05, 93.67 ± 14.71 ng/mL, respectively; P < .001). In patients with AECOPD, the plasma progranulin levels significantly decreased on the last day of hospitalization compared with those on the first day of hospitalization (138.51 ± 44.68 vs. 158.77 ± 48.17 ng/mL, P = .042). The progranulin levels were negatively correlated to FEV1%pred but positively correlated to neutrophil-to-lymphocyte ratio and C-reactive protein in all patients with COPD. Multivariate logistic regression and ROC analysis revealed progranulin (odds ratio 1.05, 95% confidence interval 1.03-1.08, P < .001) as an independent predictor of AECOPD, with an area under the curve of 0.82. CONCLUSIONS Progranulin may be a valuable blood biomarker of AECOPD and progranulin may be involved in the pathogenesis of AECOPD by disturbing inflammatory responses.
Collapse
Affiliation(s)
- Xiaoyan Chen
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University and Shanghai Respiratory Research Institute, Shanghai, P.R. China
| | - Jinguo Liu
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University and Shanghai Respiratory Research Institute, Shanghai, P.R. China
| | - Mengchan Zhu
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University and Shanghai Respiratory Research Institute, Shanghai, P.R. China
| | - Bijie Hu
- Department of Infectious Diseases, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Fengxi Bai
- Department of Pulmonary Medicine, Henan Provincial Chest Hospital, He Nan, P.R. China
| | - Wenting Jin
- Department of Infectious Diseases, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Jian Zhou
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University and Shanghai Respiratory Research Institute, Shanghai, P.R. China
| | - Cuicui Chen
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University and Shanghai Respiratory Research Institute, Shanghai, P.R. China
| | - Yuanlin Song
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University and Shanghai Respiratory Research Institute, Shanghai, P.R. China
| | - Jue Pan
- Department of Infectious Diseases, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| |
Collapse
|
7
|
Cheating on Cheaters Stabilizes Cooperation in Pseudomonas aeruginosa. Curr Biol 2018; 28:2070-2080.e6. [DOI: 10.1016/j.cub.2018.04.093] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/27/2018] [Accepted: 04/27/2018] [Indexed: 01/07/2023]
|
8
|
Kany AM, Sikandar A, Haupenthal J, Yahiaoui S, Maurer CK, Proschak E, Köhnke J, Hartmann RW. Binding Mode Characterization and Early in Vivo Evaluation of Fragment-Like Thiols as Inhibitors of the Virulence Factor LasB from Pseudomonas aeruginosa. ACS Infect Dis 2018; 4:988-997. [PMID: 29485268 DOI: 10.1021/acsinfecdis.8b00010] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The increasing emergence of antibiotic resistance necessitates the development of anti-infectives with novel modes of action. Targeting bacterial virulence is considered a promising approach to develop novel antibiotics with reduced selection pressure. The extracellular collagenase elastase (LasB) plays a pivotal role in the infection process of Pseudomonas aeruginosa and therefore represents an attractive antivirulence target. Mercaptoacetamide-based thiols have been reported to inhibit LasB as well as collagenases from clostridia and bacillus species. The present work provides an insight into the structure-activity relationship (SAR) of these fragment-like LasB inhibitors, demonstrating an inverse activity profile compared to similar inhibitors of clostridial collagenase H (ColH). An X-ray cocrystal structure is presented, revealing distinct binding of two compounds to the active site of LasB, which unexpectedly maintains an open conformation. We further demonstrate in vivo efficacy in a Galleria mellonella infection model and high selectivity of the LasB inhibitors toward human matrix metalloproteinases (MMPs).
Collapse
Affiliation(s)
- Andreas M. Kany
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus E8.1, 66123, Saarbrücken, Germany
| | - Asfandyar Sikandar
- Workgroup Structural Biology of Biosynthetic Enzymes, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus E8.1, 66123, Saarbrücken, Germany
| | - Jörg Haupenthal
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus E8.1, 66123, Saarbrücken, Germany
| | - Samir Yahiaoui
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus E8.1, 66123, Saarbrücken, Germany
| | - Christine K. Maurer
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus E8.1, 66123, Saarbrücken, Germany
| | - Ewgenij Proschak
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt, Germany
| | - Jesko Köhnke
- Workgroup Structural Biology of Biosynthetic Enzymes, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus E8.1, 66123, Saarbrücken, Germany
| | - Rolf W. Hartmann
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus E8.1, 66123, Saarbrücken, Germany
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus E8.1, 66123, Saarbrücken, Germany
| |
Collapse
|
9
|
Rahman MT, Karim MM. Metallothionein: a Potential Link in the Regulation of Zinc in Nutritional Immunity. Biol Trace Elem Res 2018; 182:1-13. [PMID: 28585004 DOI: 10.1007/s12011-017-1061-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 05/22/2017] [Indexed: 01/03/2023]
Abstract
Nutritional immunity describes mechanisms for withholding essential transition metals as well as directing the toxicity of these metals against infectious agents. Zinc is one of these transition elements that are essential for both humans and microbial pathogens. At the same time, Zn can be toxic both for man and microbes if its concentration is higher than the tolerance limit. Therefore a "delicate" balance of Zn must be maintained to keep the immune cells surveilling while making the level of Zn either to starve or to intoxicate the pathogens. On the other hand, the invading pathogens will exploit the host Zn pool for its survival and replication. Apparently, different sets of protein in human and bacteria are involved to maintain their Zn need. Metallothionein (MT)-a group of low molecular weight proteins, is well known for its Zn-binding ability and is expected to play an important role in that Zn balance at the time of active infection. However, the differences in structural, functional, and molecular control of biosynthesis between human and bacterial MT might play an important role to determine the proper use of Zn and the winning side. The current review explains the possible involvement of human and bacterial MT at the time of infection to control and exploit Zn for their need.
Collapse
|
10
|
Maintenance of Microbial Cooperation Mediated by Public Goods in Single- and Multiple-Trait Scenarios. J Bacteriol 2017; 199:JB.00297-17. [PMID: 28847922 DOI: 10.1128/jb.00297-17] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Microbes often form densely populated communities, which favor competitive and cooperative interactions. Cooperation among bacteria often occurs through the production of metabolically costly molecules produced by certain individuals that become available to other neighboring individuals; such molecules are called public goods. This type of cooperation is susceptible to exploitation, since nonproducers of a public good can benefit from it while saving the cost of its production (cheating), gaining a fitness advantage over producers (cooperators). Thus, in mixed cultures, cheaters can increase in frequency in the population, relative to cooperators. Sometimes, and as predicted by simple game-theoretic arguments, such increases in the frequency of cheaters cause loss of the cooperative traits by exhaustion of the public goods, eventually leading to a collapse of the entire population. In other cases, however, both cooperators and cheaters remain in coexistence. This raises the question of how cooperation is maintained in microbial populations. Several strategies to prevent cheating have been studied in the context of a single trait and a unique environmental constraint. In this review, we describe current knowledge on the evolutionary stability of microbial cooperation and discuss recent discoveries describing the mechanisms operating in multiple-trait and multiple-constraint settings. We conclude with a consideration of the consequences of these complex interactions, and we briefly discuss the potential role of social interactions involving multiple traits and multiple environmental constraints in the evolution of specialization and division of labor in microbes.
Collapse
|
11
|
Silva LN, Zimmer KR, Macedo AJ, Trentin DS. Plant Natural Products Targeting Bacterial Virulence Factors. Chem Rev 2016; 116:9162-236. [PMID: 27437994 DOI: 10.1021/acs.chemrev.6b00184] [Citation(s) in RCA: 263] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Decreased antimicrobial efficiency has become a global public health issue. The paucity of new antibacterial drugs is evident, and the arsenal against infectious diseases needs to be improved urgently. The selection of plants as a source of prototype compounds is appropriate, since plant species naturally produce a wide range of secondary metabolites that act as a chemical line of defense against microorganisms in the environment. Although traditional approaches to combat microbial infections remain effective, targeting microbial virulence rather than survival seems to be an exciting strategy, since the modulation of virulence factors might lead to a milder evolutionary pressure for the development of resistance. Additionally, anti-infective chemotherapies may be successfully achieved by combining antivirulence and conventional antimicrobials, extending the lifespan of these drugs. This review presents an updated discussion of natural compounds isolated from plants with chemically characterized structures and activity against the major bacterial virulence factors: quorum sensing, bacterial biofilms, bacterial motility, bacterial toxins, bacterial pigments, bacterial enzymes, and bacterial surfactants. Moreover, a critical analysis of the most promising virulence factors is presented, highlighting their potential as targets to attenuate bacterial virulence. The ongoing progress in the field of antivirulence therapy may therefore help to translate this promising concept into real intervention strategies in clinical areas.
