1
|
Arevalo-Rodriguez I, Mateos-Haro M, Dinnes J, Ciapponi A, Davenport C, Buitrago-Garcia D, Bennouna-Dalero T, Roqué-Figuls M, Van den Bruel A, von Eije KJ, Emperador D, Hooft L, Spijker R, Leeflang MM, Takwoingi Y, Deeks JJ. Laboratory-based molecular test alternatives to RT-PCR for the diagnosis of SARS-CoV-2 infection. Cochrane Database Syst Rev 2024; 10:CD015618. [PMID: 39400904 PMCID: PMC11472845 DOI: 10.1002/14651858.cd015618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
BACKGROUND Diagnosing people with a SARS-CoV-2 infection played a critical role in managing the COVID-19 pandemic and remains a priority for the transition to long-term management of COVID-19. Initial shortages of extraction and reverse transcription polymerase chain reaction (RT-PCR) reagents impaired the desired upscaling of testing in many countries, which led to the search for alternatives to RNA extraction/purification and RT-PCR testing. Reference standard methods for diagnosing the presence of SARS-CoV-2 infection rely primarily on real-time reverse transcription-polymerase chain reaction (RT-PCR). Alternatives to RT-PCR could, if sufficiently accurate, have a positive impact by expanding the range of diagnostic tools available for the timely identification of people infected by SARS-CoV-2, access to testing and the use of resources. OBJECTIVES To assess the diagnostic accuracy of alternative (to RT-PCR assays) laboratory-based molecular tests for diagnosing SARS-CoV-2 infection. SEARCH METHODS We searched the COVID-19 Open Access Project living evidence database from the University of Bern until 30 September 2020 and the WHO COVID-19 Research Database until 31 October 2022. We did not apply language restrictions. SELECTION CRITERIA We included studies of people with suspected or known SARS-CoV-2 infection, or where tests were used to screen for infection, and studies evaluating commercially developed laboratory-based molecular tests for the diagnosis of SARS-CoV-2 infection considered as alternatives to RT-PCR testing. We also included all reference standards to define the presence or absence of SARS-CoV-2, including RT-PCR tests and established clinical diagnostic criteria. DATA COLLECTION AND ANALYSIS Two authors independently screened studies and resolved disagreements by discussing them with a third author. Two authors independently extracted data and assessed the risk of bias and applicability of the studies using the QUADAS-2 tool. We presented sensitivity and specificity, with 95% confidence intervals (CIs), for each test using paired forest plots and summarised results using average sensitivity and specificity using a bivariate random-effects meta-analysis. We illustrated the findings per index test category and assay brand compared to the WHO's acceptable sensitivity and specificity threshold for diagnosing SARS-CoV-2 infection using nucleic acid tests. MAIN RESULTS We included data from 64 studies reporting 94 cohorts of participants and 105 index test evaluations, with 74,753 samples and 7517 confirmed SARS-CoV-2 cases. We did not identify any published or preprint reports of accuracy for a considerable number of commercially produced NAAT assays. Most cohorts were judged at unclear or high risk of bias in more than three QUADAS-2 domains. Around half of the cohorts were considered at high risk of selection bias because of recruitment based on COVID status. Three quarters of 94 cohorts were at high risk of bias in the reference standard domain because of reliance on a single RT-PCR result to determine the absence of SARS-CoV-2 infection or were at unclear risk of bias due to a lack of clarity about the time interval between the index test assessment and the reference standard, the number of missing results, or the absence of a participant flow diagram. For index tests categories with four or more evaluations and when summary estimations were possible, we found that: a) For RT-PCR assays designed to omit/adapt RNA extraction/purification, the average sensitivity was 95.1% (95% CI 91.1% to 97.3%), and the average specificity was 99.7% (95% CI 98.5% to 99.9%; based on 27 evaluations, 2834 samples and 1178 SARS-CoV-2 cases); b) For RT-LAMP assays, the average sensitivity was 88.4% (95% CI 83.1% to 92.2%), and the average specificity was 99.7% (95% CI 98.7% to 99.9%; 24 evaluations, 29,496 samples and 2255 SARS-CoV-2 cases); c) for TMA assays, the average sensitivity was 97.6% (95% CI 95.2% to 98.8%), and the average specificity was 99.4% (95% CI 94.9% to 99.9%; 14 evaluations, 2196 samples and 942 SARS-CoV-2 cases); d) for digital PCR assays, the average sensitivity was 98.5% (95% CI 