1
|
Ullah N, Fusco L, Ametrano L, Bartalucci C, Giacobbe DR, Vena A, Mikulska M, Bassetti M. Diagnostic Approach to Pneumonia in Immunocompromised Hosts. J Clin Med 2025; 14:389. [PMID: 39860395 PMCID: PMC11765643 DOI: 10.3390/jcm14020389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/21/2024] [Accepted: 01/01/2025] [Indexed: 01/27/2025] Open
Abstract
In immunocompromised patients, pneumonia presents a diagnostic challenge due to diverse etiologies, nonspecific symptoms, overlapping radiological presentation, frequent co-infections, and the potential for rapid progression to severe disease. Thus, timely and accurate diagnosis of all pathogens is crucial. This narrative review explores the latest advancements in microbiological diagnostic techniques for pneumonia in immunocompromised patients. It covers major available microbiological tools for diagnosing both community-acquired and hospital-acquired pneumonia, encompassing a wide spectrum of pathogens including bacterial, viral, fungal, and parasitic. While traditional culture methods remain pivotal in identifying many pneumonia-causing etiologies, their limitations in sensitivity and time to results have led to the rise of non-invasive antigen tests and molecular diagnostics. These are increasingly employed alongside cultures and microscopy for more efficient diagnosis, mainly in viral and fungal infections. Lastly, we report the future of pneumonia diagnostics, exploring the potential of metagenomics and CRISPR/Cas13a for more precise and rapid pathogen detection in immunocompromised populations.
Collapse
Affiliation(s)
- Nadir Ullah
- Department of Health Sciences (DISSAL), University of Genoa, 16126 Genoa, Italy; (N.U.); (C.B.); (A.V.); (M.M.); (M.B.)
| | - Ludovica Fusco
- UO Clinica Malattie Infettive, IRCCS Ospedale Policlinico San Martino, 16126 Genoa, Italy; (L.F.); (L.A.)
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80138 Naples, Italy
| | - Luigi Ametrano
- UO Clinica Malattie Infettive, IRCCS Ospedale Policlinico San Martino, 16126 Genoa, Italy; (L.F.); (L.A.)
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80138 Naples, Italy
| | - Claudia Bartalucci
- Department of Health Sciences (DISSAL), University of Genoa, 16126 Genoa, Italy; (N.U.); (C.B.); (A.V.); (M.M.); (M.B.)
- UO Clinica Malattie Infettive, IRCCS Ospedale Policlinico San Martino, 16126 Genoa, Italy; (L.F.); (L.A.)
| | - Daniele Roberto Giacobbe
- Department of Health Sciences (DISSAL), University of Genoa, 16126 Genoa, Italy; (N.U.); (C.B.); (A.V.); (M.M.); (M.B.)
- UO Clinica Malattie Infettive, IRCCS Ospedale Policlinico San Martino, 16126 Genoa, Italy; (L.F.); (L.A.)
| | - Antonio Vena
- Department of Health Sciences (DISSAL), University of Genoa, 16126 Genoa, Italy; (N.U.); (C.B.); (A.V.); (M.M.); (M.B.)
- UO Clinica Malattie Infettive, IRCCS Ospedale Policlinico San Martino, 16126 Genoa, Italy; (L.F.); (L.A.)
| | - Malgorzata Mikulska
- Department of Health Sciences (DISSAL), University of Genoa, 16126 Genoa, Italy; (N.U.); (C.B.); (A.V.); (M.M.); (M.B.)
- UO Clinica Malattie Infettive, IRCCS Ospedale Policlinico San Martino, 16126 Genoa, Italy; (L.F.); (L.A.)
| | - Matteo Bassetti
- Department of Health Sciences (DISSAL), University of Genoa, 16126 Genoa, Italy; (N.U.); (C.B.); (A.V.); (M.M.); (M.B.)
- UO Clinica Malattie Infettive, IRCCS Ospedale Policlinico San Martino, 16126 Genoa, Italy; (L.F.); (L.A.)
| |
Collapse
|
2
|
Hosseinikargar N, Zarrinfar H, Seyedi SJ, Mojtahedi SS. Inappropriate treatment of pulmonary aspergillosis caused by Aspergillus flavus in susceptible pediatric patients: a case series. J Med Case Rep 2024; 18:301. [PMID: 38951939 PMCID: PMC11218340 DOI: 10.1186/s13256-024-04599-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 05/15/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND Pulmonary aspergillosis is a prevalent opportunistic fungal infection that can lead to mortality in pediatric patients with underlying immunosuppression. Appropriate and timely treatment of pulmonary aspergillosis can play a crucial role in reducing mortality among children admitted with suspected infections. CASE PRESENTATION The present study reports three cases of inappropriate treatment of pulmonary aspergillosis caused by Aspergillus flavus in two Iranian pediatric patients under investigation and one Afghan patient. Unfortunately, two of them died. The cases involved patients aged 9, 1.5, and 3 years. They had been diagnosed with pulmonary disorders, presenting nonspecific clinical signs and radiographic images suggestive of pneumonia. The identification of A. flavus was confirmed through DNA sequencing of the calmodulin (CaM) region. CONCLUSION A. flavus was the most prevalent cause of pulmonary aspergillosis in pediatric patients. Early diagnosis and accurate antifungal treatment of pulmonary aspergillosis could be crucial in reducing the mortality rate and also have significant potential for preventing other complications among children. Moreover, antifungal prophylaxis seems to be essential for enhancing survival in these patients.
Collapse
Affiliation(s)
| | - Hossein Zarrinfar
- Allergy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Sinus and Surgical Endoscopic Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Seyed Javad Seyedi
- Department of Pediatrics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Sabereh Mojtahedi
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Parasitology and Mycology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Laboratory Sciences, School of Paramedical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Cai Y, Liang J, Lu G, Zhan Y, Meng J, Liu Z, Shao Y. Diagnosis of invasive pulmonary aspergillosis by lateral flow assay of galactomannan in bronchoalveolar lavage fluid: a meta-analysis of diagnostic performance. Lett Appl Microbiol 2023; 76:ovad110. [PMID: 37771080 DOI: 10.1093/lambio/ovad110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/13/2023] [Accepted: 09/27/2023] [Indexed: 09/30/2023]
Abstract
The performance of lateral flow assay (LFA) in diagnosing invasive pulmonary aspergillosis (IPA) has not been well demonstrated. To address this, we conducted a meta-analysis assessing the overall accuracy of LFA in diagnosing IPA using bronchoalveolar lavage fluid (BALF). Over a systematical search and assessment of bias risk, we calculated the pooled specificity, sensitivity, and area under the receiver operating curve (AUC) to assess the diagnostic performance. Our meta-analysis included 11 studies. The combined total sensitivity and specificity for diagnosing IPA were 0.78 (95% confidence interval (CI): 0.71, 0.83) and 0.87 (95% CI: 0.81, 0.91), respectively. The AUC was 0.86 (95% CI: 0.82, 0.89). Our results demonstrate that LFA using galactomannan in BALF exhibits high sensitivity and specificity for diagnosing IPA.
Collapse
Affiliation(s)
- Yingli Cai
- Department of Emergency, The First People's Hospital of Zhaoqing, Zhaoqing 526000, China
- Jinan University, Guangzhou 510632, China
| | - Jun Liang
- Department of Emergency, The First People's Hospital of Zhaoqing, Zhaoqing 526000, China
- Jinan University, Guangzhou 510632, China
| | - Guangsheng Lu
- Department of Emergency, The First People's Hospital of Zhaoqing, Zhaoqing 526000, China
| | - Yankun Zhan
- Department of Emergency, The First People's Hospital of Zhaoqing, Zhaoqing 526000, China
| | - Jianwei Meng
- Department of Emergency, The First People's Hospital of Zhaoqing, Zhaoqing 526000, China
| | - Zhusheng Liu
- Department of Emergency, The First People's Hospital of Zhaoqing, Zhaoqing 526000, China
| | | |
Collapse
|
4
|
Yoo IY, Park YJ. Culture-independent diagnostic approaches for invasive aspergillosis in solid organ transplant recipients. KOREAN JOURNAL OF TRANSPLANTATION 2023; 37:155-164. [PMID: 37751964 PMCID: PMC10583980 DOI: 10.4285/kjt.23.0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/17/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023] Open
Abstract
Prompt and accurate diagnosis of invasive aspergillosis (IA) is crucial for immunocompromised patients, including those who have received a solid organ transplant (SOT). Despite their low sensitivity, microscopic detection and conventional culture are considered the 'gold standard' methods. In conjunction with conventional culture, culture-independent assays such as serum galactomannan testing and Aspergillus polymerase chain reaction (PCR) have been incorporated into the diagnostic process for IA. The recently revised consensus definitions from the European Organization for Research and Treatment of Cancer and the Mycosis Study Group have adjusted the threshold for positive galactomannan testing based on the sample type, and have excluded 1,3-β-D-glucan testing as a mycological criterion. Following extensive standardization efforts, positive Aspergillus PCR tests using serum, plasma, or bronchoalveolar lavage fluid have been added. However, there are limited studies evaluating the clinical utility of these culture-independent assays for the early diagnosis of IA in SOT recipients. Therefore, further research is required to determine whether these assays could aid in the early diagnosis of IA in SOT recipients, particularly in relation to the organ transplanted. In this review, we examine the culture-independent diagnostic methods for IA in SOT recipients, as well as the clinical utility of these assays.
Collapse
Affiliation(s)
- In Young Yoo
- Department of Laboratory Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yeon-Joon Park
- Department of Laboratory Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
5
|
Baker J, Denning DW. The SSS revolution in fungal diagnostics: speed, simplicity and sensitivity. Br Med Bull 2023; 147:62-78. [PMID: 37328942 PMCID: PMC10502448 DOI: 10.1093/bmb/ldad011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 04/24/2023] [Accepted: 05/29/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Fungal disease has historically presented a diagnostic challenge due to its often non-specific clinical presentations, relative infrequency and reliance on insensitive and time-intensive fungal culture. SOURCES OF DATA We present the recent developments in fungal diagnostics in the fields of serological and molecular diagnosis for the most clinically relevant pathogens; developments that have the potential to revolutionize fungal diagnosis through improvements in speed, simplicity and sensitivity. We have drawn on a body of evidence including recent studies and reviews demonstrating the effectiveness of antigen and antibody detection and polymerase chain reaction (PCR) in patients with and without concurrent human immunodeficiency virus infection. AREAS OF AGREEMENT This includes recently developed fungal lateral flow assays, which have a low cost and operator skill requirement that give them great applicability to low-resource settings. Antigen detection for Cryptococcus, Histoplasma and Aspergillus spp. are much more sensitive than culture. PCR for Candida spp., Aspergillus spp., Mucorales and Pneumocystis jirovecii is more sensitive than culture and usually faster. AREAS OF CONTROVERSY Effort must be made to utilize recent developments in fungal diagnostics in clinical settings outside of specialist centres and integrate their use into standard medical practice. Given the clinical similarities of the conditions and frequent co-infection, further study is required into the use of serological and molecular fungal tests, particularly in patients being treated for tuberculosis. GROWING POINTS Further study is needed to clarify the utility of these tests in low-resource settings confounded by a high prevalence of tuberculosis. AREAS TIMELY FOR DEVELOPING RESEARCH The diagnostic utility of these tests may require revision of laboratory work flows, care pathways and clinical and lab coordination, especially for any facility caring for the immunosuppressed, critically ill or those with chronic chest conditions, in whom fungal disease is common and underappreciated.
Collapse
Affiliation(s)
- Jacob Baker
- Department of Medicine, Shrewsbury and Telford Hospitals Trust, Mytton Oak Rd, Shrewsbury SY3 8XQ, UK
| | - David W Denning
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- Global Action For Fungal Infections (GAFFI), Rue Le Corbusier 1208 Geneva, Switzerland
| |
Collapse
|
6
|
Barros N, Rosenblatt RE, Phipps MM, Fomin V, Mansour MK. Invasive fungal infections in liver diseases. Hepatol Commun 2023; 7:e0216. [PMID: 37639701 PMCID: PMC10462082 DOI: 10.1097/hc9.0000000000000216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 06/07/2023] [Indexed: 08/31/2023] Open
Abstract
Patients with liver diseases, including decompensated cirrhosis, alcohol-associated hepatitis, and liver transplant recipients are at increased risk of acquiring invasive fungal infections (IFIs). These infections carry high morbidity and mortality. Multiple factors, including host immune dysfunction, barrier failures, malnutrition, and microbiome alterations, increase the risk of developing IFI. Candida remains the most common fungal pathogen causing IFI. However, other pathogens, including Aspergillus, Cryptococcus, Pneumocystis, and endemic mycoses, are being increasingly recognized. The diagnosis of IFIs can be ascertained by the direct observation or isolation of the pathogen (culture, histopathology, and cytopathology) or by detecting antigens, antibodies, or nucleic acid. Here, we provide an update on the epidemiology, pathogenesis, diagnosis, and management of IFI in patients with liver disease and liver transplantation.