Collapse
Affiliation(s)
- Laura Nunes Silva
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul , Porto Alegre, Rio Grande do Sul 90610-000, Brazil.,Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul , Porto Alegre, Rio Grande do Sul 91501-970, Brazil
| | - Karine Rigon Zimmer
- Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre , Porto Alegre, Rio Grande do Sul 90050-170, Brazil
| | - Alexandre José Macedo
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul , Porto Alegre, Rio Grande do Sul 90610-000, Brazil.,Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul , Porto Alegre, Rio Grande do Sul 91501-970, Brazil.,Instituto Nacional do Semiárido , Campina Grande, Paraı́ba 58429-970, Brazil
| | - Danielle Silva Trentin
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul , Porto Alegre, Rio Grande do Sul 90610-000, Brazil.,Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul , Porto Alegre, Rio Grande do Sul 91501-970, Brazil
| |
Collapse
|
12
|
Takahashi E, Lee JM, Mon H, Chieda Y, Yasunaga-Aoki C, Kusakabe T, Iiyama K. Effect of antibiotics on extracellular protein level in Pseudomonas aeruginosa. Plasmid 2016; 84-85:44-50. [DOI: 10.1016/j.plasmid.2016.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 03/11/2016] [Accepted: 03/16/2016] [Indexed: 11/25/2022]
|
13
|
Krismastuti FSH, Bayat H, Voelcker NH, Schönherr H. Real time monitoring of layer-by-layer polyelectrolyte deposition and bacterial enzyme detection in nanoporous anodized aluminum oxide. Anal Chem 2015; 87:3856-63. [PMID: 25739712 DOI: 10.1021/ac504626m] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Porous anodized aluminum oxide (pAAO) is a nanostructured material, which due to its optical properties lends itself to the design of optical biosensors where interactions in the pores of this material are transduced into interferometric reflectance shifts. In this study, a pAAO-based biosensor was developed as a biosensing platform to detect proteinase K, an enzyme which is a readily available model system for the proteinase produced by Pseudomonas aeruginosa. The pAAO pore walls are decorated by means of the layer-by-layer (LbL) deposition technique using poly(sodium-4-styrenesulfonate) and poly-l-lysine as negatively and positively charged polyelectrolytes, respectively. Interferometric reflectance spectroscopy utilized to observe the optical properties of pAAO during LbL deposition shows that the deposition of the polyelectrolyte onto the pore walls increases the net refractive index, thus red-shifting the effective optical thickness (EOT). Upon incubation with proteinase K, a conspicuous blue shift of the EOT is observed, which is attributed to the destabilization of the LbL film upon enzymatic degradation of the poly-l-lysine components. This result is confirmed by scanning electron microscopy results. Finally, as a proof-of-principle, we demonstrate the ability of the label-free pAAO-based biosensing platform to detect the presence of the proteinase K in human wound fluid, highlighting the potential for detection of bacterial infections in chronic wounds.
Collapse
Affiliation(s)
- Fransiska Sri Herwahyu Krismastuti
- †ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Mawson Institute, University of South Australia, Mawson Lakes, Adelaide, South Australia 5095, Australia.,‡Wound Management Innovation Cooperative Research Centre, University of South Australia, Mawson Lakes, Adelaide, South Australia 5095, Australia
| | - Haider Bayat
- §Physical Chemistry I, Department of Chemistry and Biology, University of SiegenAdolf-Reichwein-Str. 2, 57076 Siegen, Germany
| | - Nicolas H Voelcker
- †ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Mawson Institute, University of South Australia, Mawson Lakes, Adelaide, South Australia 5095, Australia.,‡Wound Management Innovation Cooperative Research Centre, University of South Australia, Mawson Lakes, Adelaide, South Australia 5095, Australia
| | - Holger Schönherr
- §Physical Chemistry I, Department of Chemistry and Biology, University of SiegenAdolf-Reichwein-Str. 2, 57076 Siegen, Germany
| |
Collapse
|
14
|
Aldebasi YH, Mohamed HA, Aly SM. Histopathological Studies on Rabbits Infected by Bacteria Causing Infectious Keratitis in Human through Eye Inoculation. Int J Health Sci (Qassim) 2014; 8:257-67. [PMID: 25505861 DOI: 10.12816/0023978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
AIM This study aimed to investigate the pathogenic effect of bacteria causing infectious keratitis among patients through experimental study conducted on rabbits' eyes with the aid of histopathology as eye infection is a common disease in developing countries that may complicate to loss of vision. METHODOLOGY 100 swab samples were collected from human infected eyes, at Qassim region during 2012, for the isolation of Pseudomonas aeruginosa and Staphylococcus aureus. The isolated pathogenic bacteria were tested to various antibiotics using some selected antibiotics discs through agar-well diffusion method. Then, experimental study conducted on 27 rabbits. The rabbits were divided randomly into three equal groups, each containing 9 rabbits. Rabbits of group (1) served as control group (Negative Control) and their eyes were inoculated with the buffer only. Rabbits of group (2) were inoculated through eyes with the isolated Pseudomonas aeruginosa. Rabbits of group (3) were inoculated through eyes with the isolated Staphylococcus aureus. RESULTS Out of 100 collected swab samples from human infected eyes, Pseudomonas aeruginosa and Staphylococcus aureus were isolated with a total percentage of 25.21% and 15.65%; respectively and used in this study. Both bacterial isolates were sensitive to Gentamicin and Cefuroxime. Clinically, experimentally infected rabbits by Pseudomonas aeruginosa, revealed varying degree corneal abrasions, corneal abscess and dense corneal opacity. Histopathologically, at 3(rd) day post-infection (PI), the cornea revealed polymorpho-nuclear cells infiltration with loss of the outer epithelial lining. At 7(th) day PI, neutrophils were seen in the stroma. At 15(th) day PI, proliferation of fibroblasts and new vascularisation were seen in the stroma. Clinically, rabbits experimentally infected with Staphylococcus aureus, revealed corneal ulcers and focal abscesses. Histopathologically, at 3(rd) and 7(th) day PI, the cornea revealed edema and infiltration of leukocytes. At 15(th) day PI, hyperplasia of corneal epithelium and proliferation of keratocytes were evident. The liver and kidneys of experimented rabbits revealed no remarkable histopathological alterations along the period of experiment. CONCLUSION Pseudomonas aeruginosa and Staphylococcus aureus are common eye infection in human, both induced severe lesions in the eyes of rabbits that could interfere with vision, therefore, strict measures to control these infections in human is recommended.
Collapse
Affiliation(s)
- Yousef H Aldebasi
- Dept of Optometry, College of Applied Medical Sciences, Qassim University, KSA.Dept of Pathology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Hala A Mohamed
- Dept of Optometry, College of Applied Medical Sciences, Qassim University, KSA.Dept of Pathology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Salah M Aly
- Dept of Medical Laboratories, College of Applied Medical Sciences, Qassim University, KSA.Dept of Pathology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
15
|
Jeong SJ, Yoon SS, Bae IK, Jeong SH, Kim JM, Lee K. Risk factors for mortality in patients with bloodstream infections caused by carbapenem-resistant Pseudomonas aeruginosa: clinical impact of bacterial virulence and strains on outcome. Diagn Microbiol Infect Dis 2014; 80:130-5. [PMID: 25112900 DOI: 10.1016/j.diagmicrobio.2014.07.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 06/03/2014] [Accepted: 07/06/2014] [Indexed: 10/25/2022]
Abstract
The incidence of carbapenem-resistant Pseudomonas aeruginosa (CRPA) bacteremia has increased in recent years, and infections caused by CRPA result in higher mortality than those caused by susceptible strains. This study was performed to evaluate the risk factors for mortality and to study the impact of virulence factors and bacterial strains on clinical outcomes in patients with CRPA bacteremia. Data on 63 episodes of CRPA bacteremia that have occurred between January 1, 2007, and December 31, 2009, in a teaching hospital (2000 beds) in Seoul, Korea, were analyzed. The Acute Physiology and Chronic Health Evaluation II (APACHE II) score at the time of CRPA bacteremia and the capacity of CRPA to form biofilm were independent predictive factors for mortality in patients with CRPA bacteremia. In addition, the biofilm-forming ability and elastase activity of strains were correlated with APACHE II scores to measure the severity of disease and estimate predicted mortality in the patients.