95.2% to 99.5%), and the average specificity was 91.4% (95% CI 60.4% to 98.7%; five evaluations, 703 samples and 354 SARS-CoV-2 cases); e) for RT-LAMP assays omitting/adapting RNA extraction, the average sensitivity was 73.1% (95% CI 58.4% to 84%), and the average specificity was 100% (95% CI 98% to 100%; 24 evaluations, 14,342 samples and 1502 SARS-CoV-2 cases). Only two index test categories fulfil the WHO-acceptable sensitivity and specificity requirements for SARS-CoV-2 nucleic acid tests: RT-PCR assays designed to omit/adapt RNA extraction/purification and TMA assays. In addition, WHO-acceptable performance criteria were met for two assays out of 35 when tests were used according to manufacturer instructions. At 5% prevalence using a cohort of 1000 people suspected of SARS-CoV-2 infection, the positive predictive value of RT-PCR assays omitting/adapting RNA extraction/purification will be 94%, with three in 51 positive results being false positives, and around two missed cases. For TMA assays, the positive predictive value of RT-PCR assays will be 89%, with 6 in 55 positive results being false positives, and around one missed case. AUTHORS' CONCLUSIONS Alternative laboratory-based molecular tests aim to enhance testing capacity in different ways, such as reducing the time, steps and resources needed to obtain valid results. Several index test technologies with these potential advantages have not been evaluated or have been assessed by only a few studies of limited methodological quality, so the performance of these kits was undetermined. Only two index test categories with enough evaluations for meta-analysis fulfil the WHO set of acceptable accuracy standards for SARS-CoV-2 nucleic acid tests: RT-PCR assays designed to omit/adapt RNA extraction/purification and TMA assays. These assays might prove to be suitable alternatives to RT-PCR for identifying people infected by SARS-CoV-2, especially when the alternative would be not having access to testing. However, these findings need to be interpreted and used with caution because of several limitations in the evidence, including reliance on retrospective samples without information about the symptom status of participants and the timing of assessment. No extrapolation of found accuracy data for these two alternatives to any test brands using the same techniques can be made as, for both groups, one test brand with high accuracy was overrepresented with 21/26 and 12/14 included studies, respectively. Although we used a comprehensive search and had broad eligibility criteria to include a wide range of tests that could be alternatives to RT-PCR methods, further research is needed to assess the performance of alternative COVID-19 tests and their role in pandemic management.
Collapse
Affiliation(s)
- Ingrid Arevalo-Rodriguez
- Clinical Biostatistics Unit, Hospital Universitario Ramón y Cajal (IRYCIS). CIBER Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Evidence Production & Methods Directorate, Cochrane, London, UK
| | - Miriam Mateos-Haro
- Clinical Biostatistics Unit, Hospital Universitario Ramón y Cajal (IRYCIS), Madrid, Spain
- Doctoral programme in Clinical Medicine and Public Health, Universidad de Granada, Granada, Spain
| | - Jacqueline Dinnes
- Department of Applied Health Sciences, School of Health Sciences, College of Medicine and Health, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
| | - Agustín Ciapponi
- Argentine Cochrane Centre, Institute for Clinical Effectiveness and Health Policy (IECS-CONICET), Buenos Aires, Argentina
| | - Clare Davenport
- Department of Applied Health Sciences, School of Health Sciences, College of Medicine and Health, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
| | - Diana Buitrago-Garcia
- Institute for Social and Preventive Medicine, University of Bern, Bern, Switzerland
- Hospital Universitario Mayor - Méderi. Universidad del Rosario, Bogotá, Colombia
| | - Tayeb Bennouna-Dalero
- Preventive Medicine and Public Health Department, Hospital Universitario Ramón y Cajal (IRYCIS), Madrid, Spain
| | - Marta Roqué-Figuls
- Iberoamerican Cochrane Centre, Institut de Recerca Sant Pau (IR SANT PAU), CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | | | - Karin J von Eije
- Department of Viroscience, ErasmusMC, University Medical Center, Rotterdam, Netherlands
| | | | - Lotty Hooft
- Cochrane Netherlands, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - René Spijker
- Cochrane Netherlands, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Mariska Mg Leeflang
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Yemisi Takwoingi
