1
|
Jonani B, Bwire HR, Kasule CE, Mboowa G. Lack of Candida africana in Ugandan pregnant women: results from a pilot study using MALDI-ToF. BMC Res Notes 2024; 17:321. [PMID: 39449135 PMCID: PMC11506244 DOI: 10.1186/s13104-024-06973-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Candida africana is an emergent variant that has been listed as a new species or variety within the Candida albicans complex since 2001. It has a worldwide intra-albicans complex pooled prevalence of 1.67% and varies between 0 and 8% depending on geographical region. We present the results of a pilot study on its prevalence in Uganda. METHODOLOGY We conducted a cross-sectional study between March and June 2023. We recruited 4 pregnant women from Mulago Specialized Women and Neonatal Hospital, 102 from Kawempe National Referral Hospital, and 48 from Sebbi Hospital. Vaginal swabs were tested using microscopy, culture and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF). RESULTS The prevalence of C. africana was zero. Out of the 103 isolates, the majority (81.553%) were identified as Candida albicans, followed by Nakeseomyces glabrata (13.592%) and Pichia kudriavzevii (1.942%). Cyberlindnera jadinii, Candida tropicalis, and Candida parapsilosis each accounted for 0.971% of the isolates. CONCLUSION The prevalence of C. africana in Uganda is zero. However, large-scale cross-sectional studies, including studies involving the collection of vaginal samples from both urban and rural settings in Uganda and the use of both MALDI-TOF- and PCR-based laboratory methods, are needed to fully describe the public health burden of C. africana infections.
Collapse
Affiliation(s)
- Bwambale Jonani
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, College of Health Sciences, Makerere University, P.O. Box 7072, Kampala, Uganda.
- Laboratory Department, Sebbi Hospital, P.O. Box 101602, Kampala, Uganda.
| | | | | | - Gerald Mboowa
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, College of Health Sciences, Makerere University, P.O. Box 7072, Kampala, Uganda
- The African Centre of Excellence in Bioinformatics and Data-Intensive Sciences, Infectious Diseases Institute, Makerere, Kampala, Uganda
| |
Collapse
|
2
|
Qualification of Human Liver Microsomes for Antibacterial Activity Screening of Drug Metabolites. Appl Microbiol 2023. [DOI: 10.3390/applmicrobiol3010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Microsomes are commonly used to perform in vitro drug metabolism, predominantly to form phase I drug metabolites. Pooled microsomes from multiple donors can contain microorganisms from underlying microbial diseases. Exposure to microbes can also occur during extraction if aseptic processing is compromised. Although microbial presence does not affect the metabolic activity of microsomes, presence of unwanted microorganisms can cause interference if the downstream application of microsomal drug metabolites is screening for antibacterial activity. In this work, traditional biochemical tests and advanced proteomics-based identification techniques were used to identify two gram-negative bacteria in pooled human liver microsomes. Several decontamination procedures were assessed to eradicate these two bacteria from the microsomes without affecting its metabolic capacity, and organic extraction was found to be the most convenient and efficient approach to decontaminate microsomes and screen drug metabolites for antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA).
Collapse
|
3
|
Li D, Yi J, Han G, Qiao L. MALDI-TOF Mass Spectrometry in Clinical Analysis and Research. ACS MEASUREMENT SCIENCE AU 2022; 2:385-404. [PMID: 36785658 PMCID: PMC9885950 DOI: 10.1021/acsmeasuresciau.2c00019] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/15/2022] [Accepted: 07/15/2022] [Indexed: 05/04/2023]
Abstract
In the decade after being awarded the Nobel Prize in Chemistry in 2002, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been widely used as an analytical chemistry tool for the detection of large and small molecules (e.g., polymers, proteins, peptides, nucleic acids, amino acids, lipids, etc.) and for clinical analysis and research (e.g., pathogen identification, genetic disorders screening, cancer diagnosis, etc.). In view of the fast development of MALDI-TOF MS in clinical usage, this review systematically summarizes the most important applications of MALDI-TOF MS in clinical analysis and research by analyzing MALDI TOF MS-related reviews collected in the Web of Science database. On the basis of the analysis of keyword co-occurrence of over 2000 review articles, four themes consisting of "pathogen identification", "disease diagnosis", "nucleic acids analysis", and "small molecules analysis" were found. For each theme, the review further outlined their application implications, analytical methods, and systems as well as limitations that need to be addressed. Overall, the review summarizes and elaborates on the clinical applications of MALDI-TOF MS, providing a comprehensive picture for researchers embarking on MALDI TOF MS-related clinical analysis and research.
Collapse
|
4
|
Sarvestani HK, Ramandi A, Getso MI, Razavyoon T, Javidnia J, Golrizi MB, Saboor-Yaraghi AA, Ansari S. Mass spectrometry in research laboratories and clinical diagnostic: a new era in medical mycology. Braz J Microbiol 2022; 53:689-707. [PMID: 35344203 PMCID: PMC9151960 DOI: 10.1007/s42770-022-00715-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 02/14/2022] [Indexed: 02/01/2023] Open
Abstract
Diagnosis by clinical mycology laboratory plays a critical role in patient care by providing definitive knowledge of the cause of infection and antimicrobial susceptibility data to physicians. Rapid diagnostic methods are likely to improve patient. Aggressive resuscitation bundles, adequate source control, and appropriate antibiotic therapy are cornerstones for success in the treatment of patients. Routine methods for identifying clinical specimen fungal pathogen are based on the cultivation on different media with the subsequent examination of its phenotypic characteristics comprising a combination of microscopic and colony morphologies. As some fungi cannot be readily identified using these methods, molecular diagnostic methods may be required. These methods are fast, but it can cost a lot. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) is suitable for high-throughput and rapid diagnostics at low costs. It can be considered an alternative for conventional biochemical and molecular identification systems in a microbiological laboratory. The reliability and accuracy of this method have been scrutinized in many surveys and have been compared with several methods including sequencing and molecular methods. According to these findings, the reliability and accuracy of this method are very high and can be trusted. With all the benefits of this technique, the libraries of MALDI-TOF MS need to be strengthened to enhance its performance. This review provides an overview of the most recent research literature that has investigated the applications and usage of MT-MS to the identification of microorganisms, mycotoxins, antifungal susceptibility examination, and mycobiome research.
Collapse
Affiliation(s)
- Hasti Kamali Sarvestani
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Ramandi
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Muhammad Ibrahim Getso
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Department of Medical Microbiology and Parasitology, College of Health Sciences, Bayero University, PMB, Kano, 3011, Nigeria
| | - Taraneh Razavyoon
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Javad Javidnia
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Miaad Banay Golrizi
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ali-Akbar Saboor-Yaraghi
- Department of Nutrition and Biochemistry, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Medical Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Saham Ansari
- Department of Medical Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Gruszecka J, Filip R, Gutkowska D. The State of Microbiological Cleanliness of Surfaces and Equipment of an Endoscopic Examination Laboratory-Data from a Reference Tertiary Clinical Endoscopy Center in Southern Poland. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18126346. [PMID: 34208169 PMCID: PMC8296163 DOI: 10.3390/ijerph18126346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/02/2021] [Accepted: 06/07/2021] [Indexed: 11/16/2022]
Abstract
The increasing number of endoscopic procedures performed and their increasing invasiveness mean that endoscopy of the gastrointestinal tract is associated with the risk of transmitting pathogenic microorganisms through infected equipment or contact with other patients and medical staff. In order to ensure protection of the health of both patients and medical staff, endoscopy laboratories should meet high hygiene standards. The results of tests of the microbiological cleanliness of surfaces and equipment of an endoscopic examination laboratory performed in the period from January to December 2019 at the Provincial Clinical Hospital No. 2 in Rzeszow were assessed retrospectively. Samples for testing were collected by swabbing from places where microbiological contamination was the most likely and cleaning was the most difficult. In the analyzed period, a total of 86 samples were collected for microbiological tests, of which positive results accounted for 6.9%. Positive results were obtained mainly from swabs collected from wet surfaces (66.7%). Most of the isolated microorganisms were Gram-negative bacteria (66.7% of all positive tests) and they were: Acinetobacter junii, Ralstonia pickettii, and Achromobacter denitrificans. The condition of the microbiological cleanliness of the surfaces and equipment of the endoscopic examination laboratory was satisfactory. A very low level of microbiological contamination of the tested items indicates occasional shortcomings in the decontamination processes. Since microorganisms isolated from the collected samples may be the cause of infection in patients and medical personnel, it is necessary to verify the decontamination procedures applied and to continue periodic microbiological monitoring of their effectiveness.
Collapse
Affiliation(s)
- Jolanta Gruszecka
- Institute of Health Sciences, Medical College of Rzeszow University, 35-310 Rzeszow, Poland;
- Department of Clinical Microbiology, Clinical Hospital No. 2 im. Św. Jadwigi Królowej, 35-301 Rzeszow, Poland
- Correspondence:
| | - Rafał Filip
- Faculty of Medicine, Medical College of Rzeszow University, 35-959 Rzeszow, Poland;
- Department of Gastroenterology with IBD Unit of Clinical Hospital 2 im. Św. Jadwigi Królowej, 35-301 Rzeszow, Poland
| | - Dorota Gutkowska
- Institute of Health Sciences, Medical College of Rzeszow University, 35-310 Rzeszow, Poland;
| |
Collapse
|
6
|
Molecular Characterization and Biofilm Formation Study of Contaminant Bacteria Isolated from Domiaty and Hungarian Cheeses in Jeddah City. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.2.57] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The aim was to study the microbiological quality of Domiaty and Hungarian cheeses, molecular identification and biofilm formation of some selected contaminant bacteria. Samples were collected from two M and P big markets in Jeddah City through the period from February to October 2018, nine visits for two types of natural cheese. Results showed that the total bacterial counts (CFU/ml) from Domiaty cheese from two markets (M and P) were 0.1 x 105, 8 x 105 and 1 x 10 5 CFU/ml respectively (3 visits of M market) and 4 x 106, 0.4 x 106, 6.5 x 103, 1 x 103, 0.1 x 103 and 0.1 x 103 CFU/ml respectively (six samples from 6 visits from P market). Results showed that the total bacterial counts (CFU/ml) from Hungarian cheese were 1.5 x 10 5, 1x 10 4, 11 x 10 4 and 4 x10 6 CFU/ml respectively from (4 visits of M market) and 0.18 x 104, 3 x 106, 22 x 106, 6 x 106 and 5 x 104 CFU/ml respectively (5 visits from P market).Different bacterial isolates from cheese were identified by morphology and biochemical test. Bacterial isolates from cheeses were identified by VITEK MS as follow: Serratia liquefaciens (D6-1, D6-2, D14-1, D13-1 and D13-2), and Pseudomonas fluorescens (D14-2) were isolated from Domiaty cheese while Enterococcus faecium (H11-2), Serratia liquefaciens (H15-1) and Streptococcus thermophilus (H14-1) were isolated from Hungarian cheese. Some selected bacterial isolates were identified by 16S rRNA. Isolates were belong to MK757978 (Raoultilla terrigena (D15-1)), MK757979 (Bacillus cereus (D16-1)), MK757980 (Enterococcus faecalis (H10-2)), MK757982 (Enterococcus fiscalism (H11-1)), MK757981 (Serratia liquefactions (H13-1)), MK757984 (Anoxybacillus flavithermus (H17-1). All bacterial isolates have been tested for the formation of biofilm using a Tissue Culture Plate (TCP). Results revealed 12.5% and 46.15% of high biofilm formation respectively for bacterial isolates of Domiaty and Hungarian cheeses.
