1
|
Deqing L, Khan MT, Yaoju T, Pinru C, Liuqing X, Feng L, Danni Z, Wei D, Hua C. Increasing trends of non-tuberculous mycobacteria clinical isolates in Guangzhou, China. Acta Trop 2024; 260:107398. [PMID: 39260760 DOI: 10.1016/j.actatropica.2024.107398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/26/2024] [Accepted: 09/08/2024] [Indexed: 09/13/2024]
Abstract
Non-tuberculous mycobacteria (NTM) are one of major public health concern. The current study aimed to find the prevalence trends of NTM in Guangzhou, China from January 2018 to December 2023. A total of 26,716 positive mycobacterial cultures were collected. Thirty-six specimens with incomplete personal information were excluded. The remaining 26,680 specimens were identified using a gene chip method. 16,709 isolates were Mycobacterium tuberculosis (MTB) (62.63 %), and 9,971 were NTM (37.37 %). 43.43 % (4,330/9,971) of NTM isolates were male, and 56.57 % (5,641/9,971) were female (χ2 = 24.36, P < 0.05), a male to female ratio of approximately 1:1.30. Infections in individuals with aged 40 years and above was higher (77.63 %) than below 40 years (22.37 %) (χ2 = 4.94, P = 0.026). The annual NTM isolation rates from 2018 to 2023 were 32.03 %, 34.00 %, 36.27 %, 38.58 %, 38.99 %, and 43.24 %, respectively, showing an increasing trend (χ2 for trend = 0.097, P < 0.05) (R = 0.097, P < 0.05). Out of 9,971 NTM isolates, 8,881 cases include only five common NTM species (MAC, M. abscessus/M. chelonae, M. kansasii, M. fortuitum, and M. gordonae). The overall NTM isolation rate was 37.37 %. The NTM isolation rate was significantly higher than the national average, showing an increasing trend over the last six years.
Collapse
Affiliation(s)
- Liu Deqing
- State Key Laboratory of Respiratory Disease, Guangzhou Key Laboratory of Tuberculosis Research, Department of Tuberculosis, Guangzhou Chest Hospital, Institute of Tuberculosis, Guangzhou Medical University, Guangdong 510095, PR China.
| | - Muhammad Tahir Khan
- State Key Laboratory of Respiratory Disease, Guangzhou Key Laboratory of Tuberculosis Research, Department of Tuberculosis, Guangzhou Chest Hospital, Institute of Tuberculosis, Guangzhou Medical University, Guangdong 510095, PR China; Zhongjing Research and Industrialization Institute of Chinese Medicine, Zhongguancun Scientific Park, Meixi, Nanyang, Henan 473006, PR China; Institute of Molecular Biology and Biotechnology, The University of Lahore, KM Defence Road, Lahore 58810, Pakistan.
| | - Tan Yaoju
- State Key Laboratory of Respiratory Disease, Guangzhou Key Laboratory of Tuberculosis Research, Department of Tuberculosis, Guangzhou Chest Hospital, Institute of Tuberculosis, Guangzhou Medical University, Guangdong 510095, PR China.
| | - Chen Pinru
- State Key Laboratory of Respiratory Disease, Guangzhou Key Laboratory of Tuberculosis Research, Department of Tuberculosis, Guangzhou Chest Hospital, Institute of Tuberculosis, Guangzhou Medical University, Guangdong 510095, PR China.
| | - Xu Liuqing
- State Key Laboratory of Respiratory Disease, Guangzhou Key Laboratory of Tuberculosis Research, Department of Tuberculosis, Guangzhou Chest Hospital, Institute of Tuberculosis, Guangzhou Medical University, Guangdong 510095, PR China.
| | - Liang Feng
- State Key Laboratory of Respiratory Disease, Guangzhou Key Laboratory of Tuberculosis Research, Department of Tuberculosis, Guangzhou Chest Hospital, Institute of Tuberculosis, Guangzhou Medical University, Guangdong 510095, PR China.
| | - Zhang Danni
- State Key Laboratory of Respiratory Disease, Guangzhou Key Laboratory of Tuberculosis Research, Department of Tuberculosis, Guangzhou Chest Hospital, Institute of Tuberculosis, Guangzhou Medical University, Guangdong 510095, PR China.
| | - Dongqing Wei
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, and Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, 800 Dongchuan Road Shanghai, Minhang District China, China; 2-Peng Cheng Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nanshan District, Shenzhen, Guangdong 518055, China.
| | - Chen Hua
- State Key Laboratory of Respiratory Disease, Guangzhou Key Laboratory of Tuberculosis Research, Department of Tuberculosis, Guangzhou Chest Hospital, Institute of Tuberculosis, Guangzhou Medical University, Guangdong 510095, PR China.
| |
Collapse
|
2
|
Jiang Y, Jiang M, Cai R, Shi X, Hu Q, Kan B. Rapid and specific differentiation of Salmonella enterica serotypes typhi and Paratyphi by multicolor melting curve analysis. Gut Pathog 2024; 16:43. [PMID: 39160630 PMCID: PMC11331607 DOI: 10.1186/s13099-024-00636-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 07/29/2024] [Indexed: 08/21/2024] Open
Abstract
Rapid and accurate identification of Salmonella enterica serotypes Typhi and Paratyphi (A, B and C), the causal agents of enteric fever, is critical for timely treatment, case management and evaluation of health policies in low and middle-income countries where the disease still remains a serious public health problem. The present study describes the development of a multiplex assay (EFMAtyping) for simultaneous identification of pathogens causing typhoid and paratyphoid fever in a single reaction by the MeltArray approach, which could be finished within 2.5 h. Seven specific genes were chosen for differentiation of typhoidal and nontyphoidal Salmonella. All gene targets were able to be detected by the EFMAtyping assay, with expected Tm values and without cross-reactivity to other relevant Salmonella serovars. The limit of detection (LOD) for all gene targets was 50 copies per reaction. The LOD reached 102-103 CFU/ml for each pathogen in simulated clinical samples. The largest standard deviation value for mean Tm was below 0.5 °C. This newly developed EFMAtyping assay was further evaluated by testing 551 clinical Salmonella isolates, corroborated in parallel by the traditional Salmonella identification workflow, and serotype prediction was enabled by whole-genome sequencing. Compared to the traditional method, our results exhibited 100% of specificity and greater than 96% of sensitivity with a kappa correlation ranging from 0.96 to 1.00. Thus, the EFMAtyping assay provides a rapid, high throughput, and promising tool for public health laboratories to monitor typhoid and paratyphoid fever.
Collapse
Affiliation(s)
- Yixiang Jiang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Min Jiang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Rui Cai
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Xiaolu Shi
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Qinghua Hu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China.
| | - Biao Kan
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
| |
Collapse
|
3
|
Xu N, Li L, Wu S. Epidemiology and laboratory detection of non-tuberculous mycobacteria. Heliyon 2024; 10:e35311. [PMID: 39166010 PMCID: PMC11334812 DOI: 10.1016/j.heliyon.2024.e35311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 08/22/2024] Open
Abstract
The global incidence of non-tuberculous mycobacteria (NTM) infections is on the rise. This study systematically searched several databases, including PubMed, Web of Science, Google Scholar, and two Chinese libraries (Chinese National Knowledge Infrastructure and Wanfang) to identify relevant published between 2013 and 2023 related to the isolation of NTM in clinical specimens from various countries and provinces of China. Furthermore, a comprehensive literature review was conducted in PubMed and Google Scholar to identify randomized clinical trials, meta-analyses, systematic reviews, and observational studies that evaluated the diagnostic accuracy and impact of laboratory detection methods on clinical outcomes. This review presented the most recent epidemiological data and species distributions of NTM isolates in several countries and provinces of China. Moreover, it provided insights into laboratory bacteriological detection, including the identified strains, advantages and disadvantages, recent advancements, and the commercial Mycobacterium identification kits available for clinical use. This review aimed to aid healthcare workers in understanding this aspect, enhance the standards of clinical diagnosis and treatment, and enlighten them on the existing gaps and future research priorities.
Collapse
Affiliation(s)
- Nuo Xu
- The 4th Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Lihong Li
- The 4th Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Shenghai Wu
- The 4th Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Department of Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, China
| |
Collapse
|
4
|
Liu Y, Liu Y, Guo L, Wu Y, Wang Y, Xu L, Xu M, Huang S, Chen P, Wang T, Huang Q, Li Q. Multiplex Asymmetric PCR by Combining the Amplification Refractory Mutation System with the Homo-Tag-Assisted Nondimer System. Anal Chem 2024; 96:9200-9208. [PMID: 38771984 DOI: 10.1021/acs.analchem.4c01322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Asymmetric PCR is widely used to produce single-stranded amplicons (ss-amplicons) for various downstream applications. However, conventional asymmetric PCR schemes are susceptible to events that affect primer availability, which can be exacerbated by multiplex amplification. In this study, a new multiplex asymmetric PCR approach that combines the amplification refractory mutation system (ARMS) with the homo-Tag-assisted nondimer system (HANDS) is described. ARMS-HANDS (A-H) PCR utilizes equimolar-tailed forward and reverse primers and an excess Tag primer. The tailed primer pairs initiate exponential symmetric amplification, whereas the Tag primer drives linear asymmetric amplification along fully matched strands but not one-nucleotide mismatched strands, thereby generating excess ss-amplicons. The production of ss-amplicons is validated using agarose gel electrophoresis, sequencing, and melting curve analysis. Primer dimer alleviation is confirmed by both the reduced Loss function value and a 20-fold higher sensitivity in an 11-plex A-H PCR assay than in an 11-plex conventional asymmetric PCR assay. Moreover, A-H PCR demonstrates unbiased amplification by its allele quantitative ability in correct identification of all 31 trisomy 21 samples among 342 clinical samples. A-H PCR is a new generation of multiplex asymmetric amplification approach with various applications, especially when sensitive and quantitative detection is required.
