1
|
Ha SM, Lin EY, Klausner JD, Adamson PC. Machine learning to predict ceftriaxone resistance using single nucleotide polymorphisms within a global database of Neisseria gonorrhoeae genomes. Microbiol Spectr 2023; 11:e0170323. [PMID: 37905924 PMCID: PMC10714741 DOI: 10.1128/spectrum.01703-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/15/2023] [Indexed: 11/02/2023] Open
Abstract
IMPORTANCE Antimicrobial resistance in Neisseria gonorrhoeae is an urgent global health issue. The objectives of the study were to use a global collection of 12,936 N. gonorrhoeae genomes from the PathogenWatch database to evaluate different machine learning models to predict ceftriaxone susceptibility/decreased susceptibility using 97 mutations known to be associated with ceftriaxone resistance. We found the random forest classifier model had the highest performance. The analysis also reported the relative contributions of different mutations within the ML model predictions, allowing for the identification of the mutations with the highest importance for ceftriaxone resistance. A machine learning model retrained with the top five mutations performed similarly to the model using all 97 mutations. These results could aid in the development of molecular tests to detect resistance to ceftriaxone in N. gonorrhoeae. Moreover, this approach could be applied to building and evaluating machine learning models for predicting antimicrobial resistance in other pathogens.
Collapse
Affiliation(s)
- Sung Min Ha
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, California, USA
| | - Eric Y. Lin
- David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Jeffrey D. Klausner
- Departments of Population and Public Health Sciences and Medicine, Keck School of Medicine of University of Southern California, Los Angeles, California, USA
| | - Paul C. Adamson
- Division of Infectious Diseases, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| |
Collapse
|
2
|
Ma A, Ferrato C, Martin I, Smyczek P, Gratrix J, Dingle TC. Use of genome sequencing to resolve differences in gradient diffusion and agar dilution antimicrobial susceptibility testing performance of Neisseria gonorrhoeae isolates in Alberta, Canada. J Clin Microbiol 2023; 61:e0060623. [PMID: 37882549 PMCID: PMC10662343 DOI: 10.1128/jcm.00606-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/15/2023] [Indexed: 10/27/2023] Open
Abstract
Agar dilution is the gold standard method for phenotypic antimicrobial susceptibility testing (AST) for Neisseria gonorrhoeae. However, this method is laborious and requires expertise, so laboratories that perform N. gonorrhoeae AST may choose alternative methods such as disk diffusion and gradient diffusion. In this study, we retrospectively compare the performance of gradient diffusion to agar dilution for 2,394 unique N. gonorrhoeae isolates identified in Alberta from 2017 to 2020 against azithromycin, cefixime, ceftriaxone, ciprofloxacin, penicillin, and tetracycline. Genome sequencing was utilized to resolve discrepancies between AST methods, detect antimicrobial resistance markers, and identify trends between error rates and sequence types (STs) of isolates. Over 90% of N. gonorrhoeae isolates were susceptible to azithromycin, cefixime, and ceftriaxone, whereas decreased susceptibility was observed for ciprofloxacin, penicillin, and tetracycline. Categorical (CA) and essential agreement (EA) was poorest between the two methods for penicillin (CA: 86.02%; EA: 77.69%) and tetracycline (CA: 47.22%; EA: 55.96%); however, the low CA was primarily attributed to minor errors. Antimicrobial agents with errors outside of acceptable limits included azithromycin (very major error: 18.42%; major error: 7.73%) and tetracycline (very major error: 6.17%). Genome sequencing on a subset of isolates resolved 30.3% of the azithromycin major errors and confirmed the azithromycin or tetracycline very major errors. Significant associations between certain STs and error types for azithromycin and tetracycline were also identified. Overall, gradient diffusion compared well to agar dilution for cefixime, ceftriaxone, and ciprofloxacin, and genome sequencing was identified as a useful tool to arbitrate discrepant susceptibility testing results between gradient diffusion and agar dilution for N. gonorrhoeae.
Collapse
Affiliation(s)
- Angela Ma
- Division of Diagnostic and Applied Microbiology, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Canada
| | - Christina Ferrato
- Alberta Precision Laboratories—Provincial Laboratory for Public Health, Edmonton, Canada
| | - Irene Martin
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - Petra Smyczek
- Department of Medicine, University of Alberta, Edmonton, Canada
- Alberta Health Services, STI Services, Edmonton, Canada
| | | | - Tanis C. Dingle
- Alberta Precision Laboratories—Provincial Laboratory for Public Health, Edmonton, Canada
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, Canada
| |
Collapse
|
3
|
Shimuta K, Takahashi H, Akeda Y, Nakayama SI, Ohnishi M. Loop-Mediated Isothermal Amplification Assay for Identifying Neisseria gonorrhoeae Nonmosaic penA-Targeting Strains Potentially Eradicable by Cefixime. Microbiol Spectr 2022; 10:e0233522. [PMID: 36000906 PMCID: PMC9602674 DOI: 10.1128/spectrum.02335-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 07/27/2022] [Indexed: 01/04/2023] Open
Abstract
Treatment regimens for gonorrhea have limited efficacy worldwide due to the rapid spread of antimicrobial resistance. Cefixime (CFM) is currently not recommended as a first-line treatment for gonorrhea due to the increasing number of resistant strains worldwide. Nonetheless, Neisseria gonorrhoeae strains can be eradicated by CFM at a 400 mg/day dose, provided that the strains are CFM responsive (MIC ≤ 0.064 mg/L). To develop a nonculture test for predicting the CFM responsiveness of N. gonorrhoeae strains, we developed an assay to detect N. gonorrhoeae nonmosaic penA using loop-mediated isothermal amplification (LAMP). To avoid false-positive reactions with commensal Neisseria spp. penA, we amplified specific regions of the N. gonorrhoeae penA (NG-penA-LAMP1) and also the nonmosaic N. gonorrhoeae penA (NG-penA-LAMP3). This assay was validated using isolated N. gonorrhoeae (n = 204) and Neisseria spp. (n = 95) strains. Clinical specimens (n = 95) with confirmed positivity in both culture and real-time PCR were evaluated to validate the system. The combination of the previously described NG-penA-LAMP1 and our new NG-penA-LAMP3 assays had high sensitivity (100%) and specificity (100%) for identifying N. gonorrhoeae carrying the nonmosaic type. To determine whether CFM could be applicable for gonorrhea treatment without culture testing, we developed a LAMP assay that targets penA allele-specific nonmosaic types for use as one of the tools for point-of-care testing of antimicrobial resistance. IMPORTANCE Neisseria gonorrhoeae is among the hot topics of "resistance guided therapy," one of the top 5 urgent antimicrobial threats according to the Centers for Disease Control and Prevention (CDC). There is a need either to develop new agents or to make effective use of existing agents, with the current limited number of therapeutic agents available. Knowing the drug susceptibility information of the target microorganism prior to treating patients is very useful in selecting an effective antibiotic, especially in gonococcal infections where drug resistance is prominent, and is also important in preventing treatment failure. In this study, we developed a new method for obtaining drug susceptibility profiles of Neisseria gonorrhoeae using the loop-mediated isothermal amplification (LAMP) method. The LAMP assay does not require expensive devices. Therefore, this method is expected to be a tool for point-of-care testing of antimicrobial resistance for individualized treatment in the future.