Collapse
Affiliation(s)
- Nicolas Barros
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Division of Infectious Diseases, Department of Medicine, Indiana University Health, Indianapolis, Indiana, USA
| | - Russell E. Rosenblatt
- Department of Gastroenterology and Hepatology, Weill Cornell Medicine, New York, New York, USA
| | - Meaghan M. Phipps
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Vladislav Fomin
- Department of Gastroenterology and Hepatology, Weill Cornell Medicine, New York, New York, USA
| | - Michael K. Mansour
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
7
|
Stohs EJ, Gorsline CA. Opportunities for Antimicrobial Stewardship Interventions Among Solid Organ Transplant Recipients. Infect Dis Clin North Am 2023:S0891-5520(23)00041-7. [PMID: 37280135 DOI: 10.1016/j.idc.2023.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Although antimicrobial stewardship programs have excelled over the past decade, uptake and application of these programs to special populations such as solid organ transplant recipients have lagged. Here, we review the value of antimicrobial stewardship for transplant centers and highlight data supporting interventions that are ripe for adoption. In addition, we review the design of antimicrobial stewardship initiatives, targets for both syndromic and system-based interventions.
Collapse
Affiliation(s)
- Erica J Stohs
- Division of Infectious Diseases, Department of Medicine, University of Nebraska Medical Center, 985400 Nebraska Medical Center, Omaha, NE 68198-5400, USA.
| | - Chelsea A Gorsline
- Division of Infectious Diseases, Department of Medicine, University of Kansas Medical Center, 3901 Rainbow Boulevard, Mailstop 1028, Kansas City, KS, USA
| |
Collapse
|
8
|
Ao Z, Xu H, Li M, Liu H, Deng M, Liu Y. Clinical characteristics, diagnosis, outcomes and lung microbiome analysis of invasive pulmonary aspergillosis in the community-acquired pneumonia patients. BMJ Open Respir Res 2023; 10:e001358. [PMID: 36828645 PMCID: PMC9972439 DOI: 10.1136/bmjresp-2022-001358] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 01/06/2023] [Indexed: 02/26/2023] Open
Abstract
BACKGROUND Invasive pulmonary aspergillosis (IPA) remains underestimated in patients with community-acquired pneumonia (CAP). This study aims to describe clinical features and outcomes of IPA in CAP patients, assess diagnostic performance of metagenomic next-generation sequencing (mNGS) for IPA and analyse lung microbiome via mNGS data. METHODS This retrospective cohort study included CAP patients from 22 April 2019 to 30 September 2021. Clinical and microbiological data were analysed. Diagnostic performance of mNGS was compared with traditional detection methods. The lung microbiome detected by mNGS was characterised and its association with clinical features was evaluated. MAIN RESULTS IPA was diagnosed in 26 (23.4%) of 111 CAP patients. Patients with IPA displayed depressed immunity, higher hospital mortality (30.8% vs 11.8%) and intensive care unit mortality (42.1% vs 17.5%) compared with patients without IPA. The galactomannan (GM) antigen test had the highest sensitivity (57.7%) in detecting the Aspergillus spp, followed by mNGS (42.3%), culture (30.8%) and smear (7.7%). The mNGS, culture and smear had 100% specificity, while GM test had 92.9% specificity. The microbial structure of IPA significantly differed from non-IPA patients (p<0.001; Wilcoxon test). Nineteen different species were significantly correlated with clinical outcomes and laboratory biomarkers, particularly for Streptococcus salivarius, Prevotella timonensis and Human betaherpesvirus 5. CONCLUSIONS Our results reveal that patients with Aspergillus infection tend to have a higher early mortality rate. The mNGS may be suggested as a complement to routine microbiological test in diagnosis of patients at risk of Aspergillus infection. The lung microbiota is associated with inflammatory, immune and metabolic conditions of IPA, and thus influences clinical outcomes.
Collapse
Affiliation(s)
- Zhi Ao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Huan Xu
- Department of Scientific Affairs, Vision Medicals for Infection Diseases, Guangzhou, China
| | - Mengqi Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Huifang Liu
- Department of Scientific Affairs, Vision Medicals for Infection Diseases, Guangzhou, China
| | - Min Deng
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuliang Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
9
|
Husson J, Bork JT, Morgan D, Baddley JW. Is diagnostic stewardship possible in solid organ transplantation? Transpl Infect Dis 2022; 24:e13899. [DOI: 10.1111/tid.13899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/08/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Jennifer Husson
- Institute of Human Virology Department of Medicine University of Maryland School of Medicine Baltimore Maryland USA
| | - Jacqueline T. Bork
- Department of Medicine University of Maryland School of Medicine and VA Maryland Healthcare System Baltimore Maryland USA
| | - Daniel Morgan
- Department of Epidemiology and Public Health VA Maryland Healthcare System University of Maryland School of Medicine Baltimore Maryland USA
| | - John W. Baddley
- Department of Medicine University of Maryland School of Medicine and VA Maryland Healthcare System Baltimore Maryland USA
| |
Collapse
|
10
|
Ahmed J, Singh G, Mohan A, Agarwal R, Sachdev J, Khullar S, Bhusan Xess A, Mathur P, Das B, Xess I. Invasive pulmonary aspergillosis infection in severely ill COPD patients in pulmonary ward and ICU. Indian J Med Microbiol 2022; 40:223-227. [DOI: 10.1016/j.ijmmb.2022.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/03/2022] [Accepted: 02/23/2022] [Indexed: 11/05/2022]
|
11
|
Challenges with Utilizing the 1,3-Beta-d-Glucan and Galactomannan Assays To Diagnose Invasive Mold Infections in Immunocompromised Children. J Clin Microbiol 2021; 59:e0327620. [PMID: 33883182 DOI: 10.1128/jcm.03276-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Establishing the diagnosis of invasive mold infections (IMI) in immunocompromised children is challenging due to nonspecific clinical presentations and the limited sensitivity of traditional culture-based methods. Rapid non-culture-based diagnostics such as the 1,3-beta-d-glucan and galactomannan assays have emerged as promising adjuncts to conventional diagnostic tests in adults. Available data suggest that 1,3-beta-d-glucan has limited accuracy in the pediatric population and is not recommended to be used for the diagnosis of IMI in children. On the other hand, the diagnostic performance of the serum and bronchoalveolar lavage galactomannan in immunocompromised children is comparable to results observed in adults and can be used as a screening tool in children at high risk of developing invasive aspergillosis (IA) who are not receiving mold-active antifungal prophylaxis and as a diagnostic tool in symptomatic children suspected of having IA. Herein, we summarize the available evidence for the use of these rapid non-culture-based diagnostics in immunocompromised children. We also summarize potential causes of false positivity for the 1,3-beta-d-glucan and galactomannan assays.
Collapse
|
12
|
Fungal Infections in Liver Transplant Recipients. J Fungi (Basel) 2021; 7:jof7070524. [PMID: 34210106 PMCID: PMC8304186 DOI: 10.3390/jof7070524] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/25/2021] [Accepted: 06/21/2021] [Indexed: 01/03/2023] Open
Abstract
Invasive fungal infections (IFIs) are one of the most feared complications associated with liver transplantation, with high rates of morbidity and mortality. We discuss the most common invasive fungal infections in the setting of liver transplant, including Candida, Aspergillus, and Cryptococcal infections, and some less frequent but devastating mold infections. Further, we evaluate the use of prophylaxis to prevent invasive fungal infection in this population as a promising mechanism to reduce risks to patients after liver transplant.
Collapse
|
13
|
Wilmes D, Coche E, Rodriguez-Villalobos H, Kanaan N. Fungal pneumonia in kidney transplant recipients. Respir Med 2021; 185:106492. [PMID: 34139578 DOI: 10.1016/j.rmed.2021.106492] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 10/21/2022]
Abstract
Fungal pneumonia is a dreaded complication encountered after kidney transplantation, complicated by increased mortality and often associated with graft failure. Diagnosis can be challenging because the clinical presentation is non-specific and diagnostic tools have limited sensitivity and specificity in kidney transplant recipients and must be interpreted in the context of the clinical setting. Management is difficult due to the increased risk of dissemination and severity, multiple comorbidities, drug interactions and reduced immunosuppression which should be applied as an important adjunct to therapy. This review will focus on the main causes of fungal pneumonia in kidney transplant recipients including Pneumocystis, Aspergillus, Cryptococcus, mucormycetes and Histoplasma. Epidemiology, clinical presentation, laboratory and radiographic features, specific characteristics will be discussed with an update on diagnostic procedures and treatment.
Collapse
Affiliation(s)
- D Wilmes
- Division of Internal Medicine, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - E Coche
- Division of Radiology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - H Rodriguez-Villalobos
- Division of Microbiology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - N Kanaan
- Division of Nephrology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium.
| |
Collapse
|
14
|
Huang L, Zhang Y, Hua L, Zhan Q. Diagnostic value of galactomannan test in non-immunocompromised critically ill patients with influenza-associated aspergillosis: data from three consecutive influenza seasons. Eur J Clin Microbiol Infect Dis 2021; 40:1899-1907. [PMID: 33837879 DOI: 10.1007/s10096-021-04228-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/14/2021] [Indexed: 01/21/2023]
Abstract
To explore the diagnostic value of a galactomannan (GM) detection for non-immunocompromised critically ill patients with influenza-associated aspergillosis (IAA). In this retrospective case-control study, we explored the sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and area under the receiver operating characteristic (ROC) curve (AUC) of serum and bronchoalveolar lavage fluid (BALF) GM tests by four detection strategies at different detection time points and with different compound modes. In total, 90 patients were evaluated. The AUC values of the second serum GM test, the first and second BALF GM tests, were significantly higher (0.839 (95% CI 0.716 to 0.963), P < 0.01; 0.904 (95% CI 0.820 to 0.988), P < 0.01; 0.827 (95% CI 0.694 to 0.961), P = 0.043) than that of the first serum GM test (0.548 (95% CI 0.377 to 0.718)). We found that at least one positive result on two consecutive serum GM tests (0.719 (95% CI 0.588 to 0.849)) was the best compared with the first positive test (0.419 (95% CI 0.342 to 0.641), P < 0.01) and positives on two consecutive tests (0.636 (95% CI 0.483 to 0.790), P = 0.014). However, there were no differences between those three detection strategies of BALF GM. The BALF GM test might have a better diagnostic value for IAA in the ICU than the serum GM test. A possible cutoff value of 1.0 to 1.3 was set for GM from BALF specimens for IAA. A single serum GM test is not routinely recommended, but at least one positive result on two consecutive tests appeared to be useful.
Collapse
Affiliation(s)
- Linna Huang
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, People's Republic of China
| | - Yingfang Zhang
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, People's Republic of China.,Peking University China-Japan Friendship School of Clinical Medicine, Beijing, People's Republic of China
| | - Lin Hua
- School of Biomedical Engineering, Capital Medical University, Beijing, People's Republic of China
| | - Qingyuan Zhan
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, People's Republic of China.
| |
Collapse
|
15
|
Jiang L, Gu R, Li X, Mu D. Simple and rapid detection Aspergillus fumigatus by loop-mediated isothermal amplification coupled with lateral flow biosensor assay. J Appl Microbiol 2021; 131:2351-2360. [PMID: 33788361 DOI: 10.1111/jam.15092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 03/05/2021] [Accepted: 03/24/2021] [Indexed: 11/30/2022]
Abstract
AIMS We have developed a new diagnostic technique, termed loop-mediated isothermal amplification coupled with lateral flow biosensor (LAMP-LFB), which has been successfully applied to the detection of Aspergillus fumigatus. MATERIAL AND METHODS A set of six LAMP primers was designed according to the A. fumigatus-specific anxC4 gene, which specifically recognized eight different regions of the target sequence. The LFB was employed for reporting the A. fumigatus-LAMP results, and the visual readouts were obtained within 2 min. The strains of A. fumigatus species and non-A. fumigatus species were used to test the assay's sensitivity and examine the analytical specificity of the target assay. Optimal LAMP conditions were 66°C for 50 min. The limit of detection is 100 fg. No cross-reactions were obtained, and the specificity of LAMP-LFB assay was 100%. The whole process of the assay, including 20 min of DNA preparation, 50 min of constant temperature amplification, and 2 min of detection by the sensor strip, took a total of 72 min (less than 75 min). Among 89 sputum specimens for clinical evaluation, 10 (11·23%) samples were A. fumigatus-positive by LAMP-LFB and traditional culture method, 9 (10·11%) samples were A. fumigatus-positive by PCR method. Compared with culture method, the diagnostic accuracy of LAMP-LFB method was 100%. CONCLUSIONS The novel LAMP-LFB detection technology established in the current research is a rapid and reliable detection tool for A. fumigatus. SIGNIFICANCE AND IMPACT OF THE STUDY This novel LAMP-LFB assay can quickly, specifically and sensitively detect A. fumigatus, thereby speeding up the detection process and increasing the detection rate. In addition, it can also be used as a new molecular method for detection of A. fumigatus in clinical and laboratory areas.