Collapse
Affiliation(s)
- Ying Liu
- Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, State Key Laboratory of Cellular Stress Biology, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Yinghua Liu
- Centre for Reproduction and Genetics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215002, China
| | - Liu Guo
- Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, State Key Laboratory of Cellular Stress Biology, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Yazhe Wu
- Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, State Key Laboratory of Cellular Stress Biology, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Yafang Wang
- Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, State Key Laboratory of Cellular Stress Biology, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Lingzhen Xu
- Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, State Key Laboratory of Cellular Stress Biology, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Mingzhu Xu
- Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, State Key Laboratory of Cellular Stress Biology, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Siyu Huang
- Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, State Key Laboratory of Cellular Stress Biology, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Ping Chen
- NHC Key Laboratory of Thalassemia Medicine, Key Laboratory of Thalassemia Medicine, Chinese Academy of Medical Sciences, Guangxi Key Laboratory of Thalassemia Research, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Ting Wang
- Centre for Reproduction and Genetics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215002, China
| | - Qiuying Huang
- Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, State Key Laboratory of Cellular Stress Biology, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Qingge Li
- Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, State Key Laboratory of Cellular Stress Biology, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, Xiamen 361102, China
| |
Collapse
|
5
|
Ying C, Zhang L, Jin X, Zhu D, Wu W. Advances in diagnosis and treatment of non-tuberculous mycobacterial lung disease. Diagn Microbiol Infect Dis 2024; 109:116254. [PMID: 38492490 DOI: 10.1016/j.diagmicrobio.2024.116254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
The prevalence of Non-tuberculous Mycobacterial Pulmonary Disease (NTM-PD) is increasing worldwide. The advancement in molecular diagnostic technology has greatly promoted the rapid diagnosis of NTM-PD clinically, and the pathogenic strains can be identified to the species level through molecular typing, which provides a reliable basis for treatment. In addition to the well-known PCR and mNGS methods, there are numerous alternative methods to identify NTM to the species level. The treatment of NTM-PD remains a challenging problem. Although clinical guidelines outline several treatment options for common NTM species infections, in most cases, the therapeutic outcomes of these drugs for NTM-PD often fall short of expectations. At present, the focus of research is to find more effective and more tolerable NTM-PD therapeutic drugs and regimens. In this paper, the latest diagnostic techniques, therapeutic drugs and methods, and prevention of NTM-PD are reviewed.
Collapse
Affiliation(s)
- Chiqing Ying
- Department of Respiratory Medicine, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, China
| | - Lvjun Zhang
- Department of Respiratory Medicine, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, China
| | - Xuehang Jin
- Department of Respiratory Medicine, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, China
| | - Dan Zhu
- Department of Respiratory Medicine, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, China.
| | - Wei Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China.
| |
Collapse
|
6
|
Piasecki L, Genestet C, Benito Y, Rasigade JP, Lina G, Dumitrescu O, Hodille E. Retrospective and prospective evaluation of the FluoroType®-Mycobacteria VER 1.0 assay for the identification of mycobacteria from cultures in a French center. Eur J Clin Microbiol Infect Dis 2024; 43:1091-1098. [PMID: 38607578 DOI: 10.1007/s10096-024-04825-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/04/2024] [Indexed: 04/13/2024]
Abstract
PURPOSE Rapid, reliable identification of mycobacteria from positive cultures is essential for patient management, particularly for the differential diagnosis of Mycobacterium tuberculosis complex (MTBC) and nontuberculous mycobacteria (NTM) species. The aim of the present study was to evaluate a new "In-Vitro-Diagnostic"-certified PCR kit, FluoroType®-Mycobacteria VER 1.0 (Hain Lifescience GmbH) for NTM and MTBC identification from cultures. METHODS Mycobacteria identification isolated from positive cultures during routine practice at the Lyon university hospital mycobacteria laboratory obtained by hsp65 amplification/sequencing were compared retrospectively and prospectively to those obtained by and the FluoroType®-Mycobacteria VER 1.0 kit. RESULTS The overall agreement between hsp65 amplification/sequencing and the FluoroType®-Mycobacteria VER 1.0 kit was 88.4% (84/95); 91.2% (52/57) for the retrospective period and 84.2% (32/38) for the prospective period. There were 9 (9.5%) minor discrepancies (species in the FluoroType®-Mycobacteria VER 1.0 database and identified at genus level): 4 during the retrospective period, 5 during the prospective period; and 2 (2.1%) major discrepancies (species in the FluoroType®-Mycobacteria VER 1.0 database and identified incorrectly to species level): 1 during the retrospective period (M. kumamotonense identified as M. abscessus subsp massiliense by the kit) and 1 during the prospective period (M. chimaera identified as M. smegmatis by the kit). Including concordant results at genus level and minor discrepancies, 17.9% (17/95) of strains were identified as Mycobacterium sp. by the FluoroType®-Mycobacteria-VER 1.0 kit. CONCLUSION The good performance of the FluoroType®-Mycobacteria-VER 1.0 kit with few major discrepancies could enable its use for first-line identification of positive mycobacteria cultures. However, an alternative identification method at least for reference laboratories is needed owing to the non-negligible proportion of NTM strains were identified at genus level.
Collapse
Affiliation(s)
- Lisa Piasecki
- Laboratoire des Mycobactérie, Laboratoire de biologie médicale multi-site, Groupement Hospitalier Nord, Hospices civils de Lyon, Lyon, France
| | - Charlotte Genestet
- Laboratoire des Mycobactérie, Laboratoire de biologie médicale multi-site, Groupement Hospitalier Nord, Hospices civils de Lyon, Lyon, France
| | - Yvonne Benito
- Laboratoire des Mycobactérie, Laboratoire de biologie médicale multi-site, Groupement Hospitalier Nord, Hospices civils de Lyon, Lyon, France
| | - Jean-Philippe Rasigade
- Laboratoire des Mycobactérie, Laboratoire de biologie médicale multi-site, Groupement Hospitalier Nord, Hospices civils de Lyon, Lyon, France
| | - Gérard Lina
- Laboratoire des Mycobactérie, Laboratoire de biologie médicale multi-site, Groupement Hospitalier Nord, Hospices civils de Lyon, Lyon, France
| | - Oana Dumitrescu
- Laboratoire des Mycobactérie, Laboratoire de biologie médicale multi-site, Groupement Hospitalier Nord, Hospices civils de Lyon, Lyon, France
| | - Elisabeth Hodille
- Laboratoire des Mycobactérie, Laboratoire de biologie médicale multi-site, Groupement Hospitalier Nord, Hospices civils de Lyon, Lyon, France.
| |
Collapse
|
7
|
Liang Q, Jiang X, Jia J, Zhao L, Li Y, Wang F, Dong L, Xue Y, Jiang G, Huang H. An early and trustable indicator suggestive of non-tuberculosis mycobacteria isolation in a high tuberculosis burden setting. J Infect 2024; 88:106149. [PMID: 38574774 DOI: 10.1016/j.jinf.2024.106149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 03/13/2024] [Accepted: 03/27/2024] [Indexed: 04/06/2024]
Abstract
BACKGROUND Distinguishing between nontuberculous mycobacterial (NTM) lung infections and pulmonary tuberculosis becomes challenging due to their similar clinical manifestations and radiological images. Consequently, instances of delayed diagnosis or misdiagnosis are highly frequent. A feasible and reliable indicator of the existence of NTM in the early stages of the disease would help to solve this dilemma. METHODS In this study, we evaluated the potential of smear-positive and Xpert assay (Cepheid, USA) negative outcomes as an early indicator of possible NTM infection in a high TB-burden setting retrospectively and prospectively. RESULTS During the study period, 12·77% (138/1081) of the smear-positive cases yielded negative outcomes with the simultaneous Xpert assay. From the 110 patients who yielded smear-positive/Xpert-negative outcomes and cultivated strain as well, 105 (95·45%) were proved to have NTM isolated. By incorporating an additional criterion of a negative result from the Interferon-gamma release assay, the accuracy of the screening method reached 100%. Regarding the NTM presence prediction value, smear-positive/Xpert-negative has a sensitivity of 24·86% (45/181) in all NTM isolated cases but 93·75-96·55% accuracy in retrospective study or 93·75% accuracy in prospective study in smear-positive NTM isolated cases. In addition, the specificity was ∼99·47% (943/948) in smear-positive tuberculosis cases. CONCLUSION The clue of the presence of NTM could be obtained on the first day of the hospital visit due to the point of care (POC) feature of smear testing and Xpert assay. About one-fourth of the NTM-isolated patients would benefit from this rapid, convenient, and reliable screening strategy in the given circumstance. Smear-positive/Xpert-negative outcome is an early, trustable indicator that is indicative of NTM isolation.
Collapse
Affiliation(s)
- Qian Liang
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China
| | - Xiaoyi Jiang
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China
| | - Junnan Jia
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China
| | - Liping Zhao
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China
| | - Yunxu Li
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China
| | - Fen Wang
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China
| | - Lingling Dong
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China
| | - Yi Xue
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China
| | - Guanglu Jiang
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China.
| | - Hairong Huang
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China.
| |
Collapse
|
8
|
Zhu Y, Liu Z, Peng L, Liu B, Wu K, Zhang M, Wang X, Pan J. Evaluation of nucleotide MALDI-TOF-MS for the identification of Mycobacterium species. Front Cell Infect Microbiol 2024; 14:1335104. [PMID: 38379773 PMCID: PMC10876993 DOI: 10.3389/fcimb.2024.1335104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/22/2024] [Indexed: 02/22/2024] Open
Abstract
Background The accurate identification of the Mycobacterium tuberculosis complex (MTBC) and different nontuberculous mycobacteria (NTM) species is crucial for the timely diagnosis of NTM infections and for reducing poor prognoses. Nucleotide matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) has been extensively used for microbial identification with high accuracy and throughput. However, its efficacy for Mycobacterium species identification has been less studied. The objective of this study was to evaluate the performance of nucleotide MALDI-TOF-MS for Mycobacterium species identification. Methods A total of 933 clinical Mycobacterium isolates were preliminarily identified as NTM by the MPB64 test. These isolates were identified by nucleotide MALDI-TOF-MS and Sanger sequencing. The performance of nucleotide MALDI-TOF MS for identifying various Mycobacterium species was analyzed based on Sanger sequencing as the gold standard. Results The total correct detection rate of all 933 clinical Mycobacterium isolates using nucleotide MALDI-TOF-MS was 91.64% (855/933), and mixed infections were detected in 18.65% (174/933) of the samples. The correct detection rates for Mycobacterium intracellulare, Mycobacterium abscessus, Mycobacterium kansasii, Mycobacterium avium, MTBC, Mycobacterium gordonae, and Mycobacterium massiliense were 99.32% (585/589), 100% (86/86), 98.46% (64/65), 94.59% (35/37), 100.00% (34/34), 95.65% (22/23), and 100% (19/19), respectively. For the identification of the MTBC, M. intracellulare, M. abscessus, M. kansasii, M. avium, M. gordonae, and M. massiliense, nucleotide MALDI-TOF-MS and Sanger sequencing results were in good agreement (k > 0.7). Conclusion In conclusion, nucleotide MALDI-TOF-MS is a promising approach for identifying MTBC and the most common clinical NTM species.