Collapse
Affiliation(s)
- Ken Shimuta
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
- Antimicrobial Resistance Research Centre, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hideyuki Takahashi
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yukihiro Akeda
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shu-ichi Nakayama
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | | |
Collapse
|
4
|
Allan-Blitz LT, Adamson PC, Klausner JD. Resistance-Guided Therapy for Neisseria gonorrhoeae. Clin Infect Dis 2022; 75:1655-1660. [PMID: 35818315 DOI: 10.1093/cid/ciac371] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Indexed: 12/14/2022] Open
Abstract
Antimicrobial-resistant Neisseria gonorrhoeae infections are a threat to public health. Novel strategies for combating such resistance include the development of molecular assays to facilitate real-time prediction of antimicrobial susceptibility. Resistance to ciprofloxacin is determined by the presence of a single mutation at codon 91 of the gyrase A gene; molecular assays to guide therapy are commercially available. Resistance to cefixime is conferred via 1 of 6 critical mutations in either the mosaic penA gene or specific loci in the nonmosaic region. Resistance to ceftriaxone is conferred through mutations in 1 of 4 genes: penA, ponA, penB, and mtr; however, the ability to predict reduced susceptibility based on those genes varies by geographic region. Here, we highlight the work done toward the development of 3 such assays for ciprofloxacin, cefixime, and ceftriaxone, discuss the status of our current understanding and ongoing challenges, and suggest future directions.
Collapse
Affiliation(s)
- Lao-Tzu Allan-Blitz
- Division of Global Health Equity, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Paul C Adamson
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Jeffrey D Klausner
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
5
|
Lin EY, Adamson PC, Ha SM, Klausner JD. Reliability of Genetic Alterations in Predicting Ceftriaxone Resistance in Neisseria gonorrhoeae Globally. Microbiol Spectr 2022; 10:e0206521. [PMID: 35348352 PMCID: PMC9045316 DOI: 10.1128/spectrum.02065-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/20/2022] [Indexed: 11/29/2022] Open
Abstract
Antimicrobial resistance in N. gonorrhoeae is increasing globally, and ceftriaxone is the recommended treatment for empirical therapy in most settings. Developing molecular assays to detect decreased ceftriaxone susceptibility is critical. Using PathogenWatch, a public database of N. gonorrhoeae genomes, antibiotic susceptibility data and DNA sequences of different genes associated with ceftriaxone resistance were extracted. That information was used to determine the sensitivity and specificity of different molecular markers and algorithms to predict decreased susceptibility to ceftriaxone. A total of 12,943 N. gonorrhoeae genomes were extracted from the PathogenWatch database, of which 9,540 genomes were used in the analysis. The sensitivity and specificity of specific molecular markers and algorithms were largely consistent with prior reports. Small variation (<10%) in either sensitivity or specificity occurred. Certain algorithms using different molecular markers at various prevalence of decreased ceftriaxone susceptibility identified a potentially clinically useful range of positive and negative predictive values. We validated previously described mutations and algorithms in a large public database containing a global collection of N. gonorrhoeae genomes. Certain mutations and algorithms resulted in sensitivity and specificity values consistent with those of prior studies. Further research is needed to integrate these markers and algorithms into the development of molecular assays to predict decreased ceftriaxone susceptibility. IMPORTANCE Antimicrobial resistance in Neisseria gonorrhoeae (N. gonorrhoeae), the causative agent of gonorrhea, is rising globally. Ceftriaxone is the last remaining antibiotic for empirical treatment of gonorrhea. Developing molecular tests to predict ceftriaxone resistance can help to improve detection and surveillance of ceftriaxone resistance. Here, we utilized PathogenWatch, a public global online database of N. gonorrhoeae genomes, to evaluate different genetic markers in predicting decreased susceptibility to ceftriaxone. We compiled MICs for ceftriaxone from the PathogenWatch database and used a computational approach to extract all the genetic markers from the genomic data. We determined the sensitivity and specificity for predicting decreased ceftriaxone susceptibility among several combinations of genetic markers. We identified several combinations of genetic markers with high predictive values for decreased susceptibility to ceftriaxone. These combinations of genetic markers might be promising candidates for future molecular tests to predict ceftriaxone resistance.
Collapse
Affiliation(s)
- Eric Yu Lin
- David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Paul C. Adamson
- Division of Infectious Diseases, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Sung-min Ha
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, California, USA
| | - Jeffrey D. Klausner
- Department of Population and Public Health Sciences, Keck School of Medicine of USC, Los Angeles, California, USA
| |
Collapse
|
6
|
Evaluation of the Hologic Aptima Combo 2 Assay for Detection of Neisseria gonorrhoeae from Joint Fluid Specimens. J Clin Microbiol 2022; 60:e0253021. [PMID: 35317619 DOI: 10.1128/jcm.02530-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gonorrhea is a sexually transmitted bacterial infection caused by Neisseria gonorrhoeae. Nucleic acid amplification testing is the preferred method for routine diagnosis of gonorrhea from urogenital specimens, but culture is commonly used for diagnosis of disseminated infections, including gonococcal arthritis. The Hologic Aptima Combo 2 (AC2), a transcription-mediated amplification assay, is FDA and Health Canada licensed for detection of N. gonorrhoeae and Chlamydia trachomatis from urogenital, rectal, and pharyngeal specimens, but not joint fluid. In the current study, we compared the performance of microscopy, culture, and the AC2 for detection of N. gonorrhoeae from 170 joint fluid specimens. A total of five specimens were culture-positive, whereas 14 were AC2-positive. Gram-negative diplococci, characteristic of Neisseria, were observed in only two joint fluid specimens. Complementary testing confirmed the presence of N. gonorrhoeae in seven discordant (i.e., culture-negative/AC2-positive) specimens. These results indicate that the AC2 is more sensitive than culture for the diagnosis of gonococcal arthritis.
Collapse
|
7
|
Mitchev N, Singh R, Ramsuran V, Ismail A, Allam M, Kwenda S, Mnyameni F, Garrett N, Swe-Han KS, Niehaus AJ, Mlisana KP. High-Resolution Melting Analysis to Detect Antimicrobial Resistance Determinants in South African Neisseria gonorrhoeae Clinical Isolates and Specimens. Int J Microbiol 2022; 2022:9094328. [PMID: 35087590 PMCID: PMC8789472 DOI: 10.1155/2022/9094328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 01/06/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Antimicrobial resistance is limiting treatment options for Neisseria gonorrhoeae infections. To aid or replace culture and the syndromic management approach, molecular assays are required for antimicrobial susceptibility testing to guide appropriate and rapid treatment. OBJECTIVE We aimed to detect single-nucleotide polymorphisms and plasmids associated with antimicrobial resistance from N. gonorrhoeae isolates from a clinic population in South Africa, using real-time PCR as a rapid test for AMR detection. METHODS N. gonorrhoeae isolates, from female and male patients presenting for care at a sexually transmitted infections clinic in Durban, South Africa, were analysed using phenotypic and genotypic methods for identification and antibiotic susceptibility testing (AST). Real-time PCR and high-resolution melting analysis were used to detect porA pseudogene (species-specific marker) and resistance-associated targets. Whole-genome sequencing was used as the gold standard for the presence of point mutations. RESULTS The real-time porA pseudogene assay identified all N. gonorrhoeae-positive isolates and specimens. Concordance between molecular detection (real-time PCR and HRM) and resistance phenotype was ≥92% for bla TEM (HLR penicillin), rpsJ_V57M (tetracycline), tetM (tetracycline), and gyrA_S91F (ciprofloxacin). Resistance determinants 16SrRNA_C1192U (spectinomycin), mtrR_G45D (azithromycin), and penA_D545S, penA_mosaic (cefixime/ceftriaxone) correlated with the WHO control isolates. CONCLUSIONS Eight resistance-associated targets correlated with phenotypic culture results. The porA pseudogene reliably detected N. gonorrhoeae. Larger cohorts are required to validate the utility of these targets as a convenient culture-free diagnostic tool, to guide STI management in a South African population.