Collapse
|
7
|
Comparative evaluation of the Bruker Biotyper and Vitek MS matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) systems for non-albicans Candida and uncommon yeast isolates. J Microbiol Methods 2021; 185:106232. [PMID: 33961963 DOI: 10.1016/j.mimet.2021.106232] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/24/2021] [Accepted: 05/02/2021] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Rapid and accurate diagnosis is critically important in invasive and disseminated fungal infections for appropriate antifungal treatment. HYPOTHESIS MALDI-TOF MS systems are effective for fast and accurate identification of Candida species. AIM We aimed to compare two MALDI-TOF MS systems for the rapid identification of non-albicans Candida and rare clinical yeast species. METHODOLOGY This study included 157 isolates representing 23 yeast species. All isolates were identified using Bruker MALDI Biotyper and VITEK MS systems. If both MALDI-TOF MS systems yielded the same results for a certain isolate, the identification is regarded as correct. We performed internal transcribed spacer (ITS) DNA sequencing on five fungal isolates with discordant species names or that were unidentified by the two MALDI-TOF MS systems. RESULTS The yeast identification sensitivity of MALDI Biotyper was 98.7%, whereas that of VITEK MS was 96.8%. Both MALDI-TOF MS systems correctly identified all strains belonging to four prevalent species, namely, Candida parapsilosis, Candida tropicalis, Candida glabrata, and Candida krusei. For the 19 rare clinical yeast species, identification rates were 96.7% for MALDI Biotyper and 91.7% for VITEK MS. The ITS sequence analysis of five isolates yielded two Meyerozyma caribbica, two Cyberlindnera fabianii, and one Candida dubliniensis. CONCLUSIONS This study showed the high performance of both MALDI-TOF MS systems, identifying over 90% of yeast isolates in a short time. The disadvantages of these systems are that some species are not present in the databases and it cannot distinguish closely related species. The sensitivity of MALDI-TOF MS systems constantly improves with the expansion of databases in parallel with taxonomic developments for the identification of rare clinical yeast species.
Collapse
|
8
|
Lau AF. Matrix-Assisted Laser Desorption Ionization Time-of-Flight for Fungal Identification. Clin Lab Med 2021; 41:267-283. [PMID: 34020763 DOI: 10.1016/j.cll.2021.03.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Many studies have shown successful performance of matrix-assisted laser desorption ionization time-of-flight mass spectrometry for rapid yeast and mold identification, yet few laboratories have chosen to apply this technology into their routine clinical mycology workflow. This review provides an overview of the current status of matrix-assisted laser desorption ionization time-of-flight mass spectrometry for fungal identification, including key findings in the literature, processing and database considerations, updates in technology, and exciting future prospects. Significant advances toward standardization have taken place recently; thus, accurate species-level identification of yeasts and molds should be highly attainable, achievable, and practical in most clinical laboratories.
Collapse
Affiliation(s)
- Anna F Lau
- Sterility Testing Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, 10 Center Drive, Room 2C306, Bethesda, MD 20892, USA.
| |
Collapse
|
9
|
Girard V, Monnin V, Giraud D, Polsinelli S, Caillé M, Procop GW, Tuohy M, Wilson D, Richter SS, Kiss K, Clem K, Tolli N, Bridon L, Bradford C, Blamey S, Li J, Pincus DH. Multicenter evaluation of the VITEK MS matrix-assisted laser desorption/ionization-time of flight mass spectrometry system for identification of bacteria, including Brucella, and yeasts. Eur J Clin Microbiol Infect Dis 2021; 40:1909-1917. [PMID: 33837878 DOI: 10.1007/s10096-021-04242-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/30/2021] [Indexed: 12/19/2022]
Abstract
The use of matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry has proven to be rapid and accurate for the majority of clinical isolates. Some gaps remain concerning rare, emerging, or highly pathogenic species, showing the need to continuously expand the databases. In this multicenter study, we evaluated the accuracy of the VITEK MS v3.2 database in identifying 1172 unique isolates compared to identification by DNA sequence analysis. A total of 93.6% of the isolates were identified to species or group/complex level. A remaining 5.2% of the isolates were identified to the genus level. Forty tests gave a result of no identification (0.9%) and 12 tests (0.3%) gave a discordant identification compared to the reference identification. VITEK MS is also the first MALDI-TOF MS system that is able to delineate the four members of the Acinetobacter baumannii complex at species level without any specific protocol or special analysis method. These findings demonstrate that the VITEK MS v3.2 database is highly accurate for the identification of bacteria and fungi encountered in the clinical laboratory as well as emerging species like Candida auris and the highly pathogenic Brucella species.
Collapse
Affiliation(s)
- Victoria Girard
- R&D Microbiology, bioMérieux sa, La Balme les Grottes, France.
| | - Valérie Monnin
- R&D Microbiology, bioMérieux sa, La Balme les Grottes, France
| | - Delphine Giraud
- R&D Microbiology, bioMérieux sa, La Balme les Grottes, France
| | | | - Marion Caillé
- R&D Microbiology, bioMérieux sa, La Balme les Grottes, France.,MSD, Clermont-Ferrand, France
| | - Gary W Procop
- Pathology & Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Marion Tuohy
- Pathology & Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Deborah Wilson
- Pathology & Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Sandra S Richter
- Pathology & Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA.,Medical Affairs, bioMérieux, Inc., Durham, NC, USA
| | | | | | | | | | | | - Sara Blamey
- Clinical Affairs, bioMérieux, Inc., St. Louis, MO, USA
| | - Jay Li
- R&D US Data Science, bioMérieux, Inc., Durham, NC, USA
| | | |
Collapse
|
10
|
Solntceva V, Kostrzewa M, Larrouy-Maumus G. Detection of Species-Specific Lipids by Routine MALDI TOF Mass Spectrometry to Unlock the Challenges of Microbial Identification and Antimicrobial Susceptibility Testing. Front Cell Infect Microbiol 2021; 10:621452. [PMID: 33634037 PMCID: PMC7902069 DOI: 10.3389/fcimb.2020.621452] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/18/2020] [Indexed: 12/16/2022] Open
Abstract
MALDI-TOF mass spectrometry has revolutionized clinical microbiology diagnostics by delivering accurate, fast, and reliable identification of microorganisms. It is conventionally based on the detection of intracellular molecules, mainly ribosomal proteins, for identification at the species-level and/or genus-level. Nevertheless, for some microorganisms (e.g., for mycobacteria) extensive protocols are necessary in order to extract intracellular proteins, and in some cases a protein-based approach cannot provide sufficient evidence to accurately identify the microorganisms within the same genus (e.g., Shigella sp. vs E. coli and the species of the M. tuberculosis complex). Consequently lipids, along with proteins are also molecules of interest. Lipids are ubiquitous, but their structural diversity delivers complementary information to the conventional protein-based clinical microbiology matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) based approaches currently used. Lipid modifications, such as the ones found on lipid A related to polymyxin resistance in Gram-negative pathogens (e.g., phosphoethanolamine and aminoarabinose), not only play a role in the detection of microorganisms by routine MALDI-TOF mass spectrometry but can also be used as a read-out of drug susceptibility. In this review, we will demonstrate that in combination with proteins, lipids are a game-changer in both the rapid detection of pathogens and the determination of their drug susceptibility using routine MALDI-TOF mass spectrometry systems.
Collapse
Affiliation(s)
- Vera Solntceva
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, United Kingdom
| | | | - Gerald Larrouy-Maumus
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
11
|
Normand AC, Gabriel F, Riat A, Cassagne C, Bourgeois N, Huguenin A, Chauvin P, De Geyter D, Bexkens M, Rubio E, Hendrickx M, Ranque S, Piarroux R. Optimization of MALDI-ToF mass spectrometry for yeast identification: a multicenter study. Med Mycol 2021; 58:639-649. [PMID: 31579924 DOI: 10.1093/mmy/myz098] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/21/2019] [Accepted: 09/16/2019] [Indexed: 11/13/2022] Open
Abstract
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-ToF MS) is routinely used in mycology laboratories to rapidly identify pathogenic yeasts. Various methods have been proposed to perform routine MS-based identification of clinically relevant species. In this study, we focused on Bruker technology and assessed the identification performance of three protocols: two pretreatment methods (rapid formic acid extraction directly performed on targets and full extraction using formic acid/acetonitrile in tubes) and a direct deposit protocol that omits the extraction step. We also examined identification performance using three target types (ground-steel, polished-steel, and biotargets) and two databases (Bruker and online MSI [biological-mass-spectrometry-identification application]) in a multicenter manner. Ten European centers participated in the study, in which a total of 1511 yeast isolates were analyzed. The 10 centers prospectively performed the three protocols on approximately 150 yeast isolates each, and the corresponding spectra were then assessed against two reference spectra databases (MSI and Bruker), with appropriate thresholds. Three centers evaluated the impact of the targets. Scores were compared between the various combinations, and identification accuracy was assessed. The protocol omitting the extraction step was inappropriate for yeast identification, while the full extraction method yielded far better results. Rapid formic acid extraction yielded variable results depending on the target, database and threshold. Selecting the optimal extraction method in combination with the appropriate target, database and threshold may enable simple and accurate identification of clinically relevant yeast samples. Concerning the widely used polished-steel targets, the full extraction method still ensured better scores and better identification rates.