Collapse
Affiliation(s)
- Yelei Zhu
- Department of Tuberculosis Control and Prevention, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Zhengwei Liu
- Department of Tuberculosis Control and Prevention, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Lina Peng
- Department of Service and Support, Agena Bioscience, Shanghai, China
| | - Bin Liu
- Department of Service and Support, Agena Bioscience, Shanghai, China
| | - Kunyang Wu
- Department of Tuberculosis Control and Prevention, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Mingwu Zhang
- Department of Tuberculosis Control and Prevention, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Xiaomeng Wang
- Department of Tuberculosis Control and Prevention, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Junhang Pan
- Department of Tuberculosis Control and Prevention, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| |
Collapse
|
9
|
Chen X, Sechi LA, Molicotti P. Evaluation of mycobacteria infection prevalence and optimization of the identification process in North Sardinia, Italy. Microbiol Spectr 2024; 12:e0317923. [PMID: 38059624 PMCID: PMC10783066 DOI: 10.1128/spectrum.03179-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/06/2023] [Indexed: 12/08/2023] Open
Abstract
IMPORTANCE Mycobacterial infection is a major threat to public health worldwide. Accurate identification of infected species and drug resistance detection are critical factors in treatment. We focused on shortening the turn-around time of identifying mycobacteria species and antibiotic resistance tests.
Collapse
Affiliation(s)
- Xiang Chen
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Health Care Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Leonardo Antonio Sechi
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- SC Microbiologia, AOU Sassari, Sassari, Italy
| | - Paola Molicotti
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- SC Microbiologia, AOU Sassari, Sassari, Italy
| |
Collapse
|
10
|
Zheng M, Chen X, Chen Q, Chen X, Huang M. Employing Multicolor Melting Curve Analysis to Rapidly Identify Non-Tuberculous Mycobacteria in Patients with Bronchiectasis: A Study from a Pulmonary Hospital in the Fuzhou District of China, 2018-2022. Crit Rev Immunol 2024; 44:41-49. [PMID: 38505920 DOI: 10.1615/critrevimmunol.2024052213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Non-tuberculous mycobacteria (NTM) infection is common in bronchiectasis, with rising incidence globally. However, investigation into NTM in bronchiectasis patients in China remains relatively limited. This work aimed to identify and understand the features of NTM in bronchiectasis patient in Fuzhou district of China. The pulmonary samples were collected from 281 bronchiectasis patients with suspected NTM infection in Fuzhou, 2018-2022. MPB64 antigen detection was employed for the preliminary evaluation of NTM. Further NTM identification was realized using gene chip and gene sequencing. Among 281 patients, 172 (61.21%) patients were NTM-positive (58.72%) according to MPB64 antigen detection, with females (58.72%) outnumbering males (41.28%) and the highest prevalence in the age group of 46-65 years. In total, 47 NTM single infections and 3 mixed infections (1 Mycobacterium tuberculosis complex-M. intracellulare, 1 M. avium-M. intracellulare, and 1 M. abscessus-M. intracellulare) were identified through multicolor melting curve analysis (MMCA), which was compared with gene sequencing results. Both methods suggested Mycobacterium (M.) intracellulare, M. abscessus, and M. avium as the primary NTM species affecting bronchiectasis patients. M. intracellulare and M. abscessus were more frequent in females than males with the highest prevalence in the age group of 46-65 years according to MMCA. This research provides novel insights into the epidemiological and clinical features of NTM in bronchiectasis patients in Southeastern China. Significantly, M. intracellulare, M. abscessus, and M. avium were identified as the major NTM species, contributing to a better understanding and management of bronchiectasis accompanied by NTM infection.
Collapse
Affiliation(s)
- Mintao Zheng
- Department of Clinical Laboratory, Fuzhou Pulmonary Hospital and Fujian Medical University Clinical Teaching Hospital, Fuzhou, Fujian, China
| | - Xinchao Chen
- Department of Clinical Laboratory, Fuzhou Pulmonary Hospital and Fujian Medical University Clinical Teaching Hospital, Fuzhou, Fujian, China
| | - Qiaoqian Chen
- Department of Clinical Laboratory, Fuzhou Pulmonary Hospital and Fujian Medical University Clinical Teaching Hospital, Fuzhou, Fujian, China
| | - Xiaohong Chen
- Department of Respiratory Medicine, Fuzhou Pulmonary Hospital and Fujian Medical University Clinical Teaching Hospital, Fuzhou, Fujian, China
| | - Mingxiang Huang
- Fuzhou Pulmonary Hospital and Fujian Medical University Clinical Teaching Hospital
| |
Collapse
|
11
|
Zheng X, Wang L, Davies Forsman L, Zhang Y, Chen Y, Luo X, Liu Y, Bruchfeld J, Hu Y, Alffenaar JWC, Sha W, Xu B. Correlation of drug exposure and bacterial susceptibility with treatment response for Mycobacterium avium complex lung disease: protocol for a prospective observational cohort study. BMJ Open 2023; 13:e075383. [PMID: 37788924 PMCID: PMC10551947 DOI: 10.1136/bmjopen-2023-075383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 09/12/2023] [Indexed: 10/05/2023] Open
Abstract
INTRODUCTION The burden of Mycobacterium avium complex (MAC) lung disease is increasing globally and treatment outcome is in general poor. Therapeutic drug monitoring has the potential to improve treatment outcome by ensuring adequate drug exposure. However, very limited population-based studies exist for MAC lung disease. This study aims to describe the distribution of drug exposure for key antimycobacterial drugs at population level, and to analyse them in relationship to treatment outcome in patients with MAC lung disease. METHODS AND ANALYSIS A prospective cohort aiming to include 100 adult patients diagnosed with and treated for MAC lung disease will be conducted in Shanghai Pulmonary Hospital, China. Blood samples will be collected after 1 month MAC treatment for measurement of macrolides, rifamycin, ethambutol, amikacin and/or fluoroquinolones, using a validated liquid-chromatography tandem mass spectrometry method. Respiratory samples will be collected at inclusion and once every 3 months for mycobacterial culture until treatment completion. Minimum inhibitory concentration (MIC) determination will be performed using a commercial broth microdilution plate. In addition to mycobacterial culture, disease severity and clinical improvement will be assessed from the perspective of lung function, radiological presentation and self-reported quality of life. Whole genome sequencing will be performed for any longitudinal isolates with significant change of MIC to explore the emergence of drug resistance-conferring mutations. The relationship between drug exposure and treatment outcome will be analysed and potential confounders will be considered for adjustment in multivariable models. Meanwhile, the associations between drug exposure in relation to MIC and markers of treatment response will be explored using Cox proportional hazards or binary logistic regression models, as appropriate. ETHICS AND DISSEMINATION This study has been approved by the ethics committee of Shanghai Pulmonary Hospital (No. K22-149Z). Written and oral informed consent will be obtained from all participants. The study results will be submitted to a peer-reviewed journal. TRIAL REGISTERATION NUMBER NCT05824988.
Collapse
Affiliation(s)
- Xubin Zheng
- Clinic and Research Centre of Tuberculosis, Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Li Wang
- Clinic and Research Centre of Tuberculosis, Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Lina Davies Forsman
- Division of Infectious Diseases, Department of Medicine, Karolinska Institute, Stockholm, Sweden
- Department of Infectious Disease, Karolinska University Hospital, Stockholm, Sweden
| | - Yangyi Zhang
- Division of TB and HIV/AIDS Prevention, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Yuhang Chen
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Xuejiao Luo
- Clinic and Research Centre of Tuberculosis, Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Yidian Liu
- Clinic and Research Centre of Tuberculosis, Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Judith Bruchfeld
- Division of Infectious Diseases, Department of Medicine, Karolinska Institute, Stockholm, Sweden
- Department of Infectious Disease, Karolinska University Hospital, Stockholm, Sweden
| | - Yi Hu
- Department of Epidemiology, School of Public Health and Key Laboratory of Public Health Safety, Fudan University, Shanghai, China
| | - Jan-Willem C Alffenaar
- Faculty of Medicine and Health, School of Pharmacy, The University of Sydney, Sydney, New South Wales, Australia
- Westmead Hospital, Syndney, New South Wales, Australia
- Marie Bashir Institute of Infectious Diseases and Biosecurity, The University of Sydney, Sydney, New South Wales, Australia
| | - Wei Sha
- Clinic and Research Centre of Tuberculosis, Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Biao Xu
- Department of Epidemiology, School of Public Health and Key Laboratory of Public Health Safety, Fudan University, Shanghai, China
| |
Collapse
|
12
|
Yao L, Gui X, Wu X, Yang J, Fang Y, Sun Q, Gu J, Sha W. Rapid Identification of Nontuberculous Mycobacterium Species from Respiratory Specimens Using Nucleotide MALDI-TOF MS. Microorganisms 2023; 11:1975. [PMID: 37630537 PMCID: PMC10458091 DOI: 10.3390/microorganisms11081975] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
We performed a prospective study to evaluate the diagnostic accuracy of nucleotide matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) in identifying nontuberculous mycobacterium (NTM) from clinical respiratory samples. A total of 175 eligible patients were prospectively enrolled, including 108 patients diagnosed with NTM pulmonary disease (NTM-PD) and 67 control patients with other diseases. All specimens were subjected to acid-fast staining, liquid culture combined with MPT64 antigen detection, and a nucleotide MALDI-TOF MS assay. NTM cultures were also subjected to the MeltPro Myco assay for species identification. Altogether, the sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of nucleotide MALDI-TOF MS were 77.8% (95% CI: 68.6-85.0%), 92.5% (82.8-97.2%), 94.4% (86.8-97.9%), and 72.1% (61.2-81.0%), respectively; these results were not statistically different from the results of culture + MPT64 antigen testing (75.0% [65.6-82.6%], 95.5% [86.6-98.8%], 96.4% [89.2-99.1%], and 70.3% [59.7-79.2%], respectively). In the identification of NTM species, of the 84 nucleotide MALDI-TOF MS positive samples, 77 samples (91.7%) were identified at the species level. Using culture + MeltPro Myco assay as the reference standard, nucleotide MALDI-TOF MS correctly identified 77.8% (63/81) of NTM species. Our results demonstrated that the nucleotide MALDI-TOF MS assay was a rapid single-step method that provided the reliable detection of NTM and identification of NTM species. This new method had the same sensitivity and specificity as the culture + MPT64 antigen method, but was much more rapid.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jin Gu
- Clinic and Research Center of Tuberculosis, Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; (L.Y.); (X.G.)
| | - Wei Sha
- Clinic and Research Center of Tuberculosis, Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; (L.Y.); (X.G.)