Collapse
Affiliation(s)
- Su Jin Jeong
- Department of Internal Medicine and AIDS Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sang Sun Yoon
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Il Kwon Bae
- Department of Dental Hygiene, Silla University, Busan, Republic of Korea
| | - Seok Hoon Jeong
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - June Myung Kim
- Department of Internal Medicine and AIDS Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kyungwon Lee
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
16
|
Kaman WE, Hays JP, Endtz HP, Bikker FJ. Bacterial proteases: targets for diagnostics and therapy. Eur J Clin Microbiol Infect Dis 2014; 33:1081-7. [PMID: 24535571 DOI: 10.1007/s10096-014-2075-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 01/30/2014] [Indexed: 02/02/2023]
Abstract
Proteases are essential for the proliferation and growth of bacteria, and are also known to contribute to bacterial virulence. This makes them interesting candidates as diagnostic and therapeutic targets for infectious diseases. In this review, the authors discuss the most recent developments and potential applications for bacterial proteases in the diagnosis and treatment of bacterial infections. Current and future bacterial protease targets are described and their limitations outlined.
Collapse
Affiliation(s)
- W E Kaman
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, 's-Gravendijkwal 230, 3015 CE, Rotterdam, The Netherlands,
| | | | | | | |
Collapse
|
17
|
Ungurs MJ, Sinden NJ, Stockley RA. Progranulin is a substrate for neutrophil-elastase and proteinase-3 in the airway and its concentration correlates with mediators of airway inflammation in COPD. Am J Physiol Lung Cell Mol Physiol 2014; 306:L80-7. [DOI: 10.1152/ajplung.00221.2013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Progranulin (PGRN) is an anti-inflammatory protein, yet its digestion by neutrophil-derived proteinases generates products that can stimulate epithelial cell lines to secrete the neutrophil chemoattractant interleukin (IL)-8. Because dysregulated neutrophilic inflammation is implicated in the pathophysiology of chronic obstructive pulmonary disease (COPD), the possible influence of PGRN and digestion products may be of relevance to understanding and treating inflammation in the disease. PGRN was measured in sputum sol-phase samples from patients with a clinical diagnosis of COPD and chronic sputum production in a clinically stable state; PGRN correlated negatively with bacterial load (colony-forming units/ml) ( r = −0.446, P = 0.003, n = 43) and markers of neutrophilic inflammation, including neutrophil elastase (NE, nM) ( r = −0.562, P = 0.008, n = 21) and proteinase-3 (PR3, nM) ( r = −0.515, P = 0.017, n = 21). Products of PGRN digestion were detected in sputum sol phase, and PGRN conversion activity in sputum sol phase was inhibited with the serine proteinase inhibitor α1-antitrypsin. Digested PGRN at concentrations likely to be present in the airways did not stimulate IL-8 secretion from normal human bronchial epithelial (NHBE) cells. Infection of NHBE cells with live Haemophilus influenzae significantly increased PGRN secretion compared with untreated cells ( P ≤ 0.001). The concentration of PGRN relates negatively to the amplified airway inflammation associated with bacterial colonization in clinically stable COPD. This relationship is driven by the proteolytic action of the neutrophil-derived proteinases NE and PR3; the products released by this action are unlikely to stimulate significant IL-8 secretion from epithelial cells in the airways.
Collapse
Affiliation(s)
- Michael J. Ungurs
- Centre for Translational Inflammation, University of Birmingham Research Laboratories, Queen Elizabeth Hospital, Birmingham, United Kingdom; and
| | - Nicola J. Sinden
- Centre for Translational Inflammation, University of Birmingham Research Laboratories, Queen Elizabeth Hospital, Birmingham, United Kingdom; and
| | - Robert A. Stockley
- The ADAPT project, Lung Function and Sleep Department, Queen Elizabeth Hospital, Birmingham, United Kingdom
| |
Collapse
|
18
|
Raftari M, Ghafourian S, Sadeghifard N, Bakar FA. Cloning and Overexpression of Extracellular Elastase from Pseudomonas Aeruginosa. EUR J INFLAMM 2013. [DOI: 10.1177/1721727x1301100106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
This study was an attempt to overexpress the extracellular elastase from Pseuodomonas aeruginosa in Escherichia coli and characterize the level of purified enzymes of recombinant bacterium. The gene encoding an elastase natively produced by Pseudomonas aeruginosa was cloned and overexpressed in Escherichia coli using pET-32a system and the resultant recombinant elastase was purified and compared with the native elastase gene. The 1497 bp gene was amplified and subcloned in pET-32a and subsequently transformed into E. coli BL21. The media assay, SDS-PAGE and Western blotting were carried out to analyze the results, and the extracellular enzyme was purified to detect enzyme activity of recombinant E. coli. Nucleotide sequencing of the DNA insert from the clone revealed that the protease activity corresponded to an open reading frame consisting of 1497 bp coding for a 53.69-kDa protein. The clear zones around the recombinant colonies on skim milk agar as well as sharp band on 53-kD size on SDS-PAGE and Western blotting confirm the correct expression of elastase enzyme. Bacterial culture containing pET-32a-lasB showed high enzyme activity around 670 μg elastase ml−1. The results showed that elastase has potential to be produced industrially and be applied in medicine, food, etc. divisions.
Collapse
Affiliation(s)
- M. Raftari
- Faculty of Food Science and Technology, University Putra Malaysia, Serdang, Selangor, Malaysia
| | - S. Ghafourian
- Clinical Microbiology Research Center, Ham University of Medical Sciences, Ilam, Iran
| | - N. Sadeghifard
- Clinical Microbiology Research Center, Ham University of Medical Sciences, Ilam, Iran
| | - F. Abu Bakar
- Faculty of Food Science and Technology, University Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
19
|
Falciani C, Lozzi L, Pollini S, Luca V, Carnicelli V, Brunetti J, Lelli B, Bindi S, Scali S, Di Giulio A, Rossolini GM, Mangoni ML, Bracci L, Pini A. Isomerization of an antimicrobial peptide broadens antimicrobial spectrum to gram-positive bacterial pathogens. PLoS One 2012; 7:e46259. [PMID: 23056272 PMCID: PMC3462775 DOI: 10.1371/journal.pone.0046259] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 08/31/2012] [Indexed: 01/21/2023] Open
Abstract
The branched M33 antimicrobial peptide was previously shown to be very active against Gram-negative bacterial pathogens, including multidrug-resistant strains. In an attempt to produce back-up molecules, we synthesized an M33 peptide isomer consisting of D-aminoacids (M33-D). This isomeric version showed 4 to 16-fold higher activity against Gram-positive pathogens, including Staphylococcus aureus and Staphylococcus epidermidis, than the original peptide, while retaining strong activity against Gram-negative bacteria. The antimicrobial activity of both peptides was influenced by their differential sensitivity to bacterial proteases. The better activity shown by M33-D against S. aureus compared to M33-L was confirmed in biofilm eradication experiments where M33-L showed 12% activity with respect to M33-D, and in vivo models where Balb-c mice infected with S. aureus showed 100% and 0% survival when treated with M33-D and M33-L, respectively. M33-D appears to be an interesting candidate for the development of novel broad-spectrum antimicrobials active against bacterial pathogens of clinical importance.