- Department of Applied Health Sciences, School of Health Sciences, College of Medicine and Health, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
| | - Jonathan J Deeks
- Department of Applied Health Sciences, School of Health Sciences, College of Medicine and Health, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
| |
Collapse
|
2
|
Caffry J, Selby M, Barr K, Morgan G, McGurk D, Scully P, Park C, Caridis AM, Southworth E, Morrison J, Clark DJ, Davies BMO, Eckersley NM, Groppelli E, Kirwan DE, Monahan I, Augustin Y, Toombs C, Planche T, Staines HM, Krishna S. The QuantuMDx Q-POC SARS-CoV-2 RT-PCR assay for rapid detection of COVID-19 at point-of-care: preliminary evaluation of a novel technology. Sci Rep 2023; 13:9827. [PMID: 37330592 PMCID: PMC10276817 DOI: 10.1038/s41598-023-35479-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/18/2023] [Indexed: 06/19/2023] Open
Abstract
Accurate and rapid point-of-care (PoC) diagnostics are critical to the control of the COVID-19 pandemic. The current standard for accurate diagnosis of SARS-CoV-2 is laboratory-based reverse transcription polymerase chain reaction (RT-PCR) assays. Here, a preliminary prospective performance evaluation of the QuantuMDx Q-POC SARS-CoV-2 RT-PCR assay is reported. Between November 2020 and March 2021, 49 longitudinal combined nose/throat (NT) swabs from 29 individuals hospitalised with RT-PCR confirmed COVID-19 were obtained at St George's Hospital, London. In addition, 101 mid-nasal (MN) swabs were obtained from healthy volunteers in June 2021. These samples were used to evaluate the Q-POC SARS-CoV-2 RT-PCR assay. The primary analysis was to compare the sensitivity and specificity of the Q-POC test against a reference laboratory-based RT-PCR assay. The overall sensitivity of the Q-POC test compared with the reference test was 96.88% (83.78- 99.92% CI) for a cycle threshold (Ct) cut-off value for the reference test of 35 and 80.00% (64.35-90.95% CI) without altering the reference test's Ct cut-off value of 40. The Q-POC test is a sensitive, specific and rapid PoC test for SARS-CoV-2 at a reference Ct cut-off value of 35. The Q-POC test provides an accurate option for RT-PCR at PoC without the need for sample pre-processing and laboratory handling, enabling rapid diagnosis and clinical triage in acute care and other settings.
Collapse
Affiliation(s)
- Jessica Caffry
- QuantuMDx, Lugano Building, 57 Melbourne St, Newcastle Upon Tyne, UK
| | - Matthew Selby
- QuantuMDx, Lugano Building, 57 Melbourne St, Newcastle Upon Tyne, UK
| | - Katie Barr
- QuantuMDx, Lugano Building, 57 Melbourne St, Newcastle Upon Tyne, UK
| | - George Morgan
- QuantuMDx, Lugano Building, 57 Melbourne St, Newcastle Upon Tyne, UK
| | - David McGurk
- QuantuMDx, Lugano Building, 57 Melbourne St, Newcastle Upon Tyne, UK
| | - Philip Scully
- QuantuMDx, Lugano Building, 57 Melbourne St, Newcastle Upon Tyne, UK
| | - Catherine Park
- QuantuMDx, Lugano Building, 57 Melbourne St, Newcastle Upon Tyne, UK
| | | | - Emily Southworth
- QuantuMDx, Lugano Building, 57 Melbourne St, Newcastle Upon Tyne, UK
| | - Jack Morrison
- QuantuMDx, Lugano Building, 57 Melbourne St, Newcastle Upon Tyne, UK
| | - David J Clark
- Clinical Academic Group in Institute for Infection and Immunity, St George's University of London, London, UK
| | - Benedict M O Davies
- Clinical Academic Group in Institute for Infection and Immunity, St George's University of London, London, UK
| | - Nicholas M Eckersley
- Clinical Academic Group in Institute for Infection and Immunity, St George's University of London, London, UK
| | - Elisabetta Groppelli
- Clinical Academic Group in Institute for Infection and Immunity, St George's University of London, London, UK
| | - Daniela E Kirwan
- Clinical Academic Group in Institute for Infection and Immunity, St George's University of London, London, UK
| | - Irene Monahan
- Clinical Academic Group in Institute for Infection and Immunity, St George's University of London, London, UK
| | - Yolanda Augustin
- Clinical Academic Group in Institute for Infection and Immunity, St George's University of London, London, UK
| | - Colin Toombs
- QuantuMDx, Lugano Building, 57 Melbourne St, Newcastle Upon Tyne, UK
| | - Tim Planche
- Clinical Academic Group in Institute for Infection and Immunity, St George's University of London, London, UK
- St George's University Hospitals NHS Foundation Trust, London, UK
| | - Henry M Staines
- Clinical Academic Group in Institute for Infection and Immunity, St George's University of London, London, UK.
| | - Sanjeev Krishna
- Clinical Academic Group in Institute for Infection and Immunity, St George's University of London, London, UK.
