1
|
Moreira L, Guimarães NM, Santos RS, Loureiro JA, Pereira MDC, Azevedo NF. Oligonucleotide probes for imaging and diagnosis of bacterial infections. Crit Rev Biotechnol 2025; 45:128-147. [PMID: 38830823 DOI: 10.1080/07388551.2024.2344574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/17/2023] [Indexed: 06/05/2024]
Abstract
The rise of infectious diseases as a public health concern has necessitated the development of rapid and precise diagnostic methods. Imaging techniques like nuclear and optical imaging provide the ability to diagnose infectious diseases within the body, eliminating delays caused by sampling and pre-enrichments of clinical samples and offering spatial information that can aid in a more informed diagnosis. Traditional molecular probes are typically created to image infected tissue without accurately identifying the pathogen. In contrast, oligonucleotides can be tailored to target specific RNA sequences, allowing for the identification of pathogens, and even generating antibiotic susceptibility profiles by focusing on drug resistance genes. Despite the benefits that nucleic acid mimics (NAMs) have provided in terms of stabilizing oligonucleotides, the inadequate delivery of these relatively large molecules into the cytoplasm of bacteria remains a challenge for widespread use of this technology. This review summarizes the key advancements in the field of oligonucleotide probes for in vivo imaging, highlighting the most promising delivery systems described in the literature for developing optical imaging through in vivo hybridization.
Collapse
Affiliation(s)
- Luís Moreira
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Nuno Miguel Guimarães
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Rita Sobral Santos
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Joana Angélica Loureiro
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Maria do Carmo Pereira
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Nuno Filipe Azevedo
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| |
Collapse
|
2
|
In Search for Reasons behind Helicobacter pylori Eradication Failure–Assessment of the Antibiotics Resistance Rate and Co-Existence of Helicobacter pylori with Candida Species. J Fungi (Basel) 2023; 9:jof9030328. [PMID: 36983496 PMCID: PMC10056355 DOI: 10.3390/jof9030328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 03/10/2023] Open
Abstract
Helicobacter pylori eradication is characterized by decreasing successful eradication rates. Although treatment failure is primarily associated with resistance to antibiotics, other unknown factors may influence the eradication outcome. This study aimed to assess the presence of the antibiotics resistance genes in H. pylori and the presence of Candida spp., which are proposed to be endosymbiotic hosts of H. pylori, in gastric biopsies of H. pylori-positive patients while simultaneously assessing their relationship. The detection and identification of Candida yeasts and the detection of mutations specific for clarithromycin and fluoroquinolones were performed by using the real-time PCR (RT-PCR) method on DNA extracted from 110 gastric biopsy samples of H. pylori-positive participants. Resistance rate to clarithromycin and fluoroquinolone was 52% and 47%, respectively. Antibiotic resistance was associated with more eradication attempts (p < 0.05). Candida species were detected in nine (8.18%) patients. Candida presence was associated with older age (p < 0.05). A high rate of antibiotic resistance was observed, while Candida presence was scarce, suggesting that endosymbiosis between H. pylori and Candida may not be a major contributing factor to the eradication failure. However, the older age favored Candida gastric mucosa colonization, which could contribute to gastric pathologies and microbiome dysbiosis.
Collapse
|
3
|
The role of Nucleic Acid Mimics (NAMs) on FISH-based techniques and applications for microbial detection. Microbiol Res 2022; 262:127086. [PMID: 35700584 DOI: 10.1016/j.micres.2022.127086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 06/01/2022] [Accepted: 06/03/2022] [Indexed: 01/07/2023]
Abstract
Fluorescent in situ hybridization (FISH) is a powerful tool that for more than 30 years has allowed to detect and quantify microorganisms as well as to study their spatial distribution in three-dimensional structured environments such as biofilms. Throughout these years, FISH has been improved in order to face some of its earlier limitations and to adapt to new research objectives. One of these improvements is related to the emergence of Nucleic Acid Mimics (NAMs), which are now employed as alternatives to the DNA and RNA probes that have been classically used in FISH. NAMs such as peptide and locked nucleic acids (PNA and LNA) have provided enhanced sensitivity and specificity to the FISH technique, as well as higher flexibility in terms of applications. In this review, we aim to cover the state-of-the-art of the different NAMs and explore their possible applications in FISH, providing a general overview of the technique advancement in the last decades.
Collapse
|
4
|
Oliveira R, Azevedo AS, Mendes L. Application of Nucleic Acid Mimics in Fluorescence In Situ Hybridization. Methods Mol Biol 2021; 2246:69-86. [PMID: 33576983 DOI: 10.1007/978-1-0716-1115-9_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Traditionally, RNA and DNA probes are used in fluorescence in situ hybridization (FISH) methods for microbial detection and characterization of communities' structure and diversity. However, the recent introduction of nucleic acid mimics (NAMs) has improved the robustness of the FISH methods in terms of sensitivity and specificity. Several NAMs have been used, of which the most relevant are peptide nucleic acid (PNA), locked nucleic acids (LNA), 2'-O-methyl RNA (2'OMe), and phosphorothioates (PS). In this chapter, we describe a protocol using PNA and LNA/2'OMe probes for microbial detection by FISH, pointing out the differences between them. These protocols are easily adapted to different microorganisms and different probe sequences.
Collapse
Affiliation(s)
- Ricardo Oliveira
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal.,INIAV - National Institute for Agrarian and Veterinarian Research, Rua dos Lagidos, Lugar da Madalena, Vairão, Vila do Conde, Portugal
| | - Andreia S Azevedo
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, University of Porto, Porto, Portugal.,CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Luzia Mendes
- FMDUP - Faculty of Dental Medicine, University of Porto, Porto, Portugal.
| |
Collapse
|
5
|
Oliveira R, Almeida C, Azevedo NF. Detection of Microorganisms by Fluorescence In Situ Hybridization Using Peptide Nucleic Acid. Methods Mol Biol 2021; 2105:217-230. [PMID: 32088873 DOI: 10.1007/978-1-0716-0243-0_13] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Fluorescence in situ hybridization (FISH) is a 30-year-old technology that has evolved continuously and is now one of the most well-established molecular biology techniques. Traditionally, DNA probes are used for in situ hybridization. However, synthetic molecules are emerging as very promising alternatives, providing better hybridization performance and making FISH procedures easier and more efficient. In this chapter, we describe a universal FISH protocol, using nucleic acid probes, for the detection of bacteria. This protocol should be easily applied to different microorganisms as a way of identifying in situ relevant microorganisms (including pathogens) and their distribution patterns in different types of samples.
Collapse
Affiliation(s)
- Ricardo Oliveira
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal.,INIAV - National Institute for Agrarian and Veterinarian Research, Vairao, Portugal
| | - Carina Almeida
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal.,INIAV - National Institute for Agrarian and Veterinarian Research, Vairao, Portugal.,CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Nuno F Azevedo
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal.
| |
Collapse
|
6
|
Abstract
Fluorescence in situ hybridization (FISH) is a molecular biology technique that enables the localization, quantification, and identification of microorganisms in a sample. This technique has found applications in several areas, most notably the environmental, for quantification and diversity assessment of microorganisms and, the clinical, for the rapid diagnostics of infectious agents. The FISH method is based on the hybridization of a fluorescently labeled nucleic acid probe with a complementary sequence that is present inside the microbial cell, typically in the form of ribosomal RNA (rRNA). In fact, an hybridized cell is typically only detectable because a large number of multiple fluorescent particles (as many as the number of target sequences available) are present inside the cell. Here, we will review the major steps involved in a standard FISH protocol, namely, fixation/permeabilization, hybridization, washing, and visualization/detection. For each step, the major variables/parameters are identified and, subsequently, their impact on the overall hybridization performance is assessed in detail.
Collapse
Affiliation(s)
- Carina Almeida
- INIAV - National Institute for Agrarian and Veterinarian Research, Rua dos Lagidos, Lugar da Madalena, Vairão, Vila do Conde, Portugal.
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal.
- CEB - Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, Braga, Portugal.
| | - Nuno F Azevedo
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
| |
Collapse
|
7
|
Abstract
FISH has gained an irreplaceable place in microbiology because of its ability to detect and locate a microorganism, or a group of organisms, within complex samples. However, FISH role has evolved drastically in the last few decades and its value has been boosted by several advances in signal intensity, imaging acquisitions, automation, method robustness, and, thus, versatility. This has resulted in a range of FISH variants that gave researchers the ability to access a variety of other valuable information such as complex population composition, metabolic activity, gene detection/quantification, or subcellular location of genetic elements. In this chapter, we will review the more relevant FISH variants, their intended use, and how they address particular challenges of classical FISH.
Collapse
Affiliation(s)
- Nuno M Guimarães
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal.
| | - Nuno F Azevedo
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Carina Almeida
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
- INIAV - National Institute for Agrarian and Veterinarian Research, Rua dos Lagidos, Lugar da Madalena, Vairão, Vila do Conde, Portugal
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
| |
Collapse
|
8
|
Teixeira H, Sousa AL, Azevedo AS. Bioinformatic Tools and Guidelines for the Design of Fluorescence In Situ Hybridization Probes. Methods Mol Biol 2021; 2246:35-50. [PMID: 33576981 DOI: 10.1007/978-1-0716-1115-9_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Fluorescence in situ hybridization (FISH) is a well-established technique that allows the detection of microorganisms in diverse types of samples (e.g., clinical, food, environmental samples, and biofilm communities). The FISH probe design is an essential step in this technique. For this, two strategies can be used, the manual form based on multiple sequence alignment to identify conserved regions and programs/software specifically developed for the selection of the sequence of the probe. Additionally, databases/software for the theoretical evaluation of the probes in terms of specificity, sensitivity, and thermodynamic parameters (melting temperature and Gibbs free energy change) are used. The purpose of this chapter is to describe the essential steps and guidelines for the design of FISH probes (e.g., DNA and Nucleic Acid Mimic (NAM) probes), and its theoretical evaluation through the application of diverse bioinformatic tools.