Collapse
Affiliation(s)
- Nireshni Mitchev
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu Natal (UKZN), Durban, South Africa
| | - Ravesh Singh
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu Natal (UKZN), Durban, South Africa
- National Health Laboratory Service, Durban, South Africa
| | - Veron Ramsuran
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu Natal (UKZN), Durban, South Africa
| | - Arshad Ismail
- Sequencing Core Facility, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
| | - Mushal Allam
- Sequencing Core Facility, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, UAE
| | - Stanford Kwenda
- Sequencing Core Facility, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
| | - Florah Mnyameni
- Sequencing Core Facility, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
| | - Nigel Garrett
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
- School of Nursing and Public Health, UKZN, Durban, South Africa
| | - Khine Swe Swe-Han
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu Natal (UKZN), Durban, South Africa
- National Health Laboratory Service, Durban, South Africa
| | - Abraham J. Niehaus
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu Natal (UKZN), Durban, South Africa
| | - Koleka P. Mlisana
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu Natal (UKZN), Durban, South Africa
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
- National Health Laboratory Service, Johannesburg, South Africa
| |
Collapse
|
8
|
Luo H, Chen W, Mai Z, Yang J, Lin X, Zeng L, Pan Y, Xie Q, Xu Q, Li X, Liao Y, Feng Z, Ou J, Qin X, Zheng H. Development and application of Cas13a-based diagnostic assay for Neisseria gonorrhoeae detection and azithromycin resistance identification. J Antimicrob Chemother 2021; 77:656-664. [PMID: 34894246 DOI: 10.1093/jac/dkab447] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/23/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Gonorrhoea, caused by Neisseria gonorrhoeae, has spread worldwide. Strains resistant to most antibiotics, including ceftriaxone and azithromycin, have emerged to an alarming level. Rapid testing for N. gonorrhoeae and its antimicrobial resistance will therefore contribute to clinical decision making for early diagnosis and rational drug use. METHODS A Cas13a-based assay (specific high-sensitivity enzymatic reporter unlocking; SHERLOCK) was developed for N. gonorrhoeae detection (porA gene) and azithromycin resistance identification (A2059G, C2611T). Assays were evaluated for sensitivity with purified dsDNA and specificity with 17 non-gonococcal strains. Performance of SHERLOCK (porA) was compared with Roche Cobas 4800 using 43 urine samples. Identification of azithromycin resistance mutations (A2059G, C2611T) was evaluated using a total of 84 clinical isolates and 18 urine samples. Lateral flow was tested for this assay as a readout tool. Moreover, we directly assayed 27 urethral swabs from patients with urethritis to evaluate their status in terms of N. gonorrhoeae infection and azithromycin resistance. RESULTS The SHERLOCK assay was successfully developed with a sensitivity of 10 copies/reaction, except 100 copies/reaction for A2059G, and no cross-reaction with other species. Comparison of the SHERLOCK assay with the Cobas 4800 revealed 100% concordance within 18 positive and 25 negative urine samples. Of the 84 isolates, 21 strains with azithromycin resistance mutations were distinguished and further verified by sequencing and MIC determination. In addition, 62.96% (17/27) strains from swab samples were detected with no mutant strains confirmed by sequencing. CONCLUSIONS The SHERLOCK assay for rapid N. gonorrhoeae detection combined with azithromycin resistance testing is a promising method for application in clinical practice.
Collapse
Affiliation(s)
- Hao Luo
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Wentao Chen
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Zhida Mai
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Jianjiang Yang
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Xiaomian Lin
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Lihong Zeng
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Yuying Pan
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Qinghui Xie
- Guangdong Dermatology Clinical College, Anhui Medical University, Hefei 230022, China
| | - Qingqing Xu
- Guangdong Dermatology Clinical College, Anhui Medical University, Hefei 230022, China
| | - Xiaoxiao Li
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, Three Gorges University, Yichang 443002, China
| | - Yiwen Liao
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Zhanqin Feng
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Jiangli Ou
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Xiaolin Qin
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Heping Zheng
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| |
Collapse
|
9
|
Golparian D, Unemo M. Antimicrobial resistance prediction in Neisseria gonorrhoeae: Current status and future prospects. Expert Rev Mol Diagn 2021; 22:29-48. [PMID: 34872437 DOI: 10.1080/14737159.2022.2015329] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Several nucleic acid amplification tests (NAATs), mostly real-time PCRs, to detect antimicrobial resistance (AMR) determinants and predict AMR in Neisseria gonorrhoeae are promising, and some may be ready to apply at the point-of-care (POC), but important limitations remain with most NAATs. Next-generation sequencing (NGS) can overcome many of these limitations.Areas covered: Recent advances, with main focus on publications since 2017, in the development and use of NAATs and NGS to predict gonococcal AMR for surveillance and clinical use, and pros and cons of these tests as well as future perspectives for appropriate use of molecular AMR prediction for N. gonorrhoeae.Expert Commentary: NAATs and/or NGS for AMR prediction should supplement culture-based AMR surveillance, which will remain because it detects also AMR due to unknown AMR determinants, and translation into POC tests is imperative for the end-goal of individualized treatment, sparing ceftriaxone±azithromycin. Several challenges for direct testing of clinical, especially pharyngeal, specimens and for accurate prediction of cephalosporins and azithromycin resistance, especially using NAATs, remain. The choice of AMR prediction assay needs to carefully consider the intended use of the assay; limitations intrinsic to the AMR prediction technology, algorithms and specific to chosen methodology; specimen types analyzed; and cost-effectiveness.
Collapse
Affiliation(s)
- Daniel Golparian
- WHO Collaborating Centre for Gonorrhoea and other STIs, National Reference Laboratory for STIs, Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Magnus Unemo
- WHO Collaborating Centre for Gonorrhoea and other STIs, National Reference Laboratory for STIs, Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| |
Collapse
|
10
|
Lin EY, Adamson PC, Klausner JD. Epidemiology, Treatments, and Vaccine Development for Antimicrobial-Resistant Neisseria gonorrhoeae: Current Strategies and Future Directions. Drugs 2021; 81:1153-1169. [PMID: 34097283 PMCID: PMC8182353 DOI: 10.1007/s40265-021-01530-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2021] [Indexed: 12/12/2022]
Abstract
Neisseria gonorrhoeae is the second most common bacterial sexually transmitted infection in the world after Chlamydia trachomatis. The pathogen has developed resistance to every antibiotic currently approved for treatment, and multidrug-resistant strains have been identified globally. The current treatment recommended by the World Health Organization is ceftriaxone and azithromycin dual therapy. However, resistance to azithromycin and ceftriaxone are increasing and treatment failures have been reported. As a result, there is a critical need to develop novel strategies for mitigating the spread of antimicrobial-resistant N. gonorrhoeae through improved diagnosis and treatment of resistant infections. Strategies that are currently being pursued include developing molecular assays to predict resistance, utilizing higher doses of ceftriaxone, repurposing older antibiotics, and developing newer agents. In addition, efforts to discover a vaccine for N. gonorrhoeae have been reignited in recent years with the cross-protectivity provided by the N. meningitidis vaccine, with several new strategies and targets. Despite the significant progress that has been made, there is still much work ahead to combat antimicrobial-resistant N. gonorrhoeae globally.