Collapse
Affiliation(s)
- L Jiang
- Department of Respiratory Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - R Gu
- Department of Respiratory Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.,Graduate School of Clinical Medicine, Bengbu Medical College, Bengbu, China
| | - X Li
- Department of Respiratory Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.,Graduate School of Clinical Medicine, Bengbu Medical College, Bengbu, China
| | - D Mu
- Department of Respiratory Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
16
|
Diagnostic Accuracy of Bronchoalveolar Lavage Fluid Galactomannan for Invasive Aspergillosis. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5434589. [PMID: 33335924 PMCID: PMC7723495 DOI: 10.1155/2020/5434589] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 09/13/2020] [Accepted: 11/03/2020] [Indexed: 01/23/2023]
Abstract
Background The pathogenesis of invasive aspergillosis (IA) is still unknown, but its progression is rapid and mortality rate remains high. Bronchoalveolar lavage fluid (BALF) galactomannan (GM) analysis has been used to diagnose IA. This study is aimed at making an accurate estimate of the whole accuracy of BALF-GM in diagnosing IA. Methods After a systematic review of the study, a bivariate meta-analysis was used to summarize the specificity (SPE), the sensitivity (SEN), the positive likelihood ratios (PLR), and the negative likelihood ratios (NLR) of BALF-GM in diagnosing IA. The overall test performance was summarized using a layered summary receiver operating characteristic (SROC) curve. Subgroup analysis was performed to explore the heterogeneity between studies. Results A total of 65 studies that are in line with the inclusion criteria were included. The summary estimates of BALF-GM analysis are divided into four categories. The first is the proven+probable vs. possible+no IA, with an SPE, 0.87 (95% CI, 0.85-0.98); SEN, 0.81 (95% CI, 0.76-0.84); PLR, 9.78 (5.78-16.56); and NLR, 0.20 (0.14-0.29). The AUC was 0.94. The BALF-GM test for proven+probable vs. no IA showed SPE, 0.88 (95% CI, 0.87-0.90); SEN, 0.82 (95% CI, 0.78-0.85); PLR, 6.56 (4.93-8.75); and NLR, 0.24 (0.17-0.33). The AUC was 0.93. The BALF-GM test for proven+probable+possible vs. no IA showed SPE, 0.82 (95% CI, 0.79-0.95); SEN, 0.59 (95% CI, 0.55-0.63); PLR, 3.60 (2.07-6.25); and NLR, 0.31 (0.15-0.61). The AUC was 0.86. The analyses for others showed SPE, 0.85 (95% CI, 0.83-0.87); SEN, 0.89 (95% CI, 0.86-0.91); PLR, 6.91 (4.67-10.22); and NLR, 0.18 (0.13-0.26). The AUC was 0.94. Conclusions The findings of this BALF-GM test resulted in some impact on the diagnosis of IA. The BALF-GM assay is considered a method for diagnosing IA with high SEN and SPE. However, the patients' underlying diseases may affect the accuracy of diagnosis. When the cutoff is greater than 1, the sensitivity will be higher.
Collapse
|
17
|
Performance of Aspergillus Galactomannan Lateral Flow Assay on Bronchoalveolar Lavage Fluid for the Diagnosis of Invasive Pulmonary Aspergillosis. J Fungi (Basel) 2020; 6:jof6040297. [PMID: 33217952 PMCID: PMC7711466 DOI: 10.3390/jof6040297] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 11/14/2020] [Accepted: 11/16/2020] [Indexed: 01/23/2023] Open
Abstract
Background: Several newly developed biomarker tests for invasive pulmonary aspergillosis (IPA) have been developed, including the IMMY Aspergillus galactomannan lateral flow assay (Aspergillus GM-LFA) evaluated in this study. Methods: Twenty patients with proven/probable IPA (EORTC/MSGERC criteria) were matched by age and underlying disease with 20 patients without IPA. Bronchoalveolar lavage fluid (BALF) was analyzed in duplicate using the Aspergillus GM-LFA. Results were read visually by two blinded observers, and the optical density index (ODI) was obtained digitally with a cube reader. Results: Using a cutoff of ≥0.5 ODI, the Aspergillus GM-LFA had a sensitivity of 40%, specificity of 80%, positive predictive value (PPV) of 67% and negative predictive value (NPV) of 57%. When the cutoff was increased to ≥1.0 ODI, sensitivity remained at 40%, specificity rose to 95%, PPV was 89%, and NPV was 61%. Excellent agreement was found when duplicate samples were read either visually (κ = 1) or with the cube reader (κ = 0.89). Correlation of results obtained by visual inspection and those obtained using the cube reader was excellent (κ = 0.82). Conclusion: The Aspergillus GM-LFA had poor sensitivity but excellent specificity for proven/probable IPA in BALF. The assay was easy to interpret, and there was high concordance between results obtained visually and with a cube reader.
Collapse
|
18
|
Lee SI, Sung H, Hong SB, Lim CM, Koh Y, Huh JW. Usefulness of ICU criteria for diagnosis of invasive pulmonary aspergillosis in nonhematologic critically ill patients. Med Mycol 2020; 58:275-281. [PMID: 31204780 DOI: 10.1093/mmy/myz062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 05/03/2019] [Accepted: 05/17/2019] [Indexed: 12/13/2022] Open
Abstract
Invasive pulmonary aspergillosis (IPA) is a life-threatening disease in the intensive care unit (ICU). The ICU criteria were proposed to diagnose IPA in critically ill patients. This study aims to evaluate the usefulness of ICU criteria for diagnosis and treatment of IPA in nonhematologic patients in the ICU. We retrospectively reviewed 103 ICU patients with positive galactomannan test in blood and respiratory tract from January 1, 2016, to May 31, 2017. We excluded patients with hematologic malignancy. We divided the treatment and non-treatment groups according to the IPA treatment. We compared the baseline characteristics and outcomes between two groups and the agreement with ICU criteria. There were 49 patients in treatment groups and 54 patients in non-treatment groups. There were more cases of solid organ transplantation (P = .003), immunosuppressive therapy (P < .001) and bacterial viral coinfection (P = .048) in the treatment group compared to nontreatment group. There was no statistically significant difference in mortality, the use of ventilator, and septic shock between the two groups. The agreement rate between the putative group and treatment was low (59.2%). There was no statistically significant difference in outcome between the putative and colonization groups according to the ICU criteria in each group. The treatment of IPA based on the symptom, radiologic finding and galactomannan test did not showed the better outcome. Also, the treatment based on the ICU criteria didn't show the difference of outcome. The new criteria for diagnosis of IPA in critically ill patients are needed.
Collapse
Affiliation(s)
- Song-I Lee
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Republic of Korea.,Department of Pulmonary and Critical Care Medicine, Chungnam National University Hospital, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Heungsup Sung
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Republic of Korea
| | - Sang-Bum Hong
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Republic of Korea
| | - Chae-Man Lim
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Republic of Korea
| | - Younsuck Koh
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Republic of Korea
| | - Jin-Won Huh
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Republic of Korea
| |
Collapse
|
19
|
Rafat Z, Hashemi SJ, Ashrafi K, Nikokar I, Jafari A, Rahimi Foroushani A, Roohi B, Borjian Boroujeini Z, Rashidi N, Najar-Shahri N. Fungal Isolates of the Respiratory Tract in Symptomatic Patients Hospitalized in Pulmonary Units: A Mycological and Molecular Epidemiologic Study. J Multidiscip Healthc 2020; 13:661-669. [PMID: 32801730 PMCID: PMC7383022 DOI: 10.2147/jmdh.s252371] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 07/10/2020] [Indexed: 12/04/2022] Open
Abstract
Introduction Fungal respiratory infections are being recognized with increasing frequency in parallel with an expanding population of immunocompromised patients. In most cases, colonization is the first step in the progression to pulmonary fungal infection. This study was designed to evaluate the distribution of fungal elements in the respiratory tract of symptomatic patients hospitalized in pulmonary units. Methods This descriptive cross-sectional study was carried out over a period of two years, from October 2017 to October 2019 in Guilan province, located in Iran’s northern region. In the current study, bronchoalveolar lavage or sputum specimens were collected. All samples were analyzed by direct microscopy using KOH 10% and culture. Fungal identification was accomplished by internal transcribed spacer (ITS) and beta-tubulin sequencing. Also, in patients suspected of invasive pulmonary aspergillosis, BAL specimens were tested for galactomannan (GM) antigen. Results A total of 384 lung specimens (192 bronchoalveolar lavage (BAL) and 192 sputum samples) were obtained from symptomatic patients hospitalized in pulmonary units. Of these, 137 (35.67%) were positive in direct examination and culture. Among the 137 positive cases, most isolates were from male patients 86 (62.77%) and most of them were between 46 and 72 years. Candida albicans (37.22%) and Candida tropicalis (21.89%) represent the two most commonly isolated species in the current study. Cough (94.16%), dyspnea (81.02%), purulent sputum (62.04%) and weight loss (56.2%) were the predominant symptoms and tuberculosis (24.81%), chemotherapy (21.89%) and diabetes mellitus (19.70%) were the predominant underlying conditions. Also, 5 cases of invasive pulmonary aspergillosis and 1 case of mucormycosis were diagnosed. Conclusion Candida albicans was the most common fungal species isolated from symptomatic patients hospitalized in pulmonary units. Tuberculosis, chemotherapy and diabetes mellitus were important underlying conditions for pulmonary fungal colonization and/or infection.
Collapse
Affiliation(s)
- Zahra Rafat
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Jamal Hashemi
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Food Microbiology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Keyhan Ashrafi
- Department of Medical Microbiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Iraj Nikokar
- Laboratory of Microbiology and Immunology of Infectious Diseases, Paramedicine Faculty, Guilan University of Medical Sciences, Langeroud, Iran
| | - Alireza Jafari
- Urology Research Center, Razi Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Abbas Rahimi Foroushani
- Department of Statistics and Epidemiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Behrad Roohi
- Department of Medical Mycology, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zeinab Borjian Boroujeini
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Niloofar Rashidi
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Niki Najar-Shahri
- Laboratory of Microbiology and Immunology of Infectious Diseases, Paramedicine Faculty, Guilan University of Medical Sciences, Langeroud, Iran
| |
Collapse
|
20
|
Garcia-Vidal C, Carratalà J, Lortholary O. Defining standards of CARE for invasive fungal diseases in solid organ transplant patients. J Antimicrob Chemother 2020; 74:ii16-ii20. [PMID: 31222312 DOI: 10.1093/jac/dkz039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Fungal infection in solid organ transplant (SOT) recipients is a challenge for physicians. Our aim was to review progress made within the past decade in managing the most important invasive fungal diseases in SOT recipients. Standards of care for candidosis, aspergillosis, mucormycosis and cryptococcosis in this special population are summarized.
Collapse
Affiliation(s)
- Carolina Garcia-Vidal
- Infectious Diseases Department, Hospital Clínic de Barcelona-IDIBAPS, Universitat de Barcelona, Barcelona, Spain
| | - Jordi Carratalà
- Infectious Diseases Department, Hospital Universitari de Bellvitge-IDIBELL, Universitat de Barcelona, Barcelona, Spain
| | - Olivier Lortholary
- Institut Pasteur, National Reference Center for Invasive Mycoses and Antifungals, Molecular Mycology Unit, CNRS UMR, Paris, France.,Paris Descartes University, Necker Pasteur Center for Infectious Diseases and Tropical Medicine, IHU Imagine, APHP, Necker Enfants Malades University Hospital, Paris, France
| |
Collapse
|
21
|
Diagnosis of Fungal Infections. A Systematic Review and Meta-Analysis Supporting American Thoracic Society Practice Guideline. Ann Am Thorac Soc 2019; 16:1179-1188. [DOI: 10.1513/annalsats.201811-766oc] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
22
|
Invasive Fungal Infections and Their Epidemiology: Measures in the Clinical Scenario. BIOTECHNOL BIOPROC E 2019. [DOI: 10.1007/s12257-018-0477-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
23
|
Warris A, Lehrnbecher T, Roilides E, Castagnola E, Brüggemann RJM, Groll AH. ESCMID-ECMM guideline: diagnosis and management of invasive aspergillosis in neonates and children. Clin Microbiol Infect 2019; 25:1096-1113. [PMID: 31158517 DOI: 10.1016/j.cmi.2019.05.019] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 05/19/2019] [Accepted: 05/23/2019] [Indexed: 01/01/2023]
Abstract
SCOPE Presenting symptoms, distributions and patterns of diseases and vulnerability to invasive aspergillosis (IA) are similar between children and adults. However, differences exist in the epidemiology and underlying conditions, the usefulness of newer diagnostic tools, the pharmacology of antifungal agents and in the evidence from interventional phase 3 clinical trials. Therefore, the European Society for Clinical Microbiology and Infectious Diseases (ESCMID) and the European Confederation of Medical Mycology (ECMM) have developed a paediatric-specific guideline for the diagnosis and management of IA in neonates and children. METHODS Review and discussion of the scientific literature and grading of the available quality of evidence was performed by the paediatric subgroup of the ESCMID-ECMM-European Respiratory Society (ERS) Aspergillus disease guideline working group, which was assigned the mandate for the development of neonatal- and paediatric-specific recommendations. QUESTIONS Questions addressed by the guideline included the epidemiology of IA in neonates and children; which paediatric patients may benefit from antifungal prophylaxis; how to diagnose IA in neonates and children; which antifungal agents are available for use in neonates and children; which antifungal agents are suitable for prophylaxis and treatment of IA in neonates and children; what is the role of therapeutic drug monitoring of azole antifungals; and which management strategies are suitable to be used in paediatric patients. This guideline provides recommendations for the diagnosis, prevention and treatment of IA in the paediatric population, including neonates. The aim of this guideline is to facilitate optimal management of neonates and children at risk for or diagnosed with IA.