Collapse
Affiliation(s)
- Helena Teixeira
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Ana L Sousa
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal.,INIAV - National Institute for Agrarian and Veterinarian Research, Rua dos Lagidos, Lugar da Madalena, Vairão, Vila do Conde, Portugal
| | - Andreia S Azevedo
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal. .,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal. .,IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal. .,CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal.
| |
Collapse
|
9
|
Evolving Technologies in Gastrointestinal Microbiome Era and Their Potential Clinical Applications. J Clin Med 2020; 9:jcm9082565. [PMID: 32784731 PMCID: PMC7464388 DOI: 10.3390/jcm9082565] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/31/2020] [Accepted: 08/04/2020] [Indexed: 12/12/2022] Open
Abstract
The human gastrointestinal microbiota (GIM) is a complex and diverse ecosystem that consists of community of fungi, viruses, protists and majorly bacteria. The association of several human illnesses, such as inflammatory bowel disease, allergy, metabolic syndrome and cancers, have been linked directly or indirectly to compromise in the integrity of the GIM, for which some medical interventions have been proposed or attempted. This review highlights and gives update on various technologies, including microfluidics, high-through-put sequencing, metabolomics, metatranscriptomics and culture in GIM research and their applications in gastrointestinal microbiota therapy, with a view to raise interest in the evaluation, validation and eventual use of these technologies in diagnosis and the incorporation of therapies in routine clinical practice.
Collapse
|
10
|
Prudent E, Raoult D. Fluorescence in situ hybridization, a complementary molecular tool for the clinical diagnosis of infectious diseases by intracellular and fastidious bacteria. FEMS Microbiol Rev 2018; 43:88-107. [DOI: 10.1093/femsre/fuy040] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 11/07/2018] [Indexed: 12/16/2022] Open
Affiliation(s)
- Elsa Prudent
- Aix Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, 19–21 Boulevard Jean Moulin, 13005 Marseille, France
| | - Didier Raoult
- Aix Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, 19–21 Boulevard Jean Moulin, 13005 Marseille, France
| |
Collapse
|
11
|
Prudent E, Lepidi H, Angelakis E, Raoult D. Fluorescence In Situ Hybridization (FISH) and Peptide Nucleic Acid Probe-Based FISH for Diagnosis of Q Fever Endocarditis and Vascular Infections. J Clin Microbiol 2018; 56:e00542-18. [PMID: 29899006 PMCID: PMC6113452 DOI: 10.1128/jcm.00542-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 06/11/2018] [Indexed: 01/07/2023] Open
Abstract
Endocarditis and vascular infections are common manifestations of persistent localized infection due to Coxiella burnetii, and recently, fluorescence in situ hybridization (FISH) was proposed as an alternative tool for their diagnosis. In this study, we evaluated the efficiency of FISH in a series of valve and vascular samples infected by C. burnetii We tested 23 C. burnetii-positive valves and thrombus samples obtained from patients with Q fever endocarditis. Seven aneurysms and thrombus specimens were retrieved from patients with Q fever vascular infections. Samples were analyzed by culture, immunochemistry, and FISH with oligonucleotide and PNA probes targeting C. burnetii-specific 16S rRNA sequences. The immunohistochemical analysis was positive for five (17%) samples with significantly more copies of C. burnetii DNA than the negative ones (P = 0.02). FISH was positive for 13 (43%) samples and presented 43% and 40% sensitivity compared to that for quantitative PCR (qPCR) and culture, respectively. PNA FISH detected C. burnetii in 18 (60%) samples and presented 60% and 55% sensitivity compared to that for qPCR and culture, respectively. Immunohistochemistry had 38% and 28% sensitivity compared to that for FISH and PNA FISH, respectively. Samples found positive by both immunohistochemistry and PNA FISH contained significantly more copies of C. burnetii DNA than the negative ones (P = 0.03). Finally, PNA FISH was more sensitive than FISH (60% versus 43%, respectively) for the detection of C. burnetii We provide evidence that PNA FISH and FISH are important assays for the diagnosis of C. burnetii endocarditis and vascular infections.
Collapse
Affiliation(s)
- Elsa Prudent
- Aix Marseille Université, IRD, AP-HM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| | - Hubert Lepidi
- Aix Marseille Université, IRD, AP-HM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| | - Emmanouil Angelakis
- Aix Marseille Université, IRD, AP-HM, VITROME, IHU-Méditerranée Infection, Marseille, France
- French Reference Center for the Diagnosis and Study of Rickettsioses, Q fever and Bartonelloses, IHU-Méditerranée Infection, Marseille, France
| | - Didier Raoult
- Aix Marseille Université, IRD, AP-HM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| |
Collapse
|
12
|
Lima JF, Carvalho J, Pinto-Ribeiro I, Almeida C, Wengel J, Cerqueira L, Figueiredo C, Oliveira C, Azevedo NF. Targeting miR-9 in gastric cancer cells using locked nucleic acid oligonucleotides. BMC Mol Biol 2018; 19:6. [PMID: 29879907 PMCID: PMC5992815 DOI: 10.1186/s12867-018-0107-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 05/28/2018] [Indexed: 12/21/2022] Open
Abstract
Background Gastric cancer is the third leading cause of cancer-related mortality worldwide. Recently, it has been demonstrated that gastric cancer cells display a specific miRNA expression profile, with increasing evidence of the role of miRNA-9 in this disease. miRNA-9 upregulation has been shown to influence the expression of E-cadherin-encoding gene, triggering cell motility and invasiveness. Results In this study, we designed LNA anti-miRNA oligonucleotides with a complementary sequence to miRNA-9 and tested their properties to both detect and silence the target miRNA. We could identify and visualize the in vitro uptake of low-dosing LNA-based anti-miRNA oligonucleotides without any carrier or transfection agent, as early as 2 h after the addition of the oligonucleotide sequence to the culture medium. Furthermore, we were able to assess the silencing potential of miRNA-9, using different LNA anti-miRNA oligonucleotide designs, and to observe its subsequent effect on E-cadherin expression. Conclusions The administration of anti-miRNA sequences even at low-doses, rapidly repressed the target miRNA, and influenced the expression of E-cadherin by significantly increasing its levels.
Collapse
Affiliation(s)
- Joana Filipa Lima
- Department of Chemical Engineering, LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering of the University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal. .,Biomode, 2 S.A., Braga, Portugal. .,i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal. .,IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal.
| | - Joana Carvalho
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | - Inês Pinto-Ribeiro
- IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal.,FMUP, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Carina Almeida
- National Institute for Agricultural and Veterinary Research (INIAV), Vairão, Vila do Conde, Portugal
| | - Jesper Wengel
- Department of Physics, Chemistry and Pharmacy, Nucleic Acid Center, University of Southern Denmark, Odense, Denmark
| | - Laura Cerqueira
- Department of Chemical Engineering, LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering of the University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal.,Biomode, 2 S.A., Braga, Portugal
| | - Céu Figueiredo
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal.,FMUP, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Carla Oliveira
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal.,FMUP, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Nuno Filipe Azevedo
- Department of Chemical Engineering, LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering of the University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| |
Collapse
|
13
|
Li Y, Hu X, Ding D, Zou Y, Xu Y, Wang X, Zhang Y, Chen L, Chen Z, Tan W. In situ targeted MRI detection of Helicobacter pylori with stable magnetic graphitic nanocapsules. Nat Commun 2017. [PMID: 28643777 PMCID: PMC5501158 DOI: 10.1038/ncomms15653] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Helicobacter pylori infection is implicated in the aetiology of many diseases. Despite numerous studies, a painless, fast and direct method for the in situ detection of H. pylori remains a challenge, mainly due to the strong acidic/enzymatic environment of the gastric mucosa. Herein, we report the use of stable magnetic graphitic nanocapsules (MGNs), for in situ targeted magnetic resonance imaging (MRI) detection of H. pylori. Several layers of graphene as the shell effectively protect the magnetic core from corrosion while retaining the superior contrast effect for MRI in the gastric environment. Boronic-polyethylene glycol molecules were synthesized and modified on the MGN surface for targeted MRI detection. In a mouse model of H. pylori-induced infection, H. pylori was specifically detected through both T2-weighted MR imaging and Raman gastric mucosa imaging using functionalized MGNs. These results indicated that enhancement of MRI using MGNs may be a promising diagnostic and bioimaging platform for very harsh conditions.
Collapse
Affiliation(s)
- Yunjie Li
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Xiaoxiao Hu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Ding Ding
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Yuxiu Zou
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Yiting Xu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Xuewei Wang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Yin Zhang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Long Chen
- Faculty of Science and Technology, University of Macau, Av. da Universidade, Taipa 999078, Macau
| | - Zhuo Chen
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China.,Department of Chemistry and Department of Physiology and Functional Genomics, Center for Research at Bio/nano Interface, Shands Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, USA
| |
Collapse
|
14
|
Frickmann H, Zautner AE, Moter A, Kikhney J, Hagen RM, Stender H, Poppert S. Fluorescence in situ hybridization (FISH) in the microbiological diagnostic routine laboratory: a review. Crit Rev Microbiol 2017; 43:263-293. [PMID: 28129707 DOI: 10.3109/1040841x.2016.1169990] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Early identification of microbial pathogens is essential for rational and conservative antibiotic use especially in the case of known regional resistance patterns. Here, we describe fluorescence in situ hybridization (FISH) as one of the rapid methods for easy identification of microbial pathogens, and its advantages and disadvantages for the diagnosis of pathogens in human infections in the laboratory diagnostic routine. Binding of short fluorescence-labeled DNA or nucleic acid-mimicking PNA probes to ribosomes of infectious agents with consecutive analysis by fluorescence microscopy allows identification of bacterial and eukaryotic pathogens at genus or species level. FISH analysis leads to immediate differentiation of infectious agents without delay due to the need for microbial culture. As a microscopic technique, FISH has the unique potential to provide information about spatial resolution, morphology and identification of key pathogens in mixed species samples. On-going automation and commercialization of the FISH procedure has led to significant shortening of the time-to-result and increased test reliability. FISH is a useful tool for the rapid initial identification of microbial pathogens, even from primary materials. Among the rapidly developing alternative techniques, FISH serves as a bridging technology between microscopy, microbial culture, biochemical identification and molecular diagnostic procedures.