Collapse
Affiliation(s)
- Chiara Falciani
- Dipartimento di Biotecnologie Mediche, Università degli Studi di Siena, Siena, Italy
| | - Luisa Lozzi
- Dipartimento di Biotecnologie Mediche, Università degli Studi di Siena, Siena, Italy
| | - Simona Pollini
- Dipartimento di Biotecnologie Mediche, Università degli Studi di Siena, Siena, Italy
| | - Vincenzo Luca
- Dipartimento di Scienze Biochimiche A. Fanelli, Università di Roma, La Sapienza, Roma, Italy
| | - Veronica Carnicelli
- Dipartimento di Scienze e Tecnologie Biomediche, Università di L’Aquila, L’Aquila, Italy
| | | | - Barbara Lelli
- Dipartimento di Biotecnologie Mediche, Università degli Studi di Siena, Siena, Italy
| | - Stefano Bindi
- Dipartimento di Biotecnologie Mediche, Università degli Studi di Siena, Siena, Italy
- Azienda Ospedaliera Universitaria Senese, Policlinico Le Scotte, Siena, Italy
| | - Silvia Scali
- Dipartimento di Biotecnologie Mediche, Università degli Studi di Siena, Siena, Italy
| | - Antonio Di Giulio
- Dipartimento di Scienze e Tecnologie Biomediche, Università di L’Aquila, L’Aquila, Italy
| | - Gian Maria Rossolini
- Dipartimento di Biotecnologie Mediche, Università degli Studi di Siena, Siena, Italy
- Azienda Ospedaliera Universitaria Senese, Policlinico Le Scotte, Siena, Italy
| | - Maria Luisa Mangoni
- Dipartimento di Scienze Biochimiche A. Fanelli, Università di Roma, La Sapienza, Roma, Italy
| | - Luisa Bracci
- Dipartimento di Biotecnologie Mediche, Università degli Studi di Siena, Siena, Italy
- Azienda Ospedaliera Universitaria Senese, Policlinico Le Scotte, Siena, Italy
| | - Alessandro Pini
- Dipartimento di Biotecnologie Mediche, Università degli Studi di Siena, Siena, Italy
- Azienda Ospedaliera Universitaria Senese, Policlinico Le Scotte, Siena, Italy
- * E-mail:
| |
Collapse
|
20
|
Lousa D, Baptista AM, Soares CM. Analyzing the molecular basis of enzyme stability in ethanol/water mixtures using molecular dynamics simulations. J Chem Inf Model 2012; 52:465-73. [PMID: 22243049 DOI: 10.1021/ci200455z] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
One of the drawbacks of nonaqueous enzymology is the fact that enzymes tend to be less stable in organic solvents than in water. There are, however, some enzymes that display very high stabilities in nonaqueous media. In order to take full advantage of the use of nonaqueous solvents in enzyme catalysis, it is essential to elucidate the molecular basis of enzyme stability in these media. Toward this end, we performed μs-long molecular dynamics simulations using two homologous proteases, pseudolysin, and thermolysin, which are known to have considerably different stabilities in solutions containing ethanol. The analysis of the simulations indicates that pseudolysin is more stable than thermolysin in ethanol/water mixtures and that the disulfide bridge between C30 and C58 is important for the stability of the former enzyme, which is consistent with previous experimental observations. Our results indicate that thermolysin has a higher tendency to interact with ethanol molecules (especially through van der Waals contacts) than pseudolysin, which can lead to the disruption of intraprotein hydrophobic interactions and ultimately result in protein unfolding. In the absence of the C30-C58 disulfide bridge, pseudolysin undergoes larger conformational changes, becoming more open and more permeable to ethanol molecules which accumulate in its interior and form hydrophobic interactions with the enzyme, destroying its structure. Our observations are not only in good agreement with several previous experimental findings on the stability of the enzymes studied in ethanol/water mixtures but also give an insight on the molecular determinants of this stability. Our findings may, therefore, be useful in the rational development of enzymes with increased stability in these media.
Collapse
Affiliation(s)
- Diana Lousa
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | | | | |
Collapse
|
21
|
Kuang Z, Hao Y, Walling BE, Jeffries JL, Ohman DE, Lau GW. Pseudomonas aeruginosa elastase provides an escape from phagocytosis by degrading the pulmonary surfactant protein-A. PLoS One 2011; 6:e27091. [PMID: 22069491 PMCID: PMC3206073 DOI: 10.1371/journal.pone.0027091] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 10/10/2011] [Indexed: 01/13/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that causes both acute pneumonitis in immunocompromised patients and chronic lung infections in individuals with cystic fibrosis and other bronchiectasis. Over 75% of clinical isolates of P. aeruginosa secrete elastase B (LasB), an elastolytic metalloproteinase that is encoded by the lasB gene. Previously, in vitro studies have demonstrated that LasB degrades a number of components in both the innate and adaptive immune systems. These include surfactant proteins, antibacterial peptides, cytokines, chemokines and immunoglobulins. However, the contribution of LasB to lung infection by P. aeruginosa and to inactivation of pulmonary innate immunity in vivo needs more clarification. In this study, we examined the mechanisms underlying enhanced clearance of the ΔlasB mutant in mouse lungs. The ΔlasB mutant was attenuated in virulence when compared to the wild-type strain PAO1 during lung infection in SP-A+/+ mice. However, the ΔlasB mutant was as virulent as PAO1 in the lungs of SP-A⁻/⁻ mice. Detailed analysis showed that the ΔlasB mutant was more susceptible to SP-A-mediated opsonization but not membrane permeabilization. In vitro and in vivo phagocytosis experiments revealed that SP-A augmented the phagocytosis of ΔlasB mutant bacteria more efficiently than the isogenic wild-type PAO1. The ΔlasB mutant was found to have a severely reduced ability to degrade SP-A, consequently making it unable to evade opsonization by the collectin during phagocytosis. These results suggest that P. aeruginosa LasB protects against SP-A-mediated opsonization by degrading the collectin.
Collapse
Affiliation(s)
- Zhizhou Kuang
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Yonghua Hao
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Brent E. Walling
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Jayme L. Jeffries
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Dennis E. Ohman
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, United States of America
| | - Gee W. Lau
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| |
Collapse
|
22
|
Wu JW, Chen XL. Extracellular metalloproteases from bacteria. Appl Microbiol Biotechnol 2011; 92:253-62. [DOI: 10.1007/s00253-011-3532-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 07/25/2011] [Accepted: 08/04/2011] [Indexed: 10/17/2022]
|
23
|
Kuang Z, Hao Y, Hwang S, Zhang S, Kim E, Akinbi HT, Schurr MJ, Irvin RT, Hassett DJ, Lau GW. The Pseudomonas aeruginosa flagellum confers resistance to pulmonary surfactant protein-A by impacting the production of exoproteases through quorum-sensing. Mol Microbiol 2011; 79:1220-35. [PMID: 21205009 DOI: 10.1111/j.1365-2958.2010.07516.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Surfactant protein-A (SP-A) is an important antimicrobial protein that opsonizes and permeabilizes membranes of microbial pathogens in mammalian lungs. Previously, we have shown that Pseudomonas aeruginosa flagellum-deficient mutants are preferentially cleared in the lungs of wild-type mice by SP-A-mediated membrane permeabilization, and not by opsonization. In this study, we report a flagellum-mediated mechanism of P. aeruginosa resistance to SP-A. We discovered that flagellum-deficient (ΔfliC) bacteria are unable to produce adequate amounts of exoproteases to degrade SP-A in vitro and in vivo, leading to its preferential clearance in the lungs of SP-A(+/+) mice. In addition, ΔfliC bacteria failed to degrade another important lung antimicrobial protein lysozyme. Detailed analyses showed that ΔfliC bacteria are unable to upregulate the transcription of lasI and rhlI genes, impairing the production of homoserine lactones necessary for quorum-sensing, an important virulence process that regulates the production of multiple exoproteases. Thus, reduced ability of ΔfliC bacteria to quorum-sense attenuates production of exoproteases and limits degradation of SP-A, thereby conferring susceptibility to this major pulmonary host defence protein.
Collapse
Affiliation(s)
- Zhizhou Kuang
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Structural basis for the autoprocessing of zinc metalloproteases in the thermolysin family. Proc Natl Acad Sci U S A 2010; 107:17569-74. [PMID: 20876133 DOI: 10.1073/pnas.1005681107] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Thermolysin-like proteases (TLPs), a large group of zinc metalloproteases, are synthesized as inactive precursors. TLPs with a long propeptide (∼200 residues) undergo maturation following autoprocessing through an elusive molecular mechanism. We report the first two crystal structures for the autoprocessed complexes of a typical TLP, MCP-02. In the autoprocessed complex, Ala205 shifts upward by 33 Å from the previously covalently linked residue, His204, indicating that, following autocleavage of the peptide bond between His204 and Ala205, a large conformational change from the zymogen to the autoprocessed complex occurs. The eight N-terminal residues (residues Ala205-Gly212) of the catalytic domain form a new β-strand, nestling into two other β-strands. Simultaneously, the apparent T(m) of the autoprocessed complex increases 20 °C compared to that of the zymogen. The stepwise degradation of the propeptide begins with two sequential cuttings at Ser49-Val50 and Gly57-Leu58, which lead to the disassembly of the propeptide and the formation of mature MCP-02. Our findings give new insights into the molecular mechanism of TLP maturation.