Collapse
Affiliation(s)
- Eric Y Lin
- David Geffen School of Medicine at UCLA, Los Angeles, CA USA
| | - Paul C Adamson
- Division of Infectious Diseases, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave. CHS 52-215, Los Angeles, CA 90095 USA
| | - Jeffrey D. Klausner
- Department of Preventive Medicine, Keck School of Medicine of USC, Los Angeles, CA USA
| |
Collapse
|
11
|
Lin EY, Adamson PC, Klausner JD. Evaluating the generalizability of a multiplex real-time PCR assay for predicting decreased susceptibility to ceftriaxone in a global set of Neisseria gonorrhoeae sequences. J Antimicrob Chemother 2021; 76:1104-1106. [PMID: 33351912 DOI: 10.1093/jac/dkaa525] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Eric Y Lin
- David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Paul C Adamson
- Division of Infectious Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Jeffrey D Klausner
- Division of Infectious Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.,Department of Epidemiology, Fielding School of Public Health, UC Los Angeles, CA USA
| |
Collapse
|
12
|
Peterson SW, Martin I, Demczuk W, Barairo N, Naidu P, Lefebvre B, Allen V, Hoang L, Hatchette TF, Alexander D, Tomas K, Trubnikov M, Wong T, Mulvey MR. Multiplex real-time PCR assays for the prediction of cephalosporin, ciprofloxacin and azithromycin antimicrobial susceptibility of positive Neisseria gonorrhoeae nucleic acid amplification test samples. J Antimicrob Chemother 2020; 75:3485-3490. [PMID: 32830242 DOI: 10.1093/jac/dkaa360] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 07/23/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The incidence of antimicrobial-resistant Neisseria gonorrhoeae (GC) is rising in Canada; however, antimicrobial resistance (AMR) surveillance data are unavailable for infections diagnosed directly from clinical specimens by nucleic acid amplification tests (NAATs), representing over 80% of diagnoses. We developed a set of 10 improved molecular assays for surveillance of GC-AMR and prediction of susceptibilities in NAAT specimens. METHODS Multiplex real-time PCR (RT-PCR) assays were developed to detect SNPs associated with cephalosporin (ponA, porB, mtrR -35delA, penA A311V, penA A501, N513Y, G545S), ciprofloxacin (gyrA S91, parC D86/S87/S88) and azithromycin [23S (A2059G, C2611T), mtrR meningitidis-like promoter] resistance. The assays were validated on 127 gonococcal isolates, 51 non-gonococcal isolates and 50 NAATs with matched culture isolates. SNPs determined from the assay were compared with SNPs determined from in silico analysis of WGS data. MICs were determined for culture isolates using the agar dilution method. RESULTS SNP analysis of the 50 NAAT specimens had 96% agreement with the matched culture RT-PCR analysis. When compared with MICs, presence of penA A311V or penA A501 and two or more other SNPs correlated with decreased susceptibility and presence of three or more other SNPs correlated with intermediate susceptibility to cephalosporins; presence of any associated SNP correlated with ciprofloxacin or azithromycin resistance. NAAT-AMR predictions correlated with matched-culture cephalosporin, ciprofloxacin and azithromycin MICs at 94%, 100% and 98%, respectively. CONCLUSIONS We expanded molecular tests for N. gonorrhoeae AMR prediction by adding new loci and multiplexing reactions to improve surveillance where culture isolates are unavailable.
Collapse
Affiliation(s)
- S W Peterson
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - I Martin
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - W Demczuk
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - N Barairo
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - P Naidu
- Provincial Laboratory for Public Health, Edmonton, Alberta, Canada
| | - B Lefebvre
- Laboratoire de santé publique du Québec, Ste-Anne-de-Bellevue, Québec, Canada
| | - V Allen
- Public Health Ontario Laboratories, Toronto, Ontario, Canada
| | - L Hoang
- British Columbia Centres for Disease Control Public Health Microbiology & Reference Laboratory, Vancouver, British Columbia, Canada
| | - T F Hatchette
- Queen Elizabeth II Health Sciences Centre, Halifax, Nova Scotia, Canada
| | - D Alexander
- Cadham Provincial Laboratory, Winnipeg, Manitoba, Canada
| | - K Tomas
- Surveillance and Epidemiology Division, Public Health Agency of Canada, Ottawa, Ontario, Canada
| | - M Trubnikov
- First Nations and Inuit Health Branch, Indigenous Services Canada, Ottawa, Ontario, Canada
| | - T Wong
- First Nations and Inuit Health Branch, Indigenous Services Canada, Ottawa, Ontario, Canada
| | - M R Mulvey
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| |
Collapse
|
13
|
Xiu L, Li Y, Wang F, Zhang C, Li Y, Zeng Y, Yin Y, Peng J. Multiplex High-Resolution Melting Assay for Simultaneous Identification of Molecular Markers Associated with Extended-Spectrum Cephalosporins and Azithromycin Resistance in Neisseria gonorrhoeae. J Mol Diagn 2020; 22:1344-1355. [DOI: 10.1016/j.jmoldx.2020.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/16/2020] [Accepted: 08/05/2020] [Indexed: 12/13/2022] Open
|
14
|
Lin EY, Adamson PC, Deng X, Klausner JD. Establishing Novel Molecular Algorithms to Predict Decreased Susceptibility to Ceftriaxone in Neisseria gonorrhoeae Strains. J Infect Dis 2020; 223:1232-1240. [PMID: 32779717 DOI: 10.1093/infdis/jiaa495] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 07/31/2020] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Globally, decreased susceptibility to ceftriaxone in Neisseria gonorrhoeae is rising. We aimed to compile a global collection of N. gonorrhoeae strains and assess the genetic characteristics associated with decreased susceptibility to ceftriaxone. METHODS We performed a literature review of all published reports of N. gonorrhoeae strains with decreased susceptibility to ceftriaxone (>0.064 mg/L minimum inhibitory concentration) through October 2019. Genetic mutations in N. gonorrhoeae genes (penA, penB, mtrR, and ponA), including determination of penA mosaicism, were compiled and evaluated for predicting decreased susceptibility to ceftriaxone. RESULTS There were 3821 N. gonorrhoeae strains identified from 23 countries and 684 (18%) had decreased susceptibility to ceftriaxone. High sensitivities or specificities (>95%) were found for specific genetic mutations in penA, penB, mtrR, and ponA, both with and without determination of penA mosaicism. Four algorithms to predict ceftriaxone susceptibility were proposed based on penA mosaicism determination and penA or non-penA genetic mutations, with sensitivity and specificity combinations up to 95% and 62%, respectively. CONCLUSION Molecular algorithms based on genetic mutations were proposed to predict decreased susceptibility to ceftriaxone in N. gonorrhoeae. Those algorithms can serve as a foundation for the development of future assays predicting ceftriaxone decreased susceptibility within N. gonorrhoeae globally.
Collapse
Affiliation(s)
- Eric Y Lin
- David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Paul C Adamson
- Division of Infectious Diseases, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Xiaomeng Deng
- David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Jeffrey D Klausner
- Division of Infectious Diseases, David Geffen School of Medicine at UCLA, Los Angeles, California, USA.,Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
15
|
Equations To Predict Antimicrobial MICs in Neisseria gonorrhoeae Using Molecular Antimicrobial Resistance Determinants. Antimicrob Agents Chemother 2020; 64:AAC.02005-19. [PMID: 31871081 DOI: 10.1128/aac.02005-19] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/18/2019] [Indexed: 01/22/2023] Open
Abstract
The emergence of Neisseria gonorrhoeae strains that are resistant to azithromycin and extended-spectrum cephalosporins represents a public health threat, that of untreatable gonorrhea infections. Multivariate regression modeling was used to determine the contributions of molecular antimicrobial resistance determinants to the overall antimicrobial MICs for ceftriaxone, cefixime, azithromycin, tetracycline, ciprofloxacin, and penicillin. A training data set consisting of 1,280 N. gonorrhoeae strains was used to generate regression equations which were then applied to validation data sets of Canadian (n = 1,095) and international (n = 431) strains. The predicted MICs for extended-spectrum cephalosporins (ceftriaxone and cefixime) were fully explained by 5 amino acid substitutions in PenA, A311V, A501P/T/V, N513Y, A517G, and G543S; the presence of a disrupted mtrR promoter; and the PorB G120 and PonA L421P mutations. The correlation of predicted MICs within one doubling dilution to phenotypically determined MICs of the Canadian validation data set was 95.0% for ceftriaxone, 95.6% for cefixime, 91.4% for azithromycin, 98.2% for tetracycline, 90.4% for ciprofloxacin, and 92.3% for penicillin, with an overall sensitivity of 99.9% and specificity of 97.1%. The correlations of predicted MIC values to the phenotypically determined MICs were similar to those from phenotype MIC-only comparison studies. The ability to acquire detailed antimicrobial resistance information directly from molecular data will facilitate the transition to whole-genome sequencing analysis from phenotypic testing and can fill the surveillance gap in an era of increased reliance on nucleic acid assay testing (NAAT) diagnostics to better monitor the dynamics of N. gonorrhoeae.