Collapse
Affiliation(s)
- Anne-Cécile Normand
- Laboratoire de Parasitologie-Mycologie, de Parasitologie-Mycologie Hôpital Pitié Salpêtrière, 75013 Paris, France
| | - Frédéric Gabriel
- Mycologie, CHU de Bordeaux, Groupe Hospitalier Pellegrin, place Amélie Raba-Léon, 33000 Bordeaux, France
| | - Arnaud Riat
- Bacteriology Laboratory, Service of Laboratory Medicine, Department of Genetics, Laboratory Medicine and Pathology, Geneva University Hospitals, 4 rue Gabrielle-Perret-Gentil, 1205 Geneva, Switzerland
| | - Carole Cassagne
- Aix Marseille University, IRD, AP-HM, SSA, VITROME, IHU Méditerranée Infection, 13006 Marseille, France
| | | | - Antoine Huguenin
- EA 7510, ESCAPE, Laboratoire de Parasitologie-Mycologie, Université de Reims Champagne-Ardenne, 51100 Reims, France.,Laboratoire de Parasitologie Mycologie, CHU de Reims Hôpital Maison Blanche, 51100 Reims, France
| | - Pamela Chauvin
- Service de Parasitologie-Mycologie, Hôpital Purpan, 31059 Toulouse, France
| | - Deborah De Geyter
- Department Microbiology and Infection Prevention, Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Michiel Bexkens
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, 's-Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands
| | - Elisa Rubio
- Department of Clinical Microbiology, Hospital Clinic, 08036 Barcelona, Spain
| | - Marijke Hendrickx
- Sciensano, BCCM/IHEM collection, Mycology and Aerobiology Unit, 1050 Brussels, Belgium
| | - Stéphane Ranque
- Bacteriology Laboratory, Service of Laboratory Medicine, Department of Genetics, Laboratory Medicine and Pathology, Geneva University Hospitals, 4 rue Gabrielle-Perret-Gentil, 1205 Geneva, Switzerland
| | - Renaud Piarroux
- Laboratoire de Parasitologie-Mycologie, de Parasitologie-Mycologie Hôpital Pitié Salpêtrière, 75013 Paris, France.,Sorbonne Université, INSERM, Institut Pierre-Louis d'Epidémiologie et de Santé Publique, AP-HP, Hôpital Pitié-Salpêtrière, F-75013 Paris, France
| |
Collapse
|
12
|
Korem M, Cohen MJ, Michael-Gayego A, Castiel D, Assous MV, Amit S. Misidentification of Candida dubliniensis isolates with the VITEK MS. J Mycol Med 2021; 31:101107. [PMID: 33388671 DOI: 10.1016/j.mycmed.2020.101107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 12/08/2020] [Accepted: 12/18/2020] [Indexed: 11/18/2022]
Abstract
The phylogenetic relatedness of Candida dubliniensis and C. albicans may lead to misidentification of C. dubliniensis and underestimation of its clinical significance. We evaluated the performance of VITEK-MS in identifying C. dubliniensis isolates following growth on different culture media. Correct identification was documented in 98% of the isolates grown on blood agar media whereas only 44% were correctly identified from SDA or CHROMagar. The use of non-manufacturer validated media for identifying C. dubliniensis with VITEK-MS, may result in misidentification of these isolates as C. albicans. This finding calls for reassessing the accuracy of fungal isolates identification in local workflows using non-validated culture media.
Collapse
Affiliation(s)
- Maya Korem
- Faculty of Medicine, Hebrew University of Jerusalem Department of Clinical Microbiology and Infectious Diseases, Hadassah Medical Center, Jerusalem, Israel.
| | - Matan Joel Cohen
- Clalit Health Services, Jerusalem District, affiliated with the Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Ayelet Michael-Gayego
- Faculty of Medicine, Hebrew University of Jerusalem Department of Clinical Microbiology and Infectious Diseases, Hadassah Medical Center, Jerusalem, Israel
| | - Dafna Castiel
- Faculty of Medicine, Hebrew University of Jerusalem Department of Clinical Microbiology and Infectious Diseases, Hadassah Medical Center, Jerusalem, Israel
| | - Marc V Assous
- Clinical Microbiology laboratory, Shaare Zedek Medical Center, Affiliated with the Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Sharon Amit
- Clinical Microbiology laboratory, The Chaim Sheba Medical Center, Ramat Gan, Israel
| |
Collapse
|
13
|
Huang YS, Wang FD, Chen YC, Huang YT, Hsieh MH, Hii IM, Lee YL, Ho MW, Liu CE, Chen YH, Liu WL. High rates of misidentification of uncommon Candida species causing bloodstream infections using conventional phenotypic methods. J Formos Med Assoc 2020; 120:1179-1187. [PMID: 33250336 DOI: 10.1016/j.jfma.2020.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 10/02/2020] [Accepted: 11/09/2020] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Candidemia caused by uncommon Candida species is increasing and misidentification may compromise optimal antifungal therapy. This multicenter study aimed to evaluate the accuracy of species-level identification of uncommon Candida. METHODS Uncommon causative species of candidemia identified in routine laboratories using CHROMagar, API-32C and VITEK-2 Yeast ID system were collected from July 2011 to June 2014. These isolates were further identified using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) system and sequencing of the internal transcribed spacer and 28S rRNA gene. Susceptibility of the isolates was determined. RESULTS Of 85 isolates evaluated, Candida guilliermondii (n = 36) was the most common, followed by Candid sake (n = 7) and Candida famata (n = 4). Using DNA-sequencing analysis as standard, none of C. sake and C. famata was correct, while VITEK MS correctly identified 10 of the 11 isolates. With the exclusion of one unspecified Candida by DNA-sequencing methods, the accuracy of conventional methods and VITEK MS was 64.3% and 86.9%, respectively (p = 0.001). Eight isolates were confirmed to be yeasts other than Candida. Compared with other Candida species, C. guilliermondii showed elevated minimal inhibitory concentration of echinocandins. CONCLUSION Misidentification of uncommon Candida species was common using the conventional methods, especially for C. sake and C. famata. MALDI-TOF MS assisted by DNA-sequencing methods should be considered.
Collapse
Affiliation(s)
- Yu-Shan Huang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Fu-Der Wang
- Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yee-Chun Chen
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Yu-Tsung Huang
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Min-Han Hsieh
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ing-Moi Hii
- Division of Infectious Diseases, Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan
| | - Yu-Lin Lee
- Division of Infectious Diseases, Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan
| | - Mao-Wang Ho
- Division of Infectious Diseases, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Chun-Eng Liu
- Division of Infectious Diseases, Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan
| | - Yen-Hsu Chen
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wei-Lun Liu
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei, Taiwan; Division of Critical Care Medicine, Department of Emergency and Critical Care Medicine, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City, Taiwan.
| |
Collapse
|
14
|
El Zein S, Hindy JR, Kanj SS. Invasive Saprochaete Infections: An Emerging Threat to Immunocompromised Patients. Pathogens 2020; 9:pathogens9110922. [PMID: 33171713 PMCID: PMC7694990 DOI: 10.3390/pathogens9110922] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 12/16/2022] Open
Abstract
Saprochaete clavata and Saprochaete capitata are emerging fungal pathogens that are responsible for life threatening infections in immunocompromised patients, particularly in the setting of profound neutropenia. They have been associated with multiple hospital outbreaks mainly in Europe. In this article, we present a comprehensive review of the epidemiology, clinical presentation, diagnosis, antifungal susceptibility and treatment of these organisms. The diagnosis of invasive Saprochaete disease is challenging and relies primarily on the isolation of the fungi from blood or tissue samples. Both species are frequently misidentified as they are identical macroscopically and microscopically. Internal transcribed spacer sequencing and matrix-assisted laser desorption ionization-time of flight mass spectrometry are useful tools for the differentiation of these fungi to a species level. Saprochaete spp. are intrinsically resistant to echinocandins and highly resistant to fluconazole. Current literature suggests the use of an amphotericin B formulation with or without flucytosine for the initial treatment of these infections. Treatment with extended spectrum azoles might be promising based on in vitro minimum inhibitory concentration values and results from case reports and case series. Source control and recovery of the immune system are crucial for successful therapy.
Collapse
Affiliation(s)
- Said El Zein
- Internal Medicine Department, Wayne State University/Detroit Medical Center, Detroit, MI 48201, USA;
| | - Joya-Rita Hindy
- Division of Infectious Diseases, Internal Medicine Department, American University of Beirut Medical Center, Beirut 1107 2020, Lebanon;
| | - Souha S. Kanj
- Division of Infectious Diseases, Internal Medicine Department, American University of Beirut Medical Center, Beirut 1107 2020, Lebanon;
- Correspondence:
| |
Collapse
|
15
|
Pote ST, Sonawane MS, Rahi P, Shah SR, Shouche YS, Patole MS, Thakar MR, Sharma R. Distribution of Pathogenic Yeasts in Different Clinical Samples: Their Identification, Antifungal Susceptibility Pattern, and Cell Invasion Assays. Infect Drug Resist 2020; 13:1133-1145. [PMID: 32368104 PMCID: PMC7182453 DOI: 10.2147/idr.s238002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 02/25/2020] [Indexed: 12/27/2022] Open
Abstract
Introduction Species of genus Candida are part of the common microbiota of humans; however, some of the Candida species are known opportunistic pathogens. Formation of biofilms, resistance to antifungal drugs, and increase in asymptomatic infections demands more studies on isolation, identification and characterization of Candida from clinical samples. Methods The present manuscript deals with assessment of authentic yeast identification by three methods viz., DNA sequencing of 28S rRNA gene, protein profiles using MALDI-TOF MS, and colony coloration on chromogenic media. Antifungal susceptibility and in vitro cell invasion assays were performed to further characterize these isolates. Results Comparison of three methods showed that DNA sequence analysis correctly identified more than 99.4% of the isolates up to species level as compared to 89% by MALDI-TOF MS. In this study, we isolated a total of 176 yeasts from clinical samples and preliminary morphological characters indicated that these yeast isolates belong to the genus Candida. The species distribution of isolates was as follows: 75 isolates of Candida albicans (42.61%), 50 of C. tropicalis (28.40%), 22 of C. glabrata (12.5%), 14 of C. parapsilosis (7.95%) and 4 of Clavispora lusitaniae (2.27%). Other species like Cyberlindnera fabianii, Issatchenkia orientalis, Kluyveromyces marxianus, Kodamaea ohmeri, Lodderomyces sp., and Trichosporon asahii were less than 2%. Antifungal susceptibility assay performed with 157 isolates showed that most of the isolates were resistant to the four azoles viz., clotrimazole, fluconazole, itraconazole, and ketoconazole, and the frequency of resistance was more in non-albicans Candida isolates. The susceptibility to azole drugs ranged from 7% to 48%, while 75% of the tested yeasts were susceptible to nystatin. Moreover, 88 isolates were also tested for their capacity to invade human cells using HeLa cells. In vitro invasion assay showed that most of the C. albicans isolates showed epithelial cell invasion as compared to isolates belonging to C. glabrata, C. parapsilosis and C. tropicalis. Discussion The identification of yeasts of clinical origin by sequencing of 28S rRNA gene performed better than MALDI-TOF MS. The present study reiterates the world scenario wherein there is a shift from Candida strains to emerging opportunistic pathogens which were earlier regarded as environmental strains. The present study enlightens the current understanding of identification methods for clinical yeast isolates, increased antifungal drug resistance, epithelial cell invasion as a virulence factor, and diversity of yeasts in Indian clinical samples.