- St George's University Hospitals NHS Foundation Trust, London, UK.
- Institut für Tropenmedizin, Universitätsklinikum Tübingen, Tübingen, Germany.
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon.
| |
Collapse
|
3
|
Tang YN, Jiang D, Wang X, Liu Y, Wei D. Recent progress on rapid diagnosis of COVID-19 by point-of-care testing platforms. CHINESE CHEM LETT 2023; 35:108688. [PMID: 37362324 PMCID: PMC10266891 DOI: 10.1016/j.cclet.2023.108688] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 05/25/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023]
Abstract
The outbreak of COVID-19 has drawn great attention around the world. SARS-CoV-2 is a highly infectious virus with occult transmission by many mutations and a long incubation period. In particular, the emergence of asymptomatic infections has made the epidemic even more severe. Therefore, early diagnosis and timely management of suspected cases are essential measures to control the spread of the virus. Developing simple, portable, and accurate diagnostic techniques for SARS-CoV-2 is the key to epidemic prevention. The advantages of point-of-care testing technology make it play an increasingly important role in viral detection and screening. This review summarizes the point-of-care testing platforms developed by nucleic acid detection, immunological detection, and nanomaterial-based biosensors detection. Furthermore, this paper provides a prospect for designing future highly accurate, cheap, and convenient SARS-CoV-2 diagnostic technology.
Collapse
Affiliation(s)
- Ya-Nan Tang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Institute of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Dingding Jiang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Institute of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Xuejun Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Institute of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Yunqi Liu
- Institute of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Dacheng Wei
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Institute of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| |
Collapse
|
4
|
Bos DAG, Lagrou K, Verbakel JY. Prospective Performance Evaluation of the miDiagnostics COVID-19 PCR Test for Rapid SARS-CoV-2 Detection on Nasopharyngeal Swabs. J Clin Microbiol 2023; 61:e0187122. [PMID: 37093001 PMCID: PMC10204629 DOI: 10.1128/jcm.01871-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/27/2023] [Indexed: 04/25/2023] Open
Abstract
Rapid diagnosis or exclusion of SARS-CoV-2 infection is essential for correct medical management decisions regarding COVID-19. High-throughput laboratory-based reverse transcriptase (RT)-PCR testing is accurate with longer turnaround times, while rapid antigen tests show moderate sensitivity. In search of a fast and reliable COVID-19 test, we aimed to validate the rapid miDiagnostics COVID-19 PCR test. We recruited symptomatic and asymptomatic participants in a mobile COVID-19 test center in Belgium. We collected three nasopharyngeal samples from each participant. The index sample was tested on the miDiagnostics COVID-19 PCR reader, the reference sample was tested on the reference TaqPath COVID-19 PCR test in the Belgian Reference Center for Respiratory Pathogens of University Hospitals Leuven, and a third sample was collected for discordance testing with the PerkinElmer SARS-CoV-2 PCR kit. A total of 770 participants yielded 763 sets of included nasopharyngeal samples. Overall positive percent agreement and negative percent agreement of the miDiagnostics COVID-19 PCR test were 95.5% (92.6% to 97.4%) and 94.9% (92.3 to 96.8%), rising to 98.6% (96.5% to 99.6%) and 96.5% (92.6% to 98.7%) in symptomatic patients. Discordance testing reclassified 15 of 21 false-positive cases as true positive. A retest of the miDiagnostics PCR test was performed in 61 tests (7.4%) due to a technical error. The miDiagnostics COVID-19 PCR test showed excellent clinical accuracy. The fast and reliable results allow for rapid correct diagnosis and tailored medical management decisions regarding COVID-19.