Collapse
|
16
|
Meyer T, Buder S. The Laboratory Diagnosis of Neisseria gonorrhoeae: Current Testing and Future Demands. Pathogens 2020; 9:E91. [PMID: 32024032 PMCID: PMC7169389 DOI: 10.3390/pathogens9020091] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 02/05/2023] Open
Abstract
The ideal laboratory test to detect Neisseria gonorrhoeae (Ng) should be sensitive, specific, easy to use, rapid, and affordable and should provide information about susceptibility to antimicrobial drugs. Currently, such a test is not available and presumably will not be in the near future. Thus, diagnosis of gonococcal infections presently includes application of different techniques to address these requirements. Microscopy may produce rapid results but lacks sensitivity in many cases (except symptomatic urogenital infections in males). Highest sensitivity to detect Ng was shown for nucleic acid amplification technologies (NAATs), which, however, are less specific than culture. In addition, comprehensive analysis of antibiotic resistance is accomplished only by in vitro antimicrobial susceptibility testing of cultured isolates. As a light at the end of the tunnel, new developments of molecular techniques and microfluidic systems represent promising opportunities to design point-of-care tests for rapid detection of Ng with high sensitivity and specificity, and there is reason to hope that such tests may also provide antimicrobial resistance data in the future.
Collapse
Affiliation(s)
- Thomas Meyer
- Department of Dermatology, Venerology and Allergology, St. Josef Hospital, Ruhr-University, 44791 Bochum, Germany
| | - Susanne Buder
- German Consiliary Laboratory for Gonococci, Department of Dermatology and Venerology, Vivantes Hospital Berlin, 12351 Berlin, Germany;
| |
Collapse
|
17
|
Parmar NR, Perera SR, Wang J, Levett PN, Minion J, Dillon JAR. Characterization of antimicrobial resistance genes from Neisseria gonorrhoeae positive remnant Aptima urine specimens. Future Microbiol 2020; 14:1559-1571. [PMID: 31992068 DOI: 10.2217/fmb-2019-0161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Aim: To ascertain the antimicrobial resistance and strain types (STs) of Neisseria gonorrhoeae from 50 remnant Aptima urine specimens using molecular methods. Methods: Mutations predictive of resistance to six antibiotics were identified in eight genes. STs were determined using NG-MAST and NG-STAR. Results: All eight antimicrobial resistance genes could be characterized in 36 specimens. A total of 17 specimens were predicted to be susceptible to all antibiotics, including ceftriaxone. Decreased susceptibility to cefixime and ciprofloxacin resistance was predicted in 11 specimens (PBP2 type 34.001). Overall, 38/50 specimens were predicted to be ciprofloxacin susceptible; three were azithromycin resistant. Nineteen NG-MAST and 21 NG-STAR STs were noted. Conclusion: Molecular analysis of remnant Aptima specimens enabled the prediction of emerging gonococcal cefixime and azithromycin resistance which would otherwise have been undetected.
Collapse
Affiliation(s)
- Nidhi R Parmar
- Department of Biochemistry, Microbiology, & Immunology, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada.,Vaccine & Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK, S7N 5E3, Canada
| | - Sumudu R Perera
- Department of Biochemistry, Microbiology, & Immunology, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada.,Vaccine & Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK, S7N 5E3, Canada
| | - Jin Wang
- Vaccine & Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK, S7N 5E3, Canada
| | - Paul N Levett
- Roy Romanow Provincial Laboratory, 5 Research Drive, Regina, SK, S4S 0A4, Canada
| | - Jessica Minion
- Roy Romanow Provincial Laboratory, 5 Research Drive, Regina, SK, S4S 0A4, Canada
| | - Jo-Anne R Dillon
- Department of Biochemistry, Microbiology, & Immunology, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada.,Vaccine & Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK, S7N 5E3, Canada
| |
Collapse
|
18
|
Berenger BM, Demczuk W, Gratrix J, Pabbaraju K, Smyczek P, Martin I. Genetic Characterization and Enhanced Surveillance of Ceftriaxone-Resistant Neisseria gonorrhoeae Strain, Alberta, Canada, 2018. Emerg Infect Dis 2019; 25:1660-1667. [PMID: 31407661 PMCID: PMC6711210 DOI: 10.3201/eid2509.190407] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In July 2018, a case of Neisseria gonorrhoeae associated with ceftriaxone treatment failure was identified in Alberta, Canada. We identified the isolate and nucleic acid amplification testing (NAAT) specimen as the ceftriaxone-resistant strain multilocus sequence type 1903/NG-MAST 3435/NG-STAR 233, originally identified in Japan (FC428), with the same penA 60.001 mosaic allele and genetic resistance determinants. Core single-nucleotide variant (SNV) analysis identified 13 SNVs between this isolate and FC428. Culture-independent surveillance by PCR for the A311V mutation in the penA allele and N. gonorrhoeae multiantigen sequence typing directly from NAAT transport media positive for N. gonorrhoeae by NAAT did not detect spread of the strain. We identified multiple sequence types not previously detected in Alberta by routine surveillance. This case demonstrates the benefit of using culture-independent methods to enhance detection, public health investigations, and surveillance to address this global threat.
Collapse
|
19
|
Considering the Potential Application of Whole Genome Sequencing to Gonorrhea Prevention and Control. Sex Transm Dis 2019; 45:e29-e32. [PMID: 29465637 DOI: 10.1097/olq.0000000000000813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Molecular Characterization of Markers Associated With Antimicrobial Resistance in Neisseria gonorrhoeae Identified From Residual Clinical Samples. Sex Transm Dis 2019; 45:312-315. [PMID: 29465687 DOI: 10.1097/olq.0000000000000755] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND The emergence and spread of antimicrobial-resistant (AMR) Neisseria gonorrhoeae (NG) is a major public health concern. In the era of nucleic acid amplifications tests, rapid and accurate molecular approaches are needed to help increase surveillance, guide antimicrobial stewardship, and prevent outbreaks. METHODS Residual urethral swabs, collected prospectively in the Baltimore City Health Department during a 6-month period, were analyzed by real-time polymerase chain reaction assays for NG DNA and AMR determinants to fluoroquinolones, penicillin, and extended-spectrum cephalosporins. RESULTS N. gonorrhoeae DNA was detected in 34.8% (73/210) of samples, including 67.3% (68/101) of the swabs that had been previously identified as NG positive by culture. Markers associated with decreased susceptibility to fluoroquinolones were detected in 22.4% of the polymerase chain reaction NG-positive samples. The rate of penicillinase-producing NG was very low (1.6%), and no markers associated with decreased susceptibility to extended-spectrum cephalosporins were detected in this cohort of men using the AMR assays herein described. CONCLUSIONS Detection of molecular markers associated with AMR in NG can be performed directly from residual clinical samples, although the recovery rate of adequate DNA for molecular testing from these samples can be suboptimal. A high number of samples with mutations associated with decreased susceptibility to fluoroquinolones were identified.