Collapse
Affiliation(s)
- Satish T Pote
- National Centre for Microbial Resource (NCMR), National Centre for Cell Science, NCCS Complex, S.P. Pune University, Pune 411 007, Maharashtra, India.,National AIDS Research Institute, Pune 411026, Maharashtra, India
| | - Mahesh S Sonawane
- National Centre for Microbial Resource (NCMR), National Centre for Cell Science, NCCS Complex, S.P. Pune University, Pune 411 007, Maharashtra, India
| | - Praveen Rahi
- National Centre for Microbial Resource (NCMR), National Centre for Cell Science, NCCS Complex, S.P. Pune University, Pune 411 007, Maharashtra, India
| | - Sunil R Shah
- Bharati Vidyapeeth Deemed University Medical College, Bharati Vidyapeeth, Pune 411043, Maharashtra, India
| | - Yogesh S Shouche
- National Centre for Microbial Resource (NCMR), National Centre for Cell Science, NCCS Complex, S.P. Pune University, Pune 411 007, Maharashtra, India
| | - Milind S Patole
- National Centre for Microbial Resource (NCMR), National Centre for Cell Science, NCCS Complex, S.P. Pune University, Pune 411 007, Maharashtra, India
| | - Madhuri R Thakar
- National AIDS Research Institute, Pune 411026, Maharashtra, India
| | - Rohit Sharma
- National Centre for Microbial Resource (NCMR), National Centre for Cell Science, NCCS Complex, S.P. Pune University, Pune 411 007, Maharashtra, India
| |
Collapse
|
16
|
Pinheiro D, Monteiro C, Faria MA, Pinto E. Vitek ® MS v3.0 System in the Identification of Filamentous Fungi. Mycopathologia 2019; 184:645-651. [PMID: 31506883 DOI: 10.1007/s11046-019-00377-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 08/21/2019] [Indexed: 12/19/2022]
Abstract
Infections caused by filamentous fungi are rising in incidence and became a serious health concern. Their rapid and reliable identification in the clinical laboratory is essential for an early and accurate diagnosis to guide timely therapy. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been reported as a rapid and reliable method for identification of bacteria and yeasts isolated from clinical samples. However, it has less used for molds identification. The aim of this study was to evaluate Vitek® MS (a MALDI-TOF MS system) ability to identify molds and differentiate species within a complex. A collection of 90 filamentous fungi, 70 clinical and 20 environmental isolates, was studied by morphological and molecular methods and by Vitek® MS. Seventy-four isolates (82.2%) were identified using Vitek® MS v3.0 at Genus/Complex/Species group level; within these, 47/74 (63.5%) were correctly identified at species level and only one was misidentified. In contrast, 16/90 isolates (17.8%) were not identified, of which 13 were not present in the database. Results here expressed favor Vitek® MS v3.0 as a very useful system for identification of most common clinical isolates of filamentous fungi. Accordingly, it may be an important tool for clinical microbiology laboratories in their task to answer to clinicians, adequately and rapidly, helping in proper patient's management.
Collapse
Affiliation(s)
- Dolores Pinheiro
- Laboratory of Microbiology, Service of Clinical Pathology, Centro Hospitalar Universitário de S. João, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal.
| | - Carolina Monteiro
- Laboratory of Microbiology, Biological Sciences Department, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Miguel A Faria
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Eugénia Pinto
- Laboratory of Microbiology, Biological Sciences Department, Faculty of Pharmacy, University of Porto, Porto, Portugal.,Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
| |
Collapse
|
17
|
Montoya AM, Luna-Rodríguez CE, Gracia-Robles G, Rojas OC, Treviño-Rangel RDJ, González GM. In vitro virulence determinants, comparative pathogenicity of Diutina (Candida) mesorugosa clinical isolates and literature review of the D. rugosa complex. Mycologia 2019; 111:395-407. [PMID: 30985256 DOI: 10.1080/00275514.2019.1585161] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Opportunistic mycoses by yeasts have increased considerably in the last three decades. Although Candida albicans is considered one of the most important causes of nosocomial infections, there is a recent shift to non-albicans Candida species as the most frequently isolated yeasts in particular risk groups. Diutina rugosa (formerly Candida rugosa) is a complex that includes four species: D. rugosa sensu stricto, D. neorugosa, D. pseudorugosa, and D. mesorugosa, and they are estimated to represent 0.2% of all Candida clinical isolates. In this study, we analyze nine clinical isolates of D. mesorugosa with focus on the virulence determinants and pathogenicity of the species by means of a Galleria mellonella survival model. Overall, we detected very strong aspartyl-protease and esterase activities. In contrast, both DNase and hemolysin activities were evident in only two of the isolates. None of the isolates was positive for phospholipase activity. All isolates studied were able to form biofilm after 72 h of incubation in a robust manner when compared with the C. albicans strain used as control. Susceptibility testing showed minimum inhibitory concentrations (MICs) ≤1 µg/mL for amphotericin B in all isolates tested. Eight out of nine of the isolates had MICs ≤2 µg/mL for fluconazole. All isolates were resistant to both anidulafungin and caspofungin (MICs ≥1 µg/mL). We found a significant difference (P < 0.0001) amongst the survival curves for the different D. mesorugosa isolates in the Galleria mellonella survival model. Strains HPM309 and H259 produced an acute infection and exhibited the highest virulence, whereas the D. mesorugosa isolates 99-480 and DM17 proved to be the less virulent strains.
Collapse
Affiliation(s)
- Alexandra M Montoya
- a Departamento de Microbiología , Facultad de Medicina, Universidad Autónoma de Nuevo León , Monterrey , México
| | - Carolina E Luna-Rodríguez
- a Departamento de Microbiología , Facultad de Medicina, Universidad Autónoma de Nuevo León , Monterrey , México
| | - Gabriela Gracia-Robles
- a Departamento de Microbiología , Facultad de Medicina, Universidad Autónoma de Nuevo León , Monterrey , México
| | - Olga C Rojas
- b Departamento de Ciencias Básicas , Vicerrectoría de Ciencias de la Salud, Universidad de Monterrey , San Pedro Garza García , México
| | - Rogelio de J Treviño-Rangel
- a Departamento de Microbiología , Facultad de Medicina, Universidad Autónoma de Nuevo León , Monterrey , México
| | - Gloria M González
- a Departamento de Microbiología , Facultad de Medicina, Universidad Autónoma de Nuevo León , Monterrey , México
| |
Collapse
|
18
|
A Moldy Application of MALDI: MALDI-ToF Mass Spectrometry for Fungal Identification. J Fungi (Basel) 2019; 5:jof5010004. [PMID: 30609833 PMCID: PMC6463175 DOI: 10.3390/jof5010004] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/07/2018] [Accepted: 12/25/2018] [Indexed: 12/20/2022] Open
Abstract
As a result of its being inexpensive, easy to perform, fast and accurate, matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-ToF MS) is quickly becoming the standard means of bacterial identification from cultures in clinical microbiology laboratories. Its adoption for routine identification of yeasts and even dimorphic and filamentous fungi in cultures, while slower, is now being realized, with many of the same benefits as have been recognized on the bacterial side. In this review, the use of MALDI-ToF MS for identification of yeasts, and dimorphic and filamentous fungi grown in culture will be reviewed, with strengths and limitations addressed.
Collapse
|
19
|
Gassiep I, Aye C, Armstrong M, Emeto TI, Heather CS, Norton RE. Correlation between serum cryptococcal antigen titre and meningitis in immunocompetent patients. J Med Microbiol 2018; 67:1515-1518. [DOI: 10.1099/jmm.0.000830] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Ian Gassiep
- 2School of Medicine, James Cook University, Douglas 4814, Australia
- 1Pathology Queensland, Townsville Hospital, Douglas 4814, Australia
| | - Chaw Aye
- 3Department of Infectious Diseases, Townsville Hospital, Douglas 4814, Australia
| | - Mark Armstrong
- 1Pathology Queensland, Townsville Hospital, Douglas 4814, Australia
- 2School of Medicine, James Cook University, Douglas 4814, Australia
| | - Theophilus I. Emeto
- 4Public Health and Tropical Medicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Douglas 4814, Australia
- 5Queensland Research Centre for Peripheral Vascular Diseases, College of Medicine and Dentistry, James Cook University, Douglas 4814, Australia
| | - Christopher S. Heather
- 1Pathology Queensland, Townsville Hospital, Douglas 4814, Australia
- 2School of Medicine, James Cook University, Douglas 4814, Australia
- 3Department of Infectious Diseases, Townsville Hospital, Douglas 4814, Australia
| | - Robert E. Norton
- 1Pathology Queensland, Townsville Hospital, Douglas 4814, Australia
- 2School of Medicine, James Cook University, Douglas 4814, Australia
- 3Department of Infectious Diseases, Townsville Hospital, Douglas 4814, Australia
| |
Collapse
|
20
|
Autmizguine J, Tan S, Cohen-Wolkowiez M, Cotten CM, Wiederhold N, Goldberg RN, Adams-Chapman I, Stoll BJ, Smith PB, Benjamin DK. Antifungal Susceptibility and Clinical Outcome in Neonatal Candidiasis. Pediatr Infect Dis J 2018; 37:923-929. [PMID: 29369937 PMCID: PMC6057841 DOI: 10.1097/inf.0000000000001913] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Invasive candidiasis is an important cause of sepsis in extremely low birth weight infants (ELBW, < 1000 g), is often fatal, and frequently results in neurodevelopmental impairment (NDI) among survivors. We sought to assess the antifungal minimum inhibitory concentration (MIC) distribution for Candida in ELBW infants and evaluate the association between antifungal resistance and death or NDI. METHODS This was a secondary analysis of a National Institute of Child Health and Human Development Neonatal Research Network study. MIC values were determined for fluconazole, amphotericin B and micafungin. NDI was assessed at 18-22 months adjusted age using the Bayley Scales of Infant Development. An infant was defined as having a resistant Candida isolate if ≥ 1 positive cultures from normally sterile sites (blood, cerebrospinal fluid, or urine) were resistant to ≥ 1 antifungal agent. In addition to resistance status, we categorized fungal isolates according to MIC values (low and high). The association between death/NDI and MIC level was determined using logistic regression, controlling for gestational age and Bayley Scales of Infant Development (II or III). RESULTS Among 137 ELBW infants with IC, MICs were determined for 308 isolates from 110 (80%) infants. Three Candida isolates from 3 infants were resistant to fluconazole. None were resistant to amphotericin B or micafungin. No significant difference in death, NDI, or death/NDI between groups with low and high MICs was observed. CONCLUSIONS Antifungal resistance was rare among infecting Candida isolates, and MIC level was not associated with increased risk of death or NDI in this cohort of ELBW infants.