| |
Collapse
|
13
|
Wang J, Chen Z, Xu Y, Qiu W, Chen S, Pei H, Zhong Y. Screening and Drug Resistance Analysis of Non-Tuberculous Mycobacteria in Patients with Suspected Pulmonary Tuberculosis on the Hainan Island, China. Infect Drug Resist 2023; 16:463-476. [PMID: 36721630 PMCID: PMC9884444 DOI: 10.2147/idr.s396050] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/16/2023] [Indexed: 01/26/2023] Open
Abstract
Background China has seen a drastic increase in the incidence of non-tuberculous mycobacteria (NTM) infection, which is a notable public health issue. Due to a lack of reliable epidemiological surveillance information, there is a need to gather accurate epidemiological and surveillance data, which can help clinicians effectively treat NTM patients. Moreover, drug susceptibility testing for NTM is not frequently performed in China. This retrospective study, therefore, determined the prevalence and resistance characteristics of NTM to provide a reference to control the NTM epidemic. Methods Sputum, alveolar lavage fluid, and other respiratory specimens were collected from 3025 patients with suspected pulmonary tuberculosis attending The Second Affiliated Hospital of Hainan Medical University from January 2014 to December 2021. Strain identification and species distribution of NTM were performed by DNA chip technology and gene sequencing, and the drug resistance of NTM isolates was evaluated by calculating the minimum inhibitory concentration through antimicrobial susceptibility testing for NTM. Results From 2014 to 2021, 373 strains of NTM were isolated and identified from respiratory specimens of 3025 suspected tuberculosis patients. Except in 2014, NTM-infected patients accounted for more than 10% of suspected tuberculosis patients in other years. The median age of patients with NTM infection was 62.0 years (53.0, 71.0), and the male-to-female ratio among these patients was 0.79:1. Among culture-positive strains, 12.3% (373/3040; 95% CI 11.1-13.4%) were identified as NTM comprising forty species of NTM. The forty species of NTM included 23 slow-growing mycobacteria (SGM) and 17 rapidly-growing mycobacteria (RGM). Among the NTM isolates, 58.7% (219/373; 95% CI 53.7-63.7%) were SGM and 41.3% (154/373; 95% CI 36.3-46.3%) were RGM. M.avium complex(MAC)(41.3%; 95% CI 36.3-46.3%) and M.abscessus complex (MABC)(33.2%; 95% CI 28.4-38.0%) were the most frequently detected species, followed by M.simiae Complex (11.8%; 95% CI 8.5-15.1%), M.fortuitum group (5.1%; 95% CI 2.9-7.3%), and others. Drug sensitivity test results showed that most of the NTM isolates were susceptible to amikacin and clarithromycin with a drug resistance rate of less than 10%. However, clarithromycin could induce drug resistance, followed by linezolid and moxifloxacin, and their drug resistance rate was less than 50%. Conclusion During 2014-2021, the number of NTM isolates detected in the respiratory specimens of the study patients in The Second Affiliated Hospital of Hainan Medical University increased year by year. M. intracellulare is the most common pathogenic NTM species, and there is a high incidence of NTM infection on Hainan Island. Our findings might be of great importance for diagnosing and treating this patient population in Hainan.
Collapse
Affiliation(s)
- Jieying Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Hainan Medical University, Haikou, People’s Republic of China
| | - Zhuolin Chen
- Department of Clinical Laboratory, The Second Affiliated Hospital of Hainan Medical University, Haikou, People’s Republic of China
| | - Yuni Xu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Hainan Medical University, Haikou, People’s Republic of China
| | - Wenhua Qiu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Hainan Medical University, Haikou, People’s Republic of China
| | - Shaowen Chen
- Department of Clinical Laboratory, The Second Affiliated Hospital of Hainan Medical University, Haikou, People’s Republic of China
| | - Hua Pei
- Department of Clinical Laboratory, The Second Affiliated Hospital of Hainan Medical University, Haikou, People’s Republic of China
| | - Yeteng Zhong
- Department of Clinical Laboratory, The Second Affiliated Hospital of Hainan Medical University, Haikou, People’s Republic of China,Correspondence: Yeteng Zhong; Hua Pei, Department of Clinical Laboratory, The Second Affiliated Hospital of Hainan Medical University, Haikou, People’s Republic of China, Email ;
| |
Collapse
|
14
|
Morais FCL, Bello GL, Costi C, Schmid KB, Soares TDS, Barcellos RB, Unis G, Dias CF, da Silva PEA, Rossetti ML. Detection of non-tuberculosus mycobacteria (NTMs) in lung samples using 16S rRNA. Mem Inst Oswaldo Cruz 2022; 117:e220031. [PMID: 35920498 PMCID: PMC9337835 DOI: 10.1590/0074-02760220031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 07/11/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Non-tuberculous mycobacteria (NTMs) cause diseases known as mycobacteriosis
and are an important cause of morbidity and mortality. The diagnosis of
pulmonary disease caused by NTM is hampered by its clinical similarity with
tuberculosis (TB) and by the lack of an accurate and rapid laboratory
diagnosis. OBJECTIVES Detect DNA from NTMs directly from lung samples using real-time polymerase
chain reaction (qPCR) for amplification of 16S rRNA. Additionally, DNA
sequencing (hsp65 and rpoB genes) was used
to identify the species of MNTs. METHODS A total of 68 sputum samples (54 with suspected NTMs and 14 with TB) from
patients treated at a referral hospital were used. FINDINGS Of these, 27/54 (50%) were qPCR positive for NTMs and 14/14 TB patients
(controls) were qPCR negative with an almost perfect concordance
(Kappa of 0.93) with the Mycobacterium
spp. culture. Sequencing confirmed the presence of NTM in all positive
samples. The most common species was Mycobacterium gordonae
(33%), followed by Mycobacterium abscessus (26%),
Mycobacterium fortuitum (22%), Mycobacterium
avium (15%) and Mycobacterium peregrinum
(4%). MAIN CONCLUSIONS The qPCR technique for detecting NTMs targeting 16S rRNA has the potential
to detect NTMs and rapidly differentiate from Mycobacterium
tuberculosis. However, it is necessary to identify the species
to help in the differential diagnosis between disease and contamination, and
to guide the choice of the therapeutic scheme.
Collapse
Affiliation(s)
- Franciele Costa Leite Morais
- Universidade Luterana do Brasil, Programa de Pós-Graduação em Biologia Celular e Molecular Aplicada à Saúde, Canoas, RS, Brasil
| | - Graziele Lima Bello
- Instituto Nacional de Ciência e Tecnologia em Tuberculose, Programa Institutos Nacionais de Ciência e Tecnologia, Porto Alegre, RS, Brasil
| | - Cíntia Costi
- Secretaria da Saúde do Rio Grande do Sul, Centro de Desenvolvimento Científico e Tecnológico, Porto Alegre, RS, Brasil.,Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Biologia Celular e Molecular, Porto Alegre, RS, Brasil
| | - Karen Barros Schmid
- Secretaria da Saúde do Rio Grande do Sul, Centro de Desenvolvimento Científico e Tecnológico, Porto Alegre, RS, Brasil.,Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Biologia Celular e Molecular, Porto Alegre, RS, Brasil
| | - Tainá Dos Santos Soares
- Universidade Luterana do Brasil, Programa de Pós-Graduação em Biologia Celular e Molecular Aplicada à Saúde, Canoas, RS, Brasil.,Secretaria da Saúde do Rio Grande do Sul, Centro de Desenvolvimento Científico e Tecnológico, Porto Alegre, RS, Brasil
| | - Regina Bones Barcellos
- Secretaria da Saúde do Rio Grande do Sul, Centro de Desenvolvimento Científico e Tecnológico, Porto Alegre, RS, Brasil.,Universidade Federal do Rio de Janeiro, Programa de Pós-Graduação em Clínica Médica, Rio de Janeiro, RJ, Brasil
| | - Gisela Unis
- Secretaria da Saúde do Rio Grande do Sul, Hospital Sanatório Partenon, Porto Alegre, RS, Brasil
| | - Claudia Fontoura Dias
- Secretaria da Saúde do Rio Grande do Sul, Hospital Sanatório Partenon, Porto Alegre, RS, Brasil
| | - Pedro Eduardo Almeida da Silva
- Universidade Federal do Rio Grande, Faculdade de Medicina, Centro de Pesquisas em Microbiologia Médica, Rio Grande, RS, Brasil
| | - Maria Lucia Rossetti
- Universidade Luterana do Brasil, Programa de Pós-Graduação em Biologia Celular e Molecular Aplicada à Saúde, Canoas, RS, Brasil.,Instituto Nacional de Ciência e Tecnologia em Tuberculose, Programa Institutos Nacionais de Ciência e Tecnologia, Porto Alegre, RS, Brasil.,Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Biologia Celular e Molecular, Porto Alegre, RS, Brasil
| |
Collapse
|
15
|
Wei W, Cao J, Wu XC, Cheng LP, Shen XN, Sha W, Sun Q. Diagnostic performance of metagenomic next-generation sequencing in non-tuberculous mycobacterial pulmonary disease when applied to clinical practice. Infection 2022; 51:397-405. [PMID: 35913608 PMCID: PMC10042946 DOI: 10.1007/s15010-022-01890-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/13/2022] [Indexed: 11/05/2022]
Abstract
OBJECTIVE To compare non-tuberculous mycobacterial pulmonary disease (NTMPD) diagnosis by metagenomic next-generation sequencing (mNGS) with Bactec mycobacterial growth indicator tube (MGIT) 960. METHODS A total of 422 patients with suspected NTMPD in Shanghai Pulmonary Hospital between January 2020 and May 2021 were retrospectively analyzed; 194 were diagnosed with NTMPD. The diagnostic performance of mNGS and MGIT 960 for NTMPD was assessed. Receiver operating characteristic (ROC) curves and areas under curve (AUCs) were compared. RESULTS The sensitivity of mNGS in NTMPD diagnosis was 81.4% and higher than that of MGIT 960 (53.6%). The specificity of mNGS in NTMPD diagnosis was 97.8%, similar to that of MGIT 960 (100%). The sensitivity of combined mNGS and MGIT 960 in NTMPD diagnosis was 91.8%. The sensitivity of mNGS for bronchoalveolar lavage fluid (BALF), pulmonary puncture tissue fluid, and sputum was 84.8%, 80.6%, and 77.5%, respectively; all were higher than that of MGIT 960 (P < 0.05). The AUC of mNGS and MGIT 960 was 0.897 and 0.768, respectively. The AUC of mNGS were BALF (0.916), pulmonary puncture tissue fluid (0.903), and sputum (0.870). CONCLUSION The sensitivity of mNGS was superior to that of Bactec MGIT 960; the specificity in NTMPD diagnosis was similar. mNGS shows effective performance in NTMPD diagnosis.