Collapse
|
21
|
Time to Develop Standardized Molecular Diagnostics for the Simultaneous Detection of Neisseria gonorrhoeae and Its Antimicrobial Resistance. Sex Transm Dis 2019. [PMID: 29528994 DOI: 10.1097/olq.0000000000000834] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
22
|
Martin I, Sawatzky P, Allen V, Lefebvre B, Hoang LMN, Naidu P, Minion J, Van Caeseele P, Haldane D, Gad RR, Zahariadis G, Corriveau A, German G, Tomas K, Mulvey MR. Multidrug-resistant and extensively drug-resistant Neisseria gonorrhoeae in Canada, 2012-2016. CANADA COMMUNICABLE DISEASE REPORT = RELEVE DES MALADIES TRANSMISSIBLES AU CANADA 2019; 45:45-53. [PMID: 31015818 PMCID: PMC6461123 DOI: 10.14745/ccdr.v45i23a01] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
BACKGROUND Neisseria gonorrhoeae have acquired resistance to many antimicrobials, including third generation cephalosporins and azithromycin, which are the current gonococcal combination therapy recommended by the Canadian Guidelines on Sexually Transmitted Infections. OBJECTIVE To describe antimicrobial susceptibilities for N. gonorrhoeae circulating in Canada between 2012 and 2016. METHODS Antimicrobial resistance profiles were determined using agar dilution of N. gonorrhoeae isolated in Canada 2012-2016 (n=10,167) following Clinical Laboratory Standards Institute guidelines. Data were analyzed by applying multidrug-resistant gonococci (MDR-GC) and extensively drug-resistant gonococci (XDR-GC) definitions. RESULTS Between 2012 and 2016, the proportion of MDR-GC increased from 6.2% to 8.9% and a total of 19 cases of XDR-GC were identified in Canada (0.1%, 19/18,768). The proportion of isolates with decreased susceptibility to cephalosporins declined between 2012 and 2016 from 5.9% to 2.0% while azithromycin resistance increased from 0.8% to 7.2% in the same period. CONCLUSION While XDR-GC are currently rare in Canada, MDR-GC have increased over the last five years. Azithromycin resistance in N. gonorrhoeae is established and spreading in Canada, exceeding the 5% level at which the World Health Organization states an antimicrobial should be reviewed as an appropriate treatment. Continued surveillance of antimicrobial susceptibilities of N. gonorrhoeae is necessary to inform treatment guidelines and mitigate the impact of resistant gonorrhea.
Collapse
Affiliation(s)
- I Martin
- Bacterial Pathogens Division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB
| | - P Sawatzky
- Bacterial Pathogens Division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB
| | - V Allen
- Public Health Ontario Laboratories, Toronto, ON
| | - B Lefebvre
- Laboratoire de santé publique du Québec, Ste-Anne-de-Bellevue, QC
| | - LMN Hoang
- British Columbia Centre for Disease Control Public Health Laboratory, Vancouver, BC
| | - P Naidu
- Provincial Laboratory for Public Health, Edmonton, AB
| | - J Minion
- Roy Romanow Provincial Laboratory, Regina, SK
| | | | - D Haldane
- Queen Elizabeth II Health Sciences Centre, Halifax, NS
| | - RR Gad
- New Brunswick Department of Health, Fredericton, NB
| | - G Zahariadis
- Newfoundland and Labrador Public Health Laboratory, St. John’s, NL
| | - A Corriveau
- Department of Health and Social Services, Government of the Northwest Territories, Yellowknife, NT
| | | | - K Tomas
- Centre for Communicable Diseases and Infection Control, Public Health Agency of Canada, Ottawa, ON
| | - MR Mulvey
- Bacterial Pathogens Division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB
| |
Collapse
|
23
|
Addressing the rising rates of gonorrhea and drug-resistant gonorrhea: There is no time like the present. ACTA ACUST UNITED AC 2019; 45:54-62. [PMID: 31015819 PMCID: PMC6461120 DOI: 10.14745/ccdr.v45i23a02] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Increasing rates of gonococcal (GC) infection and antimicrobial resistant (AMR) GC, are a serious public health concern for Canada and around the world. Previously recommended treatments are ineffective against many of the gonorrhea strains circulating today. The current recommendation for combination therapy is now being threatened by globally emerging and increasingly resistant strains. It is important that coordinated efforts be made now to ensure these new global strains do not become established in Canada. Otherwise, we will be faced with the possibility of persistent GC infection which can lead to pelvic inflammatory disease, infertility and chronic pelvic pain in women; and epididymitis in men. The presence of GC can also increase the risk of HIV acquisition and transmission. There are a number of reasons why we are facing this public health threat. GC infection is often asymptomatic and it is highly transmissible. People may hesitate to seek testing (or to offer testing). Treatment is complex: recommendations vary by site of infection and risk of resistance. Sexual contact during travel is an important source of imported emerging resistant global strains. The new screening and diagnostic Nucleic Acid Amplification Test (NAAT) is excellent but has decreased the number of cultures being done and therefore our capacity to track AMR-GC. There are four key actions that clinicians and front-line public health professionals can take to stem the increase in rates of GC and drug resistant GC. First, normalize and increase GC screening based on risk factors and emphasize the need for safer sex practices. NAAT is useful for screening, but culture is still needed for extra-genital sites. Second, conduct pretravel counselling and include a travel history as part of the risk assessment. Third, use culture along with NAAT to establish the diagnosis and follow up for test-of-cure. Finally, refer to the most current Canadian Guidelines on Sexually Transmitted Infections or provincial/territorial recommendations on combination therapies for patients and their contacts as recommendations may have changed in response to evolving AMR-GC trends.
Collapse
|
24
|
A Comparison of Real-Time Polymerase Chain Reaction Assays for the Detection of Antimicrobial Resistance Markers and Sequence Typing From Clinical Nucleic Acid Amplification Test Samples and Matched Neisseria gonorrhoeae Culture. Sex Transm Dis 2019; 45:92-95. [PMID: 29329177 DOI: 10.1097/olq.0000000000000707] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Real-time polymerase chain reaction (PCR) assays to detect antimicrobial resistance-associated mutations were tested on Neisseria gonorrhoeae-positive clinical samples with matched isolates. Of the nucleic acid amplification tests/cultures, 87.7% (64/73), 98.6% (72/73), and 98.4% (62/63) predicted cephalosporin, ciprofloxacin, and azithromycin susceptibilities, respectively. N. gonorrhoeae multiantigen sequence type was correctly predicted for 98.7% (79/80), and 13 of 58 N. gonorrhoeae-negative specimens showed false-positive results.
Collapse
|
25
|
Zhao L, Liu A, Li R, Zhao S. Multiplex TaqMan real-time PCR platform for detection of Neisseria gonorrhoeae with decreased susceptibility to ceftriaxone. Diagn Microbiol Infect Dis 2018; 93:299-304. [PMID: 30473448 DOI: 10.1016/j.diagmicrobio.2018.10.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/18/2018] [Accepted: 10/22/2018] [Indexed: 10/28/2022]
Abstract
A multiplex TaqMan real-time PCR platform was developed in this study for combined detection of opa and/or porA genes (identification of N. gonorrhoeae) and the key mutations (Ala501Val/Thr/Pro, and/or Gly545Ser) in penicillin-binding protein 2 (PBP2) associated with decreased susceptibility to extended-spectrum cephalosporins (ESCs). Firstly, the specificities of the TaqMan probes/primers for the multiplex TaqMan real time PCR platform were confirmed by Basic Local Alignment Search Tool (BLAST) analysis. Then the multiplex PCR platform was performed on 77 isolates with decreased susceptibility to ceftriaxone (CRO) and 100 isolates with full susceptibility to CRO under universal optimized reaction conditions. As a result, based on cultivation-based matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) and antimicrobial susceptibility testing in vitro, the multiplex platform had a sensitivity of 100% and a specificity of 95.0% for identifying cultured isolates of Neisseria gonorrhoeae (N. gonorrhoeae, NG, GC) with decreased susceptibility to CRO. When directly screening N. gonorrhoeae with decreased susceptibility to CRO from clinical urogenital swabs, the multiplex platform offered a sensitivity of 96.1% and a specificity of 95.0%. Therefore, on the basis of sample culture and antimicrobial susceptibility testing in vitro, the multiplex TaqMan real time PCR platform has been proven to be a sensitivity of 100% and a specificity of 95.0% useful tool for screening cultured isolates of N. gonorrhoeae with decreased susceptibility to CRO, which can be finished within 2 days.