Collapse
MESH Headings
- Amphotericin B/pharmacology
- Antifungal Agents/pharmacology
- Antifungal Agents/therapeutic use
- Candida/drug effects
- Candida/isolation & purification
- Candidiasis, Invasive/complications
- Candidiasis, Invasive/drug therapy
- Candidiasis, Invasive/mortality
- Cohort Studies
- Drug Resistance, Fungal
- Female
- Fluconazole/pharmacology
- Gestational Age
- Humans
- Infant
- Infant, Extremely Low Birth Weight
- Infant, Newborn
- Infant, Newborn, Diseases/drug therapy
- Infant, Newborn, Diseases/microbiology
- Intensive Care Units, Neonatal/statistics & numerical data
- Male
- Micafungin/pharmacology
- Microbial Sensitivity Tests
- Neurodevelopmental Disorders/etiology
- Prospective Studies
- Sepsis/complications
- Sepsis/microbiology
- Sepsis/mortality
- Treatment Outcome
Collapse
Affiliation(s)
- Julie Autmizguine
- From the Department of Pharmacology and Physiology, Université de Montréal, Montréal, Canada
- Department of Pediatrics, Université de Montréal, Montréal, Canada
- Department of Pediatrics, Duke University, Durham, NC
| | - Sylvia Tan
- Statistics and Epidemiology Unit, RTI International, Research Triangle Park, NC
| | | | | | - Nathan Wiederhold
- University of Texas Health Science Center at San Antonio, San Antonio, TX
| | | | | | - Barbara J Stoll
- Department of Pediatrics, Emory University, Atlanta, GA
- Department of Pediatrics, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX
| | | | | |
Collapse
|
21
|
Gassiep I, Douglas J, Emeto TI, Crawley K, Playford EG. Cryptococcal infections over a 15 year period at a tertiary facility & impact of guideline management. Mycoses 2018; 61:633-638. [DOI: 10.1111/myc.12783] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 02/20/2018] [Accepted: 04/06/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Ian Gassiep
- Infection Management Services; Princess Alexandra Hospital; Woolloongabba QLD Australia
- School of Medicine; University of Queensland; St Lucia QLD Australia
| | - Joel Douglas
- Infection Management Services; Princess Alexandra Hospital; Woolloongabba QLD Australia
| | - Theophilus I. Emeto
- Public Health & Tropical Medicine; College of Public Health; Medical & Veterinary Sciences; James Cook University; Douglas QLD Australia
- Queensland Research Centre for Peripheral Vascular Diseases; College of Medicine and Dentistry; James Cook University; Douglas QLD Australia
| | - Katherine Crawley
- Infection Management Services; Princess Alexandra Hospital; Woolloongabba QLD Australia
- School of Medicine; University of Queensland; St Lucia QLD Australia
| | - Elliott G. Playford
- Infection Management Services; Princess Alexandra Hospital; Woolloongabba QLD Australia
- School of Medicine; University of Queensland; St Lucia QLD Australia
| |
Collapse
|
22
|
Ruiz de Alegría Puig C, Agüero-Balbín J, Fernández-Mazarrasa C, Martínez-Martínez L. Evaluation of the Vitek-MS™ system in the identification of Candida isolates from bloodstream infections. Rev Iberoam Micol 2018; 35:130-133. [DOI: 10.1016/j.riam.2018.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 01/17/2018] [Accepted: 02/26/2018] [Indexed: 01/13/2023] Open
|
23
|
Dou H, Wang H, Xie S, Chen X, Xu Z, Xu Y. Molecular characterization of Cryptococcus neoformans isolated from the environment in Beijing, China. Med Mycol 2018; 55:737-747. [PMID: 28431114 DOI: 10.1093/mmy/myx026] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 04/04/2017] [Indexed: 12/20/2022] Open
Abstract
The molecular type of environmental Cryptococcus neoformans in Beijing was not clear. Our study aims to reveal the molecular characterization of C. neoformans complex from environment in Beijing, China. A total of 435 samples of pigeon droppings from 11 different homes in Beijing were collected from August to November in 2015. Pigeon droppings were inoculated onto caffeic acid cornmeal agar (CACA) to screen C. neoformans complex. Bruker Biotyper matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) was performed for species identification. Serotype and mating type was determined by specific primers. Restriction fragment length polymorphisms of URA5 (URA5-RFLP) were applied to genotype. Multi-locus sequence typing (MLST) was done for further identification and sequence type (ST) determination. Altogether, 81 isolates of C. neoformans AFLP1/VNI were recognized from 435 pigeon droppings in this study. The positive rate for C. neoformans AFLP1/VNI from pigeon droppings in different homes varied from 5.0% to 52.6%, the average was 20.2%. All of these cryptococcal strains were serotype A, MATα. They were genotyped as VNI by URA5-RFLP and were confirmed by MLST. No other molecular types of C. neoformans and Cryptococcus gattii isolates were isolated. Their STs were identified as ST 31 (n = 54, 66.7%), followed by ST 53 (n = 10), ST 191 (n = 8), ST 5 (n = 5), ST 57 (n = 3), and ST 38 (n = 1). We concluded that not only clinical but also environmental isolates of C. neoformans need to be investigated more deeply and more extensively. The virulence difference between ST 5 and ST 31 need to be explored in the future.
Collapse
Affiliation(s)
- Hongtao Dou
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Huizhu Wang
- Department of Clinical Laboratory, Beijing Di-Tan Hospital, Capital Medical University, Beijing, China
| | - Shaowei Xie
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xinxin Chen
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhipeng Xu
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yingchun Xu
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
24
|
Accuracy of Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry for Identification of Mycobacteria: a systematic review and meta-analysis. Sci Rep 2018. [PMID: 29515167 PMCID: PMC5841357 DOI: 10.1038/s41598-018-22642-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mycobacterium species are a significant cause of morbidity and mortality worldwide. The present study was carried out to systematically evaluate the accuracy of Matrix-assisted laser desorption ionization-time of flight mass spectroscopy (MALDI-TOF MS) for the identification of clinical pathogenic mycobacteria. After a rigid selection process, 19 articles involving 2,593 mycobacteria isolates were included. The pooled result agreed with the reference method identification for 85% of the isolates to genus level, with 71% (95% CI of 69% to 72%) correct to the species level. The MALDI-TOF MS correctly identified 92% of the M.tuberculosis isolates (95% CI of 0.87 to 0.96), and 68% of M. bovisisolates (95% CI of 27% to 100%) to the species level. Mycobacterium tuberculosis complex in solid media with reference strains using augmented database showing more accurate identification. The identifying accuracy rate of bioMérieuxVitek MS was slight higher than Bruker MALDI Biotyper (75% vs 72%). However, opposite results were obtained in identifications of M. fortuitum, M. kansasii, M. marinum, and M. terrae with these two systems. In summary, our results demonstrate that application of MALDI-TOF MS in clinical pathogenic mycobacteria identification is less satisfactory to date. Increasing need for improvement is important especially at species level.
Collapse
|
25
|
Li MC, Chang TC, Chen HM, Wu CJ, Su SL, Lee SSJ, Chen PL, Lee NY, Lee CC, Li CW, Syue LS, Ko WC. Oligonucleotide Array and VITEK Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry in Species Identification of Blood Yeast Isolates. Front Microbiol 2018; 9:51. [PMID: 29434578 PMCID: PMC5790773 DOI: 10.3389/fmicb.2018.00051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 01/10/2018] [Indexed: 01/03/2023] Open
Abstract
We evaluated matrix-assisted laser desorption ionization time-of-flight mass spectrometry using VITEK MS (IVD database) and an oligonucleotide array based on the internal transcribed spacer-1 (ITS-1) and ITS-2 sequences of rRNA genes for the identification of Candida spp. from blood cultures. Five-hundred and twelve consecutive bloodstream yeast isolates were collected daily and initially identified by the phenotypic automated method (VITEK YBC or VITEK2 YST card). Inconsistent results were confirmed by D1-D2 region of 28S rRNA genes and ITSs. Excluding two unidentified yeast isolates, the oligonucleotide array and VITEK MS correctly identified 99.6% (508) and 96.9% (494) of 510 yeast isolates, respectively. The oligonucleotide array and VITEK MS demonstrated high correct identification rates for four major Candida species (C. albicans 100%, 98.4%; C. glabrata 100%, 100%; C. parapsilosis 100%, 93.3%; C. tropicalis 100%, 97.3%), but lower correct identification rates for other Candida species (91.7 and 87.5%, respectively). In conclusion, the identification performance of the oligonucleotide array is comparable to that of VITEK MS, and can serve as a supplemental tool for the identification of Candida species.
Collapse
Affiliation(s)
- Ming-Chi Li
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Center for Infection Control, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tsung C Chang
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hung-Mo Chen
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chi-Jung Wu
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan, Taiwan
| | - Shu-Li Su
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Susan S-J Lee
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Po-Lin Chen
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Center for Infection Control, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Nan-Yao Lee
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Center for Infection Control, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ching-Chi Lee
- Department of Internal Medicine, Madou Sin-Lau Hospital, Tainan, Taiwan
| | - Chia-Wen Li
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Center for Infection Control, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ling-Shan Syue
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Center for Infection Control, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wen-Chien Ko
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Center for Infection Control, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
26
|
Multicenter Evaluation of the Vitek MS v3.0 System for the Identification of Filamentous Fungi. J Clin Microbiol 2018; 56:JCM.01353-17. [PMID: 29142047 DOI: 10.1128/jcm.01353-17] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 11/03/2017] [Indexed: 12/21/2022] Open
Abstract
Invasive fungal infections are an important cause of morbidity and mortality affecting primarily immunocompromised patients. While fungal identification to the species level is critical to providing appropriate therapy, it can be slow and laborious and often relies on subjective morphological criteria. The use of matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry has the potential to speed up and improve the accuracy of identification. In this multicenter study, we evaluated the accuracy of the Vitek MS v3.0 system in identifying 1,601 clinical mold isolates compared to identification by DNA sequence analysis and supported by morphological and phenotypic testing. Among the 1,519 isolates representing organisms in the v3.0 database, 91% (n = 1,387) were correctly identified to the species level. An additional 27 isolates (2%) were correctly identified to the genus level. Fifteen isolates were incorrectly identified, due to either a single incorrect identification (n = 13) or multiple identifications from different genera (n = 2). In those cases, when a single identification was provided that was not correct, the misidentification was within the same genus. The Vitek MS v3.0 was unable to identify 91 (6%) isolates, despite repeat testing. These isolates were distributed among all the genera. When considering all isolates tested, even those that were not represented in the database, the Vitek MS v3.0 provided a single correct identification 98% of the time. These findings demonstrate that the Vitek MS v3.0 system is highly accurate for the identification of common molds encountered in the clinical mycology laboratory.