Collapse
Affiliation(s)
- David A. G. Bos
- EPI-Centre, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Katrien Lagrou
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Jan Y. Verbakel
- EPI-Centre, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
- NIHR Community Healthcare Medtech and IVD cooperative, Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
5
|
Rohanian O, Kouchaki S, Soltan A, Yang J, Rohanian M, Yang Y, Clifton D. Privacy-Aware Early Detection of COVID-19 Through Adversarial Training. IEEE J Biomed Health Inform 2022; PP:1249-1258. [PMID: 37015447 PMCID: PMC10824398 DOI: 10.1109/jbhi.2022.3230663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 11/25/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
Early detection of COVID-19 is an ongoing area of research that can help with triage, monitoring and general health assessment of potential patients and may reduce operational strain on hospitals that cope with the coronavirus pandemic. Different machine learning techniques have been used in the literature to detect potential cases of coronavirus using routine clinical data (blood tests, and vital signs measurements). Data breaches and information leakage when using these models can bring reputational damage and cause legal issues for hospitals. In spite of this, protecting healthcare models against leakage of potentially sensitive information is an understudied research area. In this study, two machine learning techniques that aim to predict a patient's COVID-19 status are examined. Using adversarial training, robust deep learning architectures are explored with the aim to protect attributes related to demographic information about the patients. The two models examined in this work are intended to preserve sensitive information against adversarial attacks and information leakage. In a series of experiments using datasets from the Oxford University Hospitals (OUH), Bedfordshire Hospitals NHS Foundation Trust (BH), University Hospitals Birmingham NHS Foundation Trust (UHB), and Portsmouth Hospitals University NHS Trust (PUH), two neural networks are trained and evaluated. These networks predict PCR test results using information from basic laboratory blood tests, and vital signs collected from a patient upon arrival to the hospital. The level of privacy each one of the models can provide is assessed and the efficacy and robustness of the proposed architectures are compared with a relevant baseline. One of the main contributions in this work is the particular focus on the development of effective COVID-19 detection models with built-in mechanisms in order to selectively protect sensitive attributes against adversarial attacks. The results on hold-out test set and external validation confirmed that there was no impact on the generalisibility of the model using adversarial learning.
Collapse
Affiliation(s)
- Omid Rohanian
- Department of Engineering ScienceUniversity of OxfordOxfordOX3 7DQU.K.
| | - Samaneh Kouchaki
- Centre for Vision, Speech and Signal ProcessingUniversity of SurreyGU2 7XHGuildfordU.K.
- U.K. Dementia Research Institute Care Research and Technology CentreImperial College LondonSW7 2BXLondonU.K.
- University of SurreyGU2 7XHGuildfordU.K.
| | - Andrew Soltan
- John Radcliffe HospitalOxford University Hospitals NHS Foundation TrustOX3 7DQOxfordU.K.
- RDM Division of Cardiovascular MedicineUniversity of OxfordOX3 7DQOxfordU.K.
| | - Jenny Yang
- Department of Engineering ScienceUniversity of OxfordOxfordOX3 7DQU.K.
| | | | - Yang Yang
- Department of Engineering ScienceUniversity of OxfordOxfordOX3 7DQU.K.
- School of Public HealthShanghai Jiao Tong UniversityShanghai200240China
- School of MedicineShanghai Jiao Tong UniversityShanghai200240China
| | - David Clifton
- Department of Engineering ScienceUniversity of OxfordOxfordOX3 7DQU.K.
- Oxford-China Centre for Advanced ResearchSuzhou215123China
| |
Collapse
|
6
|
Du Z, Tian L, Jin DY. Understanding the impact of rapid antigen tests on SARS-CoV-2 transmission in the fifth wave of COVID-19 in Hong Kong in early 2022. Emerg Microbes Infect 2022; 11:1394-1401. [PMID: 35536564 PMCID: PMC9132401 DOI: 10.1080/22221751.2022.2076616] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The fast-spreading Omicron variant of SARS-CoV-2 overwhelmed Hong Kong, causing the fifth wave of COVID-19. It remains to be determined what mitigation measures might have played a role in reversing the rising trend of confirmed cases in this major outbreak. The government of Hong Kong has launched the mass rapid antigen tests (RAT) in the population and the StayHomeSafe scheme since February 2022. In this study, we examined the impact of the mass RAT on disease transmission and the case fatality ratio. It was suggested that the implementation of RAT plausibly played a role in the steady decrease of the effective reproduction number, leading to diminished SARS-CoV-2 transmission. In addition, we projected the disease burden of the outbreak in a scenario analysis to highlight the necessity of the StayHomeSafe scheme in Hong Kong. The Omicron outbreak experience in Hong Kong may provide actionable insights for navigating the challenges of COVID-19 surges in other regions and countries.