Collapse
Affiliation(s)
- A Warris
- MRC Centre for Medical Mycology, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom; European Society of Clinical Microbiology and Infectious Diseases Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology, the Netherlands.
| | - T Lehrnbecher
- Division of Paediatric Haematology and Oncology, Hospital for Children and Adolescents, Johann Wolfgang Goethe-University, Frankfurt, Germany; European Society of Clinical Microbiology and Infectious Diseases Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology, the Netherlands
| | - E Roilides
- Infectious Diseases Unit, 3rd Department of Paediatrics, Faculty of Medicine, Aristotle University 96 School of Health Sciences, Thessaloniki, Greece; European Society of Clinical Microbiology and Infectious Diseases Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology, the Netherlands
| | - E Castagnola
- Infectious Diseases Unit, IRCCS Istituto Giannina Gaslini Children's Hospital, Genoa, Italy; European Society of Clinical Microbiology and Infectious Diseases Fungal Infection Study Group (EFISG)
| | - R J M Brüggemann
- Radboud Center for Infectious Diseases, Radboud University Medical Centre, Center of Expertise in Mycology Radboudumc/CWZ, European Confederation of Medical Mycology (ECMM) Excellence Center of Medical Mycology, Nijmegen, the Netherlands; European Society of Clinical Microbiology and Infectious Diseases Fungal Infection Study Group (EFISG)
| | - A H Groll
- Infectious Disease Research Program, Center for Bone Marrow Transplantation and Department of Paediatric Hematology/Oncology, University Children's Hospital Münster, Münster, Germany; European Society of Clinical Microbiology and Infectious Diseases Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology, the Netherlands
| |
Collapse
|
24
|
de Heer K, Gerritsen MG, Visser CE, Leeflang MMG. Galactomannan detection in broncho-alveolar lavage fluid for invasive aspergillosis in immunocompromised patients. Cochrane Database Syst Rev 2019; 5:CD012399. [PMID: 31107543 PMCID: PMC6526785 DOI: 10.1002/14651858.cd012399.pub2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Invasive aspergillosis (IA) is a life-threatening opportunistic mycosis that occurs in some people with a compromised immune system. The serum galactomannan enzyme-linked immunosorbent assay (ELISA) rapidly gained widespread acceptance as part of the diagnostic work-up of a patient suspected of IA. Due to its non-invasive nature, it can be used as a routine screening test. The ELISA can also be performed on bronchoalveolar lavage (BAL), allowing sampling of the immediate vicinity of the infection. The invasive nature of acquiring BAL, however, changes the role of the galactomannan test significantly, for example by precluding its use as a routine screening test. OBJECTIVES To assess the diagnostic accuracy of galactomannan detection in BAL for the diagnosis of IA in people who are immunocompromised, at different cut-off values for test positivity, in accordance with the Cochrane Diagnostic Test Accuracy Handbook. SEARCH METHODS We searched three bibliographic databases including MEDLINE on 9 September 2016 for aspergillosis and galactomannan as text words and subject headings where appropriate. We checked reference lists of included studies for additional studies. SELECTION CRITERIA We included cohort studies that examined the accuracy of BAL galactomannan for the diagnosis of IA in immunocompromised patients if they used the European Organization for Research and Treatment of Cancer/Invasive Fungal Infections Cooperative Group and the National Institute of Allergy and Infectious Diseases Mycoses Study Group (EORTC/MSG) classification as reference standard. DATA COLLECTION AND ANALYSIS Two review authors assessed study quality and extracted data. Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) was used for quality assessment. MAIN RESULTS We included 17 studies in our review. All studies except one had a high risk of bias in two or more domains. The diagnostic performance of an optical density index (ODI) of 0.5 as cut-off value was reported in 12 studies (with 1123 patients). The estimated sensitivity was 0.88 (95% confidence interval (CI) 0.75 to 1.00) and specificity 0.81 (95% CI 0.71 to 0.91). The performance of an ODI of 1.0 as cut-off value could be determined in 11 studies (with 648 patients). The sensitivity was 0.78 (95% CI 0.61 to 0.95) and specificity 0.93 (95% CI 0.87 to 0.98). At a cut-off ODI of 1.5 or higher, the heterogeneity in specificity decreased significantly and was invariably >90%. AUTHORS' CONCLUSIONS The optimal cut-off value depends on the local incidence and clinical pathway. At a prevalence of 12% a hypothetical population of 1000 patients will consist of 120 patients with IA. At a cut-off value of 0.5 14 patients with IA will be missed and there will be 167 patients incorrectly diagnosed with IA. If we use the test at a cut-off value of 1.0, we will miss 26 patients with IA. And there will be 62 patients incorrectly diagnosed with invasive aspergillosis. The populations and results were very heterogeneous. Therefore, interpretation and extrapolation of these results has to be performed with caution. A test result of 1.5 ODI or higher appears a strong indicator of IA.
Collapse
Affiliation(s)
- Koen de Heer
- FlevoziekenhuisDepartment of Internal MedicineAlmereNetherlands
- Academic Medical CenterDepartment of HematologyAmsterdamNetherlands
| | | | - Caroline E Visser
- Academic Medical CentreDepartment of Medical MicrobiologyAmsterdamNetherlands
| | - Mariska MG Leeflang
- Amsterdam University Medical Centers, University of AmsterdamDepartment of Clinical Epidemiology, Biostatistics and BioinformaticsP.O. Box 22700AmsterdamNetherlands1100 DE
| | | |
Collapse
|
25
|
Dulek DE, Mueller NJ. Pneumonia in solid organ transplantation: Guidelines from the American Society of Transplantation Infectious Diseases Community of Practice. Clin Transplant 2019; 33:e13545. [PMID: 30900275 PMCID: PMC7162188 DOI: 10.1111/ctr.13545] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 03/18/2019] [Indexed: 12/19/2022]
Abstract
These guidelines from the AST Infectious Diseases Community of Practice review the diagnosis and management of pneumonia in the post-transplant period. Clinical presentations and differential diagnosis for pneumonia in the solid organ transplant recipient are reviewed. A two-tier approach is proposed based on the net state of immunosuppression and the severity of presentation. With a lower risk of opportunistic, hospital-acquired, or exposure-specific pathogens and a non-severe presentation, empirical therapy may be initiated under close clinical observation. In all other patients, or those not responding to the initial therapy, a more aggressive diagnostic approach including sampling of tissue for microbiological and pathological testing is warranted. Given the broad range of potential pathogens, a microbiological diagnosis is often key for optimal care. Given the limited literature comparatively evaluating diagnostic approaches to pneumonia in the solid organ transplant recipient, much of the proposed diagnostic algorithm reflects clinical experience rather than evidence-based data. It should serve as a template which may be modified according to local needs. The same holds true for the suggested empiric therapies, which need to be adapted to the local resistance patterns. Further study is needed to comparatively evaluate diagnostic and empiric treatment strategies in SOT recipients.
Collapse
Affiliation(s)
- Daniel E Dulek
- Division of Pediatric Infectious Diseases, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Nicolas J Mueller
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zürich, Switzerland
| | | |
Collapse
|
26
|
Husain S, Camargo JF. Invasive Aspergillosis in solid-organ transplant recipients: Guidelines from the American Society of Transplantation Infectious Diseases Community of Practice. Clin Transplant 2019; 33:e13544. [PMID: 30900296 DOI: 10.1111/ctr.13544] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 03/18/2019] [Indexed: 12/13/2022]
Abstract
These updated AST-IDCOP guidelines provide information on epidemiology, diagnosis, and management of Aspergillus after organ transplantation. Aspergillus is the most common invasive mold infection in solid-organ transplant (SOT) recipients, and it is the most common invasive fungal infection among lung transplant recipients. Time from transplant to diagnosis of invasive aspergillosis (IA) is variable, but most cases present within the first year post-transplant, with shortest time to onset among liver and heart transplant recipients. The overall 12-week mortality of IA in SOT exceeds 20%; prognosis is worse among those with central nervous system involvement or disseminated disease. Bronchoalveolar lavage galactomannan is preferred for the diagnosis of IA in lung and non-lung transplant recipients, in combination with other diagnostic modalities (eg, chest CT scan, culture). Voriconazole remains the drug of choice to treat IA, with isavuconazole and lipid formulations of amphotericin B regarded as alternative agents. The role of combination antifungals for primary therapy of IA remains controversial. Either universal prophylaxis or preemptive therapy is recommended in lung transplant recipients, whereas targeted prophylaxis is favored in liver and heart transplant recipients. In these guidelines, we also discuss newer antifungals and diagnostic tests, antifungal susceptibility testing, and special patient populations.
Collapse
Affiliation(s)
- Shahid Husain
- Division of Infectious Diseases, Multi-Organ Transplant Unit, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Jose F Camargo
- Department of Medicine, Division of Infectious Diseases, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
27
|
Roohani AH, Fatima N, Shameem M, Khan HM, Khan PA, Akhtar A. Comparing the profile of respiratory fungal pathogens amongst immunocompetent and immunocompromised hosts, their susceptibility pattern and correlation of various opportunistic respiratory fungal infections and their progression in relation to the CD4+T-cell counts. Indian J Med Microbiol 2019; 36:408-415. [PMID: 30429396 DOI: 10.4103/ijmm.ijmm_18_258] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction Invasive fungal infections are increasingly common in the nosocomial setting. Materials and Methods The patients were divided into two groups immunocompetent and immunocompromised that is, patients with significant neutropenia <500 neutrophils/μl for longer than 10 days. microscopy, culture, identification of isolates were done and some specilised tests on serum and BAL for antigen detection were performed. Results Majority of the patients were young adult males in this study. A higher prevalence of 26.7% was seen in immunocompromised patients. Amongst yeasts, Candida albicans was the predominant species followed by the National AIDS Control that is, Candida glabrata, Candida dubliniensis, Candida parapsilosis and Candida tropicalis in the same order. Amongst moulds, Aspergillus fumigatus was the most common species followed by Aspergillus flavus and Aspergillus niger. Mucor and Penicillium marneffei were seen in a lower prevalence. By Broth microdilution method, isolates of Candida spp. were most sensitive to caspofungin, amphotericin B, ketoconazole and fluconazole in the same order. Isolates of Aspergillus spp. were most sensitive to caspofungin, amphotericin B and itraconazole in the same order. By disc diffusion method, resistance to fluconazole was observed in 6.9% isolates of C. albicans. 50% of C. dubliniensis and 20% of C. glabrata showed resistance to fluconazole. A total mortality of 27.7% was observed during this study. This was distributed as 24.1%, 26.7%, 50%, 50%, 100% and 0% among by patients of candidiasis, aspergillosis, cryptococcosis, pneumocystosis, mucormycosis and penicilliosis. Fifteen per cent were lost to follow-up. Conclusion Patterns of invasive fungal infections are changing in many ways. In the midst of these evolving trends, IFI of the respiratory tractcontinue to remain important causes of morbidity and mortality. Diagnostic tools can be adequately used only if the treating physician is aware of the propensity of patients to acquire a fungal infection. Thus, continuous awareness and education is crucial for successful management of patients. Judicious use of antifungal medications as prophylactic measures must be employed, particularly in the critically ill and patients of HIV.