Collapse
|
27
|
Yeasts. Microbiol Spectr 2017; 4. [PMID: 27726781 DOI: 10.1128/microbiolspec.dmih2-0030-2016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Yeasts are unicellular organisms that reproduce mostly by budding and less often by fission. Most medically important yeasts originate from Ascomycota or Basidiomycota. Here, we review taxonomy, epidemiology, disease spectrum, antifungal drug susceptibility patterns of medically important yeast, laboratory diagnosis, and diagnostic strategies.
Collapse
|
28
|
Yarbrough ML, Lainhart W, Burnham CAD. Identification of Nocardia, Streptomyces, and Tsukamurella using MALDI-TOF MS with the Bruker Biotyper. Diagn Microbiol Infect Dis 2017; 89:92-97. [PMID: 28811116 DOI: 10.1016/j.diagmicrobio.2017.06.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/16/2017] [Accepted: 06/20/2017] [Indexed: 11/19/2022]
Abstract
Nocardia species are the most commonly isolated aerobic actinomycetes from human clinical specimens. Our objective was to assess the identification of clinically relevant actinomycetes using the Bruker Biotyper MALDI-TOF system, including comparison of extraction methods, Biotyper library versions, score cutoffs, and media. Banked Streptomyces (n=10), Tsukamurella (n=2), and Nocardia isolates (n=60) were cultured and extracted using three methods: mycobacterial extraction, ethanol formic acid extraction, or direct on-target extraction. Following MALDI-TOF analysis, spectra were analyzed using versions 5 and 6 of the BDAL Biotyper library. Optimal species-level identifications for Nocardia were achieved using BDAL v6 at a score cutoff of ≥1.8 after direct extraction (49/60, 82%). Overall, the Biotyper platform with BDAL v6 accurately identified 12/16 species of Nocardia, demonstrating the utility of MALDI-TOF for identification of clinically relevant actinomycetes without the need for supplementation of the database.
Collapse
Affiliation(s)
- Melanie L Yarbrough
- Department of Pathology and Immunology, Washington University School of Medicine, 660 S. Euclid Ave, Campus Box 8118, Saint Louis, MO, 63110.
| | - William Lainhart
- Department of Pathology and Immunology, Washington University School of Medicine, 660 S. Euclid Ave, Campus Box 8118, Saint Louis, MO, 63110
| | - Carey-Ann D Burnham
- Department of Pathology and Immunology, Washington University School of Medicine, 660 S. Euclid Ave, Campus Box 8118, Saint Louis, MO, 63110
| |
Collapse
|
29
|
Ramanan P, Wengenack NL, Theel ES. Laboratory Diagnostics for Fungal Infections: A Review of Current and Future Diagnostic Assays. Clin Chest Med 2017; 38:535-554. [PMID: 28797494 DOI: 10.1016/j.ccm.2017.04.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This article reviews the current diagnostic approaches, both serologic and molecular, for the detection of fungi associated with pulmonary disease. Classic serologic techniques, including immunodiffusion and complement fixation, both of which remain a cornerstone for fungal diagnostic testing, are reviewed and their performance characteristics presented. More recent advances in this field, including novel lateral-flow assays for fungal antigen detection, are also described. Molecular techniques for fungal identification both from culture and directly from patient specimens, including nucleic acid probes, mass spectrometry-based methods, nucleic acid amplification testing, and traditional and broad-range sequencing, are discussed and their performance evaluated.
Collapse
Affiliation(s)
- Poornima Ramanan
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street, Rochester, MN 55905, USA
| | - Nancy L Wengenack
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street, Rochester, MN 55905, USA
| | - Elitza S Theel
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street, Rochester, MN 55905, USA.
| |
Collapse
|
30
|
Online Databases for Taxonomy and Identification of Pathogenic Fungi and Proposal for a Cloud-Based Dynamic Data Network Platform. J Clin Microbiol 2017; 55:1011-1024. [PMID: 28179406 DOI: 10.1128/jcm.02084-16] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The increase in public online databases dedicated to fungal identification is noteworthy. This can be attributed to improved access to molecular approaches to characterize fungi, as well as to delineate species within specific fungal groups in the last 2 decades, leading to an ever-increasing complexity of taxonomic assortments and nomenclatural reassignments. Thus, well-curated fungal databases with substantial accurate sequence data play a pivotal role for further research and diagnostics in the field of mycology. This minireview aims to provide an overview of currently available online databases for the taxonomy and identification of human and animal-pathogenic fungi and calls for the establishment of a cloud-based dynamic data network platform.
Collapse
|
31
|
Gassiep I, McDougall D, Douglas J, Francis R, Playford EG. Cryptococcal infections in solid organ transplant recipients over a 15-year period at a state transplant center. Transpl Infect Dis 2017; 19. [DOI: 10.1111/tid.12639] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/28/2016] [Accepted: 08/21/2016] [Indexed: 02/03/2023]
Affiliation(s)
- Ian Gassiep
- Department of Infectious Diseases; Princess Alexandra Hospital; Brisbane QLD Australia
- School of Medicine; University of Queensland; Brisbane QLD Australia
| | - David McDougall
- Department of Infectious Diseases; Princess Alexandra Hospital; Brisbane QLD Australia
| | - Joel Douglas
- Department of Infectious Diseases; Princess Alexandra Hospital; Brisbane QLD Australia
| | - Ross Francis
- School of Medicine; University of Queensland; Brisbane QLD Australia
- Department of Nephrology; Princess Alexandra Hospital; Brisbane QLD Australia
| | - Elliott G. Playford
- Department of Infectious Diseases; Princess Alexandra Hospital; Brisbane QLD Australia
- School of Medicine; University of Queensland; Brisbane QLD Australia
| |
Collapse
|
32
|
Wattal C, Oberoi JK, Goel N, Raveendran R, Khanna S. Matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS) for rapid identification of micro-organisms in the routine clinical microbiology laboratory. Eur J Clin Microbiol Infect Dis 2016; 36:807-812. [DOI: 10.1007/s10096-016-2864-9] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 12/01/2016] [Indexed: 11/24/2022]
|
33
|
Topical Decolonization Does Not Eradicate the Skin Microbiota of Community-Dwelling or Hospitalized Adults. Antimicrob Agents Chemother 2016; 60:7303-7312. [PMID: 27671074 DOI: 10.1128/aac.01289-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 09/21/2016] [Indexed: 12/22/2022] Open
Abstract
Topical antimicrobials are often employed for decolonization and infection prevention and may alter the endogenous microbiota of the skin. The objective of this study was to compare the microbial communities and levels of richness and diversity in community-dwelling subjects and intensive care unit (ICU) patients before and after the use of topical decolonization protocols. We enrolled 15 adults at risk for Staphylococcus aureus infection. Community subjects (n = 8) underwent a 5-day decolonization protocol (twice daily intranasal mupirocin and daily dilute bleach-water baths), and ICU patients (n = 7) received daily chlorhexidine baths. Swab samples were collected from 5 anatomic sites immediately before and again after decolonization. A variety of culture media and incubation environments were used to recover bacteria and fungi; isolates were identified using matrix-assisted laser desorption ionization-time of flight mass spectrometry. Overall, 174 unique organisms were recovered. Unique communities of organisms were recovered from the community-dwelling and hospitalized cohorts. In the community-dwelling cohort, microbial richness and diversity did not differ significantly between collections across time points, although the number of body sites colonized with S. aureus decreased significantly over time (P = 0.004). Within the hospitalized cohort, richness and diversity decreased over time compared to those for the enrollment sampling (from enrollment to final sampling, P = 0.01 for both richness and diversity). Topical antimicrobials reduced the burden of S. aureus while preserving other components of the skin and nasal microbiota.
Collapse
|
34
|
Abstract
Although mass spectrometry has been used clinically for decades, the advent of immunoassay technology moved the clinical laboratory to more labor saving automated platforms requiring little if any sample preparation. It became clear, however, that immunoassays lacked sufficient sensitivity and specificity necessary for measurement of certain analytes or for measurement of analytes in specific patient populations. This limitation prompted clinical laboratories to revisit mass spectrometry which could additionally be used to develop assays for which there was no commercial source. In this chapter, the clinical applications of mass spectrometry in therapeutic drug monitoring, toxicology, and steroid hormone analysis will be reviewed. Technologic advances and new clinical applications will also be discussed.
Collapse
Affiliation(s)
- D French
- University of California San Francisco, San Francisco, CA, United States.