Collapse
Affiliation(s)
- Hagen Frickmann
- a German Armed Forces Hospital of Hamburg, Department of Tropical Medicine at the Bernhard Nocht Institute , Hamburg , Germany
| | - Andreas Erich Zautner
- b Department of Medical Microbiology, University Medical Center Göttingen , Göttingen , Germany
| | - Annette Moter
- c University Medical Center Berlin, Biofilmcenter at the German Heart Institute Berlin , Berlin , Germany
| | - Judith Kikhney
- c University Medical Center Berlin, Biofilmcenter at the German Heart Institute Berlin , Berlin , Germany
| | - Ralf Matthias Hagen
- a German Armed Forces Hospital of Hamburg, Department of Tropical Medicine at the Bernhard Nocht Institute , Hamburg , Germany
| | | | - Sven Poppert
- e Institute for Medical Microbiology, Justus-Liebig-University Giessen , Giessen , Germany
| |
Collapse
|
15
|
Detection of Helicobacter pylori in the Gastric Mucosa by Fluorescence In Vivo Hybridization. Methods Mol Biol 2017; 1616:137-146. [PMID: 28600766 DOI: 10.1007/978-1-4939-7037-7_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In this chapter, we describe a fluorescence in vivo hybridization (FIVH) protocol, using nucleic acid probes, for the detection of the bacterium Helicobacter pylori in the gastric mucosa of an infected C57BL/6 mouse model. This protocol should be easily extended to other microorganisms not only as a way to identify in vivo important microorganisms and their patterns of distribution within specific or at different anatomic sites, but also to better understand interaction mechanisms involving the microbiome and the human body.
Collapse
|
16
|
Lopes SP, Carvalho DT, Pereira MO, Azevedo NF. Discriminating typical and atypical cystic fibrosis-related bacteria by multiplex PNA-FISH. Biotechnol Bioeng 2016; 114:355-367. [PMID: 27571488 DOI: 10.1002/bit.26085] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 08/15/2016] [Accepted: 08/22/2016] [Indexed: 12/22/2022]
Abstract
This study aims to report the development of peptide nucleic acid (PNA) probes to specifically detect the cystic fibrosis (CF)-associated traditional and atypical species Pseudomonas aeruginosa and Inquilinus limosus, respectively. PNA probes were designed in silico, developed and tested in smears prepared in phosphate-buffer saline (PBS), and in artificial sputum medium (ASM). A multiplex fluorescent in situ hybridization (FISH) approach using the designed probes was further validated in artificially contaminated clinical sputum samples and also applied in polymicrobial 24 h-old biofilms involving P. aeruginosa, I. limosus, and other CF-related bacteria. Both probes showed high predictive and experimental specificities and sensitivities. The multiplex PNA-FISH assay, associated with non-specific staining, was successfully adapted in the clinical samples and in biofilms of CF-related bacteria, allowing differentiating the community members and inferring about microbial-microbial interactions within the consortia. This study revealed the great potential of PNA-FISH as a diagnostic tool to discriminate between classical and less common CF-associated bacteria, being suitable to further describe species-dependent prevention strategies and deliver more effective target control therapeutics. Biotechnol. Bioeng. 2017;114: 355-367. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Susana P Lopes
- Centre of Biological Engineering, LIBRO-Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Daniel T Carvalho
- LEPABE, Faculty of Engineering, Department of Chemical Engineering, University of Porto, Porto, Portugal
| | - Maria O Pereira
- Centre of Biological Engineering, LIBRO-Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Nuno F Azevedo
- LEPABE, Faculty of Engineering, Department of Chemical Engineering, University of Porto, Porto, Portugal
| |
Collapse
|
17
|
Bai X, Xi C, Wu J. Survival of Helicobacter pylori in the wastewater treatment process and the receiving river in Michigan, USA. JOURNAL OF WATER AND HEALTH 2016; 14:692-698. [PMID: 27441864 DOI: 10.2166/wh.2016.259] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Contaminated water may play a key role in the transmission of Helicobacter pylori, resulting in gastrointestinal diseases in humans. The wastewater treatment process is an important barrier to control the transmission of H. pylori. However, the presence and viability of H. pylori in the treatment process is not well known. In this paper, the real colony morphology of H. pylori was confirmed by two types of culture media. The survival of H. pylori through the tertiary wastewater treatment process, especially UV disinfection, and in the receiving Huron River in Ann Arbor, Michigan, was investigated by plates cultivation, regular polymerase chain reaction (PCR) assays and quantitative real-time PCR from DNA. The results demonstrated that H. pylori was not only present, but also viable in all processed wastewater samples in the Ann Arbor wastewater treatment plant (WWTP). H. pylori can be found in a higher concentration in the receiving Huron River. There are many kinds of antibiotic- and UV-resistant bacteria, including H. pylori, in the final effluent of Ann Arbor WWTP.
Collapse
Affiliation(s)
- Xiaohui Bai
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China E-mail:
| | - Chuanwu Xi
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jianfeng Wu
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
18
|
Mendes L, Rocha R, Azevedo AS, Ferreira C, Henriques M, Pinto MG, Azevedo NF. Novel strategy to detect and locate periodontal pathogens: The PNA-FISH technique. Microbiol Res 2016; 192:185-191. [PMID: 27664736 DOI: 10.1016/j.micres.2016.07.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 05/01/2016] [Accepted: 07/10/2016] [Indexed: 01/08/2023]
Abstract
PURPOSE We aim to develop peptic nucleic acid (PNA) probes for the identification and localization of Aggregatibacter actinomycetemcomintans and Porphyromonas gingivalis in sub-gingival plaque and gingival biopsies by Fluorescence in situ Hybridization (FISH). METHODS A PNA probe was designed for each microorganism. The PNA-FISH method was optimized to allow simultaneous hybridization of both microorganisms with their probe (PNA-FISH multiplex). After being tested on representative strains of P. gingivalis and A. actinomycetemcomitans, the PNA-FISH method was then adapted to detect microorganisms in the subgingival plaque and gingival samples, collected from patients with severe periodontitis. RESULTS The best hybridization conditions were found to be 59°C for 150min for both probes (PgPNA1007 and AaPNA235). The in silico sensitivity and specificity was both 100% for PgPNA1007 probe and 100% and 99.9% for AaPNA235 probe, respectively. Results on clinical samples showed that the PNA-FISH method was able to detect and discriminate target bacteria in the mixed microbial population of the subgingival plaque and within periodontal tissues. CONCLUSION This investigation presents a new highly accurate method for P. gingivalis and A. actinomycetemcomitans detection and co-location in clinical samples, in just few hours. With this technique we were able to observe spatial distribution of these species within polymicrobial communities in the periodontal pockets and, for the first time with the FISH method, in the organized gingival tissue.
Collapse
Affiliation(s)
- Luzia Mendes
- Department of Periodontology, Faculty of Dental Medicine, University of Porto, Porto, Portugal.
| | - Rui Rocha
- LEPABE, Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal; LIBRO, Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Braga, Portugal; BIOMODE, Zona Industrial da Gandra, Apartado 4152, 4806-909 Guimarães, Portugal
| | - Andreia Sofia Azevedo
- LEPABE, Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Catarina Ferreira
- Department of Periodontology, Faculty of Dental Medicine, University of Porto, Porto, Portugal
| | - Mariana Henriques
- LIBRO, Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Braga, Portugal
| | - Miguel Gonçalves Pinto
- Department of Periodontology, Faculty of Dental Medicine, University of Porto, Porto, Portugal
| | - Nuno Filipe Azevedo
- LEPABE, Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| |
Collapse
|
19
|
Application of locked nucleic acid-based probes in fluorescence in situ hybridization. Appl Microbiol Biotechnol 2016; 100:5897-906. [PMID: 26969040 DOI: 10.1007/s00253-016-7429-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 02/19/2016] [Accepted: 02/24/2016] [Indexed: 02/07/2023]
Abstract
Fluorescence in situ hybridization (FISH) employing nucleic acid mimics as probes is becoming an emerging molecular tool in the microbiology area for the detection and visualization of microorganisms. However, the impact that locked nucleic acid (LNA) and 2'-O-methyl (2'-OMe) RNA modifications have on the probe that is targeting microorganisms is unknown. In this study, the melting and hybridization efficiency properties of 18 different probes in regards to their use in FISH for the detection of the 16S rRNA of Helicobacter pylori were compared. For the same sequence and target, probe length and the type of nucleic acid mimics used as mixmers in LNA-based probes strongly influence the efficiency of detection. LNA probes with 10 to 15 mers showed the highest efficiency. Additionally, the combination of 2'-OMe RNA with LNA allowed an increase on the fluorescence intensities of the probes. Overall, these results have significant implications for the design and applications of LNA probes for the detection of microorganisms.
Collapse
|
20
|
Moaddeb A, Fattahi MR, Firouzi R, Derakhshandeh A, Farshad S. Genotyping of the Helicobacter pylori cagA Gene Isolated From Gastric Biopsies in Shiraz, Southern Iran: A PCR-RFLP and Sequence Analysis Approach. Jundishapur J Microbiol 2016; 9:e30046. [PMID: 27335631 PMCID: PMC4914860 DOI: 10.5812/jjm.30046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 09/23/2015] [Accepted: 09/23/2015] [Indexed: 01/05/2023] Open
Abstract
Background Cytotoxin-associated gene A (cagA) is an important virulence factor in the pathogenesis of Helicobacter pylori. Objectives The aim of this study was to genotype the H. pylori cagA gene isolated from antral biopsies of patients with stomach symptoms, using a PCR-restriction fragment length polymorphism (PCR-RFLP) analysis. Patients and Methods A total of 161 gastric biopsies were collected from patients with stomach symptoms. After isolation of H. pylori from the biopsy culture, the cagA gene was assessed using PCR. The PCR products were then digested by the HinfI restriction endonuclease enzyme. A sample of each genotype was also subjected to direct sequencing for further analysis. Results From 161 antral biopsies, 61 (37.9%) were positive for H. pylori in culture. Overall, 24 cagA-positives were detected in the isolates. RFLP indicated three different genotypes (I, II, and III) of cagA with a frequency of 62.5%, 25%, and 12.5% among the isolates, respectively. Genotypes I and II of cagA were predominant in patients who had gastritis. However, genotype III was found in three patients with duodenitis and duodenal ulcers. Alignment of the nucleotide sequences of the three isolated genotypes, with H. pylori 26695 as a reference strain, revealed 12 inserted nucleotides in genotype III. When the sequence of genotype III was aligned with 15 additional H. pylori strains available in GenBank, the same inserted nucleotides were detected in six of them. Conclusions Using the PCR-RFLP method, three distinctive H. pylori cagA genotypes were detected in antral biopsies. Genotype I, which was predominant among the isolates, was significantly associated with gastritis. However, the data showed that cagA genotype III may play a role in duodenitis and duodenal ulcers in patients infected with H. pylori.