Collapse
Affiliation(s)
- Lihong Zhao
- Department of Clinical Laboratory, Tai'an Central Hospital, Tai'an 271000, China
| | - Aihua Liu
- Central Laboratory, Tai'an Central Hospital, Tai'an 271000, China
| | - Ruiying Li
- Department of Gynaecology, Tai'an Central Hospital, Tai'an 271000, China
| | - Shuping Zhao
- Department of Clinical Laboratory, Tai'an Central Hospital, Tai'an 271000, China.
| |
Collapse
|
26
|
Utilization of Nucleic Acid Amplification Testing Samples for Antimicrobial Resistance Surveillance in Remote Canadian Communities. Sex Transm Dis 2018; 45:e61. [DOI: 10.1097/olq.0000000000000860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Hardick J, Crowell TA, Lombardi K, Akintunde A, Odeyemi S, Ivo A, Eluwa G, Njab J, Baral SD, Nowak RG, Quinn TC, Barbian K, Anzick S, Adebajo S, Charurat ME, Ake J, Gaydos CA. Molecular screening for Neisseria gonorrhoeae antimicrobial resistance markers in Nigerian men who have sex with men and transgender women. Int J STD AIDS 2018; 29:1273-1281. [PMID: 29969978 DOI: 10.1177/0956462418780050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Antimicrobial-resistant Neisseria gonorrhoeae (NG) is a global public health issue that threatens effectiveness of current treatments of NG. Increased use of nucleic acid amplification tests (NAATs) in lieu of cultures makes obtaining clinical isolates for susceptibility testing difficult and samples collected in commercial transport buffer for NAATs do not preserve viable organism, while molecular methods of assessing antibiotic susceptibility do not require viable organism. We evaluated 243 NG-positive samples in Aptima transport media including urine, oral, and rectal swabs from Nigerian men who have sex with men for markers to penicillinase-producing NG, ciprofloxacin ( GyrA and ParC mutations), and extended spectrum cephalosporins (ESCs, PenA mosaic [allele X], PonA, mtrR, PorB mutations) by real-time PCR. NG DNA was recovered in 75% (183/243) of samples. Of these, 93% (171/183) were positive for at least one resistance marker. We observed a prevalence of dual resistance markers to penicillin and ciprofloxacin at 46.2% (79/171). Six percent of samples (10/171) tested positive for the PenA mosaic (allele X) ESC marker. These data indicate that antibiotic-resistant NG is common in Nigeria. Laboratory and clinical capacity building in Nigeria should include development of methods to culture NG and determine antimicrobial susceptibility.
Collapse
Affiliation(s)
- Justin Hardick
- 1 Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Trevor A Crowell
- 2 U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA.,3 Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Kara Lombardi
- 2 U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA.,3 Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Akindiran Akintunde
- 2 U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA.,4 Henry M. Jackson Foundation for the Advancement of Military Medicine, Abuja, Nigeria
| | - Sunday Odeyemi
- 2 U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA.,4 Henry M. Jackson Foundation for the Advancement of Military Medicine, Abuja, Nigeria
| | - Andrew Ivo
- 2 U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA.,4 Henry M. Jackson Foundation for the Advancement of Military Medicine, Abuja, Nigeria
| | | | - Jean Njab
- 5 Population Council Nigeria, Abuja, Nigeria
| | - Stefan D Baral
- 6 Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Rebecca G Nowak
- 7 Institute of Human Virology, University of Maryland, Baltimore, MD, USA
| | - Thomas C Quinn
- 1 Johns Hopkins University School of Medicine, Baltimore, MD, USA.,8 Division of Intramural Research, NIAID, NIH, Bethesda, MD, USA
| | - Kent Barbian
- 9 Rocky Mountain National Laboratory (RML), Hamilton, MT, USA
| | - Sarah Anzick
- 9 Rocky Mountain National Laboratory (RML), Hamilton, MT, USA
| | | | | | - Julie Ake
- 2 U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | | |
Collapse
|
28
|
Abstract
Background Gonorrhea is the second most commonly reported sexually transmitted infection (STI) in Canada after chlamydia, and rates for this STI have been increasing since 1997. Objective To summarize trends observed in gonorrhea rates for 2010-2015 in Canada. Methods Laboratory-confirmed cases of gonorrhea are reported to the Public Health Agency of Canada (PHAC) by all of the Canadian provinces and territories. The overall national rate was computed, as were rates per sex, age group and province/territory. Results In 2015, 19,845 cases of gonorrhea were reported in Canada, corresponding to a rate of 55.4 cases per 100,000 population and a 65.4% increase from 2010 (33.5 cases per 100,000 population). Males had consistently higher rates than did females (70.2 per 100,000 versus 40.6 per 100,000 in 2015) and faster rising rates (85.2% versus 39.5% in 2010-2015). Rates among adults 60 years and older increased faster than rates among younger people, although the highest rates were among those 15-29 years of age. The Northwest Territories, Nunavut and Yukon had the highest gonorrhea rates in 2015. Conclusion Males, adolescents and young adults continue to represent the majority of gonorrhea cases. Research is needed to better understand the current trends in gonorrhea infection in order to maintain, evaluate and improve primary and secondary STI prevention activities.
Collapse
|
29
|
Donà V, Low N, Golparian D, Unemo M. Recent advances in the development and use of molecular tests to predict antimicrobial resistance in Neisseria gonorrhoeae. Expert Rev Mol Diagn 2017; 17:845-859. [PMID: 28741392 DOI: 10.1080/14737159.2017.1360137] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION The number of genetic tests, mostly real-time PCRs, to detect antimicrobial resistance (AMR) determinants and predict AMR in Neisseria gonorrhoeae is increasing. Several of these assays are promising, but there are important shortcomings and few assays have been adequately validated and quality assured. Areas covered: Recent advances, focusing on publications since 2012, in the development and use of molecular tests to predict gonococcal AMR for surveillance and for clinical use, advantages and disadvantages of these tests and of molecular AMR prediction compared with phenotypic AMR testing, and future perspectives for effective use of molecular AMR tests for different purposes. Expert commentary: Several challenges for direct testing of clinical, especially extra-genital, specimens remain. The choice of molecular assay needs to consider the assay target, quality controls, sample types, limitations intrinsic to molecular technologies, and specific to the chosen methodology, and the intended use of the test. Improved molecular- and particularly genome-sequencing-based methods will supplement AMR testing for surveillance purposes, and translate into point-of-care tests that will lead to personalized treatments, while sparing the last available empiric treatment option (ceftriaxone). However, genetic AMR prediction will never completely replace phenotypic AMR testing, which detects also AMR due to unknown AMR determinants.
Collapse
Affiliation(s)
- Valentina Donà
- a Institute for Infectious Diseases, University of Bern , Bern , Switzerland
| | - Nicola Low
- b Institute of Social and Preventive Medicine, University of Bern , Bern , Switzerland
| | - Daniel Golparian
- c WHO Collaborating Centre for Gonorrhoea , Örebro University , Örebro , Sweden
| | - Magnus Unemo
- c WHO Collaborating Centre for Gonorrhoea , Örebro University , Örebro , Sweden
| |
Collapse
|
30
|
Abstract
Diagnosis of sexually transmitted diseases (STD) has significantly improved in recent years by the application of nucleic acid amplification tests (NAAT). In addition to detection of infectious agents, molecular methods were also used for characterization of pathogens (typing, genotypic resistance testing). In contrast to conventional Sanger sequencing of amplicons, new sequencing technologies (next generation sequencing) are able to identify resistant variants that represent only small minorities in a heterogeneous population. NAATs are also available as fully automated closed systems that can be run independently of centralized laboratories and will become increasingly important for point-of-care testing.