| |
Collapse
|
35
|
Cassagne C, Normand AC, L'Ollivier C, Ranque S, Piarroux R. Performance of MALDI-TOF MS platforms for fungal identification. Mycoses 2016; 59:678-690. [DOI: 10.1111/myc.12506] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 03/04/2016] [Accepted: 03/12/2016] [Indexed: 01/03/2023]
Affiliation(s)
- Carole Cassagne
- Parasitology and Mycology; Assistance Publique-Hôpitaux de Marseille; CHU Timone-Adultes; Marseilles CEDEX 5 France
- Aix-Marseille University; UMR MD3 IP-TPT; Marseilles France
| | - Anne-Cécile Normand
- Parasitology and Mycology; Assistance Publique-Hôpitaux de Marseille; CHU Timone-Adultes; Marseilles CEDEX 5 France
| | - Coralie L'Ollivier
- Parasitology and Mycology; Assistance Publique-Hôpitaux de Marseille; CHU Timone-Adultes; Marseilles CEDEX 5 France
- Aix-Marseille University; UMR MD3 IP-TPT; Marseilles France
| | - Stéphane Ranque
- Parasitology and Mycology; Assistance Publique-Hôpitaux de Marseille; CHU Timone-Adultes; Marseilles CEDEX 5 France
- Aix-Marseille University; UMR MD3 IP-TPT; Marseilles France
| | - Renaud Piarroux
- Parasitology and Mycology; Assistance Publique-Hôpitaux de Marseille; CHU Timone-Adultes; Marseilles CEDEX 5 France
- Aix-Marseille University; UMR MD3 IP-TPT; Marseilles France
| |
Collapse
|
36
|
Gouriet F, Ghiab F, Couderc C, Bittar F, Tissot Dupont H, Flaudrops C, Casalta JP, Sambe-Ba B, Fall B, Raoult D, Fenollar F. Evaluation of a new extraction protocol for yeast identification by mass spectrometry. J Microbiol Methods 2016; 129:61-65. [DOI: 10.1016/j.mimet.2016.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 08/02/2016] [Accepted: 08/02/2016] [Indexed: 11/15/2022]
|
37
|
Culture of Urine Specimens by Use of chromID CPS Elite Medium Can Expedite Escherichia coli Identification and Reduce Hands-On Time in the Clinical Laboratory. J Clin Microbiol 2016; 54:2767-2773. [PMID: 27582518 DOI: 10.1128/jcm.01376-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Accepted: 08/30/2016] [Indexed: 12/13/2022] Open
Abstract
Urine is one of the most common specimen types submitted to the clinical microbiology laboratory; the use of chromogenic agar is one method by which the laboratory might expedite culture results and reduce hands-on time and materials required for urine culture analysis. The objective of our study was to compare chromID CPS Elite (bioMérieux), a chromogenic medium, to conventional primary culture medium for evaluation of urine specimens. Remnant urine specimens (n = 200) were inoculated into conventional media and into chromID CPS Elite agar (chromID). The time to identification and consumables used were documented for both methods. Clinically significant pathogen(s) were recovered from 51 cultures using conventional media, with Escherichia coli being the most frequently recovered organism (n = 22). The rate of exact uropathogen agreement between conventional and chromogenic media was 82%, while overall categorical agreement was 83.5% The time interval between plating and final organism identification was decreased with chromID agar versus conventional media for E. coli (mean of 24.4 h versus 27.1 h, P < 0.001). Using chromID, clinically significant cultures required less hands-on time per culture (mean of 1 min and 2 s [1:02 min]) compared to conventional media (mean of 1:31 min). In addition, fewer consumables (2.4 versus 3.3 sticks and swabs) and rapid biochemical tests (1.0 versus 1.9) were necessary using chromID versus conventional media. Notably, antimicrobial susceptibility testing demonstrated good overall agreement (97.4%) between the chromID and conventional media for all antibiotics tested. chromID CPS Elite is accurate for uropathogen identification, reduces consumable usage, and may expedite the identification of E. coli in clinical specimens.
Collapse
|
38
|
Gassiep I, Douglas J, Playford EG. First report of monomicrobial Candida parapsilosis necrotizing fasciitis. Transpl Infect Dis 2016; 18:752-755. [PMID: 27385469 DOI: 10.1111/tid.12571] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 04/04/2016] [Accepted: 04/17/2016] [Indexed: 11/26/2022]
Abstract
Candida parapsilosis is an emerging pathogen worldwide. It commonly causes soft tissue infection; however, to our knowledge there has been no previous report of monomicrobial necrotizing soft tissue infection (NSTI) secondary to C. parapsilosis. We report the first case of NSTI caused by C. parapsilosis in an immunocompromised renal transplant patient, with the diagnosis proven both histologically and microbiologically. Our patient required aggressive surgical intervention and antifungal therapy, with postoperative survival at 90 days.
Collapse
Affiliation(s)
- I Gassiep
- Department of Infectious Diseases, Princess Alexandra Hospital, Queensland Health, Woolloongabba, Queensland, Australia. .,School of Medicine, University of Queensland, Brisbane, Queensland, Australia.
| | - J Douglas
- Department of Infectious Diseases, Princess Alexandra Hospital, Queensland Health, Woolloongabba, Queensland, Australia
| | - E G Playford
- Department of Infectious Diseases, Princess Alexandra Hospital, Queensland Health, Woolloongabba, Queensland, Australia.,School of Medicine, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
39
|
Girard V, Mailler S, Welker M, Arsac M, Cellière B, Cotte-Pattat PJ, Chatellier S, Durand G, Béni AM, Schrenzel J, Miller E, Dussoulier R, Dunne WM, Butler-Wu S, Saubolle MA, Sussland D, Bell M, van Belkum A, Deol P. Identification of mycobacterium spp. and nocardia spp. from solid and liquid cultures by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). Diagn Microbiol Infect Dis 2016; 86:277-283. [PMID: 27567285 DOI: 10.1016/j.diagmicrobio.2016.07.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 06/20/2016] [Accepted: 07/26/2016] [Indexed: 01/15/2023]
Abstract
Identification of microorganisms by MALDI-TOF MS has been widely accepted in clinical microbiology. However, for Mycobacterium spp. and Nocardia spp. such identification has not yet reached the optimal level of routine testing. Here we describe the development of an identification tool for 49 and 15 species of Mycobacterium spp. and Nocardia spp., respectively. During database construction, a number of ambiguous reference identifications were revealed and corrected via molecular analyses. Eventually, more than 2000 individual mass spectra acquired from 494 strains were included in a reference database and subjected to bio-statistical analyses. This led to correct species identification and correct combination of species into several complexes or groups, such as the Mycobacterium tuberculosis complex. With the Advanced Spectrum Classifier algorithm, class-specific bin weights were determined and tested by cross-validation experiments with good results. When challenged with independent isolates, overall identification performance was 90% for identification of Mycobacterium spp. and 88% for Nocardia spp. However, for a number of Mycobacterium sp. isolates, no identification could be achieved and in most cases, this could be attributed to the production of polymers that masked the species-specific protein peak patterns. For the species where >20 isolates were tested, correct identification reached 95% or higher. With the current spectral database, the identification of Mycobacterium spp. and Nocardia spp. by MALDI-TOF MS can be performed in routine clinical diagnostics although in some complicated cases verification by sequencing remains mandatory.
Collapse
Affiliation(s)
- Victoria Girard
- bioMérieux, Microbiology R&D, Route de Port Michaud, 38390, La Balme, Les Grottes, France
| | - Sandrine Mailler
- bioMérieux, Microbiology R&D, Route de Port Michaud, 38390, La Balme, Les Grottes, France
| | - Martin Welker
- bioMérieux, Microbiology R&D, Route de Port Michaud, 38390, La Balme, Les Grottes, France
| | - Maud Arsac
- bioMérieux, Microbiology R&D, Route de Port Michaud, 38390, La Balme, Les Grottes, France
| | - Béatrice Cellière
- bioMérieux, Microbiology R&D, Route de Port Michaud, 38390, La Balme, Les Grottes, France
| | | | - Sonia Chatellier
- bioMérieux, Microbiology R&D, Route de Port Michaud, 38390, La Balme, Les Grottes, France
| | - Géraldine Durand
- bioMérieux, Microbiology R&D, Route de Port Michaud, 38390, La Balme, Les Grottes, France
| | - Anne-Marie Béni
- Hôpitaux Universitaires de Genève, Laboratoire de Bactériologie, Rue Gabrielle Perret Gentil 4, 1211, Geneva 14, Switzerland
| | - Jacques Schrenzel
- Hôpitaux Universitaires de Genève, Laboratoire de Bactériologie, Rue Gabrielle Perret Gentil 4, 1211, Geneva 14, Switzerland
| | - Elizabeth Miller
- bioMérieux Inc., Microbiology R&D, 100 Rodolphe St, Durham, NC, 27712, USA
| | - Rahima Dussoulier
- bioMérieux Inc., Microbiology R&D, 100 Rodolphe St, Durham, NC, 27712, USA
| | - W Michael Dunne
- bioMérieux Inc., Microbiology R&D, 100 Rodolphe St, Durham, NC, 27712, USA
| | - Susan Butler-Wu
- Clinical Microbiology Laboratory, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA; Keck School of Medicine, University of Southern California, 1975 Zonal Avenue, Los Angeles, CA, 90033, USA
| | - Michael A Saubolle
- Banner University Medical Center, 1111 E. McDowell Rd., Phoenix, AZ, 85006, USA
| | - Den Sussland
- Banner University Medical Center, 1111 E. McDowell Rd., Phoenix, AZ, 85006, USA
| | - Melissa Bell
- Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA, 30329-4027, USA
| | - Alex van Belkum
- bioMérieux, Microbiology R&D, Route de Port Michaud, 38390, La Balme, Les Grottes, France.
| | - Parampal Deol
- bioMérieux Inc., Microbiology R&D, 100 Rodolphe St, Durham, NC, 27712, USA
| |
Collapse
|
40
|
Evaluation of the Vitek MS Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry System for Identification of Clinically Relevant Filamentous Fungi. J Clin Microbiol 2016; 54:2068-73. [PMID: 27225405 DOI: 10.1128/jcm.00825-16] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 05/19/2016] [Indexed: 12/22/2022] Open
Abstract
Invasive fungal infections have a high rate of morbidity and mortality, and accurate identification is necessary to guide appropriate antifungal therapy. With the increasing incidence of invasive disease attributed to filamentous fungi, rapid and accurate species-level identification of these pathogens is necessary. Traditional methods for identification of filamentous fungi can be slow and may lack resolution. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has emerged as a rapid and accurate method for identification of bacteria and yeasts, but a paucity of data exists on the performance characteristics of this method for identification of filamentous fungi. The objective of our study was to evaluate the accuracy of the Vitek MS for mold identification. A total of 319 mold isolates representing 43 genera recovered from clinical specimens were evaluated. Of these isolates, 213 (66.8%) were correctly identified using the Vitek MS Knowledge Base, version 3.0 database. When a modified SARAMIS (Spectral Archive and Microbial Identification System) database was used to augment the version 3.0 Knowledge Base, 245 (76.8%) isolates were correctly identified. Unidentified isolates were subcultured for repeat testing; 71/319 (22.3%) remained unidentified. Of the unidentified isolates, 69 were not in the database. Only 3 (0.9%) isolates were misidentified by MALDI-TOF MS (including Aspergillus amoenus [n = 2] and Aspergillus calidoustus [n = 1]) although 10 (3.1%) of the original phenotypic identifications were not correct. In addition, this methodology was able to accurately identify 133/144 (93.6%) Aspergillus sp. isolates to the species level. MALDI-TOF MS has the potential to expedite mold identification, and misidentifications are rare.
Collapse
|
41
|
Albataineh MT, Sutton DA, Fothergill AW, Wiederhold NP. Update from the Laboratory: Clinical Identification and Susceptibility Testing of Fungi and Trends in Antifungal Resistance. Infect Dis Clin North Am 2015; 30:13-35. [PMID: 26739605 DOI: 10.1016/j.idc.2015.10.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Despite the availability of new diagnostic assays and broad-spectrum antifungal agents, invasive fungal infections remain a significant challenge to clinicians and are associated with marked morbidity and mortality. In addition, the number of etiologic agents of invasive mycoses has increased accompanied by an expansion in the immunocompromised patient populations, and the use of molecular tools for fungal identification and characterization has resulted in the discovery of several cryptic species. This article reviews various methods used to identify fungi and perform antifungal susceptibility testing in the clinical laboratory. Recent developments in antifungal resistance are also discussed.