Collapse
Affiliation(s)
| | - Nazish Fatima
- Department of Microbiology, JNMC, AMU, Aligarh, Uttar Pradesh, India
| | - Mohammad Shameem
- Department of TB Chest and Respiratory Disease, JNMC, AMU, Aligarh, Uttar Pradesh, India
| | | | - Parvez Anwar Khan
- Department of Microbiology, JNMC, AMU, Aligarh, Uttar Pradesh, India
| | - Anees Akhtar
- Department of Microbiology, JNMC, AMU, Aligarh, Uttar Pradesh, India
| |
Collapse
|
28
|
Krylov VB, Solovev AS, Argunov DA, Latgé JP, Nifantiev NE. Reinvestigation of carbohydrate specificity of EB-A2 monoclonal antibody used in the immune detection of Aspergillus fumigatus galactomannan. Heliyon 2019; 5:e01173. [PMID: 30766929 PMCID: PMC6360342 DOI: 10.1016/j.heliyon.2019.e01173] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/20/2018] [Accepted: 01/23/2019] [Indexed: 02/07/2023] Open
Abstract
Great progresses have been made in the recent years in the detection of circulating galactofuranose-bearing molecules for the diagnosis of aspergillosis. However, the test used in the clinical practice is hampered by the occurrence of false positives. A glycoarray with dozens of oligosaccharides structurally related to the Aspergillus fumigatus galactomannan has allowed us to reinvestigate the carbohydrate specificity of the EB-A2 monoclonal antibody used in the PlateliaTM Aspergillus sandwich immune assay. We have now demonstrated that the mAb can recognize shorter oligosaccharides than the previously reported tetrasaccharide Galf-β-(1→5)-Galf-β-(1→5)-Galf-β-(1→5)-Galf-β and oligosaccharides which contains alternating β-(1→5)/β-(1→6)-linkages. This result could explain the occurrence of false-positive signals due to the presence of the abovementioned epitopes not only in A. fumigatus galactomannan but also in other bacteria and fungi.
Collapse
Affiliation(s)
- Vadim B. Krylov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia
| | - Arsenii S. Solovev
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia
| | - Dmitry A. Argunov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia
| | - Jean-Paul Latgé
- Unité des Aspergillus, Institut Pasteur, 25 Rue du Docteur Roux, 75724 Paris Cedex 15, France
- Corresponding author.
| | - Nikolay E. Nifantiev
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia
- Corresponding author.
| |
Collapse
|
29
|
Patterson TF, Donnelly JP. New Concepts in Diagnostics for Invasive Mycoses: Non-Culture-Based Methodologies. J Fungi (Basel) 2019; 5:E9. [PMID: 30658509 PMCID: PMC6463019 DOI: 10.3390/jof5010009] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/14/2019] [Accepted: 01/15/2019] [Indexed: 12/22/2022] Open
Abstract
Non-culture-based diagnostics have been developed to help establish an early diagnosis of invasive fungal infection. Studies have shown that these tests can significantly impact the diagnosis of infection in high risk patients. Aspergillus galactomannan EIA testing is well-recognized as an important adjunct to the diagnosis of invasive aspergillosis and can be detected in serum, bronchoalveolar lavage and other fluids. Galactomannan testing used along with PCR testing has been shown to be effective when integrated into care paths for high risk patients for both diagnoses and as a surrogate marker for outcome when used in serial testing. Beta-d-glucan assays are non-specific for several fungal genera including Aspergillus and Candida and in high risk patients have been an important tool to augment the diagnosis. Lateral flow technology using monoclonal antibodies to Aspergillus are available that allow rapid testing of clinical samples. While standard PCR for Candida remains investigational, T2 magnetic resonance allows for the rapid diagnosis of Candida species from blood cultures. Aspergillus PCR has been extensively validated with standardized approaches established for these methods and will be included in the diagnostic criteria in the revised European Organization for Research and Treatment of Cancer/Mycoses Study Group (EORTC-MSG) definitions. Finally, these non-culture-based tests can be used in combination to significantly increase the detection of invasive mycoses with the ultimate aim of establishing an early diagnosis of infection.
Collapse
Affiliation(s)
- Thomas F Patterson
- Division of Infectious Diseases, San Antonio Center for Medical Mycology, The University of Texas Health Science Center at San Antonio and the South Texas Veterans Health Care System, 7703 Floyd Curl Drive-MSC 7881, San Antonio, TX 78229-3900, USA.
| | - J Peter Donnelly
- Division of Infectious Diseases, San Antonio Center for Medical Mycology, The University of Texas Health Science Center at San Antonio and the South Texas Veterans Health Care System, 7703 Floyd Curl Drive-MSC 7881, San Antonio, TX 78229-3900, USA.
| |
Collapse
|
30
|
Herrera S, Husain S. Current State of the Diagnosis of Invasive Pulmonary Aspergillosis in Lung Transplantation. Front Microbiol 2019; 9:3273. [PMID: 30687264 PMCID: PMC6333628 DOI: 10.3389/fmicb.2018.03273] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 12/17/2018] [Indexed: 01/06/2023] Open
Abstract
As the number of lung transplants performed worldwide each year continues to grow, the success of this procedure is threatened by the incidence of non-CMV infections such as invasive aspergillosis. Despite tremendous efforts and the availability of numerous diagnostic tests (especially in hematological malignancies) the diagnosis of invasive aspergillosis continues to be a challenge. Lung transplantation remains a unique clinical scenario, where additional host defenses are immunocompromized, making many of the available tests unsuitable. In this review we will navigate through the myriad of diagnostic tests currently available and how they apply to this unique patient population, as well as have a look into what the future holds.
Collapse
Affiliation(s)
- Sabina Herrera
- Transplant Infectious Diseases, Toronto General Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Shahid Husain
- Transplant Infectious Diseases, Toronto General Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
31
|
Impacts and Challenges of Advanced Diagnostic Assays for Transplant Infectious Diseases. PRINCIPLES AND PRACTICE OF TRANSPLANT INFECTIOUS DISEASES 2019. [PMCID: PMC7121269 DOI: 10.1007/978-1-4939-9034-4_47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The advanced technologies described in this chapter should allow for full inventories to be made of bacterial genes, their time- and place-dependent expression, and the resulting proteins as well as their outcome metabolites. The evolution of these molecular technologies will continue, not only in the microbial pathogens but also in the context of host-pathogen interactions targeting human genomics and transcriptomics. Their performance characteristics and limitations must be clearly understood by both laboratory personnel and clinicians to ensure proper utilization and interpretation.
Collapse
|
32
|
Farmakiotis D, Le A, Weiss Z, Ismail N, Kubiak DW, Koo S. False positive bronchoalveolar lavage galactomannan: Effect of host and cut-off value. Mycoses 2018; 62:204-213. [PMID: 30387195 DOI: 10.1111/myc.12867] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 10/28/2018] [Indexed: 12/21/2022]
Abstract
OBJECTIVES Bronchoalveolar lavage galactomannan (BAL-GM) is a mycological criterion for diagnosis of probable invasive aspergillosis (IA) per European Organization for Research and Treatment of Cancer/Mycoses Study Group (EORT-MSG) consensus criteria, but its real-world positive predictive value (PPV) has not been well-studied. Our aim was to estimate the PPV of BAL-GM in a contemporary cohort of patients with positive BAL-GM. METHODS We identified consecutive patients with ≥1 positive BAL-GM value (index ≥ 0.5) at Brigham and Women's Hospital from 11/2009 to 3/2016. We classified patients as having no, possible, probable, or proven IA, excluding BAL-GM as mycological criterion. RESULTS We studied 134 patients: 54% had hematologic malignancy (HM), and 10% were solid organ transplant (SOT) recipients. A total of 42% of positive (≥0.5) BAL-GM results were falsely positive (PPV 58%). The number of probable IA cases was increased by 23% using positive BAL-GM as mycologic criterion alone. PPV was higher in patients with HM or SOT (P < 0.001) and with use of higher thresholds for positivity (BAL-GM ≥ 1 vs 1-0.8 vs 0.8-0.5: P = 0.002). CONCLUSIONS 42% of positive BAL-GM values were falsely positive. We propose a critical reassessment of BAL-GM cutoff values in different patient populations. Accurate noninvasive tests for diagnosis of IA are urgently needed.
Collapse
Affiliation(s)
- Dimitrios Farmakiotis
- Division of Infectious Diseases, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Audrey Le
- Department of Internal Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Zoe Weiss
- Department of Internal Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Nour Ismail
- Brigham and Women's Hospital, Rhode Island Hospital, Division of Infectious Diseases, Harvard Medical School, Boston, Massachusetts
| | - David W Kubiak
- Brigham and Women's Hospital, Rhode Island Hospital, Division of Infectious Diseases, Harvard Medical School, Boston, Massachusetts
| | - Sophia Koo
- Brigham and Women's Hospital, Rhode Island Hospital, Division of Infectious Diseases, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
33
|
Husain S, Bhaskaran A, Rotstein C, Li Y, Bhimji A, Pavan R, Kumar D, Humar A, Keshavjee S, Singer LG. A strategy for prevention of fungal infections in lung transplantation: Role of bronchoalveolar lavage fluid galactomannan and fungal culture. J Heart Lung Transplant 2018; 37:886-894. [DOI: 10.1016/j.healun.2018.02.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 02/12/2018] [Accepted: 02/14/2018] [Indexed: 10/18/2022] Open
|
34
|
Ullmann AJ, Aguado JM, Arikan-Akdagli S, Denning DW, Groll AH, Lagrou K, Lass-Flörl C, Lewis RE, Munoz P, Verweij PE, Warris A, Ader F, Akova M, Arendrup MC, Barnes RA, Beigelman-Aubry C, Blot S, Bouza E, Brüggemann RJM, Buchheidt D, Cadranel J, Castagnola E, Chakrabarti A, Cuenca-Estrella M, Dimopoulos G, Fortun J, Gangneux JP, Garbino J, Heinz WJ, Herbrecht R, Heussel CP, Kibbler CC, Klimko N, Kullberg BJ, Lange C, Lehrnbecher T, Löffler J, Lortholary O, Maertens J, Marchetti O, Meis JF, Pagano L, Ribaud P, Richardson M, Roilides E, Ruhnke M, Sanguinetti M, Sheppard DC, Sinkó J, Skiada A, Vehreschild MJGT, Viscoli C, Cornely OA. Diagnosis and management of Aspergillus diseases: executive summary of the 2017 ESCMID-ECMM-ERS guideline. Clin Microbiol Infect 2018; 24 Suppl 1:e1-e38. [PMID: 29544767 DOI: 10.1016/j.cmi.2018.01.002] [Citation(s) in RCA: 898] [Impact Index Per Article: 128.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 01/02/2018] [Accepted: 01/03/2018] [Indexed: 02/06/2023]
Abstract
The European Society for Clinical Microbiology and Infectious Diseases, the European Confederation of Medical Mycology and the European Respiratory Society Joint Clinical Guidelines focus on diagnosis and management of aspergillosis. Of the numerous recommendations, a few are summarized here. Chest computed tomography as well as bronchoscopy with bronchoalveolar lavage (BAL) in patients with suspicion of pulmonary invasive aspergillosis (IA) are strongly recommended. For diagnosis, direct microscopy, preferably using optical brighteners, histopathology and culture are strongly recommended. Serum and BAL galactomannan measures are recommended as markers for the diagnosis of IA. PCR should be considered in conjunction with other diagnostic tests. Pathogen identification to species complex level is strongly recommended for all clinically relevant Aspergillus isolates; antifungal susceptibility testing should be performed in patients with invasive disease in regions with resistance found in contemporary surveillance programmes. Isavuconazole and voriconazole are the preferred agents for first-line treatment of pulmonary IA, whereas liposomal amphotericin B is moderately supported. Combinations of antifungals as primary treatment options are not recommended. Therapeutic drug monitoring is strongly recommended for patients receiving posaconazole suspension or any form of voriconazole for IA treatment, and in refractory disease, where a personalized approach considering reversal of predisposing factors, switching drug class and surgical intervention is also strongly recommended. Primary prophylaxis with posaconazole is strongly recommended in patients with acute myelogenous leukaemia or myelodysplastic syndrome receiving induction chemotherapy. Secondary prophylaxis is strongly recommended in high-risk patients. We strongly recommend treatment duration based on clinical improvement, degree of immunosuppression and response on imaging.