Collapse
Affiliation(s)
- Wei Wei
- Shanghai Clinical Research Center for Infectious Disease (Tuberculosis), Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Jie Cao
- Shanghai Clinical Research Center for Infectious Disease (Tuberculosis), Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Xiao-Cui Wu
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Li-Ping Cheng
- Shanghai Clinical Research Center for Infectious Disease (Tuberculosis), Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Xiao-Na Shen
- Shanghai Clinical Research Center for Infectious Disease (Tuberculosis), Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Wei Sha
- Shanghai Clinical Research Center for Infectious Disease (Tuberculosis), Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China.
| | - Qin Sun
- Shanghai Clinical Research Center for Infectious Disease (Tuberculosis), Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China.
| |
Collapse
|
16
|
Transition between Mycobacterium tuberculosis and nontuberculous mycobacteria in recurrent "tuberculosis" patients. Eur J Clin Microbiol Infect Dis 2022; 41:1127-1132. [PMID: 35882723 DOI: 10.1007/s10096-022-04477-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/18/2022] [Indexed: 11/03/2022]
Abstract
Recurrence of tuberculosis (TB) is still a key issue in the control of tuberculosis. The presence of nontuberculous mycobacteria (NTM) complicates the diagnosis of recurrent TB due to similarity in clinical presentation. Herein, we have used molecular genotyping methods to identify mycobacteria species, and analyzed the characteristics of patients with transition between MTB and NTM. Eighty-nine patients with recurrent tuberculosis over the past 12 years were included in our analysis. We found that 9 patients had NTM infections during the study period. Six patients were infected with different mycobacterial strains, half of which were transformed from NTM to MTB, and the other half from MTB to NTM. In addition, the other 3 patients were infected with the same NTM species. Further WGS analysis showed that only one patient had a relapse and the remaining two were classified as reinfection. In conclusion, our results demonstrate that a proportion of previously diagnosed recurrent TB cases are attributed to the transition between MTB and NTM, highlighting the significance of species identification prior to initiation of treatment. The recurrence of mycobacterial diseases is majorly noted within 1 year after treatment completion.
Collapse
|
17
|
Sun Q, Yan J, Liao X, Wang C, Wang C, Jiang G, Dong L, Wang F, Huang H, Wang G, Pan J. Trends and Species Diversity of Non-tuberculous Mycobacteria Isolated From Respiratiroy Samples in Northern China, 2014–2021. Front Public Health 2022; 10:923968. [PMID: 35923959 PMCID: PMC9341428 DOI: 10.3389/fpubh.2022.923968] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/23/2022] [Indexed: 12/03/2022] Open
Abstract
Background Pulmonary non-tuberculous mycobacteria (NTM) infection has become a public health concern in China and around the world. The objective of this study was to describe the longitudinal changes in the frequency and diversity of NTM in northern China. Methods We retrospectively analyzed data on mycobacterium species in Beijing Chest Hospital from January 2014 to December 2021. The isolates were identified to species level by targeted DNA sequencing. Results After excluding duplicates, 1,755 NTM strains were analyzed, which were from 27 provinces in China over 8 years. Among all mycobacteria, the proportion of NTM increased each year, from 4.24% in 2014 to 12.68% in 2021. Overall, 39 different NTM species were identified, including 23 slow growing mycobacteria (SGM) and 16 rapid growing mycobacteria (RGM). The most common species were M. intracellulare (51.62%), M. abscessus (22.22%), M. kansasii (8.32%), M. avium (7.75%) and M. fortuitum (2.05%). The number of NTM species identified also increased each year from 9 in 2014 to 26 in 2021. Most species showed stable isolation rates over the years; however, the proportion of M. avium increased from 3.85 to 10.42% during the study period. Besides, 81 non-mycobacteria strains, including Gordonia (21 isolates), Nocardia (19 isolates) and Tsukamurella (17 isolates), etc., were also discovered. Conclusion The proportion of NTM and species diversity increased considerably in northern China from 2014 to 2021. M. intracellulare was the most common NTM isolated among respiratory specimens, followed by M. abscessus and M. kansasii. Rare NTM species and non-mycobacteria pathogens also need attention.
Collapse
Affiliation(s)
- Qing Sun
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China
| | - Jun Yan
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China
| | - Xinlei Liao
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China
| | - Chaohong Wang
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China
| | - Chenqian Wang
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China
| | - Guanglu Jiang
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China
| | - Lingling Dong
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China
| | - Fen Wang
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China
| | - Hairong Huang
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China
| | - Guirong Wang
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China
- *Correspondence: Junhua Pan
| | - Junhua Pan
- Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China
- Guirong Wang
| |
Collapse
|
18
|
Shu Q, Rajagopal M, Fan J, Zhan L, Kong X, He Y, Rotcheewaphan S, Lyon CJ, Sha W, Zelazny AM, Hu T. Peptidomic analysis of mycobacterial secreted proteins enables species identification. VIEW 2022. [DOI: 10.1002/viw.20210019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Qingbo Shu
- Center for Cellular and Molecular Diagnostics Department of Biochemistry and Molecular Biology School of Medicine Tulane University New Orleans Louisiana USA
| | - Meena Rajagopal
- Department of Laboratory Medicine, Clinical Center National Institutes of Health Bethesda Maryland USA
| | - Jia Fan
- Center for Cellular and Molecular Diagnostics Department of Biochemistry and Molecular Biology School of Medicine Tulane University New Orleans Louisiana USA
| | - Lingpeng Zhan
- Center for Cellular and Molecular Diagnostics Department of Biochemistry and Molecular Biology School of Medicine Tulane University New Orleans Louisiana USA
| | - Xiangxing Kong
- Center for Cellular and Molecular Diagnostics Department of Biochemistry and Molecular Biology School of Medicine Tulane University New Orleans Louisiana USA
| | - Yifan He
- Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital Tongji University School of Medicine Shanghai People's Republic of China
| | - Suwatchareeporn Rotcheewaphan
- Department of Laboratory Medicine, Clinical Center National Institutes of Health Bethesda Maryland USA
- Department of Microbiology, Faculty of Medicine Chulalongkorn University Bangkok Thailand
| | - Christopher J. Lyon
- Center for Cellular and Molecular Diagnostics Department of Biochemistry and Molecular Biology School of Medicine Tulane University New Orleans Louisiana USA
| | - Wei Sha
- Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital Tongji University School of Medicine Shanghai People's Republic of China
| | - Adrian M. Zelazny
- Department of Laboratory Medicine, Clinical Center National Institutes of Health Bethesda Maryland USA
| | - Tony Hu
- Center for Cellular and Molecular Diagnostics Department of Biochemistry and Molecular Biology School of Medicine Tulane University New Orleans Louisiana USA
| |
Collapse
|
19
|
Lin J, Zhao Y, Wei S, Dai Z, Lin S. Evaluation of the MeltPro Myco Assay for the Identification of Non-Tuberculous Mycobacteria. Infect Drug Resist 2022; 15:3287-3293. [PMID: 35769551 PMCID: PMC9234190 DOI: 10.2147/idr.s369160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 06/10/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Methods Results Conclusion
Collapse
Affiliation(s)
- Jian Lin
- Institute of Tuberculosis Control and Prevention, Fujian Center for Disease Control and Prevention, Fuzhou, People’s Republic of China
- Fujian Provincial Key Laboratory of Zoonosis Research, Fujian Center for Disease Control and Prevention, Fuzhou, People’s Republic of China
| | - Yong Zhao
- Institute of Tuberculosis Control and Prevention, Fujian Center for Disease Control and Prevention, Fuzhou, People’s Republic of China
- Fujian Provincial Key Laboratory of Zoonosis Research, Fujian Center for Disease Control and Prevention, Fuzhou, People’s Republic of China
| | - Shuzhen Wei
- Institute of Tuberculosis Control and Prevention, Fujian Center for Disease Control and Prevention, Fuzhou, People’s Republic of China
- Fujian Provincial Key Laboratory of Zoonosis Research, Fujian Center for Disease Control and Prevention, Fuzhou, People’s Republic of China
| | - Zhisong Dai
- Institute of Tuberculosis Control and Prevention, Fujian Center for Disease Control and Prevention, Fuzhou, People’s Republic of China
- Fujian Provincial Key Laboratory of Zoonosis Research, Fujian Center for Disease Control and Prevention, Fuzhou, People’s Republic of China
| | - Shufang Lin
- Institute of Tuberculosis Control and Prevention, Fujian Center for Disease Control and Prevention, Fuzhou, People’s Republic of China
- Fujian Provincial Key Laboratory of Zoonosis Research, Fujian Center for Disease Control and Prevention, Fuzhou, People’s Republic of China
- Correspondence: Shufang Lin; Jian Lin, Institute of Tuberculosis Control and Prevention, Fujian Center for Disease Control and Prevention, No. 386, Chong’an Road, Xindian Town, Jin’an District, Fuzhou, Fujian, 350011, People’s Republic of China, Tel/Fax +86 591 8343 1464, Email ;
| |
Collapse
|
20
|
The first diagnostic test for specific detection of Mycobacterium simiae using an electrochemical label-free DNA nanobiosensor. Talanta 2022; 238:123049. [PMID: 34801906 DOI: 10.1016/j.talanta.2021.123049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 10/06/2021] [Accepted: 11/06/2021] [Indexed: 01/08/2023]
Abstract
Mycobacterium simiae has been reported to be the most prevalent species of Nontuberculous mycobacteria (NTM) in many countries. As both phenotypic and molecular detection of M. simiae and other NTMs have limitations, finding an accurate, fast, and low-cost diagnostic method is critical for the management of infections. Here, we report the development of a new type of label-free electrochemical biosensor using a gold electrode decorated with l-cysteine/PAMAM dendrimer for specific targeting of M. simiae ITS sequence. DNA hybridization was monitored by measuring changes in the free guanine electrical signal with changing ssDNA target concentrations by differential pulse voltammetry (DPV) method. Response surface methodology (RSM) was applied for the optimization of variables affecting biosensor response. Under optimal conditions, the biosensor revealed a wide linear range from 10-14 M to 10-6 M and a detection limit of 1.40 fM. The fabricated biosensor showed an excellent selectivity to M. simiae in the presence of other similar pathogenic bacteria. Moreover, experimental results confirmed that this biosensor exhibited great precision and high reproducibility, hence provides a low-cost, label-free, and faster detection analysis, representing a novel strategy in detecting other NTMs.