Collapse
|
25
|
Stehling EG, Leite DS, Silveira WD. Molecular typing and biological characteristics of Pseudomonas aeruginosa isolated from cystic fibrosis patients in Brazil. Braz J Infect Dis 2010. [DOI: 10.1016/s1413-8670(10)70094-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
26
|
Meinke G, Barum J, Rosenberg B, Berk R. In Vivo Studies with the Partially Purified Protease (Elastase) from Pseudomonas aeruginosa. Infect Immun 2010; 2:583-9. [PMID: 16557881 PMCID: PMC416054 DOI: 10.1128/iai.2.5.583-589.1970] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An extracellular protease from Pseudomonas aeruginosa exhibiting elastase activity was characterized in vivo after an 80- to 100-fold purification by chemical and chromatographic procedures. The lethality of different samples for white, female mice was determined by intravenous, intranasal, intraperitoneal, and subcutaneous injections. The purified protease exhibited the following 48-hr LD(50) values: intraperitoneally, 9.0 protease units; intranasally, 31.5 protease units; and intranasally, 0.3 protease unit. In the concentrations tested no lethality was observed when the subcutaneous route was employed. Gross and microscopic studies revealed that purified protease was capable of eliciting a variety of tissue responses in mice depending upon its route of administration. Intraperitoneal injections resulted in gastrointestinal tract serosal hemorrhage and necrosis. Intranasal and intravenous injections produced pulmonary hemorrhage, whereas subcutaneous injections resulted in black, necrotic, ulcerating lesions.
Collapse
Affiliation(s)
- G Meinke
- Departments of Microbiology and Pathology, Wayne State University, School of Medicine, Detroit, Michigan 48207
| | | | | | | |
Collapse
|
27
|
Arvidson S, Holme T, Lindholm B. The formation of extracellular proteolytic enzymes by Staphylococcus aureus. ACTA PATHOLOGICA ET MICROBIOLOGICA SCANDINAVICA. SECTION B: MICROBIOLOGY AND IMMUNOLOGY 2009; 80:835-44. [PMID: 4630255 DOI: 10.1111/j.0365-5563.1973.tb00009.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
28
|
Some properties of the extracellular proteolytic enzymes of the milk-spoiling organismPseudomonas aeruginosaATCC 10145. J DAIRY RES 2009. [DOI: 10.1017/s0022029900019142] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SummaryThe proteolytic enzymes present in the culture supernatant ofPseudomonas aeruginosaATCC 10145 were active in the pH range 5·5–9·0 with a maximum activity at pH 7·3. Heating for 15 sec at 72°C resulted in a 36% loss of proteolytic activity whereas heating for 30 min at 63°C resulted, in a 6% loss. Boiling for 2 min completely inactivated the proteolytic enzymes. At 2°C the proteolytic enzymes were stable for at least a month and casein was readily hydrolysed at this temperature.
Collapse
|
29
|
Miyoshi S, Oh EG, Hirata K, Shinoda S. Exocellulr Toxic Factors Prowced byVibrio Vulnificus. ACTA ACUST UNITED AC 2008. [DOI: 10.3109/15569549309014409] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
30
|
Chhibber S, Gupta A, Sharan R, Gautam V, Ray P. Putative virulence characteristics of Stenotrophomonas maltophilia: a study on clinical isolates. World J Microbiol Biotechnol 2008. [DOI: 10.1007/s11274-008-9812-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
31
|
Jellouli K, Bayoudh A, Manni L, Agrebi R, Nasri M. Purification, biochemical and molecular characterization of a metalloprotease from Pseudomonas aeruginosa MN7 grown on shrimp wastes. Appl Microbiol Biotechnol 2008; 79:989-99. [DOI: 10.1007/s00253-008-1517-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2008] [Revised: 04/19/2008] [Accepted: 04/20/2008] [Indexed: 10/22/2022]
|
32
|
Lin X, Xu W, Huang K, Mei X, Liang Z, Li Z, Guo J, Luo Y. Cloning, expression and characterization of recombinant elastase from Pseudomonas aeruginosa in Picha pastoris. Protein Expr Purif 2008; 63:69-74. [PMID: 18952459 DOI: 10.1016/j.pep.2007.12.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Revised: 12/20/2007] [Accepted: 12/20/2007] [Indexed: 10/22/2022]
Abstract
The gene lasB from Pseudomonas aeruginosa, which encoded elastase, was cloned and firstly successfully expressed in Pichia pastoris stain KM71 under the control of AOX promoter. The effects on the recombinant elastase activities of different pH, different temperatures and different metal ions were assayed. The full-length gene (1497 bp) encodes a preproenzyme including an N-terminal signal peptide (23 aa), a propeptide (197 aa) and mature elastase (301 aa). The recombinant elastase was secreted into culture supernatants using signal sequence from lasB and showed a single band at about 34 kDa by SDS-PAGE. The recombinant elastase expression hit the highest level of approximately 450 mg/L and the specific elastolytic activity of the recombinant elastase was 130 U/ml, which was approximately 26-fold higher than that of elastase obtained from P. aeruginosa. The optimal temperature and pH of the recombinant elastase was 28 degrees C and 7.4, respectively. The enzyme possessed high resistance to heat, and can be activated by Ca(2+). These enzyme properties suggested that it could be produced in an industrial scale and has the potential to be a commercial enzyme.
Collapse
Affiliation(s)
- Xijin Lin
- Laboratory of Food Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Enhanced production and characterization of a solvent stable protease from solvent tolerant Pseudomonas aeruginosa PseA. Enzyme Microb Technol 2007. [DOI: 10.1016/j.enzmictec.2007.07.019] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Thibodeaux BA, Caballero AR, Marquart ME, Tommassen J, O'Callaghan RJ. Corneal virulence of Pseudomonas aeruginosa elastase B and alkaline protease produced by Pseudomonas putida. Curr Eye Res 2007; 32:373-86. [PMID: 17453960 DOI: 10.1080/02713680701244181] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
PURPOSE To measure the specific virulence contributions of two Pseudomonas aeruginosa proteases, elastase B and alkaline protease, when expressed separately by Pseudomonas putida in a rabbit model of bacterial keratitis. METHODS P. putida KT2440 was transformed with plasmids that enabled the extracellular production of either elastase or alkaline protease. Protease expression was confirmed by zymography and immunoblotting. P. putida expressing elastase, alkaline protease, or vector alone was injected intrastromally (10(3) colony forming units [CFU]) into rabbit corneas (n=6). Infected eyes were graded by slit-lamp examination (SLE) at 20, 24, 28, and 32 hr postinfection (PI). Rabbits were sacrificed at 33 hr PI, and the log CFU (+/-SEM) per cornea was determined. RESULTS SLE scores for eyes infected with P. putida producing elastase were significantly higher than those infected with vector alone at all time points (p<or=0.008). SLE scores for eyes infected with P. putida producing alkaline protease were not significantly higher than the control (p>or=0.1), but small erosions formed in 33% of corneas. At both 24 and 28 hr PI, the SLE scores for corneas infected with P. putida producing elastase were significantly higher than those infected with P. putida producing alkaline protease (p<or=0.002). CONCLUSIONS Elastase production by P. putida caused significant increases in SLE scores whereas expression of alkaline protease caused limited corneal erosions. This suggests that the production of elastase during P. aeruginosa keratitis enhances ocular pathology, whereas alkaline protease production contributes to limited corneal erosion.