Collapse
Affiliation(s)
- N H Brockmeyer
- Klinik für Dermatologie, Venerologie und Allergologie, Zentrum für Sexuelle Gesundheit und Medizin, Ruhr-Universität Bochum, Gudrunstr. 56, 44791, Bochum, Deutschland.
| | - T Meyer
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg-Eppendorf (UKE), Hamburg, Deutschland
| |
Collapse
|
31
|
Molecular tests for the detection of antimicrobial resistant Neisseria gonorrhoeae: when, where, and how to use? Curr Opin Infect Dis 2016; 29:45-51. [PMID: 26658656 DOI: 10.1097/qco.0000000000000230] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Molecular methods for the diagnosis of Neisseria gonorrhoeae are replacing bacterial culture in many settings. This review focuses on recent progress in the development of molecular tests to detect resistant N. gonorrhoeae both to enhance surveillance and to guide decisions about individual patient management. RECENT FINDINGS Assays to enhance surveillance have been developed to detect determinants of resistance for all antibiotics used as first-line gonorrhoea treatment, or to detect specific 'superbug' strains, but few have been applied in clinical practice. The most advanced strategy relevant to individual case management is to identify ciprofloxacin-sensitive strains so that unnecessary use of ceftriaxone can be avoided. Cross-reactivity with pharyngeal commensal Neisseria species reduces specificity and is a challenge for many assays. SUMMARY Progress with laboratory-based molecular tests to detect gonococcal resistance is being made but substantial challenges remain. No laboratory-based assay has been subjected to a field evaluation and no assay so far can be used as a point-of-care test. Given the threat of antimicrobial resistance, now is the time to exploit the molecular technologies used for diagnosis and to invest in the development of molecular gonococcal resistance tests that can be implemented for public health good.
Collapse
|
32
|
Papp JR, Henning T, Khubbar M, Kalve V, Bhattacharyya S, Travanty E, Xavier K, Jones K, Rudrik JT, Gaynor A, Hagan C. Recovery of Neisseria gonorrhoeae from 4 commercially available transport systems. Diagn Microbiol Infect Dis 2016; 86:144-7. [PMID: 27489119 DOI: 10.1016/j.diagmicrobio.2016.06.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/17/2016] [Accepted: 06/20/2016] [Indexed: 11/16/2022]
Abstract
Four commercial transport systems for the recovery of Neisseria gonorrhoeae were evaluated in support of the need to obtain culture isolates for the detection of antimicrobial resistance. Bacterial recovery from the InTray GC system was superior with minimal loss of viability in contrast to non-nutritive transport systems.
Collapse
Affiliation(s)
- John R Papp
- Centers for Disease Control and Prevention, Atlanta, Georgia.
| | - Tara Henning
- Centers for Disease Control and Prevention, Atlanta, Georgia
| | | | - Valdis Kalve
- City of Milwaukee Health Department, Milwaukee, WI
| | | | - Emily Travanty
- Colorado Department of Public Health and Environment, Denver, Colorado
| | - Karen Xavier
- Colorado Department of Public Health and Environment, Denver, Colorado
| | - Kelly Jones
- Michigan Department of Health and Human Services, Lansing, MI
| | - James T Rudrik
- Michigan Department of Health and Human Services, Lansing, MI
| | - Anne Gaynor
- Association of Public Health Laboratories, Silver Spring, MD
| | - Celia Hagan
- Association of Public Health Laboratories, Silver Spring, MD
| |
Collapse
|
33
|
|
34
|
Hemarajata P, Yang S, Soge OO, Humphries RM, Klausner JD. Performance and Verification of a Real-Time PCR Assay Targeting the gyrA Gene for Prediction of Ciprofloxacin Resistance in Neisseria gonorrhoeae. J Clin Microbiol 2016; 54:805-8. [PMID: 26739156 PMCID: PMC4767994 DOI: 10.1128/jcm.03032-15] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Accepted: 12/28/2015] [Indexed: 11/20/2022] Open
Abstract
In the United States, 19.2% of Neisseria gonorrhoeae isolates are resistant to ciprofloxacin. We evaluated a real-time PCR assay to predict ciprofloxacin susceptibility using residual DNA from the Roche Cobas 4800 CT/NG assay. The results of the assay were 100% concordant with agar dilution susceptibility test results for 100 clinical isolates. Among 76 clinical urine and swab specimens positive for N. gonorrhoeae by the Cobas assay, 71% could be genotyped. The test took 1.5 h to perform, allowing the physician to receive results in time to make informed clinical decisions.
Collapse
Affiliation(s)
- P Hemarajata
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - S Yang
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - O O Soge
- Neisseria Reference Laboratory, GISP Regional Laboratory, University of Washington Harborview Medical Center, Seattle, Washington, USA
| | - R M Humphries
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - J D Klausner
- Department of Medicine, Division of Infectious Diseases and Department of Epidemiology, David Geffen School of Medicine and Fielding School of Public Health, University of California, Los Angeles, California, USA
| |
Collapse
|
35
|
Unemo M. Current and future antimicrobial treatment of gonorrhoea - the rapidly evolving Neisseria gonorrhoeae continues to challenge. BMC Infect Dis 2015; 15:364. [PMID: 26293005 PMCID: PMC4546108 DOI: 10.1186/s12879-015-1029-2] [Citation(s) in RCA: 188] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 07/16/2015] [Indexed: 11/18/2022] Open
Abstract
Neisseria gonorrhoeae has developed antimicrobial resistance (AMR) to all drugs previously and currently recommended for empirical monotherapy of gonorrhoea. In vitro resistance, including high-level, to the last option ceftriaxone and sporadic failures to treat pharyngeal gonorrhoea with ceftriaxone have emerged. In response, empirical dual antimicrobial therapy (ceftriaxone 250–1000 mg plus azithromycin 1–2 g) has been introduced in several particularly high-income regions or countries. These treatment regimens appear currently effective and should be considered in all settings where local quality assured AMR data do not support other therapeutic options. However, the dual antimicrobial regimens, implemented in limited geographic regions, will not entirely prevent resistance emergence and, unfortunately, most likely it is only a matter of when, and not if, treatment failures with also these dual antimicrobial regimens will emerge. Accordingly, novel affordable antimicrobials for monotherapy or at least inclusion in new dual treatment regimens, which might need to be considered for all newly developed antimicrobials, are essential. Several of the recently developed antimicrobials deserve increased attention for potential future treatment of gonorrhoea. In vitro activity studies examining collections of geographically, temporally and genetically diverse gonococcal isolates, including multidrug-resistant strains particularly with resistance to ceftriaxone and azithromycin, are important. Furthermore, understanding of effects and biological fitness of current and emerging (in vitro induced/selected and in vivo emerged) genetic resistance mechanisms for these antimicrobials, prediction of resistance emergence, time-kill curve analysis to evaluate antibacterial activity, appropriate mice experiments, and correlates between genetic and phenotypic laboratory parameters, and clinical treatment outcomes, would also be valuable. Subsequently, appropriately designed, randomized controlled clinical trials evaluating efficacy, ideal dose, toxicity, adverse effects, cost, and pharmacokinetic/pharmacodynamics data for anogenital and, importantly, also pharyngeal gonorrhoea, i.e. because treatment failures initially emerge at this anatomical site. Finally, in the future treatment at first health care visit will ideally be individually-tailored, i.e. by novel rapid phenotypic AMR tests and/or genetic point of care AMR tests, including detection of gonococci, which will improve the management and public health control of gonorrhoea and AMR. Nevertheless, now is certainly the right time to readdress the challenges of developing a gonococcal vaccine.
Collapse
Affiliation(s)
- Magnus Unemo
- WHO Collaborating Centre for Gonorrhoea and Other STIs, National Reference Laboratory for Pathogenic Neisseria, Department of Laboratory Medicine, Microbiology, Faculty of Medicine and Health, Örebro University Hospital, Örebro University, SE-701 85, Örebro, Sweden.
| |
Collapse
|
36
|
Molecular Assay for Detection of Ciprofloxacin Resistance in Neisseria gonorrhoeae Isolates from Cultures and Clinical Nucleic Acid Amplification Test Specimens. J Clin Microbiol 2015; 53:3606-8. [PMID: 26292300 DOI: 10.1128/jcm.01632-15] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 08/11/2015] [Indexed: 01/08/2023] Open
Abstract
We developed a real-time PCR assay to detect single nucleotide polymorphisms associated with ciprofloxacin resistance in specimens submitted for nucleic acid amplification testing (NAAT). All three single nucleotide polymorphism (SNP) targets produced high sensitivity and specificity values. The presence of ≥2 SNPs was sufficient to predict ciprofloxacin resistance in an organism.
Collapse
|