Collapse
|
21
|
Huang L, Li H, Ren W, Zhang X, Shang Y, Liu Y, Liu A, Pang Y. Highly Discriminative Genotyping of Mycobacterium abscessus Complex Using a Set of Variable Number Tandem Repeats in China. Front Microbiol 2022; 12:802133. [PMID: 35173692 PMCID: PMC8841818 DOI: 10.3389/fmicb.2021.802133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/15/2021] [Indexed: 11/20/2022] Open
Abstract
In this study, our aims were to comparatively analyze the power of variable number tandem repeat (VNTR) typing to discriminate isolates within subspecies and to identify a potential genetic marker for better molecular typing of Mycobacterium abscessus complex (MABC) strains. A total of 103 clinical MABC isolates were collected from a nationwide cross-sectional study in China. Eighteen VNTR loci were chosen to genotype the MABC isolates. Of the 103 clinical MABC isolates, there were 76 (73.8%) M. abscessus subsp. abscessus (MAA) and 27 (26.2%) M. abscessus subsp. massiliense (MAM) isolates. Among the patients with MAA lung diseases, the percentage of patients older than 45 years (67.1%) was significantly higher than that of patients with MAM lung diseases [33.3%, adjusted odds ratio (aOR) = 0.36, 95% CI = 0.13–0.98, p = 0.046]. Fifteen VNTR loci were designated as being “highly discriminant” in our sample, except for TR109. The total of 103 MABC isolates were fully discriminated into 103 unique patterns by an 18-locus VNTR set [Hunter–Gaston Discriminatory Index (HGDI) = 1.000], of which the inclusion of the top 12 loci yielded a comparative HGDI value (HGDI = 0.9998). Remarkably, the order of the diversity of the VNTR loci showed significant difference between the MAA and MAM isolates. TR137 and TR2, two loci with high diversity indices for the MAA isolates, only yielded poor discriminatory power for the MAM isolates; the allelic diversity (h) values were 0.0000 and 0.2621, respectively. A detailed analysis of TR137 in combination with the other 17 VNTR loci showed that the combination of TR137–TR2 could fully distinguish MAA from MAM isolates. In conclusion, our data revealed that MAA is more prone to affect elderly patients. Additionally, the population structure of the MABC isolates circulating in China has high diversity. The combined use of the TR137 and TR2 loci provides a simple criterion for the precise identification of MABC to the subspecies level.
Collapse
Affiliation(s)
- Lihua Huang
- Longtan Hospital of Guangxi Zhuang Autonomous Region, Liuzhou, China
| | - Haoran Li
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, China
| | - Weicong Ren
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, China
| | - Xuxia Zhang
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, China
| | - Yuanyuan Shang
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, China
| | - Yi Liu
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, China
| | - Aimei Liu
- Longtan Hospital of Guangxi Zhuang Autonomous Region, Liuzhou, China
- *Correspondence: Aimei Liu,
| | - Yu Pang
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, China
- Yu Pang,
| |
Collapse
|
22
|
Clinical Characteristics and Antimicrobial Susceptibility of Mycobacterium intracellulare and Mycobacterium abscessus Pulmonary Diseases: A Retrospective Study. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2022; 2022:2642200. [PMID: 35035646 PMCID: PMC8759892 DOI: 10.1155/2022/2642200] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 11/24/2022]
Abstract
The incidence of nontuberculous mycobacteria (NTM) diseases is increasing every year. The present study was performed to investigate the clinical characteristics, CT findings, and drug susceptibility test (DST) results of patients diagnosed with M. intracellulare or M. abscessus nontuberculous mycobacterial pulmonary disease (NTMPD). This retrospective study included patients diagnosed with NTMPD due to M. intracellulare or M. abscessus for the first time at Anhui Chest Hospital between 01/2019 and 12/2021. The patients were grouped as M. intracellulare-NTMPD group or M. abscessus-NTMPD group. Clinical features, imaging data and DST data, were collected. Patients with M. intracellulare infection had a higher rate of acid-fast smears (66.1% vs. 45.2%, P=0.032) and a higher rate of cavitation based on pulmonary imaging (49.6% vs. 19.4%, P=0.002) than patients with M. abscessus infection, but both groups had negative TB-RNA and GeneXpert results, with no other characteristics significant differences. The results of DST showed that M. intracellulare had high susceptibility rate to moxifloxacin (95.9%), amikacin (90.1%), clarithromycin (91.7%), and rifabutin (90.1%). M. abscessus had the highest susceptibility rate to amikacin (71.0%) and clarithromycin (71.0%). The clinical features of M. intracellulare pneumopathy and M. abscessus pneumopathy are highly similar. It may be easily misdiagnosed, and therefore, early strain identification is necessary. M. intracellulare has a high susceptibility rate to moxifloxacin, amikacin, clarithromycin, and rifabutin, while M. abscessus has the highest susceptibility rate to amikacin and clarithromycin. This study provides an important clinical basis for improving the management of NTMPD.
Collapse
|
23
|
Huang M, Tan Y, Zhang X, Wang Y, Su B, Xue Z, Wang J, Pang Y. Effect of Mixed Infections with Mycobacterium tuberculosis and Nontuberculous Mycobacteria on Diagnosis of Multidrug-Resistant Tuberculosis: A Retrospective Multicentre Study in China. Infect Drug Resist 2022; 15:157-166. [PMID: 35082503 PMCID: PMC8786360 DOI: 10.2147/idr.s341817] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/30/2021] [Indexed: 11/23/2022] Open
Abstract
Background Correct species identification is essential before initiation of TB treatment, due to substantial drug susceptibility profile differences among mycobacterial species. Given that nontuberculous mycobacteria (NTM) are frequently resistant to first-line anti-tuberculosis drugs, cases with mixed infections with Mycobacterium tuberculosis (MTB) and NTM tend to be diagnosed as multidrug-resistant tuberculosis (MDR-TB) cases. Here we report results of a retrospective multicentre study that was conducted to determine the prevalence of TB-NTM infections in previously diagnosed laboratory-confirmed multidrug-resistant tuberculosis (MDR-TB) patients using phenotypic drug susceptibility testing. The results were then used to identify risk factors associated with susceptibility to mixed infections. Methods From January 2019 through December 2019, we retrospectively collected MDR-TB isolates from three TB specialised hospitals. Species identifications of isolates were performed using the MeltPro Myco assay. Results A total of 837 MDR-TB isolates were analysed, of which 22 isolates (2.6%) were found to contain a mixture of NTM and MTB organisms. Significant differences in prevalence rates of mixed infections across regions were observed, with prevalence rates ranging from 0.0% (0/213) in Beijing to 3.4% (12/353) in Fuzhou to 3.7% (10/271) in Guangzhou. Among the 22 patients with NTM-TB mixed infections, a total of five different mycobacterial species were identified, of which the most prevalent species was Mycobacterium intracellulare. Notably, a history of previous TB episodes correlated with higher mixed infection risk. Conclusion The results reported here demonstrated that mixed infections with MTB and NTM occurred in approximately 3% of suspected MDR-TB patients in China. These findings raise concerns about the accuracy of molecular diagnostics-based species identification tests and draw attention to the possibility that NTM-MTB mixed infections will be misdiagnosed as MDR-TB in high TB burden settings.
Collapse
Affiliation(s)
- Mingxiang Huang
- Department of Clinical Laboratory, Fuzhou Pulmonary Hospital and Fujian Medical University Clinical Teaching Hospital, Fuzhou, People’s Republic of China
| | - Yaoju Tan
- Department of Clinical Laboratory, Guangzhou Chest Hospital, State Key Laboratory of Respiratory Disease, Guangzhou, People’s Republic of China
| | - Xuxia Zhang
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, People’s Republic of China
| | - Yufeng Wang
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, People’s Republic of China
| | - Biyi Su
- Department of Clinical Laboratory, Guangzhou Chest Hospital, State Key Laboratory of Respiratory Disease, Guangzhou, People’s Republic of China
| | - Zhongtan Xue
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, People’s Republic of China
| | - Jingping Wang
- Clinical Department, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, People’s Republic of China
- Jingping Wang, Clinical Department, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis & Thoracic Tumor Research Institute, No. 9, Beiguan Street, Tongzhou District, Beijing, 101149, People’s Republic of China, Tel/Fax +86-10-8950 9029, Email
| | - Yu Pang
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, People’s Republic of China
- Correspondence: Yu Pang, Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis & Thoracic Tumor Research Institute, No. 9, Beiguan Street, Tongzhou District, Beijing, 101149, People’s Republic of China, Tel/Fax +86-10-8950 9359, Email
| |
Collapse
|
24
|
Du J, Li Q, Liu M, Wang Y, Xue Z, Huo F, Zhang X, Shang Y, Li S, Huang H, Pang Y. Distinguishing Relapse From Reinfection With Whole-Genome Sequencing in Recurrent Pulmonary Tuberculosis: A Retrospective Cohort Study in Beijing, China. Front Microbiol 2021; 12:754352. [PMID: 34956119 PMCID: PMC8693897 DOI: 10.3389/fmicb.2021.754352] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/08/2021] [Indexed: 11/18/2022] Open
Abstract
Background: Tuberculosis recurrence is still a major problem for the control of tuberculosis, and the cause of the recurrence is still unclear. Methods: We retrospectively recruited 68 pairs of samples of Mycobacterium tuberculosis (MTB) from recurrent TB cases in Beijing Chest Hospital between January 2008 and December 2019. The whole-genome sequencing was conducted to analyze single-nucleotide polymorphism (SNP) and to identify whether recurrent disease was due to relapse or reinfection. The BACTEC MGIT was performed to compare differences in drug susceptibility profiles between two episodes. Results: 62 (91.2%) out of 68 confirmed recurrence were due to relapse, whereas the remaining six (8.8%) were due to reinfection. And there was a strong association between earlier relapse and underlying chronic diseases. In addition, the MTB isolates from non-diabetic patients had a higher mutation rate than those from diabetic patients. A community transmission was also identified in our cohort. Levofloxacin resistance was the most frequently observed drug resistance for 12.9% relapse cases. Conclusion: The relapse of a previous episode in Beijing. The underlying chronic diseases are associated with an earlier TB relapse. MTB isolates were more prone to develop levofloxacin resistance than moxifloxacin resistance after FQ exposure. The patients at high-risk for relapses deserve more careful investigation.