Collapse
Affiliation(s)
- A J Ullmann
- Department of Infectious Diseases, Haematology and Oncology, University Hospital Würzburg, Würzburg, Germany; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - J M Aguado
- Infectious Diseases Unit, University Hospital Madrid, Madrid, Spain; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - S Arikan-Akdagli
- Department of Medical Microbiology, Hacettepe University Medical School, Ankara, Turkey; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - D W Denning
- The National Aspergillosis Centre, Wythenshawe Hospital, Mycology Reference Centre Manchester, Manchester University NHS Foundation Trust, ECMM Excellence Centre of Medical Mycology, Manchester, UK; The University of Manchester, Manchester, UK; Manchester Academic Health Science Centre, Manchester, UK; European Confederation of Medical Mycology (ECMM)
| | - A H Groll
- Department of Paediatric Haematology/Oncology, Centre for Bone Marrow Transplantation, University Children's Hospital Münster, Münster, Germany; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - K Lagrou
- Department of Microbiology and Immunology, ECMM Excellence Centre of Medical Mycology, University Hospital Leuven, Leuven, Belgium; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - C Lass-Flörl
- Institute of Hygiene, Microbiology and Social Medicine, ECMM Excellence Centre of Medical Mycology, Medical University Innsbruck, Innsbruck, Austria; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - R E Lewis
- Infectious Diseases Clinic, Sant'Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy; ESCMID Fungal Infection Study Group (EFISG)
| | - P Munoz
- Department of Medical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain; CIBER Enfermedades Respiratorias - CIBERES (CB06/06/0058), Madrid, Spain; Medicine Department, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - P E Verweij
- Department of Medical Microbiology, Radboud University Medical Centre, Centre of Expertise in Mycology Radboudumc/CWZ, ECMM Excellence Centre of Medical Mycology, Nijmegen, Netherlands; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - A Warris
- MRC Centre for Medical Mycology, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - F Ader
- Department of Infectious Diseases, Hospices Civils de Lyon, Lyon, France; Inserm 1111, French International Centre for Infectious Diseases Research (CIRI), Université Claude Bernard Lyon 1, Lyon, France; European Respiratory Society (ERS)
| | - M Akova
- Department of Medicine, Section of Infectious Diseases, Hacettepe University Medical School, Ankara, Turkey; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - M C Arendrup
- Department Microbiological Surveillance and Research, Statens Serum Institute, Copenhagen, Denmark; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - R A Barnes
- Department of Medical Microbiology and Infectious Diseases, Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK; European Confederation of Medical Mycology (ECMM)
| | - C Beigelman-Aubry
- Department of Diagnostic and Interventional Radiology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland; European Respiratory Society (ERS)
| | - S Blot
- Department of Internal Medicine, Ghent University, Ghent, Belgium; Burns, Trauma and Critical Care Research Centre, University of Queensland, Brisbane, Australia; European Respiratory Society (ERS)
| | - E Bouza
- Department of Medical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain; CIBER Enfermedades Respiratorias - CIBERES (CB06/06/0058), Madrid, Spain; Medicine Department, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - R J M Brüggemann
- Radboud Centre for Infectious Diseases, Radboud University Medical Centre, Centre of Expertise in Mycology Radboudumc/CWZ, ECMM Excellence Centre of Medical Mycology, Nijmegen, Netherlands; ESCMID Fungal Infection Study Group (EFISG)
| | - D Buchheidt
- Medical Clinic III, University Hospital Mannheim, Mannheim, Germany; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - J Cadranel
- Department of Pneumology, University Hospital of Tenon and Sorbonne, University of Paris, Paris, France; European Respiratory Society (ERS)
| | - E Castagnola
- Infectious Diseases Unit, Istituto Giannina Gaslini Children's Hospital, Genoa, Italy; ESCMID Fungal Infection Study Group (EFISG)
| | - A Chakrabarti
- Department of Medical Microbiology, Postgraduate Institute of Medical Education & Research, Chandigarh, India; European Confederation of Medical Mycology (ECMM)
| | - M Cuenca-Estrella
- Instituto de Salud Carlos III, Madrid, Spain; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - G Dimopoulos
- Department of Critical Care Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, Medical School, Athens, Greece; European Respiratory Society (ERS)
| | - J Fortun
- Infectious Diseases Service, Ramón y Cajal Hospital, Madrid, Spain; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - J-P Gangneux
- Univ Rennes, CHU Rennes, Inserm, Irset (Institut de Recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - J Garbino
- Division of Infectious Diseases, University Hospital of Geneva, Geneva, Switzerland; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - W J Heinz
- Department of Infectious Diseases, Haematology and Oncology, University Hospital Würzburg, Würzburg, Germany; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - R Herbrecht
- Department of Haematology and Oncology, University Hospital of Strasbourg, Strasbourg, France; ESCMID Fungal Infection Study Group (EFISG)
| | - C P Heussel
- Diagnostic and Interventional Radiology, Thoracic Clinic, University Hospital Heidelberg, Heidelberg, Germany; European Confederation of Medical Mycology (ECMM)
| | - C C Kibbler
- Centre for Medical Microbiology, University College London, London, UK; European Confederation of Medical Mycology (ECMM)
| | - N Klimko
- Department of Clinical Mycology, Allergy and Immunology, North Western State Medical University, St Petersburg, Russia; European Confederation of Medical Mycology (ECMM)
| | - B J Kullberg
- Radboud Centre for Infectious Diseases, Radboud University Medical Centre, Centre of Expertise in Mycology Radboudumc/CWZ, ECMM Excellence Centre of Medical Mycology, Nijmegen, Netherlands; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - C Lange
- International Health and Infectious Diseases, University of Lübeck, Lübeck, Germany; Clinical Infectious Diseases, Research Centre Borstel, Leibniz Center for Medicine & Biosciences, Borstel, Germany; German Centre for Infection Research (DZIF), Tuberculosis Unit, Hamburg-Lübeck-Borstel-Riems Site, Lübeck, Germany; European Respiratory Society (ERS)
| | - T Lehrnbecher
- Division of Paediatric Haematology and Oncology, Hospital for Children and Adolescents, Johann Wolfgang Goethe-University, Frankfurt, Germany; European Confederation of Medical Mycology (ECMM)
| | - J Löffler
- Department of Infectious Diseases, Haematology and Oncology, University Hospital Würzburg, Würzburg, Germany; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - O Lortholary
- Department of Infectious and Tropical Diseases, Children's Hospital, University of Paris, Paris, France; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - J Maertens
- Department of Haematology, ECMM Excellence Centre of Medical Mycology, University Hospital Leuven, Leuven, Belgium; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - O Marchetti
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland; Department of Medicine, Ensemble Hospitalier de la Côte, Morges, Switzerland; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - J F Meis
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, Centre of Expertise in Mycology Radboudumc/CWZ, ECMM Excellence Centre of Medical Mycology, Nijmegen, Netherlands; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - L Pagano
- Department of Haematology, Universita Cattolica del Sacro Cuore, Roma, Italy; European Confederation of Medical Mycology (ECMM)
| | - P Ribaud
- Quality Unit, Pôle Prébloc, Saint-Louis and Lariboisière Hospital Group, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - M Richardson
- The National Aspergillosis Centre, Wythenshawe Hospital, Mycology Reference Centre Manchester, Manchester University NHS Foundation Trust, ECMM Excellence Centre of Medical Mycology, Manchester, UK; The University of Manchester, Manchester, UK; Manchester Academic Health Science Centre, Manchester, UK; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - E Roilides
- Infectious Diseases Unit, 3rd Department of Paediatrics, Faculty of Medicine, Aristotle University School of Health Sciences, Thessaloniki, Greece; Hippokration General Hospital, Thessaloniki, Greece; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - M Ruhnke
- Department of Haematology and Oncology, Paracelsus Hospital, Osnabrück, Germany; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - M Sanguinetti
- Institute of Microbiology, Fondazione Policlinico Universitario A. Gemelli - Università Cattolica del Sacro Cuore, Rome, Italy; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - D C Sheppard
- Division of Infectious Diseases, Department of Medicine, Microbiology and Immunology, McGill University, Montreal, Canada; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - J Sinkó
- Department of Haematology and Stem Cell Transplantation, Szent István and Szent László Hospital, Budapest, Hungary; ESCMID Fungal Infection Study Group (EFISG)
| | - A Skiada
- First Department of Medicine, Laiko Hospital, National and Kapodistrian University of Athens, Athens, Greece; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - M J G T Vehreschild
- Department I of Internal Medicine, ECMM Excellence Centre of Medical Mycology, University Hospital of Cologne, Cologne, Germany; Centre for Integrated Oncology, Cologne-Bonn, University of Cologne, Cologne, Germany; German Centre for Infection Research (DZIF) partner site Bonn-Cologne, Cologne, Germany; European Confederation of Medical Mycology (ECMM)
| | - C Viscoli
- Ospedale Policlinico San Martino and University of Genova (DISSAL), Genova, Italy; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - O A Cornely
- First Department of Medicine, Laiko Hospital, National and Kapodistrian University of Athens, Athens, Greece; German Centre for Infection Research (DZIF) partner site Bonn-Cologne, Cologne, Germany; CECAD Cluster of Excellence, University of Cologne, Cologne, Germany; Clinical Trials Center Cologne, University Hospital of Cologne, Cologne, Germany; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM); ESCMID European Study Group for Infections in Compromised Hosts (ESGICH).
| |
Collapse
|
35
|
Severe infections in critically ill solid organ transplant recipients. Clin Microbiol Infect 2018; 24:1257-1263. [PMID: 29715551 DOI: 10.1016/j.cmi.2018.04.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 04/13/2018] [Accepted: 04/19/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Severe infections are among the most common causes of death in immunocompromised patients admitted to the intensive care unit. The epidemiology, diagnosis and treatment of these infections has evolved in the last decade. AIMS We aim to provide a comprehensive review of these severe infections in this population. SOURCES Review of the literature pertaining to severe infections in critically ill solid organ transplant recipients. PubMed and Embase databases were searched for documents published since database inception until November 2017. CONTENT The epidemiology of severe infections has changed in the immunocompromised patients. This population is presenting to the intensive care unit with specific transplantation procedure-related infections, device-associated infections, a multitude of opportunistic viral infections, an increasing number of nosocomial infections and bacterial diseases with a more limited therapeutic armamentarium. Both molecular diagnostics and imaging techniques have had substantial progress in the last decade, which will, we hope, translate into faster and more precise diagnoses, as well as more optimal empirical treatment de-escalation. IMPLICATIONS The key clinical elements to improve the outcome of critically ill solid organ transplant recipients depend on the knowledge of geographic epidemiology, specific surgical procedures, net state of immunosuppression, hospital microbial ecology, aggressive diagnostic strategy and search for source control, rapid initiation of antimicrobials and minimization of iatrogenic immunosuppression.
Collapse
|
36
|
Hamdy RF, Zaoutis TE, Seo SK. Antifungal stewardship considerations for adults and pediatrics. Virulence 2017; 8:658-672. [PMID: 27588344 PMCID: PMC5626349 DOI: 10.1080/21505594.2016.1226721] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 08/05/2016] [Accepted: 08/11/2016] [Indexed: 10/21/2022] Open
Abstract
Antifungal stewardship refers to coordinated interventions to monitor and direct the appropriate use of antifungal agents in order to achieve the best clinical outcomes and minimize selective pressure and adverse events. Antifungal utilization has steadily risen over time in concert with the increase in number of immunocompromised adults and children at risk for invasive fungal infections (IFI). Challenges in diagnosing IFI often lead to delays in treatment and poorer outcomes. There are also emerging data linking prior antifungal exposure and suboptimal dosing to the emergence of antifungal resistance, particularly for Candida. Antimicrobial stewardship programs can take a multi-pronged bundle approach to ensure suitable prescribing of antifungals via post-prescription review and feedback and/or prior authorization. Institutional guidelines can also be developed to guide diagnostic testing in at-risk populations; appropriate choice, dose, and duration of antifungal agent; therapeutic drug monitoring; and opportunities for de-escalation and intravenous-to-oral conversion.
Collapse
Affiliation(s)
- Rana F. Hamdy
- Division of Infectious Diseases, Children's National Health System, Washington, DC, USA
| | - Theoklis E. Zaoutis
- Division of Infectious Diseases, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Susan K. Seo
- Department of Medicine, Infectious Disease Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
37
|
Taghizadeh-Armaki M, Hedayati MT, Moqarabzadeh V, Ansari S, Mahdavi Omran S, Zarrinfar H, Saber S, Verweij PE, Denning DW, Seyedmousavi S. Effect of involved Aspergillus species on galactomannan in bronchoalveolar lavage of patients with invasive aspergillosis. J Med Microbiol 2017; 66:898-904. [PMID: 28693685 DOI: 10.1099/jmm.0.000512] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
PURPOSE The detection of galactomannan (GM) in bronchoalveolar lavage (BAL) fluid is an important surrogate marker for the early diagnosis and therapeutic monitoring of invasive aspergillosis (IA), regardless of the involved species of Aspergillus. Here, we utilized the Platelia Aspergillus GM enzyme immunoassay (Bio-Rad) to evaluate the GM index in BAL fluid samples from patients with proven, probable or putative IA due to Aspergillusflavus versus Aspergillusfumigatus. METHODOLOGY In a prospective study between 2009 and 2015, 116 BAL samples were collected from suspected IA patients referred to two university hospitals in Tehran, Iran. KEY FINDINGS According to European Organization for Research and Treatment of Cancer and Mycoses Study Group and Blot criteria, 35 patients were classified as IA patients, of which 33 cases tested positive for GM above 0.5 and, among these patients, 22 had a GM index ≥1. Twenty-eight were culture positive for A. flavus and seven for A. fumigatus. The GM index for A. flavus cases was between 0.5-6.5 and those of A. fumigatus ranged from 1 to 6.5. The sensitivity and specificity of a GM index ≥0.5 in cases with A. flavus were 86 and 88 % and for A. fumigatus patients were 100 and 73 %, respectively. CONCLUSION Overall, the mean GM index in patients with A. fumigatus (3.1) was significantly higher than those of A. flavus (1.6; P-value=0.031) and the sensitivity of GM lower for A. flavus when compared to A. fumigatus. This finding has implications for diagnosis in hospitals and countries with a high proportion of A. flavus infections.