Collapse
Affiliation(s)
- Brett A Thibodeaux
- Department of Microbiology, Immunology, and Parasitology, LSU Health Sciences Center, New Orleans, Louisiana, USA
| | | | | | | | | |
Collapse
|
35
|
Morihara K. Comparative specificity of microbial proteinases. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 41:179-243. [PMID: 4213643 DOI: 10.1002/9780470122860.ch5] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
36
|
Sonawane A, Jyot J, Ramphal R. Pseudomonas aeruginosa LecB is involved in pilus biogenesis and protease IV activity but not in adhesion to respiratory mucins. Infect Immun 2006; 74:7035-9. [PMID: 17015462 PMCID: PMC1698087 DOI: 10.1128/iai.00551-06] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa expresses two lectins which are implicated in adhesion and biofilm formation. In this study, we demonstrate that P. aeruginosa LecB is involved in pilus biogenesis and proteolytic activity. Moreover, neither lectin was involved in adhesion to human tracheobronchial mucin. We infer that some of the ascribed functions are secondary effects on other systems rather than effects of the lectins themselves.
Collapse
Affiliation(s)
- Avinash Sonawane
- Department of Medicine, College of Medicine, 1600 SW Archer Road, Gainesville, FL 32610, USA
| | | | | |
Collapse
|
37
|
Le Berre R, Faure K, Nguyen S, Pierre M, Ader F, Guery B. Quorum sensing : une nouvelle cible thérapeutique pour Pseudomonas aeruginosa. Med Mal Infect 2006; 36:349-57. [PMID: 16631332 DOI: 10.1016/j.medmal.2006.01.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2005] [Accepted: 01/27/2006] [Indexed: 11/16/2022]
Abstract
Pseudomonas aeruginosa is an opportunistic bacteria causing a wide variety of infections. The bacterial virulence depends on a large panel of cell-associated and extracellular factors. Quorum sensing (QS) allows cell-to-cell communication: sensing the environment, this system coordinates the expression of various genes within the bacterial population. QS is based on an interaction between a small diffusible molecule, an acylhomoserine lactone (AHL), and a transcriptionnal activator. Two QS systems, the las and rhl systems, have been identified in P. aeruginosa. The las system associates the transcriptionnal activator protein LasR and LasI responsible for the synthesis of a specific AHL: C12-HSL. This system was shown to activate the expression of a large number of virulence factors. Similarly, the rhl system associates the transcriptionnal activator protein RhlR with RhlI, which is responsible for the synthesis of another AHL: C4-HSL. Synthesis and secretion of a number of virulence factors are controlled by QS. Utilization of different animals models showed the crucial role of QS in the pathogenesis of P. aeruginosa infections. The discovery of QS has given a new opportunity to treat bacterial infection by another means than growth inhibition. New drugs inhibiting QS were recently discovered: furanone compounds can repress a large number of QS-regulated genes, including numerous P. aeruginosa virulence factor genes. Furanone administration to mice infected with P. aeruginosa significantly reduced lung bacterial load compared with the control group.
Collapse
Affiliation(s)
- R Le Berre
- Laboratoire de recherche en pathologie infectieuse, EA 2689, faculté de médecine de Lille, 59045 Lille, France.
| | | | | | | | | | | |
Collapse
|
38
|
Gupta A, Roy I, Khare SK, Gupta MN. Purification and characterization of a solvent stable protease from Pseudomonas aeruginosa PseA. J Chromatogr A 2005; 1069:155-61. [PMID: 15830941 DOI: 10.1016/j.chroma.2005.01.080] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A solvent tolerant Pseudomonas aeruginosa PseA strain was isolated from soil. It secreted a novel alkaline protease, which was stable and active in the presence of range of organic solvents, thus potentially useful for catalysis in non-aqueous media. The protease was purified 11.6-fold with 60% recovery by combination of ion exchange and hydrophobic interaction chromatography using Q-Sepharose and Phenyl Sepharose 6 Fast Flow matrix, respectively. The apparent molecular mass based on the sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) was estimated to be 35,000 Da. The enzyme was stable in the pH range of 6.0-9.0, the optimum being 8.0. The Km and Vmax towards caseinolytic activity were found to be 2.7 mg/ml and 3 micromol/min, respectively. The protease was most active at 60 degrees C and characterized as a metalloprotease because of its sensitivity to EDTA and 1,10-phenanthroline. It was tested positive for elastase activity towards elastin-orcein, thus appears to be an elastase, which is known as pseudolysin in other strains of P. aeruginosa. The protease withstands range of detergents, surfactants and solvents. It is stable and active in all the solvents having log P above 3.2, at least up to 72 h. These two properties make it an ideal choice for applications in detergent formulations and enzymatic peptide synthesis.
Collapse
Affiliation(s)
- Anshu Gupta
- Chemistry Department, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110016, India
| | | | | | | |
Collapse
|
39
|
Lee VT, Smith RS, Tümmler B, Lory S. Activities of Pseudomonas aeruginosa effectors secreted by the Type III secretion system in vitro and during infection. Infect Immun 2005; 73:1695-705. [PMID: 15731070 PMCID: PMC1064929 DOI: 10.1128/iai.73.3.1695-1705.2005] [Citation(s) in RCA: 181] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa utilizes a number of distinct pathways to secrete proteins that play various roles during infection. These include the type II secretion system, which is responsible for the secretion of the majority of exoproducts into the surrounding environment, including toxins and degradative enzymes. In contrast, the type III secretion system mediates the delivery of protein effectors directly into the cytoplasm of the host cell. Using tissue culture assays and a mouse acute-pneumonia model, we have determined the contribution of each of the type III effectors during infection. In strain PAK, ExoS is the major cytotoxin required for colonization and dissemination during infection. ExoT confers protection of tissue culture cells from type III-dependent lysis, while ExoY seemed to have little effect on cytotoxicity. ExoU is over 100-fold more cytotoxic than ExoS. The cytotoxicity of type II secretion was determined following deletion of the genes for the more toxic type III secretion system. The participation of these secretion systems during lifelong colonization of cystic fibrosis (CF) patients is unclear. By comparing clonal strains from the same patient isolated at the initial onset of P. aeruginosa infection and more than a decade later, after chronic colonization has been established, we show that initial strains are more cytotoxic than chronic strains that have evolved to reduce type III secretion. Constitutive expression of genes for the type III secretion system restored ExoS secretion but did not always reestablish cytotoxicity, suggesting that CF strains accumulate a number of mutations to reduce bacterial toxicity to the host.
Collapse
Affiliation(s)
- Vincent T Lee
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
40
|
Harjai K, Khandwahaa RK, Mittal R, Yadav V, Gupta V, Sharma S. Effect of pH on production of virulence factors by biofilm cells ofPseudomonas aeruginosa. Folia Microbiol (Praha) 2005; 50:99-102. [PMID: 16110911 DOI: 10.1007/bf02931455] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Effect of pH on production of extracellular virulence factors of Pseudomonas aeruginosa grown on catheter in biofilm was determined. Alginate and proteinase production was higher at pH 8; in contrast, siderophores (pyochelin and pyoverdin) were synthesized more intensively at pH 5.
Collapse
Affiliation(s)
- K Harjai
- Department of Microbiology, Panjab University, Chandigarh, India.
| | | | | | | | | | | |
Collapse
|
41
|
Finnan S, Morrissey JP, O'Gara F, Boyd EF. Genome diversity of Pseudomonas aeruginosa isolates from cystic fibrosis patients and the hospital environment. J Clin Microbiol 2005; 42:5783-92. [PMID: 15583313 PMCID: PMC535267 DOI: 10.1128/jcm.42.12.5783-5792.2004] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa is a gram-negative rod that is ubiquitous in nature. P. aeruginosa is also the quintessential opportunistic pathogen, causing a wide variety of infections in compromised hosts. In cystic fibrosis patients, P. aeruginosa is the leading cause of death. In this study, the evolutionary genetic relationships among 17 P. aeruginosa isolates were examined by comparative sequence analysis of the housekeeping gene encoding malate dehydrogenase and the chaperone groEL. The P. aeruginosa isolates examined included the sequenced strain PAO1, 11 strains recovered from cystic fibrosis patients in Ireland, 4 environmental isolates recovered from a hospital environment, and 1 isolate recovered from a plant rhizosphere. Phylogenetically, clinical and environmental isolates clustered together with one another on the mdh gene tree. At the groEL locus, among the 17 isolates examined, only two polymorphic sites were observed, highlighting the close genetic relationship between isolates from these different environments. Phenotypic analysis of 12 traits among our isolates, however, found that only clinical isolates produced phenazines and elastase. Furthermore, molecular analysis of the distribution of 15 regions associated with virulence showed that two of the environmental isolates examined lacked the majority of regions. Among the clinical isolates examined, the 15 virulence regions were variably present. The distribution of two prophages (Bacto1, Pf1) was also determined, with most isolates encoding both these regions. Of the four genomic islands (the flagellum island and PAGI-1, -2, and -3) examined, only two isolates contained the flagellum island, and PAGI-1, -2, and -3 were absent from all isolates tested. Our data demonstrate the significant role horizontal gene transfer and recombination, together with gene loss, play in the evolution of this important human pathogen.