Collapse
Affiliation(s)
- Jian Du
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Qing Li
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Min Liu
- Provincial Center for Tuberculosis Control and Prevention, Liaoning Provincial Center for Disease Control and Prevention, Shenyang, China
| | - Yufeng Wang
- Department of Laboratory Quality Control, Innovation Alliance on Tuberculosis Diagnosis and Treatment (Beijing), Beijing, China
| | - Zhongtan Xue
- Department of Laboratory Quality Control, Innovation Alliance on Tuberculosis Diagnosis and Treatment (Beijing), Beijing, China
| | - Fengmin Huo
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory on Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China
| | - Xuxia Zhang
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Yuanyuan Shang
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Shanshan Li
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Hairong Huang
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory on Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China
| | - Yu Pang
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| |
Collapse
|
25
|
Whole-Genome Sequencing Analysis to Identify Infection with Multiple Species of Nontuberculous Mycobacteria. Pathogens 2021; 10:pathogens10070879. [PMID: 34358029 PMCID: PMC8308675 DOI: 10.3390/pathogens10070879] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/30/2021] [Accepted: 07/08/2021] [Indexed: 11/16/2022] Open
Abstract
Mixed infection with multiple species of nontuberculous mycobacteria (NTM) is difficult to identify and to treat. Current conventional molecular-based methods for identifying mixed infections are limited due to low specificity. Here, we evaluated the utility of whole-genome sequencing (WGS) analysis to detect and identify mixed NTM infections. Analytical tools used included PubMLST, MetaPhlAn3, Kraken2, Mykrobe-Predictor and analysis of heterozygous SNP frequencies. The ability of each to identify mixed infections of NTM species was compared. Sensitivity was tested using 101 samples (sequence sets) including 100 in-silico simulated mixed samples with various proportions of known NTM species and one sample of known mixed NTM species from a public database. Single-species NTM control samples (155 WGS samples from public databases and 15 samples from simulated reads) were tested for specificity. Kraken2 exhibited 100% sensitivity and 98.23% specificity for detection and identification of mixed NTM species with accurate estimation of relative abundance of each species in the mixture. PubMLST (99% and 96.47%) and MetaPhlAn3 (95.04% and 83.52%) had slightly lower sensitivity and specificity. Mykrobe-Predictor had the lowest sensitivity (57.42%). Analysis of read frequencies supporting single nucleotide polymorphisms (SNPs) could not detect mixed NTM samples. Clinical NTM samples (n = 16), suspected on the basis of a 16S-23S rRNA gene sequence-based line-probe assay (LPA) to contain more than one NTM species, were investigated using WGS-analysis tools. This identified only a small proportion (37.5%, 6/16 samples) of the samples as mixed infections and exhibited only partial agreement with LPA results. LPAs seem to be inadequate for detecting mixed NTM species infection. This study demonstrated that WGS-analysis tools can be used for diagnosis of mixed infections with different species of NTM.
Collapse
|
26
|
Tan Y, Deng Y, Yan X, Liu F, Tan Y, Wang Q, Bao X, Pan J, Luo X, Yu Y, Cui X, Liao G, Ke C, Xu P, Li X, Zhang C, Yao X, Xu Y, Li T, Su B, Chen Z, Ma R, Jiang Y, Ma X, Bi D, Ma J, Yang H, Li X, Tang L, Yu Y, Wang Y, Song H, Liu H, Wu M, Yang Y, Xue Z, Li L, Li Q, Pang Y. Nontuberculous mycobacterial pulmonary disease and associated risk factors in China: A prospective surveillance study. J Infect 2021; 83:46-53. [PMID: 34048821 DOI: 10.1016/j.jinf.2021.05.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/06/2021] [Accepted: 05/19/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND We aimed to address the knowledge gap that exists regarding the epidemiological, demographic, and clinical characteristics of nontuberculous mycobacterial pulmonary diseases (NTM-PDs) among smear-positive patients with symptoms suggestive of pulmonary tuberculosis (PTB) in China. METHODS Prospective and national surveillance of NTM-PD was performed from 17 hospitals within the China Nontuberculous Mycobacteria Surveillance Study (CNTMS). Patients were eligible for inclusion if they had positive smears during hospitalization. Sputum specimens were collected for molecular species identification. RESULTS 6,766 patients with valid results were included, consisting of 6,236 (92.2%) with PTB, 458 (6.8%) with NTM-PD, and 72 (1.0%) with colonization. The proportion of NTM-PD in PTB patients exhibited significant geographic diversity, ranging from 3.2% in the northwest to 9.2% in the south. The most prevalent species was Mycobacterium intracellulare, followed by Mycobacterium abscessus complex. Females, elderly people, and patients with bronchiectasis or COPD are at high risk for developing NTM-PD, while patients with diabetes have a lower risk of NTM-PD when compared with non-diabetic patients. Regarding clinical symptoms, lower rates of persistent cough and weight loss were noted in NTM-PD patients than in PTB patients. CONCLUSIONS Approximately one-fifteenth of PTB patients are afflicted with nontuberculous mycobacterial infections in China. The prevalence of NTM shows geographic diversity across the country, and it showed a gradual increase from north to south and from west to east. NTM-PD patients are prone to exhibit less severe clinical symptoms than PTB patients, highlighting the importance of raising awareness of NTM diseases to improve decision making on how to best screen, diagnose, and treat NTM in TB-endemic settings.
Collapse
Affiliation(s)
- Yaoju Tan
- Department of Clinical Laboratory, Guangzhou Chest Hospital, Guangzhou, China
| | - Yunfeng Deng
- Katharine Hsu International Research Center of Human Infectious Diseases, Shandong Provincial Chest Hospital, Shandong University, Jinan, China
| | - Xiaofeng Yan
- Central Laboratory, Chongqing Public Health Medical Center, Chongqing, China
| | - Fangchao Liu
- Department of Bacteriology and Immunology, Beijing Key Laboratory on Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, China
| | - Yunhong Tan
- Department of Clinical Laboratory, Hunan Chest Hospital, Changsha, China
| | - Quan Wang
- Department of Clinical Laboratory, The Eighth Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Xundi Bao
- Department of Clinical Laboratory, Anhui Chest Hospital, Hefei, China
| | - Jianhua Pan
- Department of Clinical Laboratory, Changsha Central Hospital, Changsha, China
| | - Xiaolu Luo
- Department of Clinical Laboratory, Affiliated Infectious Disease Hospital of Nanning, Guangxi Medical University, Nanning, China
| | - Yanhong Yu
- Department of Clinical Laboratory, Shenyang Tenth People's Hospital, Shenyang, China
| | - Xiaoli Cui
- Department of Clinical Laboratory, Xi'an Chest Hospital, Xi'an, China
| | - Guangfu Liao
- Department of Clinical Laboratory, Guangxi Zhuang Autonomous Region Longtan Hospital, Liuzhou, China
| | - Chunmei Ke
- Department of Clinical Laboratory, Henan Provincial Infectious Diseases Hospital, Zhengzhou, China
| | - Ping Xu
- Department of Clinical Laboratory, The Fifth People's Hospital of Suzhou, Suzhou, China
| | - Xiaofei Li
- Department of Clinical Laboratory, The Third People's Hospital of Kunming, Kunming, China
| | - Chunlei Zhang
- Department of Clinical Laboratory, Harbin Chest Hospital, Harbin, China
| | - Xiangyang Yao
- Department of Clinical Laboratory, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Ye Xu
- Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, China
| | - Tongxin Li
- Central Laboratory, Chongqing Public Health Medical Center, Chongqing, China
| | - Biyi Su
- Department of Clinical Laboratory, Guangzhou Chest Hospital, Guangzhou, China
| | - Zhenhua Chen
- Department of Clinical Laboratory, Hunan Chest Hospital, Changsha, China
| | - Ruiying Ma
- Department of Clinical Laboratory, The Eighth Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yue Jiang
- Department of Clinical Laboratory, Anhui Chest Hospital, Hefei, China
| | - Xiaohua Ma
- Department of Clinical Laboratory, Changsha Central Hospital, Changsha, China
| | - Dewu Bi
- Department of Clinical Laboratory, Affiliated Infectious Disease Hospital of Nanning, Guangxi Medical University, Nanning, China
| | - Jinghong Ma
- Department of Clinical Laboratory, Shenyang Tenth People's Hospital, Shenyang, China
| | - Han Yang
- Department of Clinical Laboratory, Xi'an Chest Hospital, Xi'an, China
| | - Xuezheng Li
- Katharine Hsu International Research Center of Human Infectious Diseases, Shandong Provincial Chest Hospital, Shandong University, Jinan, China
| | - Liusheng Tang
- Department of Clinical Laboratory, Guangxi Zhuang Autonomous Region Longtan Hospital, Liuzhou, China
| | - Yongmin Yu
- Department of Clinical Laboratory, Henan Provincial Infectious Diseases Hospital, Zhengzhou, China
| | - Yufeng Wang
- Department of Bacteriology and Immunology, Beijing Key Laboratory on Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, China; Department of Laboratory Quality Control, Innovation Alliance on Tuberculosis Diagnosis and Treatment (Beijing), Beijing, China
| | - Huafeng Song
- Department of Clinical Laboratory, The Fifth People's Hospital of Suzhou, Suzhou, China
| | - Hongwei Liu
- Department of Clinical Laboratory, The Third People's Hospital of Kunming, Kunming, China
| | - Meiling Wu
- Department of Clinical Laboratory, Harbin Chest Hospital, Harbin, China
| | - Yinghui Yang
- Department of Clinical Laboratory, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Zhongtan Xue
- Department of Bacteriology and Immunology, Beijing Key Laboratory on Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, China; Department of Laboratory Quality Control, Innovation Alliance on Tuberculosis Diagnosis and Treatment (Beijing), Beijing, China
| | - Liang Li
- Clinical Center on Tuberculosis Control, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, China.
| | - Qingge Li
- Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, China.
| | - Yu Pang
- Department of Bacteriology and Immunology, Beijing Key Laboratory on Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, China; Department of Laboratory Quality Control, Innovation Alliance on Tuberculosis Diagnosis and Treatment (Beijing), Beijing, China.
| |
Collapse
|
27
|
Zeng Q, Yang Y, Luo J, Xu J, Deng C, Yang Y, Tan S, Sun S, Li Y, Ou T. Rapid Genetic Diagnosis of Citrin Deficiency by Multicolor Melting Curve Analysis. Front Pediatr 2021; 9:654527. [PMID: 34026689 PMCID: PMC8133314 DOI: 10.3389/fped.2021.654527] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 04/07/2021] [Indexed: 11/13/2022] Open
Abstract
Citrin deficiency caused by SLC25A13 genetic mutations is an autosomal recessive disease, and four prevalent mutations including c.851_854del, c.1638_1660dup, IVS6+5G>A, and IVS16ins3kb make up >80% of total pathogenic mutations within the Chinese population. However, suitable assays for detection of these mutations have not yet been developed for use in routine clinical practice. In the current study, a real-time PCR-based multicolor melting curve analysis (MMCA) was developed to detect the four prevalent mutations in one closed-tube reaction. The analytical and clinical performances were evaluated using artificial templates and clinical samples. All four mutations in the test samples were accurately genotyped via their labeling fluorophores and Tm values, and the standard deviations of Tm values were indicated to be <0.2°C. The limit of detection was estimated to be 500 diploid human genomes per reaction. The MMCA assay of 5,332 healthy newborns from southern China identified a total of 107 SLC25A13-mutation carriers, indicating a carrier rate of 2%. The genotypes of 107 carriers and 112 random non-carriers were validated using direct sequencing and Long-range PCR with 100% concordance. In conclusion, the assay developed in this study may potentially serve as a rapid genetic diagnostic tool for citrin deficiency.