Collapse
Affiliation(s)
- Afsaneh Moaddeb
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, IR Iran
| | - Mohammad Reza Fattahi
- Gastroentrohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, IR Iran
| | - Roya Firouzi
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, IR Iran
| | - Abdollah Derakhshandeh
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, IR Iran
| | - Shohreh Farshad
- Clinical Microbiology Research Center, Shiraz University of Medical Sciences, Shiraz, IR Iran
- Corresponding author: Shohreh Farshad, Clinical Microbiology Research Center, Shiraz University of Medical Sciences, P. O. Box: 7193711351, Shiraz, IR Iran. Tel: +98-7136474304; +98-9173173501, Fax: +98-7136474303, E-mail:
| |
Collapse
|
21
|
Xuan SH, Wu LP, Zhou YG, Xiao MB. Detection of clarithromycin-resistant Helicobacter pylori in clinical specimens by molecular methods: A review. J Glob Antimicrob Resist 2016; 4:35-41. [PMID: 27436390 DOI: 10.1016/j.jgar.2016.01.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 01/06/2016] [Accepted: 01/08/2016] [Indexed: 12/17/2022] Open
Abstract
Various molecular methods have been developed to rapidly detect clarithromycin (CLR) resistance in Helicobacter pylori isolates in clinical specimens. All of these assays for detecting CLR resistance in H. pylori are based on detection of mutations in the 23S rRNA gene. In this article, we summarise current knowledge regarding the detection of H. pylori CLR resistance in clinical specimens by molecular tests. The available data showed that restriction fragment length polymorphism (RFLP), 3'-mismatch PCR, DNA sequencing, the PCR line probe assay (PCR-LiPA) and fluorescence in situ hybridisation assay (FISH) are able to detect CLR-resistant H. pylori in clinical specimens with excellent specificity and sensitivity. However, several factors limit their clinical application, including fastidious, time-consuming preparation and low-throughput as well as carrying a risk of contamination. Furthermore, as an invasive method, FISH is not suitable for children or the elderly. Among the molecular methods, one that is most promising for the future is real-time PCR probe hybridisation technology using fluorescence resonance energy transfer (FRET) probes, which can rapidly detect CLR resistance with high sensitivity and specificity in biopsies and stool specimens, even though mixed infections are present in clinical specimens. Moreover, due to the advantages that this method is simple, rapid and economical, real-time PCR is technically feasible for clinical application in small- and medium-sized hospitals in developing countries. Second, with high sensitivity, specificity and throughput, DNA chips will also be a valuable tool for detecting resistant H. pylori isolates from cultures and clinical specimens.
Collapse
Affiliation(s)
- Shi-Hai Xuan
- Department of Clinical Laboratory, The Affiliated Dongtai Hospital of Nantong University, Dongtai 224200, China
| | - Li-Pei Wu
- Department of Clinical Laboratory, The Affiliated Dongtai Hospital of Nantong University, Dongtai 224200, China
| | - Yu-Gui Zhou
- Department of Clinical Laboratory, The Affiliated Dongtai Hospital of Nantong University, Dongtai 224200, China
| | - Ming-Bing Xiao
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong 226001, China.
| |
Collapse
|
22
|
Santos RS, Dakwar GR, Xiong R, Forier K, Remaut K, Stremersch S, Guimarães N, Fontenete S, Wengel J, Leite M, Figueiredo C, De Smedt SC, Braeckmans K, Azevedo NF. Effect of Native Gastric Mucus on in vivo Hybridization Therapies Directed at Helicobacter pylori. MOLECULAR THERAPY. NUCLEIC ACIDS 2015; 4:e269. [PMID: 26645765 PMCID: PMC5014538 DOI: 10.1038/mtna.2015.46] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 10/28/2015] [Indexed: 12/17/2022]
Abstract
Helicobacter pylori infects more than 50% of the worldwide population. It is mostly found deep in the gastric mucus lining of the stomach, being a major cause of peptic ulcers and gastric adenocarcinoma. To face the increasing resistance of H. pylori to antibiotics, antimicrobial nucleic acid mimics are a promising alternative. In particular, locked nucleic acids (LNA)/2'-OMethyl RNA (2'OMe) have shown to specifically target H. pylori, as evidenced by in situ hybridization. The success of in vivo hybridization depends on the ability of these nucleic acids to penetrate the major physical barriers-the highly viscoelastic gastric mucus and the bacterial cell envelope. We found that LNA/2'OMe is capable of diffusing rapidly through native, undiluted, gastric mucus isolated from porcine stomachs, without degradation. Moreover, although LNA/2'OMe hybridization was still successful without permeabilization and fixation of the bacteria, which is normally part of in vitro studies, the ability of LNA/2'OMe to efficiently hybridize with H. pylori was hampered by the presence of mucus. Future research should focus on developing nanocarriers that shield LNA/2'OMe from components in the gastric mucus, while remaining capable of diffusing through the mucus and delivering these nucleic acid mimics directly into the bacteria.
Collapse
Affiliation(s)
- Rita S Santos
- LEPABE, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, Porto, Portugal
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | - George R Dakwar
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Ranhua Xiong
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
- Center for Nano- and Biophotonics, Ghent University, Ghent, Belgium
| | - Katrien Forier
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
- Center for Nano- and Biophotonics, Ghent University, Ghent, Belgium
| | - Katrien Remaut
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Stephan Stremersch
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Nuno Guimarães
- LEPABE, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, Porto, Portugal
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- Nucleic Acid Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M, Denmark
| | - Sílvia Fontenete
- LEPABE, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, Porto, Portugal
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- Nucleic Acid Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M, Denmark
- Abel Salazar Institute of Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Jesper Wengel
- Nucleic Acid Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M, Denmark
| | - Marina Leite
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | - Céu Figueiredo
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- Department of Pathology and Oncology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Stefaan C De Smedt
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Kevin Braeckmans
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
- Center for Nano- and Biophotonics, Ghent University, Ghent, Belgium
| | - Nuno F Azevedo
- LEPABE, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, Porto, Portugal
| |
Collapse
|
23
|
Fontenete S, Leite M, Guimarães N, Madureira P, Ferreira RM, Figueiredo C, Wengel J, Azevedo NF. Towards Fluorescence In Vivo Hybridization (FIVH) Detection of H. pylori in Gastric Mucosa Using Advanced LNA Probes. PLoS One 2015; 10:e0125494. [PMID: 25915865 PMCID: PMC4410960 DOI: 10.1371/journal.pone.0125494] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/12/2015] [Indexed: 12/13/2022] Open
Abstract
In recent years, there have been several attempts to improve the diagnosis of infection caused by Helicobacter pylori. Fluorescence in situ hybridization (FISH) is a commonly used technique to detect H. pylori infection but it requires biopsies from the stomach. Thus, the development of an in vivo FISH-based method (FIVH) that directly detects and allows the visualization of the bacterium within the human body would significantly reduce the time of analysis, allowing the diagnosis to be performed during endoscopy. In a previous study we designed and synthesized a phosphorothioate locked nucleic acid (LNA)/ 2’ O-methyl RNA (2’OMe) probe using standard phosphoramidite chemistry and FISH hybridization was then successfully performed both on adhered and suspended bacteria at 37°C. In this work we simplified, shortened and adapted FISH to work at gastric pH values, meaning that the hybridization step now takes only 30 minutes and, in addition to the buffer, uses only urea and probe at non-toxic concentrations. Importantly, the sensitivity and specificity of the FISH method was maintained in the range of conditions tested, even at low stringency conditions (e.g., low pH). In conclusion, this methodology is a promising approach that might be used in vivo in the future in combination with a confocal laser endomicroscope for H. pylori visualization.
Collapse
Affiliation(s)
- Sílvia Fontenete
- LEPABE, Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- Nucleic Acid Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M, Denmark
- ICBAS, Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
- * E-mail:
| | - Marina Leite
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | - Nuno Guimarães
- LEPABE, Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- Nucleic Acid Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M, Denmark
| | - Pedro Madureira
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- ICBAS, Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
- IBMC, Institute for Molecular Biology and Cell Biology, Porto, Portugal
| | - Rui Manuel Ferreira
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | - Céu Figueiredo
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- FMUP, Faculty of Medicine of Porto University, Porto, Portugal
| | - Jesper Wengel
- IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | - Nuno Filipe Azevedo
- LEPABE, Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
| |
Collapse
|
24
|
Silvia F, Joana B, Pedro M, Céu F, Jesper W, Filipe AN. Mismatch discrimination in fluorescent in situ hybridization using different types of nucleic acids. Appl Microbiol Biotechnol 2015; 99:3961-9. [DOI: 10.1007/s00253-015-6389-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 11/07/2014] [Accepted: 11/08/2014] [Indexed: 10/24/2022]
|
25
|
Fontenete S, Guimarães N, Wengel J, Azevedo NF. Prediction of melting temperatures in fluorescence in situ hybridization (FISH) procedures using thermodynamic models. Crit Rev Biotechnol 2015; 36:566-77. [PMID: 25586037 DOI: 10.3109/07388551.2014.993589] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The thermodynamics and kinetics of DNA hybridization, i.e. the process of self-assembly of one, two or more complementary nucleic acid strands, has been studied for many years. The appearance of the nearest-neighbor model led to several theoretical and experimental papers on DNA thermodynamics that provide reasonably accurate thermodynamic information on nucleic acid duplexes and allow estimation of the melting temperature. Because there are no thermodynamic models specifically developed to predict the hybridization temperature of a probe used in a fluorescence in situ hybridization (FISH) procedure, the melting temperature is used as a reference, together with corrections for certain compounds that are used during FISH. However, the quantitative relation between melting and experimental FISH temperatures is poorly described. In this review, various models used to predict the melting temperature for rRNA targets, for DNA oligonucleotides and for nucleic acid mimics (chemically modified oligonucleotides), will be addressed in detail, together with a critical assessment of how this information should be used in FISH.