Collapse
Affiliation(s)
- Zhanwei Du
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, People's Republic of China
| | - Linwei Tian
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, People's Republic of China
| | - Dong-Yan Jin
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, People's Republic of China
| |
Collapse
|
7
|
A Patient with Concurrent Legionella and COVID-19 Infection in a UK District General Hospital. Case Rep Infect Dis 2022; 2022:6289211. [DOI: 10.1155/2022/6289211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/26/2022] [Accepted: 11/08/2022] [Indexed: 11/25/2022] Open
Abstract
A 65 year-old gentleman had been brought to our Respiratory Emergency Department for patients with respiratory symptoms and a possible COVID-19 infection with a 3-day history of shortness of breath (SOB), fever, a productive cough of yellow sputum, and right-sided chest pain. The patient had received both vaccinations at the time and initially reported no travel history, although later it was revealed that he had recently stayed at a hotel. He tested positive for COVID-19 and had hyponatremia and a raised procalcitonin, indicating a bacterial infection as well. He had been initiated on our local treatment guidelines for COVID with antibiotics, guided by local hospital guidelines. An atypical pneumonia screen returned a positive result for Legionella urine antigen, and his antibiotic regime was changed accordingly. Our patient deteriorated significantly, and despite being escalated to our intensive care unit (ICU), he unfortunately passed away. Our case highlights the importance of early ICU involvement and escalation of antibiotics in cases of suspected concurrent Legionella and COVID-19 infections.
Collapse
|
8
|
Wiegand M, Halsall DJ, Cowan SL, Taylor K, Goudie RJB, Preller J, Gurnell M. Unquantifiably low aldosterone concentrations are prevalent in hospitalised COVID-19 patients but may not be revealed by chemiluminescent immunoassay. Endocr Connect 2022; 11:e220190. [PMID: 36006845 PMCID: PMC9578067 DOI: 10.1530/ec-22-0190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 08/25/2022] [Indexed: 11/20/2022]
Abstract
Objective Previous studies have reported conflicting findings regarding aldosterone levels in patients hospitalised with COVID-19. We therefore used the gold-standard technique of liquid chromatography-tandem mass spectrometry (LCMSMS) to address this uncertainty. Design All patients admitted to Cambridge University Hospitals with COVID-19 between 10 March 2020 and 13 May 2021, and in whom a stored blood sample was available for analysis, were eligible for inclusion. Methods Aldosterone was measured by LCMSMS and by immunoassay; cortisol and renin were determined by immunoassay. Results Using LCMSMS, aldosterone was below the limit of detection (<70 pmol/L) in 74 (58.7%) patients. Importantly, this finding was discordant with results obtained using a commonly employed clinical immunoassay (Diasorin LIAISON®), which over-estimated aldosterone compared to the LCMSMS assay (intercept 14.1 (95% CI -34.4 to 54.1) + slope 3.16 (95% CI 2.09-4.15) pmol/L). The magnitude of this discrepancy did not clearly correlate with markers of kidney or liver function. Solvent extraction prior to immunoassay improved the agreement between methods (intercept -14.9 (95% CI -31.9 to -4.3) and slope 1.0 (95% CI 0.89-1.02) pmol/L) suggesting the presence of a water-soluble metabolite causing interference in the direct immunoassay. We also replicated a previous finding that blood cortisol concentrations were often increased, with increased mortality in the group with serum cortisol levels > 744 nmol/L (P = 0.005). Conclusion When measured by LCMSMS, aldosterone was found to be profoundly low in a significant proportion of patients with COVID-19 at the time of hospital admission. This has likely not been detected previously due to high levels of interference with immunoassays in patients with COVID-19, and this merits further prospective investigation.