Collapse
Affiliation(s)
- Shirley Finnan
- Department of Microbiology, University College Cork, National University of Ireland, Cork, Ireland
| | | | | | | |
Collapse
|
42
|
Karadzic I, Masui A, Fujiwara N. Purification and characterization of a protease from Pseudomonas aeruginosa grown in cutting oil. J Biosci Bioeng 2004; 98:145-52. [PMID: 16233682 DOI: 10.1016/s1389-1723(04)00258-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2003] [Accepted: 04/06/2004] [Indexed: 10/26/2022]
Abstract
The Pseudomonas aeruginosa san-ai strain was isolated from water-soluble cutting oil used for cooling and lubrication during industrial metal-working processes. This strain, which is grown in a high alkaline (pH 10) mixture of surfactants and mineral oil, produces an extracellular proteolytic enzyme. We have purified and characterized this 18 kDa protease. The P. aeruginosa san-ai protease functions optimally at pH 9.0 and 60 degrees C. Additionally, it is a Zn-containing metalloenzyme, and its monomeric structure contains at least one disulfide bond. Because the enzyme is stable in the presence of organic solvents, it is suitable for peptide synthesis. Furthermore, the P. aeruginosa san-ai protease could be used in an intelligent drug delivery system (DDS) designed for applications in the metal industry for prevention of putrefaction of cutting oil.
Collapse
Affiliation(s)
- Ivanka Karadzic
- School of Medicine, Department of Chemistry, Visegradska 26, 11000 Belgrade, Serbia and Montenegro
| | | | | |
Collapse
|
43
|
Mariencheck WI, Alcorn JF, Palmer SM, Wright JR. Pseudomonas aeruginosa elastase degrades surfactant proteins A and D. Am J Respir Cell Mol Biol 2003; 28:528-37. [PMID: 12654643 DOI: 10.1165/rcmb.2002-0141oc] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Both in vitro and in vivo studies provide evidence that surfactant protein (SP)-A and SP-D have an important role in the innate immune response to Pseudomonas aeruginosa. In preliminary experiments characterizing the binding of SP-A to this bacteria, we observed the appearance of apparent degradation products of SP-A, and therefore we hypothesized that P. aeruginosa produces an enzyme that degrades SP-A. Incubation of SP-A with P. aeruginosa organisms from several clinical isolates resulted in concentration- and temperature-dependent degradation of SP-A that was inhibited by a metalloproteinase inhibitor, phosphoramidon. The degradative enzyme was purified by anion exchange chromatography and identified by ion trap mass spectroscopy as Pseudomonas elastase, which was shown to directly degrade SP-A and SP-D. Incubation of P. aeruginosa or purified elastase with cell-free bronchoalveolar lavage (BAL) resulted in degradation of SP-A. Furthermore, SP-A degradation fragments were detectable in BAL from lung transplant patients with cystic fibrosis. We speculate that degradation of SP-A and SP-D is a virulence mechanism in the pathogenesis of chronic P. aeruginosa infection.
Collapse
|
44
|
Abstract
Pseudomonas aeruginosa is a highly adaptable gram-negative bacillus with the ability to cause serious disease in vulnerable populations. This article reviews the relevant epidemiology of this pathogen in the hospital setting with particular attention to the neonatal unit. Issues related to reservoirs of the organism with special consideration of the hands of staff are also addressed. Virulence factors and pathogenic mechanisms are highlighted as well as the important role of antimicrobial resistance patterns. Finally, there is a discussion of the clinical syndromes found in neonates and the appropriate antibiotic usage strategies for effective treatment of this pathogen of continuing importance.
Collapse
Affiliation(s)
- Marc D Foca
- Division of Infectious Disease, Department of Pediatrics, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
45
|
Wilderman PJ, Vasil AI, Johnson Z, Wilson MJ, Cunliffe HE, Lamont IL, Vasil ML. Characterization of an endoprotease (PrpL) encoded by a PvdS-regulated gene in Pseudomonas aeruginosa. Infect Immun 2001; 69:5385-94. [PMID: 11500408 PMCID: PMC98648 DOI: 10.1128/iai.69.9.5385-5394.2001] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The expression of many virulence factors in Pseudomonas aeruginosa is dependent upon environmental conditions, including iron levels, oxygen, temperature, and osmolarity. The virulence of P. aeruginosa PAO1 is influenced by the iron- and oxygen-regulated gene encoding the alternative sigma factor PvdS, which is regulated through the ferric uptake regulator (Fur). We observed that overexpression of PvdS in strain PAO1 and a DeltapvdS::Gm mutant resulted in increased pyoverdine production and proteolytic activity compared to when PvdS was not overexpressed. To identify additional PvdS-regulated genes, we compared extracellular protein profiles from PAO1 and the DeltapvdS::Gm mutant grown under iron-deficient conditions. A protein present in culture supernatants from PAO1 but not in supernatants from DeltapvdS::Gm was investigated. Amino acid sequence analysis and examination of the genomic database of PAO1 revealed that the N terminus of this 27-kDa protein is identical to that of protease IV of P. aeruginosa strain PA103-29 and is homologous to an endoprotease produced by Lysobacter enzymogenes. In this study, the gene encoding an endoprotease was cloned from PAO1 and designated prpL (PvdS-regulated endoprotease, lysyl class). All (n = 41) but one of the strains of P. aeruginosa, including clinical and environmental isolates, examined carry prpL. Moreover, PrpL production among these strains was highly variable. Analysis of RNase protection assays identified the transcription initiation site of prpL and confirmed that its transcription is iron dependent. In the DeltapvdS::Gm mutant, the level of prpL transcription was iron independent and decreased relative to the level in PAO1. Furthermore, transcription of prpL was independent of PtxR, a PvdS-regulated protein. Finally, PrpL cleaves casein, lactoferrin, transferrin, elastin, and decorin and contributes to PAO1's ability to persist in a rat chronic pulmonary infection model .
Collapse
Affiliation(s)
- P J Wilderman
- Department of Microbiology, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Numerous species of bacteria use an elegant regulatory mechanism known as quorum sensing to control the expression of specific genes in a cell-density dependent manner. In Gram-negative bacteria, quorum sensing systems function through a cell-to-cell signal molecule (autoinducer) that consists of a homoserine lactone with a fatty acid side chain. Such is the case in the opportunistic human pathogen Pseudomonas aeruginosa, which contains two quorum sensing systems (las and rhl) that operate via the autoinducers, N-(3-oxododecanoyl)-L-homoserine lactone and N-butyryl-L-homoserine lactone. The study of these signal molecules has shown that they bind to and activate transcriptional activator proteins that specifically induce numerous P. aeruginosa virulence genes. We report here that P. aeruginosa produces another signal molecule, 2-heptyl-3-hydroxy-4-quinolone, which has been designated as the Pseudomonas quinolone signal. It was found that this unique cell-to-cell signal controlled the expression of lasB, which encodes for the major virulence factor, LasB elastase. We also show that the synthesis and bioactivity of Pseudomonas quinolone signal were mediated by the P. aeruginosa las and rhl quorum sensing systems, respectively. The demonstration that 2-heptyl-3-hydroxy-4-quinolone can function as an intercellular signal sheds light on the role of secondary metabolites and shows that P. aeruginosa cell-to-cell signaling is not restricted to acyl-homoserine lactones.