Collapse
Affiliation(s)
- Sílvia Fontenete
- a Department of Chemical Engineering, Faculty of Engineering, LEPABE , University of Porto , Porto , Portugal .,b Institute of Molecular Pathology and Immunology of the University of Porto , Porto , Portugal .,c Department of Physics, Chemistry and Pharmacy , Nucleic Acid Center, University of Southern Denmark , Odense M , Denmark , and.,d ICBAS, Institute of Biomedical Sciences Abel Salazar, University of Porto , Porto , Portugal
| | - Nuno Guimarães
- a Department of Chemical Engineering, Faculty of Engineering, LEPABE , University of Porto , Porto , Portugal .,b Institute of Molecular Pathology and Immunology of the University of Porto , Porto , Portugal .,c Department of Physics, Chemistry and Pharmacy , Nucleic Acid Center, University of Southern Denmark , Odense M , Denmark , and
| | - Jesper Wengel
- c Department of Physics, Chemistry and Pharmacy , Nucleic Acid Center, University of Southern Denmark , Odense M , Denmark , and
| | - Nuno Filipe Azevedo
- a Department of Chemical Engineering, Faculty of Engineering, LEPABE , University of Porto , Porto , Portugal
| |
Collapse
|
26
|
Optimization of a peptide nucleic acid fluorescence in situ hybridization (PNA-FISH) method for the detection of bacteria and disclosure of a formamide effect. J Biotechnol 2014; 187:16-24. [PMID: 25034435 DOI: 10.1016/j.jbiotec.2014.06.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 06/13/2014] [Accepted: 06/25/2014] [Indexed: 11/23/2022]
Abstract
Despite the fact that fluorescence in situ hybridization (FISH) is a well-established technique to identify microorganisms, there is a lack of understanding concerning the interaction of the different factors affecting the obtained fluorescence. In here, we used flow cytometry to study the influence of three essential factors in hybridization - temperature, time and formamide concentration - in an effort to optimize the performance of a Peptide Nucleic Acid (PNA) probe targeting bacteria (EUB338). The PNA-FISH optimization was performed with bacteria representing different families employing response surface methodology. Surprisingly, the optimum concentration of formamide varied according to the bacterium tested. While hybridization on the bacteria possessing the thickest peptidoglycan was more successful at nearly 50% (v/v) formamide, hybridization on all other microorganisms appeared to improve with much lower formamide concentrations. Gram staining and transmission electron microscopy allowed us to confirm that the overall effect of formamide concentration on the fluorescence intensity is a balance between a harmful effect on the bacterial cell envelope, affecting cellular integrity, and the beneficial denaturant effect in the hybridization process. We also conclude that microorganisms belonging to different families will require different hybridization parameters for the same FISH probe, meaning that an optimum universal PNA-FISH procedure is non-existent for these situations.
Collapse
|
27
|
Danko AS, Fontenete SJ, de Aquino Leite D, Leitão PO, Almeida C, Schaefer CE, Vainberg S, Steffan RJ, Azevedo NF. Detection of Dehalococcoides spp. by peptide nucleic acid fluorescent in situ hybridization. J Mol Microbiol Biotechnol 2014; 24:142-9. [PMID: 24970105 DOI: 10.1159/000362790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Chlorinated solvents including tetrachloroethene (perchloroethene and trichloroethene), are widely used industrial solvents. Improper use and disposal of these chemicals has led to a widespread contamination. Anaerobic treatment technologies that utilize Dehalococcoides spp. can be an effective tool to remediate these contaminated sites. Therefore, the aim of this study was to develop, optimize and validate peptide nucleic acid (PNA) probes for the detection of Dehalococcoides spp. in both pure and mixed cultures. PNA probes were designed by adapting previously published DNA probes targeting the region of the point mutations described for discriminating between the Dehalococcoides spp. strain CBDB1 and strain 195 lineages. Different fixation, hybridization and washing procedures were tested. The results indicated that the PNA probes hybridized specifically and with a high sensitivity to their corresponding lineages, and that the PNA probes developed during this work can be used in a duplex assay to distinguish between strain CBDB1 and strain 195 lineages, even in complex mixed cultures. This work demonstrates the effectiveness of using PNA fluorescence in situ hybridization to distinguish between two metabolically and genetically distinct Dehalococcoides strains, and they can have strong implications in the monitoring and differentiation of Dehalococcoides populations in laboratory cultures and at contaminated sites.
Collapse
Affiliation(s)
- Anthony S Danko
- Centro de Investigação em Geo-Ambiente e Recursos (CIGAR), Departamento de Engenharia de Minas, Faculdade de Engenharia, Porto, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Mitchell HM, Rocha GA, Kaakoush NO, O’Rourke JL, Queiroz DMM. The Family Helicobacteraceae. THE PROKARYOTES 2014:337-392. [DOI: 10.1007/978-3-642-39044-9_275] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
29
|
Fontenete S, Guimarães N, Leite M, Figueiredo C, Wengel J, Filipe Azevedo N. Hybridization-based detection of Helicobacter pylori at human body temperature using advanced locked nucleic acid (LNA) probes. PLoS One 2013; 8:e81230. [PMID: 24278398 PMCID: PMC3838382 DOI: 10.1371/journal.pone.0081230] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 10/10/2013] [Indexed: 12/16/2022] Open
Abstract
The understanding of the human microbiome and its influence upon human life has long been a subject of study. Hence, methods that allow the direct detection and visualization of microorganisms and microbial consortia (e.g. biofilms) within the human body would be invaluable. In here, we assessed the possibility of developing a variant of fluorescence in situ hybridization (FISH), named fluorescence in vivo hybridization (FIVH), for the detection of Helicobacter pylori. Using oligonucleotide variations comprising locked nucleic acids (LNA) and 2’-O-methyl RNAs (2’OMe) with two types of backbone linkages (phosphate or phosphorothioate), we were able to successfully identify two probes that hybridize at 37 °C with high specificity and sensitivity for H. pylori, both in pure cultures and in gastric biopsies. Furthermore, the use of this type of probes implied that toxic compounds typically used in FISH were either found to be unnecessary or could be replaced by a non-toxic substitute. We show here for the first time that the use of advanced LNA probes in FIVH conditions provides an accurate, simple and fast method for H. pylori detection and location, which could be used in the future for potential in vivo applications either for this microorganism or for others.
Collapse
Affiliation(s)
- Sílvia Fontenete
- LEPABE, Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
- IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- Nucleic Acid Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M, Denmark
- ICBAS, Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Nuno Guimarães
- LEPABE, Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
- IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- Nucleic Acid Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M, Denmark
| | - Marina Leite
- IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | - Céu Figueiredo
- IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- FMUP, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Jesper Wengel
- Nucleic Acid Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M, Denmark
| | - Nuno Filipe Azevedo
- LEPABE, Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
- * E-mail:
| |
Collapse
|
30
|
Validation of a fluorescence in situ hybridization method using peptide nucleic acid probes for detection of Helicobacter pylori clarithromycin resistance in gastric biopsy specimens. J Clin Microbiol 2013; 51:1887-93. [PMID: 23596234 DOI: 10.1128/jcm.00302-13] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Here, we evaluated a previously established peptide nucleic acid-fluorescence in situ hybridization (PNA-FISH) method as a new diagnostic test for Helicobacter pylori clarithromycin resistance detection in paraffin-embedded gastric biopsy specimens. Both a retrospective study and a prospective cohort study were conducted to evaluate the specificity and sensitivity of a PNA-FISH method to determine H. pylori clarithromycin resistance. In the retrospective study (n = 30 patients), full agreement between PNA-FISH and PCR-sequencing was observed. Compared to the reference method (culture followed by Etest), the specificity and sensitivity of PNA-FISH were 90.9% (95% confidence interval [CI], 57.1% to 99.5%) and 84.2% (95% CI, 59.5% to 95.8%), respectively. In the prospective cohort (n = 93 patients), 21 cases were positive by culture. For the patients harboring clarithromycin-resistant H. pylori, the method showed sensitivity of 80.0% (95% CI, 29.9% to 98.9%) and specificity of 93.8% (95% CI, 67.7% to 99.7%). These values likely represent underestimations, as some of the discrepant results corresponded to patients infected by more than one strain. PNA-FISH appears to be a simple, quick, and accurate method for detecting H. pylori clarithromycin resistance in paraffin-embedded biopsy specimens. It is also the only one of the methods assessed here that allows direct and specific visualization of this microorganism within the biopsy specimens, a characteristic that allowed the observation that cells of different H. pylori strains can subsist in very close proximity in the stomach.