Collapse
Affiliation(s)
- Mojtaba Taghizadeh-Armaki
- Invasive Fungi Research Center, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Medical Mycology and Parasitology, School of Medicine, Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Medical Mycology and Parasitology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Mohammad T Hedayati
- Department of Medical Mycology and Parasitology, School of Medicine, Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran.,Invasive Fungi Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Vahid Moqarabzadeh
- Department of Biostatistics, Faculty of Health, Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Saham Ansari
- Department of Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Mahdavi Omran
- Department of Medical Mycology and Parasitology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Hossein Zarrinfar
- Allergy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sasan Saber
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Paul E Verweij
- Department of Medical Microbiology, Radboudumc and Center of Expertise in Mycology Radboudumc/CWZ, Nijmegen, The Netherlands
| | - David W Denning
- The National Aspergillosis Centre, University Hospital of South Manchester, University of Manchester, Manchester, Academic Health Science Centre, Manchester, UK
| | - Seyedmojtaba Seyedmousavi
- Invasive Fungi Research Center, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Medical Microbiology, Radboudumc and Center of Expertise in Mycology Radboudumc/CWZ, Nijmegen, The Netherlands.,Present address: Molecular Microbiology Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| |
Collapse
|
38
|
Wong SSW, Rasid O, Laskaris P, Fekkar A, Cavaillon JM, Steinbach WJ, Ibrahim-Granet O. Treatment of Cyclosporin A retains host defense against invasive pulmonary aspergillosis in a non-immunosuppressive murine model by preserving the myeloid cell population. Virulence 2017; 8:1744-1752. [PMID: 28594271 DOI: 10.1080/21505594.2017.1339007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Cyclosporin A (CsA) is widely used as an immunosuppressive agent for organ transplant recipients. CsA inhibits calcineurin, which is highly conserved in mammals and fungi, and thus affects both types of organism. In mammals, the immunosuppressive effect of CsA is via hampering T cell activation. In fungi, the growth inhibitory effect of CsA is via interference with hyphal growth. The aim of this study was to determine whether CsA renders mice susceptible to invasive pulmonary aspergillosis (IPA) and whether it can protect immunosuppressed mice from infection. We therefore examined both the antifungal and the immunosuppressive activity of CsA in immunosuppressed and in immunocompetent mice infected with Aspergillus fumigatus to model IPA. We found that daily injections of CsA could not produce an antifungal effect sufficient to rescue immunosuppressed mice from lethal IPA. However, a 100% survival rate was obtained in non-immunosuppressed mice receiving daily CsA, indicating that CsA did not render the mice vulnerable to IPA. The lymphocyte subset was significantly suppressed by CsA, while the myeloid subset was not. Therefore, we speculate that CsA does not impair the host defense against IPA since the myeloid cells are preserved.
Collapse
Affiliation(s)
| | - Orhan Rasid
- b Unité Cytokines & Inflammation , Institut Pasteur , Paris , France
| | - Paris Laskaris
- b Unité Cytokines & Inflammation , Institut Pasteur , Paris , France
| | - Arnaud Fekkar
- c AP-HP , Groupe hospitalier La Pitié-Salpêtrière, Service de Parasitologie Mycologie , Paris , France.,d Centre d'Immunologie et des Maladies Infectieuses , CIMI-Paris , Paris , France.,e Sorbonne Universités , UPMC Univ Paris 06 , Paris , France
| | | | - William J Steinbach
- f Department of Pediatrics , Division of Pediatric Infectious Diseases, Duke University , NC , USA
| | | |
Collapse
|
39
|
Galactomannan and 1,3-β-d-Glucan Testing for the Diagnosis of Invasive Aspergillosis. J Fungi (Basel) 2016; 2:jof2030022. [PMID: 29376937 PMCID: PMC5753135 DOI: 10.3390/jof2030022] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 06/21/2016] [Accepted: 06/28/2016] [Indexed: 11/16/2022] Open
Abstract
Invasive aspergillosis (IA) is a severe complication among hematopoietic stem cell transplant recipients or patients with hematological malignancies and neutropenia following anti-cancer therapy. Moreover, IA is increasingly observed in other populations, such as solid-organ transplant recipients, patients with solid tumors or auto-immune diseases, and among intensive care unit patients. Frequent delay in diagnosis is associated with high mortality rates. Cultures from clinical specimens remain sterile in many cases and the diagnosis of IA often only relies on non-specific radiological signs in the presence of host risk factors. Tests for detection of galactomannan- (GM) and 1,3-β-d-glucan (BDG) are useful adjunctive tools for the early diagnosis of IA and may have a role in monitoring response to therapy. However, the sensitivity and specificity of these fungal biomarkers are not optimal and variations between patient populations are observed. This review discusses the role and interpretation of GM and BDG testing for the diagnosis of IA in different clinical samples (serum, bronchoalveolar lavage fluid, cerebrospinal fluid) and different groups of patients (onco-hematological patients, solid-organ transplant recipients, other patients at risk of IA).
Collapse
|
40
|
Fortún J, Martín-Dávila P, Gomez Garcia de la Pedrosa E, Silva JT, Garcia-Rodríguez J, Benito D, Venanzi E, Castaño F, Fernández-Ruiz M, Lazaro F, García-Luján R, Quiles I, Cabanillas JJ, Moreno S, Aguado JM. Galactomannan in bronchoalveolar lavage fluid for diagnosis of invasive aspergillosis in non-hematological patients. J Infect 2016; 72:738-744. [PMID: 27025205 DOI: 10.1016/j.jinf.2016.02.019] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 02/20/2016] [Accepted: 02/26/2016] [Indexed: 10/22/2022]
Abstract
BACKGROUND The role of galactomannan (GM) in serum or bronchoalveolar lavage fluid (BALF) for the diagnosis of invasive pulmonary aspergillosis (IPA) has been extensively evaluated in hematological patients, however its performance in non-hematological patients is not well established. METHODS We performed a multicenter retrospective study in 3 university hospitals in Madrid, Spain between 2010 and 2014. The study population comprised patients with chronic obstructive pulmonary disease (COPD) and patients with immunosuppressive conditions in whom IPA was suspected and for whom BALF GM was available. Patients with hematological disorders were excluded. RESULTS A total of 188 patients (35 with COPD and 153 with immunosuppressive conditions) were analyzed, and 31 cases of IPA (proven or probable) were identified. The global sensitivity of BALF GM (optical density index [ODI] ≥ 1.0) was 77.4%; sensitivity was higher in patients with immunosuppressive conditions than in patients with COPD (81.8% vs 66.7%; p: 0.38). In COPD patients, the best performance was obtained for BALF GM (ODI ≥ 0.5), although sensitivity (88.9%) was similar to that of BALF fungal culture (88.9%). The sensitivity of GM in serum was very poor in both populations (36.4% and 11.6%, respectively). CONCLUSIONS In the present series, the diagnostic performance of BALF GM was good for IPA in non-hematological patients, especially in patients with immunosuppressive conditions.
Collapse
Affiliation(s)
- J Fortún
- Department of Infectious Diseases, Hospital Universitario Ramon y Cajal, Instituto de Investigación Ramón y Cajal (IRYCIS), Universidad de Alcalá, Madrid, Spain.
| | - P Martín-Dávila
- Department of Infectious Diseases, Hospital Universitario Ramon y Cajal, Instituto de Investigación Ramón y Cajal (IRYCIS), Universidad de Alcalá, Madrid, Spain
| | - E Gomez Garcia de la Pedrosa
- Department of Microbiology, Hospital Universitario Ramon y Cajal, Instituto de Investigación Ramón y Cajal (IRYCIS), Universidad de Alcalá, Madrid, Spain
| | - J T Silva
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Hospital "12 de Octubre", Universidad Complutense, Madrid, Spain
| | - J Garcia-Rodríguez
- Department of Microbiology, Hospital Universitario La Paz, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Universidad Autónoma, Madrid, Spain
| | - D Benito
- Department of Infectious Diseases, Hospital Universitario Ramon y Cajal, Instituto de Investigación Ramón y Cajal (IRYCIS), Universidad de Alcalá, Madrid, Spain
| | - E Venanzi
- Department of Infectious Diseases, Hospital Universitario Ramon y Cajal, Instituto de Investigación Ramón y Cajal (IRYCIS), Universidad de Alcalá, Madrid, Spain
| | - F Castaño
- Department of Infectious Diseases, Hospital Universitario Ramon y Cajal, Instituto de Investigación Ramón y Cajal (IRYCIS), Universidad de Alcalá, Madrid, Spain
| | - M Fernández-Ruiz
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Hospital "12 de Octubre", Universidad Complutense, Madrid, Spain
| | - F Lazaro
- Department of Microbiology, Hospital Universitario La Paz, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Universidad Autónoma, Madrid, Spain
| | - R García-Luján
- Department of Pneumology, Hospital Universitario "12 de Octubre", Instituto de Investigación Hospital "12 de Octubre", Universidad Complutense, Madrid, Spain
| | - I Quiles
- Department of Microbiology, Hospital Universitario La Paz, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Universidad Autónoma, Madrid, Spain
| | - J J Cabanillas
- Department of Pneumology, Hospital Universitario La Paz, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Universidad Autónoma, Madrid, Spain
| | - S Moreno
- Department of Infectious Diseases, Hospital Universitario Ramon y Cajal, Instituto de Investigación Ramón y Cajal (IRYCIS), Universidad de Alcalá, Madrid, Spain
| | - J M Aguado
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Hospital "12 de Octubre", Universidad Complutense, Madrid, Spain
| |
Collapse
|
41
|
Husain S, Sole A, Alexander BD, Aslam S, Avery R, Benden C, Billaud EM, Chambers D, Danziger-Isakov L, Fedson S, Gould K, Gregson A, Grossi P, Hadjiliadis D, Hopkins P, Luong ML, Marriott DJ, Monforte V, Muñoz P, Pasqualotto AC, Roman A, Silveira FP, Teuteberg J, Weigt S, Zaas AK, Zuckerman A, Morrissey O. The 2015 International Society for Heart and Lung Transplantation Guidelines for the management of fungal infections in mechanical circulatory support and cardiothoracic organ transplant recipients: Executive summary. J Heart Lung Transplant 2016; 35:261-282. [DOI: 10.1016/j.healun.2016.01.007] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 01/10/2016] [Indexed: 01/10/2023] Open
|
42
|
Miceli MH, Goggins MI, Chander P, Sekaran AK, Kizy AE, Samuel L, Jiang H, Thornton CR, Ramesh M, Alangaden G. Performance of lateral flow device and galactomannan for the detection of Aspergillus species in bronchoalveolar fluid of patients at risk for invasive pulmonary aspergillosis. Mycoses 2016; 58:368-74. [PMID: 25996144 DOI: 10.1111/myc.12327] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 03/11/2015] [Accepted: 04/05/2015] [Indexed: 12/13/2022]
Abstract
Early diagnosis of invasive pulmonary aspergillosis (IPA) remains difficult due to the variable performance of the tests used. We compared the performance characteristics of Aspergillus lateral flow device (LFD) in bronchoalveolar lavage (BAL) vs. BAL-galactomannan (GM), for the diagnosis of IPA. 311 BAL specimens were prospectively collected from patients who underwent bronchoscopy from January to May 2013. Patients at risk for IPA were divided into haematological malignancy (HEM) and non-HEM groups: solid organ transplants (SOT) (lung transplant (LT) and non-LT SOT); chronic steroid use (CSU); solid tumour (STU) and others. We identified 96 patients at risk for IPA; 89 patients (93%) were in the non-HEM groups: SOT 57 (LT, 46, non-LT SOT, 11); CSU 21; STU 6, other 5. Only three patients met criteria for IA (two probable; one possible). Overall sensitivity (SS) was 66% for both and specificity (SP) was 94% vs. 52% for LFD and GM respectively. LFD and GM performance was similar in the HEM group (SS 100% for both and SP 83% vs. 100% respectively). LFD performance was better than GM among non-HEM SOT patients (P = 0.02). Most false-positive GM results occurred in the SOT group (50.8%), especially among LT patients (56.5%). LFD performance was superior with an overall SP of 95.6% in SOT (P < 0.002) and 97% in LT patients (P = 0.0008). LFD is a rapid and simple test that can be performed on BAL to rule out IPA.