Collapse
|
47
|
Pesci EC, Milbank JB, Pearson JP, McKnight S, Kende AS, Greenberg EP, Iglewski BH. Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 1999; 96:11229-34. [PMID: 10500159 PMCID: PMC18016 DOI: 10.1073/pnas.96.20.11229] [Citation(s) in RCA: 777] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Numerous species of bacteria use an elegant regulatory mechanism known as quorum sensing to control the expression of specific genes in a cell-density dependent manner. In Gram-negative bacteria, quorum sensing systems function through a cell-to-cell signal molecule (autoinducer) that consists of a homoserine lactone with a fatty acid side chain. Such is the case in the opportunistic human pathogen Pseudomonas aeruginosa, which contains two quorum sensing systems (las and rhl) that operate via the autoinducers, N-(3-oxododecanoyl)-L-homoserine lactone and N-butyryl-L-homoserine lactone. The study of these signal molecules has shown that they bind to and activate transcriptional activator proteins that specifically induce numerous P. aeruginosa virulence genes. We report here that P. aeruginosa produces another signal molecule, 2-heptyl-3-hydroxy-4-quinolone, which has been designated as the Pseudomonas quinolone signal. It was found that this unique cell-to-cell signal controlled the expression of lasB, which encodes for the major virulence factor, LasB elastase. We also show that the synthesis and bioactivity of Pseudomonas quinolone signal were mediated by the P. aeruginosa las and rhl quorum sensing systems, respectively. The demonstration that 2-heptyl-3-hydroxy-4-quinolone can function as an intercellular signal sheds light on the role of secondary metabolites and shows that P. aeruginosa cell-to-cell signaling is not restricted to acyl-homoserine lactones.
Collapse
Affiliation(s)
- E C Pesci
- Department of Microbiology, East Carolina University School of Medicine, Greenville, NC 27858, USA.
| | | | | | | | | | | | | |
Collapse
|
48
|
Buckmaster MJ, Curci JA, Murray PR, Liao S, Allen BT, Sicard GA, Thompson RW. Source of elastin-degrading enzymes in mycotic aortic aneurysms: bacteria or host inflammatory response? CARDIOVASCULAR SURGERY (LONDON, ENGLAND) 1999; 7:16-26. [PMID: 10073755 DOI: 10.1016/s0967-2109(98)00099-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Elastolytic matrix metalloproteinases play a central role in the development of chronic atherosclerotic aortic aneurysms, but mycotic aortic aneurysms are a distinct and unusual form of aneurysm disease caused by bacterial infection. Mycotic aortic aneurysms follow a more rapid and unpredictable course than chronic aneurysm disease and they exhibit a predilection for the suprarenal aorta, further implying unique pathophysiologic mechanisms. The purpose of this study was to examine the nature and source of elastin-degrading enzymes in mycotic aortic aneurysm. Bacterial isolates and aortic tissues were obtained from four consecutive patients undergoing surgical repair of suprarenal mycotic aortic aneurysm. Using an in vitro 3H-labeled elastin degradation assay, elastin-degrading enzyme activity was only observed in the bacteria-conditioned medium from an isolate of Pseudomonas aeruginosa. Elastin-degrading enzyme activity in the aortic tissue homogenate of this patient was abolished by the serine protease inhibitor, phenylmethylsulfonyl fluoride, but it was not suppressed by the metalloproteinase inhibitor, ethylenediamine tetraacetic acid (EDTA). In contrast, elastin-degrading enzyme activity in the bacterial-conditioned medium was decreased by about half by both phenylmethylsulfonyl fluoride and EDTA. Elastin substrate zymography revealed two phenylmethylsulfonyl fluoride-inhibitable elastin-degrading enzyme activities in the aortic tissue homogenate that corresponded to human neutrophil elastase (approximately 30 kDa) and its stable complex with alpha 1-proteinase inhibitor (approximately 80 kDa), but no activity attributable to Pseudomonas elastase, a 33-kDa metal-dependent enzyme. Human neutrophil elastase was readily detected throughout mycotic aortic aneurysm tissues by immunohistochemistry, but elastolytic metalloproteinases were only occasionally observed. The results of this study suggest that the elastin-degrading enzyme produced in mycotic aortic aneurysm are largely serine proteases of host neutrophil origin, rather than elastases produced by the infecting microorganisms or the macrophage-derived metalloproteinases typically observed in atherosclerotic aneurysm disease. Further studies will be needed to extend these findings to a larger number of patients with mycotic aortic aneurysm and those caused by additional microorganisms.
Collapse
Affiliation(s)
- M J Buckmaster
- Department of Surgery, Washington University School of Medicine, St Louis, MI 63110, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Ogino H, Watanabe F, Yamada M, Nakagawa S, Hirose T, Noguchi A, Yasuda M, Ishikawa H. Purification and characterization of organic solvent-stable protease from organic solvent-tolerant Pseudomonas aeruginosa PST-01. J Biosci Bioeng 1999; 87:61-8. [PMID: 16232426 DOI: 10.1016/s1389-1723(99)80009-7] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/1998] [Accepted: 10/12/1998] [Indexed: 11/29/2022]
Abstract
An organic solvent-stable protease (PST-01 protease) in a culture broth of organic solvent-tolerant Pseudomonas aeruginosa PST-01 was purified by successive hydrophobic interaction chromatography using Butyl-Toyopearl gels. The purified enzyme was homogeneous as determined by SDS-polyacrylamide gel electrophoresis. PST-01 protease had a molecular mass of 38 kDa. The optimum temperature and pH for casein hydrolysis were 55 degrees C and 8.5, respectively. PST-01 protease was stable at pH 8-12 and below 50 degrees C and was determined to be a metalloprotease which was inhibited by EDTA, 1,10-phenanthroline, and phosphoramidon. PST-01 protease inhibited by EDTA was reactivated completely by the addition of zinc or cobalt ions. The stability of PST-01 protease in solutions containing water-soluble organic solvents or alcohols was higher than that in the absence of organic solvent. Furthermore, in general, PST-01 protease was more stable than commercially available proteases, namely, subtilisin Carlsberg, thermolysin, and alpha-chymotrypsin, in the presence of water-soluble organic solvents or alcohols.
Collapse
Affiliation(s)
- H Ogino
- Department of Chemical Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, Osaka 599-8531, Japan
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Elzaim HS, Chopra AK, Peterson JW, Goodheart R, Heggers JP. Generation of neutralizing antipeptide antibodies to the enzymatic domain of Pseudomonas aeruginosa exotoxin A. Infect Immun 1998; 66:2170-9. [PMID: 9573104 PMCID: PMC108178 DOI: 10.1128/iai.66.5.2170-2179.1998] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/1997] [Accepted: 02/25/1998] [Indexed: 02/07/2023] Open
Abstract
Burn patients suffer a break in the physical barrier (skin), which, when combined with their generalized state of immunodeficiency, creates an open window for opportunistic infections, mainly with Pseudomonas aeruginosa. Infection of the burn wound has always been a major factor in retardation of wound healing, and sepsis remains the leading cause of death in burn patients. Because studies have shown that topical treatment with antiexotoxin A (ETA) antibodies significantly increases survival in rats infected with toxin-producing strains of P. aeruginosa, we examined 11 synthetic peptides encompassing 12 to 45 amino acid (aa) residues, representing what were predicted by computer analysis to be the most hydrophilic and antigenic regions of ETA. These synthetic peptides were injected into rabbits for antibody production. Different groups of rabbits were immunized with a combination of peptides, with each combination representing one of the three distinct domains of ETA. Animals immunized with various peptide combinations produced peptide-specific antibodies that exhibited cross-reactivity to ETA. Two major epitopes were identified on the ETA molecule by experiments with peptide-specific antibodies in enzyme-linked immunosorbent assay and immunoprecipitation. One of these epitopes was located in the translocation domain (II) (aa 297 to 310), while the other was mapped to the last 13 aa residues at the carboxy-terminal end of the enzymatic domain (III) (aa 626 to 638). Of these two regions, the epitope in the enzymatic domain induced a much higher level of neutralizing antibodies that abrogated the cytotoxic activity of ETA in vitro. Antibodies to this epitope blocked the ADP-ribosyltransferase activity of ETA and appeared to interfere with binding of the substrate elongation factor 2 to the enzymatic active site of the ETA molecule. We conclude that polyclonal, as well as monoclonal, antibodies to short peptides, representing small regions of ETA, may have therapeutic potential in passive immunization or topical treatment of burn patients infected with toxin-producing strains of P. aeruginosa.
Collapse
Affiliation(s)
- H S Elzaim
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston 77550, USA
| | | | | | | | | |
Collapse
|