Collapse
|
31
|
Machado A, Almeida C, Carvalho A, Boyen F, Haesebrouck F, Rodrigues L, Cerca N, Azevedo NF. Fluorescence in situ hybridization method using a peptide nucleic acid probe for identification of Lactobacillus spp. in milk samples. Int J Food Microbiol 2013; 162:64-70. [PMID: 23357093 DOI: 10.1016/j.ijfoodmicro.2012.09.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 09/11/2012] [Accepted: 09/30/2012] [Indexed: 10/27/2022]
Abstract
Lactobacillus species constitute one of the dominant and beneficial bacteria in our body and are used in developed countries as a microbial adjuvant. Identification of these probiotic bacteria is traditionally performed by culture-based techniques. However, such methods are very time-consuming and can give inaccurate results, especially when Lactobacillus is present in mixed bacterial complex communities. Our study aimed to accurately identify Lactobacillus spp. using a novel Peptide Nucleic Acid (PNA) Fluorescence In Situ Hybridization (FISH) probe. The probe (Lac663) was tested on 36 strains belonging to different Lactobacillus species and on 20 strains of other bacterial species. The sensitivity and specificity of the method were 100% (95% confidence interval (CI), 88.0 to 100.0%) and 95.0% (95% CI, 73.1 to 99.7%), respectively. Additionally, we tested the applicability of the method on milk samples added with Lactobacillus strains at probiotic range concentrations and other taxonomically related bacteria, as well as pathogenic bacteria. The Lac663 probe bound exclusively to Lactobacillus strains and the described PNA-FISH method was capable of directly quantifying Lactobacillus spp. in concentrations at which these potential probiotic bacteria are considered to have an effective benefit on human health.
Collapse
Affiliation(s)
- Antonio Machado
- IBB-Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
32
|
|
33
|
Ferreira JA, Dias E, Rocha SM, Coimbra MA. Process for detecting Helicobacter pylori using aliphatic amides. Anal Bioanal Chem 2011; 401:1889-98. [DOI: 10.1007/s00216-011-5259-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 06/02/2011] [Accepted: 07/15/2011] [Indexed: 11/29/2022]
|
34
|
Azevedo NF, Jardim T, Almeida C, Cerqueira L, Almeida AJ, Rodrigues F, Keevil CW, Vieira MJ. Application of flow cytometry for the identification of Staphylococcus epidermidis by peptide nucleic acid fluorescence in situ hybridization (PNA FISH) in blood samples. Antonie van Leeuwenhoek 2011; 100:463-70. [PMID: 21638111 DOI: 10.1007/s10482-011-9595-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 05/20/2011] [Indexed: 11/28/2022]
Abstract
Staphylococcus epidermidis is considered to be one of the most common causes of nosocomial bloodstream infections, particularly in immune-compromised individuals. Here, we report the development and application of a novel peptide nucleic acid probe for the specific detection of S. epidermidis by fluorescence in situ hybridization. The theoretical estimates of probe matching specificity and sensitivity were 89 and 87%, respectively. More importantly, the probe was shown not to hybridize with closely related species such as Staphylococcus aureus. The method was subsequently successfully adapted for the detection of S. epidermidis in mixed-species blood cultures both by microscopy and flow cytometry.
Collapse
Affiliation(s)
- N F Azevedo
- IBB, Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, Braga, Portugal.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Cerqueira L, Fernandes RM, Ferreira RM, Carneiro F, Dinis-Ribeiro M, Figueiredo C, Keevil CW, Azevedo NF, Vieira MJ. PNA-FISH as a new diagnostic method for the determination of clarithromycin resistance of Helicobacter pylori. BMC Microbiol 2011; 11:101. [PMID: 21569555 PMCID: PMC3112065 DOI: 10.1186/1471-2180-11-101] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 05/14/2011] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Triple therapy is the gold standard treatment for Helicobacter pylori eradication from the human stomach, but increased resistance to clarithromycin became the main factor of treatment failure. Until now, fastidious culturing methods are generally the method of choice to assess resistance status. In this study, a new genotypic method to detect clarithromycin resistance in clinical samples, based on fluorescent in situ hybridization (FISH) using a set of peptide nucleic acid probes (PNA), is proposed. RESULTS The set of probes targeting the point mutations responsible for clarithromycin resistance was applied to H. pylori suspensions and showed 100% sensitivity and specificity (95% CI, 79.9-100 and 95% CI, 71.6-100 respectively). This method can also be amenable for application to gastric biopsy samples, as resistance to clarithromycin was also detected when histological slides were tested. CONCLUSIONS The optimized PNA-FISH based diagnostic method to detect H. pylori clarithromycin resistance shown to be a very sensitive and specific method for the detection of clarithromycin resistance in the H. pylori smears and also proved to be a reliable method for the diagnosis of this pathogen in clinical samples and an alternative to existing plating methods.
Collapse
Affiliation(s)
- Laura Cerqueira
- IBB - Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar 4710-057, Braga, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Aldobiouronic acid domains in Helicobacter pylori. Carbohydr Res 2011; 346:638-43. [DOI: 10.1016/j.carres.2011.01.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 01/04/2011] [Accepted: 01/10/2011] [Indexed: 11/20/2022]
|
37
|
Gião MS, Azevedo NF, Wilks SA, Vieira MJ, Keevil CW. Interaction of Legionella pneumophila and Helicobacter pylori with bacterial species isolated from drinking water biofilms. BMC Microbiol 2011; 11:57. [PMID: 21418578 PMCID: PMC3068934 DOI: 10.1186/1471-2180-11-57] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Accepted: 03/18/2011] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND It is well established that Legionella pneumophila is a waterborne pathogen; by contrast, the mode of Helicobacter pylori transmission remains unknown but water seems to play an important role. This work aims to study the influence of five microorganisms isolated from drinking water biofilms on the survival and integration of both of these pathogens into biofilms. RESULTS Firstly, both pathogens were studied for auto- and co-aggregation with the species isolated from drinking water; subsequently the formation of mono and dual-species biofilms by L. pneumophila or H. pylori with the same microorganisms was investigated. Neither auto- nor co-aggregation was observed between the microorganisms tested. For biofilm studies, sessile cells were quantified in terms of total cells by SYTO 9 staining, viable L. pneumophila or H. pylori cells were quantified using 16 S rRNA-specific peptide nucleic acid (PNA) probes and cultivable cells by standard culture techniques. Acidovorax sp. and Sphingomonas sp. appeared to have an antagonistic effect on L. pneumophila cultivability but not on the viability (as assessed by rRNA content using the PNA probe), possibly leading to the formation of viable but noncultivable (VBNC) cells, whereas Mycobacterium chelonae increased the cultivability of this pathogen. The results obtained for H. pylori showed that M. chelonae and Sphingomonas sp. help this pathogen to maintain cultivability for at least 24 hours. CONCLUSIONS It appears that M. chelonae may have an important role in the survival of both pathogens in drinking water. This work also suggests that the presence of some microorganisms can decrease the cultivability of L. pneumophila but not the viability which indicates that the presence of autochthonous microorganisms can lead to misleading results when the safety of water is assessed by cultivable methods alone.
Collapse
Affiliation(s)
- Maria S Gião
- School of Biological Sciences, Life Sciences Building, Highfield Campus, University of Southampton, Southampton SO17 1BJ, UK
- Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar 4710-057, Braga, Portugal
| | - Nuno F Azevedo
- School of Biological Sciences, Life Sciences Building, Highfield Campus, University of Southampton, Southampton SO17 1BJ, UK
- Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar 4710-057, Braga, Portugal
- LEPAE, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Sandra A Wilks
- School of Biological Sciences, Life Sciences Building, Highfield Campus, University of Southampton, Southampton SO17 1BJ, UK
| | - Maria J Vieira
- Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar 4710-057, Braga, Portugal
| | - Charles W Keevil
- School of Biological Sciences, Life Sciences Building, Highfield Campus, University of Southampton, Southampton SO17 1BJ, UK
| |
Collapse
|
38
|
Silva S, Henriques M, Hayes A, Oliveira R, Azeredo J, Williams DW. Candida glabrata and Candida albicans co-infection of an in vitro oral epithelium. J Oral Pathol Med 2010; 40:421-7. [PMID: 21158929 DOI: 10.1111/j.1600-0714.2010.00981.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Candida albicans is regarded as the leading of candidosis. However, Candida glabrata has emerged as an important pathogen of oral mucosa, occurring both singly or in mixed species infections, often with C. albicans. Compared with C. albicans, little is known about the role of C. glabrata in oral infection. The aim of this study was to examine single and mixed species infection of oral epithelium involving C. glabrata and establish its ability to invade and damage tissue. METHODS A reconstituted human oral epithelium (RHOE) was infected only with C. glabrata, or simultaneously with C. glabrata and C. albicans. The ability of both species to invade the tissue was examined using species specific peptide nucleic acid (PNA) probe hybridization and confocal laser scanning microscopy. Epithelial damage was assessed by measuring lactate dehydrogenase (LDH) activity. RESULTS Candida glabrata strains were able to colonize the RHOE, in a strain dependent manner. Candida glabrata single infection after 12 h, generally revealed no invasion of the RHOE, which contrasted with extensive tissue invasion demonstrated by C. albicans. Mixed infection showed that C. albicans enhanced the invasiveness of C. glabrata, and led to increased LDH release by the RHOE, which paralleled the observed histological damage. CONCLUSIONS The results obtained demonstrating enhanced invasion and increased tissue damage caused by mixed C. glabrata and C. albicans infections have important clinical significance and highlight the need to identify Candida species involved in oral candidosis.