Collapse
Affiliation(s)
- Marisa H Miceli
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Michael I Goggins
- Division of Infectious Diseases, Department of Internal Medicine, Henry Ford Health System, Detroit, MI, USA
| | - Pranay Chander
- Division of Infectious Diseases, Department of Internal Medicine, Henry Ford Health System, Detroit, MI, USA
| | - Archana K Sekaran
- Division of Infectious Diseases, Department of Internal Medicine, Henry Ford Health System, Detroit, MI, USA
| | - Anne E Kizy
- Division of Infectious Diseases, Department of Internal Medicine, Henry Ford Health System, Detroit, MI, USA
| | - Linoj Samuel
- Department of Microbiology and Pathology, Henry Ford Health System, Detroit, MI, USA
| | - Hui Jiang
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Christopher R Thornton
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Mayur Ramesh
- Division of Infectious Diseases, Department of Internal Medicine, Henry Ford Health System, Detroit, MI, USA
| | - George Alangaden
- Division of Infectious Diseases, Department of Internal Medicine, Henry Ford Health System, Detroit, MI, USA
| |
Collapse
|
43
|
Development and Evaluation of a Loop-Mediated Isothermal Amplification Method for Rapid Detection of Aspergillus fumigatus. J Clin Microbiol 2016; 54:950-5. [PMID: 26791368 DOI: 10.1128/jcm.01751-15] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 01/03/2016] [Indexed: 01/04/2023] Open
Abstract
Aspergillus fumigatusis a conditional pathogen and the major cause of life-threatening invasive aspergillosis (IA) in immunocompromised patients. The early and rapid detection ofA. fumigatusinfection is still a major challenge. In this study, the new member of the fungal annexin family, annexin C4, was chosen as the target to design a loop-mediated isothermal amplification (LAMP) assay for the rapid, specific, and sensitive detection ofA. fumigatus The evaluation of the specificity of the LAMP assay that was developed showed that no false-positive results were observed for the 22 non-A. fumigatusstrains, including 5 species of theAspergillusgenus. Its detection limit was approximately 10 copies per reaction in reference plasmids, with higher sensitivity than that of real-time quantitative PCR (qPCR) at 10(2)copies for the same target. Clinical samples from a total of 69 patients with probable IA (n =14) and possible IA (n= 55) were subjected to the LAMP assay, and positive results were found for the 14 patients with probable IA (100%) and 34 patients with possible IA (61.82%). When detection using the LAMP assay was compared with that using qPCR in the 69 clinical samples, the LAMP assay demonstrated a sensitivity of 89.19% and the concordance rate for the two methods was 72.46%. Accordingly, we report that a valuable LAMP assay for the rapid, specific, and simple detection ofA. fumigatusin clinical testing has been developed.
Collapse
|
44
|
Risks and Epidemiology of Infections After Lung or Heart–Lung Transplantation. TRANSPLANT INFECTIONS 2016. [PMCID: PMC7123746 DOI: 10.1007/978-3-319-28797-3_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Nowadays, lung transplantation is an established treatment option of end-stage pulmonary parenchymal and vascular disease. Post-transplant infections are a significant contributor to overall morbidity and mortality in the lung transplant recipient that, in turn, are higher than in other solid organ transplant recipients. This is likely due to several specific factors such as the constant exposure to the outside environment and the colonized native airway, and the disruption of usual mechanisms of defense including the cough reflex, bronchial circulation, and lymphatic drainage. This chapter will review the common infections that develop in the lung or heart–lung transplant recipient, including the general risk factors for infection in this population, and specific features of prophylaxis and treatment for the most frequent bacterial, viral, and fungal infections. The effects of infection on lung transplant rejection will also be discussed.
Collapse
|
45
|
Brasier AR, Zhao Y, Spratt HM, Wiktorowicz JE, Ju H, Wheat LJ, Baden L, Stafford S, Wu Z, Issa N, Caliendo AM, Denning DW, Soman K, Clancy CJ, Nguyen MH, Sugrue MW, Alexander BD, Wingard JR. Improved Detection of Invasive Pulmonary Aspergillosis Arising during Leukemia Treatment Using a Panel of Host Response Proteins and Fungal Antigens. PLoS One 2015; 10:e0143165. [PMID: 26581097 PMCID: PMC4651335 DOI: 10.1371/journal.pone.0143165] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 11/02/2015] [Indexed: 12/03/2022] Open
Abstract
Invasive pulmonary aspergillosis (IPA) is an opportunistic fungal infection in patients undergoing chemotherapy for hematological malignancy, hematopoietic stem cell transplant, or other forms of immunosuppression. In this group, Aspergillus infections account for the majority of deaths due to mold pathogens. Although early detection is associated with improved outcomes, current diagnostic regimens lack sensitivity and specificity. Patients undergoing chemotherapy, stem cell transplantation and lung transplantation were enrolled in a multi-site prospective observational trial. Proven and probable IPA cases and matched controls were subjected to discovery proteomics analyses using a biofluid analysis platform, fractionating plasma into reproducible protein and peptide pools. From 556 spots identified by 2D gel electrophoresis, 66 differentially expressed post-translationally modified plasma proteins were identified in the leukemic subgroup only. This protein group was rich in complement components, acute-phase reactants and coagulation factors. Low molecular weight peptides corresponding to abundant plasma proteins were identified. A candidate marker panel of host response (9 plasma proteins, 4 peptides), fungal polysaccharides (galactomannan), and cell wall components (β-D glucan) were selected by statistical filtering for patients with leukemia as a primary underlying diagnosis. Quantitative measurements were developed to qualify the differential expression of the candidate host response proteins using selective reaction monitoring mass spectrometry assays, and then applied to a separate cohort of 57 patients with leukemia. In this verification cohort, a machine learning ensemble-based algorithm, generalized pathseeker (GPS) produced a greater case classification accuracy than galactomannan (GM) or host proteins alone. In conclusion, Integration of host response proteins with GM improves the diagnostic detection of probable IPA in patients undergoing treatment for hematologic malignancy. Upon further validation, early detection of probable IPA in leukemia treatment will provide opportunities for earlier interventions and interventional clinical trials.
Collapse
Affiliation(s)
- Allan R. Brasier
- Department of Internal Medicine, University of Texas Medical Branch (UTMB), Galveston, TX, United States of America
- Institute for Translational Sciences, UTMB, Galveston, TX, United States of America
- Sealy Center for Molecular Medicine, UTMB, Galveston, TX, United States of America
| | - Yingxin Zhao
- Department of Internal Medicine, University of Texas Medical Branch (UTMB), Galveston, TX, United States of America
- Institute for Translational Sciences, UTMB, Galveston, TX, United States of America
- Sealy Center for Molecular Medicine, UTMB, Galveston, TX, United States of America
| | - Heidi M. Spratt
- Institute for Translational Sciences, UTMB, Galveston, TX, United States of America
- Sealy Center for Molecular Medicine, UTMB, Galveston, TX, United States of America
- Department of Preventive Medicine and Community Health, UTMB, Galveston, TX, United States of America
| | - John E. Wiktorowicz
- Institute for Translational Sciences, UTMB, Galveston, TX, United States of America
- Sealy Center for Molecular Medicine, UTMB, Galveston, TX, United States of America
- Department of Biochemistry and Molecular Biology, UTMB, Galveston, TX, United States of America
| | - Hyunsu Ju
- Institute for Translational Sciences, UTMB, Galveston, TX, United States of America
- Department of Preventive Medicine and Community Health, UTMB, Galveston, TX, United States of America
| | - L. Joseph Wheat
- MiraVista Laboratories, Indianapolis, IN, United States of America
| | - Lindsey Baden
- Harvard University, Boston, MA, United States of America
| | - Susan Stafford
- Biomolecular Resource Facility, UTMB, Galveston, TX, United States of America
| | - Zheng Wu
- Biomolecular Resource Facility, UTMB, Galveston, TX, United States of America
| | - Nicolas Issa
- Harvard University, Boston, MA, United States of America
| | | | | | - Kizhake Soman
- Sealy Center for Molecular Medicine, UTMB, Galveston, TX, United States of America
- Department of Biochemistry and Molecular Biology, UTMB, Galveston, TX, United States of America
| | | | - M. Hong Nguyen
- University of Florida, Gainesville, FLA, United States of America
| | | | | | - John R. Wingard
- University of Florida, Gainesville, FLA, United States of America
| |
Collapse
|
46
|
Haidar G, Falcione BA, Nguyen MH. Diagnostic Modalities for Invasive Mould Infections among Hematopoietic Stem Cell Transplant and Solid Organ Recipients: Performance Characteristics and Practical Roles in the Clinic. J Fungi (Basel) 2015; 1:252-276. [PMID: 29376911 PMCID: PMC5753113 DOI: 10.3390/jof1020252] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Revised: 08/28/2015] [Accepted: 08/31/2015] [Indexed: 12/19/2022] Open
Abstract
The morbidity and mortality of hematopoietic stem cell and solid organ transplant patients with invasive fungal infections (IFIs) remain high despite an increase in the number of effective antifungal agents. Early diagnosis leading to timely administration of antifungal therapy has been linked to better outcomes. Unfortunately, the diagnosis of IFIs remains challenging. The current gold standard for diagnosis is a combination of histopathology and culture, for which the sensitivity is <50%. Over the past two decades, a plethora of non-culture-based antigen and molecular assays have been developed and clinically validated. In this article, we will review the performance of the current commercially available non-cultural diagnostics and discuss their practical roles in the clinic.
Collapse
Affiliation(s)
- Ghady Haidar
- Department of Medicine, University of Pittsburgh Medical Center, Scaife Hall, Suite 871, 3550 Terrace Street, Pittsburgh, PA 15261, USA.
| | - Bonnie A Falcione
- Department of Medicine, University of Pittsburgh Medical Center, Scaife Hall, Suite 871, 3550 Terrace Street, Pittsburgh, PA 15261, USA.
- Department of Pharmacy and Therapeutics, University of Pittsburgh School of Pharmacy, 200 Lothrop St. 301, Pittsburgh, PA 15213, USA.
- Department of Medicine, University of Pittsburgh, Scaife Hall, Suite 871, 3550 Terrace Street, Pittsburgh, PA 15261, USA.
| | - M Hong Nguyen
- Department of Medicine, University of Pittsburgh Medical Center, Scaife Hall, Suite 871, 3550 Terrace Street, Pittsburgh, PA 15261, USA.
- Department of Medicine, University of Pittsburgh, Scaife Hall, Suite 871, 3550 Terrace Street, Pittsburgh, PA 15261, USA.
| |
Collapse
|
47
|
Mohammadi S, Khalilzadeh S, Goudarzipour K, Hassanzad M, Mahdaviani A, Aarabi N, Pourabdollah M, Sigari N. Bronchoalveolar galactomannan in invasive pulmonary aspergillosis: a prospective study in pediatric patients. Med Mycol 2015; 53:709-16. [DOI: 10.1093/mmy/myv053] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 06/03/2015] [Indexed: 11/12/2022] Open
|
48
|
Trubiano JA, Chen S, Slavin MA. An Approach to a Pulmonary Infiltrate in Solid Organ Transplant Recipients. CURRENT FUNGAL INFECTION REPORTS 2015; 9:144-154. [PMID: 32218881 PMCID: PMC7091299 DOI: 10.1007/s12281-015-0229-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The onset of a pulmonary infiltrate in a solid organ transplant (SOT) recipient is both a challenging diagnostic and therapeutic challenge. We outline the potential aetiologies of a pulmonary infiltrate in a SOT recipient, with particular attention paid to fungal pathogens. A diagnostic and empirical therapy approach to a pulmonary infiltrate, especially invasive fungal disease (IFD) in SOT recipients, is provided.
Collapse
Affiliation(s)
- Jason A. Trubiano
- Infectious Diseases, Peter MacCallum Cancer Centre, East Melbourne, VIC Australia
- Infectious Diseases, Austin Health, Melbourne, VIC Australia
- Peter MacCallum Cancer Centre, 2 St Andrews Place, East Melbourne, VIC 3002 Australia
| | - Sharon Chen
- Centre for Infectious Diseases and Microbiology Laboratory Services, ICPMR-Pathology West, Westmead Hospital, Sydney, Australia
| | - Monica A. Slavin
- Infectious Diseases, Peter MacCallum Cancer Centre, East Melbourne, VIC Australia
- Infectious Diseases, Royal Melbourne Hospital, Melbourne, VIC Australia
| |
Collapse
|
49
|
Management of fungal infections in lung transplant recipients. CURRENT PULMONOLOGY REPORTS 2015. [DOI: 10.1007/s13665-015-0112-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
50
|
Ambasta A, Carson J, Church DL. The use of biomarkers and molecular methods for the earlier diagnosis of invasive aspergillosis in immunocompromised patients. Med Mycol 2015; 53:531-57. [DOI: 10.1093/mmy/myv026] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 04/08/2015] [Indexed: 12/15/2022] Open
|