Collapse
Affiliation(s)
- Qinlong Zeng
- Medical Genetics Center, Jiangmen Maternity and Child Health Care Hospital, Jiangmen, China
| | - Yingsong Yang
- Medical Genetics Center, Jiangmen Maternity and Child Health Care Hospital, Jiangmen, China
| | - Jiahong Luo
- Medical Genetics Center, Jiangmen Maternity and Child Health Care Hospital, Jiangmen, China
| | - Jinmei Xu
- Medical Genetics Center, Jiangmen Maternity and Child Health Care Hospital, Jiangmen, China
| | - Choufen Deng
- Department of Pediatrics, Jiangmen Maternity and Child Health Care Hospital, Jiangmen, China
| | - Yuanjuan Yang
- Department of Pediatrics, Jiangmen Maternity and Child Health Care Hospital, Jiangmen, China
| | - Shuming Tan
- Medical Genetics Center, Jiangmen Maternity and Child Health Care Hospital, Jiangmen, China
| | - Shuxiang Sun
- Medical Genetics Center, Jiangmen Maternity and Child Health Care Hospital, Jiangmen, China
| | - Yuping Li
- Medical Genetics Center, Jiangmen Maternity and Child Health Care Hospital, Jiangmen, China
| | - Tong Ou
- Prenatal Diagnosis Center and Medical Laboratory, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen, China
| |
Collapse
|
28
|
Khosravi AD, Asban B, Hashemzadeh M, Nashibi R. Molecular Identification, and Characterization of Mycobacterium kansasii Strains Isolated from Four Tuberculosis Regional Reference Laboratories in Iran During 2016-2018. Infect Drug Resist 2020; 13:2171-2180. [PMID: 32753913 PMCID: PMC7354002 DOI: 10.2147/idr.s245295] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 06/04/2020] [Indexed: 12/31/2022] Open
Abstract
Background Non-tuberculous mycobacterial (NTM) infections are growing concern in many countries around the globe including Iran. Among them, Mycobacterium kansasii (M. kansasii) causes both pulmonary and extra-pulmonary infections. Despite the high prevalence of M. kansasii isolates in Iran, unfortunately little is known about the epidemiological aspects of M. kansasii infection. Hence, the aim of the present study was to investigate the molecular identification, determination of subtypes variation and geographic distribution of clinical isolates of M. kansasii isolates. Methods In the present study, 108 clinical pulmonary isolates suspected to NTM were collected from four Tuberculosis Regional Reference Laboratories in Iran during 2016–2018. The isolates were confirmed as NTM using conventional and molecular methods. Among them, M. kansasii isolates were subjected to rpoB gene sequencing. For determination of subtyping of M. kansasii isolates, polymerase chain reaction-restriction enzyme analysis (PCR-REA) based on the hsp65 gene was performed. Results Based on the rpoB gene sequence analysis, 33 (30.5%) isolates were identified as M. kansasii species, compared to 31 (28.7%) isolates using phenotypic methods. The subtype I was the most frequent subtype (n=24; 72.7%), followed by subtype II (n=8; 24.2%). Conclusion We indicated that the rate of M. kansasii isolation with clinical significance appears to be increasing in Iran, especially in highly industrialized cities. The high rate of M. kansasii subtype I may suggest that this genotype has a particular potency for colonization, and a higher epidemiological potential for causing infection in humans. More studies are needed to provide a better understanding of the biology and pathogenicity of M. kansasii subtype I.
Collapse
Affiliation(s)
- Azar Dokht Khosravi
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Bahareh Asban
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Hashemzadeh
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Roohangiz Nashibi
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Infectious Diseases & Tropical Medicine Ward, Razi Teaching Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
29
|
Detection of Eight Respiratory Bacterial Pathogens Based on Multiplex Real-Time PCR with Fluorescence Melting Curve Analysis. CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY 2020; 2020:2697230. [PMID: 32184908 PMCID: PMC7061119 DOI: 10.1155/2020/2697230] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/22/2019] [Accepted: 12/13/2019] [Indexed: 01/23/2023]
Abstract
Background and Objective. Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae, Streptococcus pneumoniae, Haemophilus influenzae, Staphylococcus aureus, Pseudomonas aeruginosa, and Mycobacterium tuberculosis are primary respiratory bacterial pathogens contributing to morbidity and mortality in developing countries. This study evaluated the diagnostic performance of multiplex real-time PCR with fluorescence melting curve analysis (MCA) assay, which was used to detect eight respiratory bacterial pathogens simultaneously. Methods A total of 157 sputum specimens were examined by multiplex real-time with fluorescence MCA, and the results were compared with the conventional culture method. Results Multiplex real-time PCR with fluorescence MCA specifically detected and differentiated eight respiratory bacterial pathogens by different melting curve peaks for each amplification product within 2 hours and exhibited high repeatability. The limit of detection ranged from 64 to 102 CFU/mL in the multiplex PCR system. Multiplex real-time PCR with fluorescence MCA showed a sensitivity greater than 80% and a 100% specificity for each pathogen. The kappa correlation of eight bacteria ranged from 0.89 to 1.00, and the coefficient of variation ranged from 0.05% to 0.80%. Conclusions Multiplex real-time PCR with fluorescence MCA assay is a sensitive, specific, high-throughput, and cost-effective method to detect multiple bacterial pathogens simultaneously.
Collapse
|
30
|
Ji L, Jiang Y, Li G, Zhao X, Wan K. A real-time PCR assay based on a specific mutation of PstS1 gene for detection of M. bovis strains. Biologicals 2020; 64:23-27. [PMID: 31980349 DOI: 10.1016/j.biologicals.2020.01.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 01/07/2020] [Accepted: 01/16/2020] [Indexed: 11/25/2022] Open
Abstract
The Mycobacterium tuberculosis complex (MTBC) is composed of several genetically related and pathogenic mycobacterial species, including M. tuberculosis, M. bovis and M.africanum et al. In our previous study, we found that M. bovis strains had a unique SNP located in position 1055 in the sequence of the pstS1 gene in which a T was substituted by a C. In this study, specific primers and MGB probes were designed according to the mutation in PstS1 gene, and a sensitive, specific and rapid real-time PCR assay for M. bovis was established. Then the assay was used to detect M. bovis in simulation samples. The minimum detectable concentration is 101 copies for M. bovis DNA. The standard curve showed correlation coefficient between threshold cycle and PstS1 gene fragment copy number was 0.997 and slope is -3.144. The minimum detectable concentration is 101 cells/ml for simulation sample. In addition, M.bovis strain 93006, 14 clinical BCG stains and 7 clinical M.bovis strain showed positive while the other strains showed negative results, which proved good specificity. This assay had high sensitivity and specificity for identification of M. bovis from the simulation specimens. The assay can be applied for epidemiological and ecological surveillance of M. bovis strains.
Collapse
Affiliation(s)
- Lingyun Ji
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, PR China; Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200123, PR China
| | - Yi Jiang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, PR China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, 310003, PR China.
| | - Guilian Li
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, PR China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, 310003, PR China
| | - Xiuqin Zhao
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, PR China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, 310003, PR China
| | - Kanglin Wan
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, PR China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, 310003, PR China
| |
Collapse
|
31
|
Philips RC, Hoyer PE, White SM, Tinkey KT, Loeffelholz M, Andersen CR, Wilkerson MG, Gibson BR, Kelly BC. Cutaneous nontuberculous mycobacteria infections: A retrospective case series of 78 patients from the Texas Gulf Coast region. J Am Acad Dermatol 2019; 81:730-739. [PMID: 31002850 DOI: 10.1016/j.jaad.2019.04.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 04/11/2019] [Accepted: 04/12/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND The incidence of cutaneous nontuberculous mycobacteria (NTM) infections is increasing. These infections are a diagnostic and therapeutic challenge. OBJECTIVE We investigated the clinical features, diagnosis, and management of cutaneous NTM infections. METHODS A retrospective case series studied 78 patients from a Gulf Coast tertiary referral center diagnosed with cutaneous NTM infection by culture or stain of a skin biopsy specimen. RESULTS A history of trauma, procedure, or environmental exposure was common. The mean time between the initial evaluation and diagnosis was 12 weeks. Only 15% of acid-fast bacillus-positive cultures had a positive acid-fast bacillus smear, and only 43% of those accompanied by skin biopsy specimen had a positive Fite stain. Immunosuppressed patients were more likely to have a positive Fite stain. Treatment included surgery and multiple antibiotics. Immunosuppressed patients and Mycobacterium abscessus group infections were more likely to have persistent disease. LIMITATIONS M chelonae and M abscessus isolates were indistinguishable and therefore were reported together. Five cases were not confirmed by culture. CONCLUSIONS Even with clinical suspicion, the diagnosis of NTM infection can be difficult. Results of acid-fast bacillus smears and special stains are frequently negative. Antibiotic resistance is common. Multidrug treatment is often required, and surgical therapy may be needed.
Collapse
Affiliation(s)
- Rebecca C Philips
- Department of Dermatology, University of Texas Medical Branch, Galveston, Texas.
| | - Paige E Hoyer
- Department of Dermatology, University of Texas Medical Branch, Galveston, Texas
| | - Skyler M White
- Department of Dermatology, University of Texas Medical Branch, Galveston, Texas
| | - Katherine T Tinkey
- School of Medicine, University of Texas Medical Branch, Galveston, Texas
| | - Michael Loeffelholz
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas
| | - Clark R Andersen
- Office of Biostatistics, Department of Preventive Medicine and Community Health, University of Texas Medical Branch, Galveston, Texas
| | - Michael G Wilkerson
- Department of Dermatology, University of Texas Medical Branch, Galveston, Texas
| | - Bernard R Gibson
- Department of Dermatology, University of Texas Medical Branch, Galveston, Texas
| | - Brent C Kelly
- Department of Dermatology, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|