Collapse
Affiliation(s)
- Sónia Silva
- Institute for Biotechnology and Bioengineering, Universidade do Minho, Campus de Gualtar 4710-057, Braga, Portugal
| | | | | | | | | | | |
Collapse
|
39
|
Almeida C, Azevedo NF, Fernandes RM, Keevil CW, Vieira MJ. Fluorescence in situ hybridization method using a peptide nucleic acid probe for identification of Salmonella spp. in a broad spectrum of samples. Appl Environ Microbiol 2010; 76:4476-85. [PMID: 20453122 PMCID: PMC2897454 DOI: 10.1128/aem.01678-09] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Accepted: 10/20/2009] [Indexed: 11/20/2022] Open
Abstract
A fluorescence in situ hybridization (FISH) method for the rapid detection of Salmonella spp. using a novel peptide nucleic acid (PNA) probe was developed. The probe theoretical specificity and sensitivity were both 100%. The PNA-FISH method was optimized, and laboratory testing on representative strains from the Salmonella genus subspecies and several related bacterial species confirmed the predicted theoretical values of specificity and sensitivity. The PNA-FISH method has been successfully adapted to detect cells in suspension and is hence able to be employed for the detection of this bacterium in blood, feces, water, and powdered infant formula (PIF). The blood and PIF samples were artificially contaminated with decreasing pathogen concentrations. After the use of an enrichment step, the PNA-FISH method was able to detect 1 CFU per 10 ml of blood (5 x 10(9) +/- 5 x 10(8) CFU/ml after an overnight enrichment step) and also 1 CFU per 10 g of PIF (2 x 10(7) +/- 5 x 10(6) CFU/ml after an 8-h enrichment step). The feces and water samples were also enriched according to the corresponding International Organization for Standardization methods, and results showed that the PNA-FISH method was able to detect Salmonella immediately after the first enrichment step was conducted. Moreover, the probe was able to discriminate the bacterium in a mixed microbial population in feces and water by counter-staining with 4',6-diamidino-2-phenylindole (DAPI). This new method is applicable to a broad spectrum of samples and takes less than 20 h to obtain a diagnosis, except for PIF samples, where the analysis takes less than 12 h. This procedure may be used for food processing and municipal water control and also in clinical settings, representing an improved alternative to culture-based techniques and to the existing Salmonella PNA probe, Sal23S10, which presents a lower specificity.
Collapse
Affiliation(s)
- C. Almeida
- Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar 4710-057, Braga, Portugal, Environmental Healthcare Unit, School of Biological Sciences, University of Southampton, Bassett Crescent East SO16 7PX, Southampton, United Kingdom, LEPAE, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - N. F. Azevedo
- Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar 4710-057, Braga, Portugal, Environmental Healthcare Unit, School of Biological Sciences, University of Southampton, Bassett Crescent East SO16 7PX, Southampton, United Kingdom, LEPAE, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - R. M. Fernandes
- Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar 4710-057, Braga, Portugal, Environmental Healthcare Unit, School of Biological Sciences, University of Southampton, Bassett Crescent East SO16 7PX, Southampton, United Kingdom, LEPAE, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - C. W. Keevil
- Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar 4710-057, Braga, Portugal, Environmental Healthcare Unit, School of Biological Sciences, University of Southampton, Bassett Crescent East SO16 7PX, Southampton, United Kingdom, LEPAE, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - M. J. Vieira
- Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar 4710-057, Braga, Portugal, Environmental Healthcare Unit, School of Biological Sciences, University of Southampton, Bassett Crescent East SO16 7PX, Southampton, United Kingdom, LEPAE, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| |
Collapse
|
40
|
Vilarinho S, Guimarães NM, Ferreira RM, Gomes B, Wen X, Vieira MJ, Carneiro F, Godinho T, Figueiredo C. Helicobacter pylori colonization of the adenotonsillar tissue: fact or fiction? Int J Pediatr Otorhinolaryngol 2010; 74:807-11. [PMID: 20452684 DOI: 10.1016/j.ijporl.2010.04.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 04/13/2010] [Accepted: 04/14/2010] [Indexed: 12/29/2022]
Abstract
OBJECTIVE The transmission of the gastric pathogen Helicobacter pylori involves the oral route. Molecular techniques have allowed the detection of H. pylori DNA in samples of the oral cavity, although culture of H. pylori from these type of samples has been sporadic. Studies have tried to demonstrate the presence of H. pylori in adenotonsillar tissue, with contradictory results. Our aim was to clarify whether the adenotonsillar tissue may constitute an extra gastric reservoir for H. pylori. METHODS Sixty-two children proposed for adenoidectomy or tonsillectomy were enrolled. A total of 101 surgical specimens, 55 adenoid and 46 tonsils, were obtained. Patients were characterized for the presence of anti-H. pylori antibodies by serology. On each surgical sample rapid urease test, immunohistochemistry, fluorescence in situ hybridization (FISH) with a peptide nucleic acid probe for H. pylori, and polymerase chain reaction-DNA hybridization assay (PCR-DEIA) directed to the vacA gene of H. pylori were performed. RESULTS Thirty-nine percent of the individuals had anti-H. pylori antibodies. Rapid urease test was positive in samples of three patients, all with positive serology. Immunohistochemistry was positive in samples of two patients, all with negative serology. All rapid urease test or immunohistochemistry positive cases were negative by FISH. All samples tested were negative when PCR-DEIA for H. pylori detection was used directly in adenotonsillar specimens. CONCLUSIONS The adenotonsillar tissue does not constitute an extra gastric reservoir for H. pylori infection, at least a permanent one, in this population of children. Moreover, techniques currently used for detecting gastric H. pylori colonization are not adequate to evaluate infection of the adenotonsillar tissues.
Collapse
Affiliation(s)
- Sérgio Vilarinho
- Serviço de Otorrinolaringologia, Hospital de São Marcos, Braga, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Gião MS, Azevedo NF, Wilks SA, Vieira MJ, Keevil CW. Effect of chlorine on incorporation of Helicobacter pylori into drinking water biofilms. Appl Environ Microbiol 2010; 76:1669-73. [PMID: 19966018 PMCID: PMC2832397 DOI: 10.1128/aem.01378-09] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Accepted: 11/27/2009] [Indexed: 12/25/2022] Open
Abstract
The use of a specific peptide nucleic acid (PNA) probe demonstrated that Helicobacter pylori persisted inside biofilms exposed to low concentrations of chlorine (0.2 and 1.2 mg liter(-1)) for at least 26 days, although no culturable cells were recovered. Coupled with data obtained using viability stains in pure culture, this result suggests that H. pylori can survive chlorination but remain undetectable by culture methods, which can be effectively replaced by PNA hybridization.
Collapse
Affiliation(s)
- M S Gião
- Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | | | | | | | | |
Collapse
|
42
|
Ferreira JA, Azevedo NF, Vieira MJ, Figueiredo C, Goodfellow BJ, Monteiro MA, Coimbra MA. Identification of cell-surface mannans in a virulent Helicobacter pylori strain. Carbohydr Res 2010; 345:830-8. [PMID: 20227685 DOI: 10.1016/j.carres.2010.01.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 01/26/2010] [Accepted: 01/29/2010] [Indexed: 11/25/2022]
Abstract
With the intent of contributing to a carbohydrate-based vaccine against the gastroduodenal pathogen, Helicobacter pylori, we report here the structure of cell-surface mannans obtained from a virulent strain. Unlike other wild-type strains, this strain was found to express in good quantities this polysaccharide in vitro. Structural analysis revealed a branched mannan formed by a backbone of alpha-(1-->6)-linked mannopyranosyl residues with approximately 80% branching at the O-2 position. The branches were composed of O-2-linked Man residues in both alpha- and beta-configurations: [abstract: see text]. In addition, this strain also expressed cell-surface emblematic H. pylori lipopolysaccharides (LPS) containing partially fucosylated polyLacNAc O-chains. Affinity assays with polymyxin-B and concanavalin A revealed no association between the mannan and the LPS. The described mannans may be implicated in the mediation of host-microbial interactions and immunological modulation.
Collapse
Affiliation(s)
- José A Ferreira
- Departamento de Química, Universidade de Aveiro, Aveiro, Portugal
| | | | | | | | | | | | | |
Collapse
|
43
|
Ferreira JA, Pires C, Paulo M, Azevedo NF, Domingues MR, Vieira MJ, Monteiro MA, Coimbra MA. Bioaccumulation of amylose-like glycans by Helicobacter pylori. Helicobacter 2009; 14:559-70. [PMID: 19889074 DOI: 10.1111/j.1523-5378.2009.00725.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Helicobacter pylori cell surface is composed of lipopolysaccharides (LPSs) yielding structures homologous to mammalian Lewis O-chains blood group antigens. These structures are key mediators in the definition of host-microbial interactions and known to change their expression pattern in response to environmental pressure. AIMS The present work is focused on the identification of new H. pylori cell-surface glycosides. Special attention is further devoted to provide insights on the impact of in vitro subcultivation on H. pylori cell-surface phenotypes. METHODS Cell-surface glycans from H. pylori NCTC 11637 and two clinical isolates were recovered from the aqueous phase resulting from phenol:water extraction of intact bacteria. They were evaluated in relation to their sugars and glycosidic-linkages composition by CG-MS, size-exclusion chromatography, NMR, and Mass Spectrometry. H. pylori glycan profile was also monitored during subcultivation in vitro in agar and F12 liquid medium. RESULTS All three studied strains produce LPS expressing Lewis epitopes and express bioaccumulate amylose-like glycans. Bioaccumulation of amylose was found to be enhanced with the subcultivation of the bacterium on agar medium and accompanied by a decrease in the expression of LPS O-chains. In contrast, during exponential growth in F12 liquid medium, an opposite behavior is observed, that is, there is an increase in the overall amount of LPS and decrease in amylose content. CONCLUSIONS This work shows that under specific environmental conditions, H. pylori expresses a phase-variable cell-surface alpha-(1-->4)-glucose moiety.
Collapse
Affiliation(s)
- José A Ferreira
- Departamento de Química da Universidade de Aveiro, Campus de Santiago, Aveiro, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Ferreira JA, Domingues MRM, Reis A, Monteiro MA, Coimbra MA. Differentiation of isomeric Lewis blood groups by positive ion electrospray tandem mass spectrometry. Anal Biochem 2009; 397:186-96. [PMID: 19878643 DOI: 10.1016/j.ab.2009.10.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Revised: 10/07/2009] [Accepted: 10/16/2009] [Indexed: 01/18/2023]
Abstract
Lewis histo-blood group antigens are one of the major classes of biologically active oligosaccharides. In this work, underivatized Lewis blood groups were studied by electrospray tandem mass spectrometry (ESI-MS(n)) in the positive mode with three different mass analyzers: Q-TOF (quadrupole time-of-flight), QqQ (triple quadrupole), and LIT (linear ion trap). It was observed that, under collision-induced fragmentations, type 1 Lewis antigens (Le(a) and Le(b)) could be distinguished from type 2 (Le(x) and Le(y)) on the basis of specific fragmentations of the GlcNAc unit. Whereas O-4-linked sugars of the GlcNAc are lost as residues, the O-3-linked sugars undergo fragmentation both as sugar units and as sugar residues (unit -18Da). Type 2 Lewis antigens also showed a characteristic cross-ring cleavage (0,2)A(2) of the GlcNAc. As a result, the product ions at m/z 388 and 305, characteristic of Le(x), and m/z 372, characteristic of Le(a), are proposed to distinguish the trisaccharide isomers Le(x)/Le(a). Also, the product ions at m/z 534 and 305, characteristic of Le(y), and m/z 372, characteristic of Le(b), are proposed to distinguish the tetrasaccharide isomers Le(b)/Le(y). These diagnostic fragment ions were further applied in the identification of Lewis type 2 antigens (Le(x) and Le(y)) in the lipopolysaccharide of the human gastric pathogen, Helicobacter pylori.