Collapse
Affiliation(s)
- Mohammad T Albataineh
- Fungus Testing Laboratory, Department of Pathology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Deanna A Sutton
- Fungus Testing Laboratory, Department of Pathology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Annette W Fothergill
- Fungus Testing Laboratory, Department of Pathology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Nathan P Wiederhold
- Fungus Testing Laboratory, Department of Pathology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA.
| |
Collapse
|
42
|
Fraser M, Brown Z, Houldsworth M, Borman AM, Johnson EM. Rapid identification of 6328 isolates of pathogenic yeasts using MALDI-ToF MS and a simplified, rapid extraction procedure that is compatible with the Bruker Biotyper platform and database. Med Mycol 2015; 54:80-8. [PMID: 26591008 DOI: 10.1093/mmy/myv085] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 08/11/2015] [Indexed: 12/31/2022] Open
Abstract
Rapid and accurate identification of yeast isolates from clinical samples is essential, given their innately variable antifungal susceptibility profiles, and the proposal of species-specific antifungal susceptibility interpretive breakpoints. Here we have evaluated the utility of MALDI-ToF MS analysis for the identification of clinical isolates of pathogenic yeasts. A simplified, rapid extraction method, developed in our laboratory, was applied to 6343 isolates encompassing 71 different yeast species, which were then subjected to MALDI-ToF MS analysis using a Bruker Microflex and the resulting spectra were assessed using the supplied Bruker database. In total, 6328/6343 (99.8%) of isolates were correctly identified by MALDI-ToF MS. Our simplified extraction protocol allowed the correct identification of 93.6% of isolates, without the need for laborious full extraction, and a further 394 (6.2%) of isolates could be identified after full extraction. Clinically relevant identifications with both extraction methods were achieved using the supplied Bruker database and did not require the generation of bespoke, in-house databases created using profiles obtained with the adapted extraction method. In fact, the mean LogScores obtained using our method were as robust as those obtained using the recommended, published full extraction procedures. However, an in-house database can provide a useful additional identification tool for unusual or rarely encountered organisms. Finally, the proposed methodology allowed the correct identification of over 75% of isolates directly from the initial cultures referred to our laboratory, without the requirement for additional sub-culture on standardised mycological media.
Collapse
Affiliation(s)
- Mark Fraser
- UK National Mycology Reference Laboratory, Public Health England, Bristol, United Kingdom
| | - Zoe Brown
- UK National Mycology Reference Laboratory, Public Health England, Bristol, United Kingdom
| | - Marian Houldsworth
- UK National Mycology Reference Laboratory, Public Health England, Bristol, United Kingdom
| | - Andrew M Borman
- UK National Mycology Reference Laboratory, Public Health England, Bristol, United Kingdom
| | - Elizabeth M Johnson
- UK National Mycology Reference Laboratory, Public Health England, Bristol, United Kingdom
| |
Collapse
|
43
|
García-Agudo L, Galán F, García-Martos P, Carranza R, Rodríguez-Iglesias M. [Utility of mass spectrometry in the microbiological diagnosis of candiduria]. Rev Iberoam Micol 2015; 33:58-9. [PMID: 26561412 DOI: 10.1016/j.riam.2015.02.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Revised: 01/10/2015] [Accepted: 02/25/2015] [Indexed: 11/17/2022] Open
Affiliation(s)
- Lidia García-Agudo
- Helse Møre og Romsdal, Molde sykehus, Laboratorium for medisinsk mikrobiologi, Noruega.
| | - Fátima Galán
- Servicio de Microbiología, Hospital Puerta del Mar, Cádiz, España
| | | | - Rafael Carranza
- Servicio de Análisis Clínicos, Hospital General La Mancha-Centro, Alcázar de San Juan, Ciudad Real, España
| | | |
Collapse
|
44
|
van Belkum A, Chatellier S, Girard V, Pincus D, Deol P, Dunne WM. Progress in proteomics for clinical microbiology: MALDI-TOF MS for microbial species identification and more. Expert Rev Proteomics 2015; 12:595-605. [DOI: 10.1586/14789450.2015.1091731] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
45
|
Brady AC, Wong B, Pfeiffer CD. Utilizing Rapid Diagnostics for Detection of Candida Species. CURRENT TREATMENT OPTIONS IN INFECTIOUS DISEASES 2015. [DOI: 10.1007/s40506-015-0049-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
46
|
Emerging technologies for the clinical microbiology laboratory. Clin Microbiol Rev 2015; 27:783-822. [PMID: 25278575 DOI: 10.1128/cmr.00003-14] [Citation(s) in RCA: 170] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In this review we examine the literature related to emerging technologies that will help to reshape the clinical microbiology laboratory. These topics include nucleic acid amplification tests such as isothermal and point-of-care molecular diagnostics, multiplexed panels for syndromic diagnosis, digital PCR, next-generation sequencing, and automation of molecular tests. We also review matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) and electrospray ionization (ESI) mass spectrometry methods and their role in identification of microorganisms. Lastly, we review the shift to liquid-based microbiology and the integration of partial and full laboratory automation that are beginning to impact the clinical microbiology laboratory.
Collapse
|
47
|
Galán F, García-Agudo L, Guerrero I, Marín P, García-Tapia A, García-Martos P, Rodríguez-Iglesias M. Evaluación de la espectrometría de masas en la identificación de levaduras de interés clínico. Enferm Infecc Microbiol Clin 2015; 33:372-8. [DOI: 10.1016/j.eimc.2014.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 07/29/2014] [Accepted: 10/01/2014] [Indexed: 10/24/2022]
|
48
|
Kim Y, Park KG, Lee K, Park YJ. Direct Identification of Urinary Tract Pathogens From Urine Samples Using the Vitek MS System Based on Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry. Ann Lab Med 2015; 35:416-22. [PMID: 26131413 PMCID: PMC4446580 DOI: 10.3343/alm.2015.35.4.416] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 11/13/2014] [Accepted: 05/11/2015] [Indexed: 11/30/2022] Open
Abstract
Background We evaluated the coincidence rate between Vitek MS system (bioMérieux, France) and Vitek 2 in identifying uropathogens directly from urine specimens. Methods Urine specimens submitted to our microbiology laboratory between July and September 2013 for Gram staining and bacterial culture were analyzed. Bacterial identification was performed by using the conventional method. Urine specimens showing a single morphotype by Gram staining were processed by culturing and matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). Of 2,370 urine specimens, 251 showed a single morphotype on Gram staining, and among them, 202 were available for MALDI-TOF MS. Results In these 202 specimens, colony growth was observed in 189 specimens, and 145 specimens had significant growth of single-colony morphotype in culture. One hundred and ten (75.9%) of them had colony counts of ≥105 colony-forming units (CFU)/mL and included 71 enteric gram-negative bacteria (GNB), 5 glucose-non-fermenting GNB, 9 gram-positive cocci (GPC), and 25 yeasts. Furthermore, 70 (98.6%), 3 (60.0%), 4 (44.4%), and 5 (20.0%), respectively, of these were correctly identified by Vitek MS. Thirty-one specimens (21.4%; 11 GNB, 7 GPC, 12 yeasts, and 1 gram-positive bacillus) had colony counts of 104-105 CFU/mL. Four specimens (2.8%) yielded colony counts of 103-104 CFU/mL. Conclusions Vitek MS showed high rate of accuracy for the identification of GNB in urine specimens (≥105 CFU/mL). This could become a rapid and accurate diagnostic method for urinary tract infection caused by GNB. However, for the identification of GPC and yeasts, further studies on appropriate pre-treatment are warranted.
Collapse
Affiliation(s)
- Yeongsic Kim
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Kang Gyun Park
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Kyungwon Lee
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Yeon-Joon Park
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
49
|
Abstract
BACKGROUND Concerns have been recognized about the operating characteristics of the standard 3 + 3 dose-escalation design. Various innovative phase 1 trial designs have been proposed to address the issues and new challenges posed by molecularly targeted agents. However, in spite of these proposals, the conventional design is still the most widely utilized. METHODS A review of the literature of phase 1 trials and relevant statistical studies was performed. RESULTS Beyond statistical simulations, sparse clinical data exist to support or refute many of the shortcomings ascribed to the 3 + 3 rule method. Data from phase 1 trials demonstrate that traditional designs identified the correct dose and relevant toxicities with an acceptable level of precision in some instances; however, no single escalation method was proven superior in all circumstances. CONCLUSIONS Design selection should be guided by the principle of slow escalation in the face of toxicity and rapid dose increases in the setting of minimal or no adverse events. When the toxicity of a drug is uncertain or a narrow therapeutic window is suggested from preclinical testing, then a conservative 3 + 3 method is generally appropriate. However, if the therapeutic window is wide and the expected toxicity is low, then rapid escalation with a novel rule- or model-based design should be employed.
Collapse
Affiliation(s)
- Aaron R Hansen
- Drug Development Program, Princess Margaret Cancer Centre, Toronto, Ontario, Canada M5G 2M9.
| | | | | | | |
Collapse
|
50
|
Zhou C, Tao L, Hu B, Ma J, Ye X, Huang S, Ma Y, Shan Y. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for the identification of beta-hemolytic streptococci. J Thorac Dis 2015; 7:591-5. [PMID: 25973224 PMCID: PMC4419311 DOI: 10.3978/j.issn.2072-1439.2015.03.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 01/21/2015] [Indexed: 01/22/2023]
Abstract
OBJECTIVE Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has emerged as promising technology for species identification. The purpose of this investigation was to compare the performance of MS and the traditional method for identification of beta-hemolytic streptococci (BHS). METHODS Clinical BHS isolates were identified by the BD Phoenix SMIC/ID Streptococcal panels, and two MALDI-TOF MS platforms: the VITEK MS and the Bruker MALDI Biotyper systems respectively. In case of discordant results, 16sRNA sequencing was performed to provide the reference ID. RESULTS A total of 96 isolates of BHS were analyzed. Thirty-six isolates (20.8%) were re-tested by BD Phoenix for identification failure; and four isolates (4.2%) were rerun on the Bruker system for low identification score. No isolate need a second run for identification by Vitek MS system. Overall, BD Phoenix, BioTyper and Vitek MS automated system accurately identified 76 strains (79.2%), 91 (94.7%) strains and 92 (95.8%) strains, respectively. CONCLUSIONS Our study suggests that MALDI-TOF MS is a superior method to conventional phenotypic methods for BHS identification.
Collapse
|