Collapse
Affiliation(s)
- José A Ferreira
- Departamento de Química, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | | | | | | | | |
Collapse
|
45
|
Evaluation of a new test, genotype HelicoDR, for molecular detection of antibiotic resistance in Helicobacter pylori. J Clin Microbiol 2009; 47:3600-7. [PMID: 19759218 DOI: 10.1128/jcm.00744-09] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The eradication rate of Helicobacter pylori by standard therapy is decreasing due to antibiotic resistance, mainly to clarithromycin. Our aim was to provide a new molecular test to guide the treatment of new and relapsed cases. We first studied 126 H. pylori strains for phenotypic (MIC) and genotypic resistance to clarithromycin (rrl mutation) and levofloxacin (gyrA mutation) and then developed a DNA strip genotyping test on the basis of the correlation results and literature data. Clinical strains (n = 92) and gastric biopsy specimens containing H. pylori (n = 105) were tested blindly with the new molecular test GenoType HelicoDR. The presence of mutations or the absence of hybridization with wild-type sequences was predictive, in rrl for clarithromycin resistance in 91 cases (mostly the A2147G mutation) and in gyrA for levofloxacin resistance in 58 cases (mutations at codon 87 or 91). Genotyping revealed a mix of genotypes in 33% of the cases, reflecting a coinfection or selection for resistant mutants. The sensitivity and specificity of detecting resistance were 94% and 99% for clarithromycin and 87% and 98.5% for levofloxacin, respectively. The concordance scores were 0.96 for clarithromycin and 0.94 for levofloxacin. With global resistance rates of 46% for clarithromycin and 25% for levofloxacin, which were observed for consecutive positive biopsy specimens from 2007 and 2008, the positive and negative predictive values for detecting resistance were 99% and 94% for clarithromycin and 96% and 96% for fluoroquinolone. GenoType HelicoDR is efficient at detecting mutations predictive of antibiotic resistance in H. pylori when applied to strains or directly to gastric biopsy specimens.
Collapse
|
46
|
|
47
|
Development and application of a novel peptide nucleic acid probe for the specific detection of Cronobacter genomospecies (Enterobacter sakazakii) in powdered infant formula. Appl Environ Microbiol 2009; 75:2925-30. [PMID: 19270117 DOI: 10.1128/aem.02470-08] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here, we report a fluorescence in situ hybridization (FISH) method for rapid detection of Cronobacter strains in powdered infant formula (PIF) using a novel peptide nucleic acid (PNA) probe. Laboratory tests with several Enterobacteriaceae species showed that the specificity and sensitivity of the method were 100%. FISH using PNA could detect as few as 1 CFU per 10 g of Cronobacter in PIF after an 8-h enrichment step, even in a mixed population containing bacterial contaminants.
Collapse
|
48
|
Abstract
PURPOSE OF REVIEW The purpose of this article is to review the molecular methods commonly used in medical microbiology as well as to update the clinician as to newer molecular technologies that show promise in the identification of microorganisms as well as evaluation of the presence of virulence factors and antibiotic resistance determinants. RECENT FINDINGS Numerous molecular assays have been developed recently using a variety of technologies. Direct hybridization techniques have allowed analysis of blood culture bottles for organisms such as methicillin-resistant Staphylococcus aureus. Target amplification methods allow postamplification analysis using a variety of technologies depending on the clinical needs for the assay. Postamplification analysis includes methods such as Sanger sequencing, pyrosequencing, reverse hybridization, and Luminex analysis, which are becoming more widely utilized. In the future, whole genome sequencing, mass spectrometry, and microarray analysis may provide a wealth of information that can be used to specifically tailor the treatment of infectious diseases. SUMMARY The implications of current trends in molecular infectious diseases are moving towards high-throughput, simple, array-type technologies that will provide a wealth of data regarding types of organisms present in a sample and the virulence factors/resistance determinants that influence the severity of disease. As a result of these developments, infectious diseases will be more accurately and effectively treated.
Collapse
|
49
|
Cerqueira L, Azevedo NF, Almeida C, Jardim T, Keevil CW, Vieira MJ. DNA mimics for the rapid identification of microorganisms by fluorescence in situ hybridization (FISH). Int J Mol Sci 2008; 9:1944-60. [PMID: 19325728 PMCID: PMC2635612 DOI: 10.3390/ijms9101944] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Revised: 09/24/2008] [Accepted: 10/06/2008] [Indexed: 12/23/2022] Open
Abstract
Fluorescence in situ hybridization (FISH) is a well-established technique that is used for a variety of purposes, ranging from pathogen detection in clinical diagnostics to the determination of chromosomal stability in stem cell research. The key step of FISH involves the detection of a nucleic acid region and as such, DNA molecules have typically been used to probe for the sequences of interest. However, since the turn of the century, an increasing number of laboratories have started to move on to the more robust DNA mimics methods, most notably peptide and locked nucleic acids (PNA and LNA). In this review, we will cover the state-of-the-art of the different DNA mimics in regard to their application as efficient markers for the presence of individual microbial cells, and consider their potential advantages and pitfalls. Available PNA probes are then reassessed in terms of sensitivity and specificity using rRNA databases. In addition, we also attempt to predict the applicability of DNA mimics in well-known techniques attempting to detect in situ low number of copies of specific nucleic acid sequences such as catalyzed reporter deposition (CARD) and recognition of individual genes (RING) FISH.
Collapse
Affiliation(s)
- Laura Cerqueira
- IBB - Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar 4710-057, Braga, Portugal. E-Mails:
(L. C.);
(C. A.);
(T. J.);
(M. V.)
| | - Nuno F. Azevedo
- IBB - Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar 4710-057, Braga, Portugal. E-Mails:
(L. C.);
(C. A.);
(T. J.);
(M. V.)
- Environmental Healthcare Unit, School of Biological Sciences, University of Southampton, Bassett Crescent East, Southampton SO16 7PX, UK. E-Mail:
(N. A.)
- Author to whom correspondence should be addressed; E-Mail:
; Tel. +351-253605413; Fax: +351-253678986
| | - Carina Almeida
- IBB - Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar 4710-057, Braga, Portugal. E-Mails:
(L. C.);
(C. A.);
(T. J.);
(M. V.)
- Environmental Healthcare Unit, School of Biological Sciences, University of Southampton, Bassett Crescent East, Southampton SO16 7PX, UK. E-Mail:
(N. A.)
| | - Tatiana Jardim
- IBB - Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar 4710-057, Braga, Portugal. E-Mails:
(L. C.);
(C. A.);
(T. J.);
(M. V.)
| | - Charles William Keevil
- Environmental Healthcare Unit, School of Biological Sciences, University of Southampton, Bassett Crescent East, Southampton SO16 7PX, UK. E-Mail:
(N. A.)
| | - Maria J. Vieira
- IBB - Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar 4710-057, Braga, Portugal. E-Mails:
(L. C.);
(C. A.);
(T. J.);
(M. V.)
| |
Collapse
|
50
|
Gião MS, Azevedo NF, Wilks SA, Vieira MJ, Keevil CW. Persistence of Helicobacter pylori in heterotrophic drinking-water biofilms. Appl Environ Microbiol 2008; 74:5898-904. [PMID: 18676697 PMCID: PMC2565978 DOI: 10.1128/aem.00827-08] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Accepted: 07/28/2008] [Indexed: 12/25/2022] Open
Abstract
Although the route of transmission of Helicobacter pylori remains unknown, drinking water has been considered a possible transmission vector. It has been shown previously that, in water, biofilms are a protective niche for several pathogens, protecting them from stressful conditions, such as low carbon concentration, shear stress, and less-than-optimal temperatures. In this work, the influence of these three parameters on the persistence and cultivability of H. pylori in drinking-water biofilms was studied. Autochthonous biofilm consortia were formed in a two-stage chemostat system and then inoculated with the pathogen. Total numbers of H. pylori cells were determined by microscopy using a specific H. pylori 16S rRNA peptide nucleic acid probe, whereas cultivable cells were assessed by standard plating onto selective H. pylori medium. Cultivable H. pylori could not be detected at any time point, but the ability of H. pylori cells to incorporate, undergo morphological transformations, persist, and even agglomerate in biofilms for at least 31 days without a noticeable decrease in the total cell number (on average, the concentration was between 1.54 x 10(6) and 2.25 x 10(6) cells cm(-2)) or in the intracellular rRNA content may indicate that the loss of cultivability was due to entry into a viable but noncultivable state. Unlike previous results obtained for pure-culture H. pylori biofilms, shear stress did not negatively influence the numbers of H. pylori cells attached, suggesting that the autochthonous aquatic bacteria have an important role in retaining this pathogen in the sessile state, possibly by providing suitable microaerophilic environments or linking biomolecules to which the pathogen adheres. Therefore, biofilms appear to provide not only a safe haven for H. pylori but also a concentration mechanism so that subsequent sloughing releases a concentrated bolus of cells that might be infectious and that could escape routine grab sample microbiological analyses and be a cause of concern for public health.
Collapse
Affiliation(s)
- M S Gião
- Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar 4710-057, Braga, Portugal
| | | | | | | | | |
Collapse
|