Collapse
Affiliation(s)
- Martin Wiegand
- MRC Biostatistics Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - David J Halsall
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Sarah L Cowan
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Kevin Taylor
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Robert J B Goudie
- MRC Biostatistics Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Jacobus Preller
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Mark Gurnell
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Wellcome–MRC Institute of Metabolic Science, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Addenbrooke’s Hospital, Cambridge, UK
| |
Collapse
|
9
|
Factors Associated with Significant Weight Loss in Hospitalised Patients with COVID-19: A Retrospective Cohort Study in a Large Teaching Hospital. Nutrients 2022; 14:nu14194195. [PMID: 36235847 PMCID: PMC9572292 DOI: 10.3390/nu14194195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 11/16/2022] Open
Abstract
SARS-CoV-2 infection (COVID-19) is associated with malnutrition risk in hospitalised individuals. COVID-19 and malnutrition studies in large European cohorts are limited, and post-discharge dietary characteristics are understudied. This study aimed to assess the rates of and risk factors for ≥10% weight loss in inpatients with COVID-19, and the need for post-discharge dietetic support and the General Practitioner (GP) prescription of oral nutritional supplements, during the first COVID-19 wave in a large teaching hospital in the UK. Hospitalised adult patients admitted between March and June 2020 with a confirmed COVID-19 diagnosis were included in this retrospective cohort study. Demographic, anthropometric, clinical, biochemical, and nutritional parameters associated with ≥10% weight loss and post-discharge characteristics were described. Logistic regression models were used to identify risk factors for ≥10% weight loss and post-discharge requirements for ongoing dietetic input and oral nutritional supplement prescription. From the total 288 patients analysed (40% females, 72 years median age), 19% lost ≥ 10% of their admission weight. The length of hospital stay was a significant risk factor for ≥10% weight loss in multivariable analysis (OR 1.22; 95% CI 1.08-1.38; p = 0.001). In addition, ≥10% weight loss was positively associated with higher admission weight and malnutrition screening scores, dysphagia, ICU admission, and artificial nutrition needs. The need for more than one dietetic input after discharge was associated with older age and ≥10% weight loss during admission. A large proportion of patients admitted to the hospital with COVID-19 experienced significant weight loss during admission. Longer hospital stay is a risk factor for ≥10% weight loss, independent of disease severity, reinforcing the importance of repeated malnutrition screening and timely referral to dietetics.
Collapse
|
10
|
Collier DA, Bousfield R, Gkrania-Klotsas E, Gupta RK. Point of care SARS-CoV-2 nucleic acid testing in schools improves school attendance. Wellcome Open Res 2022; 7:8. [PMID: 36226161 PMCID: PMC9530621 DOI: 10.12688/wellcomeopenres.17213.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2022] [Indexed: 11/21/2022] Open
Abstract
Background: National lockdowns have led to significant interruption to children's education globally. In the Autumn term in 2020, school absence in England and Wales was almost five times higher than the same period in 2019. Transmission of SARS-CoV-2 in schools and ongoing interruption to education remains a concern. However, evaluation of rapid point of care (POC) polymerase chain reaction (PCR) testing in British schools has not been undertaken. Methods: This is a survey of secondary schools in England that implemented PCR-based rapid POC testing. The study aims to measure the prevalence of SARS-CoV-2 infection in schools, to assess the impact of this testing on school attendance and closures, and to describe schools experiences with testing. All schools utilised the SAMBA II SARS-CoV-2 testing platform. Results: 12 fee-paying secondary schools in England were included. Between September 1 st 2020 and December 16 th 2020, 697 on site rapid POC PCR tests were performed and 6.7% of these were positive for SARS-CoV-2 infection. There were five outbreaks in three schools during this time which were contained. Seven groups of close contacts within the school known as bubbles had to quarantine but there were no school closures. 84% of those tested were absent from school for less than one day whilst awaiting their test result. This potentially saved between 1047 and 1570 days off school in those testing negative compared to the NHS PCR laboratory test. Schools reported a positive impact of having a rapid testing platform as it allowed them to function as fully as possible during this pandemic. Conclusions: Rapid POC PCR testing platforms should be widely available and utilised in school settings. Reliable positive tests will prevent outbreaks and uncontrolled spread of infection within school settings. Reliable negative test results will reassure students, parents and staff and prevent disruption to education.
Collapse
Affiliation(s)
- Dami A. Collier
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Cambridge, CB2 0SP, UK
- Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
- Division of Infection and Immunity, University College London, London, WC1E 6BT, UK
| | - Rachel Bousfield
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Cambridge, CB2 0SP, UK
- Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Effrossyni Gkrania-Klotsas
- Department of Infectious Diseases, Cambridge University Hospitals, NHS Trust, Cambridge, CB2 0QQ, UK
- MRC Epidemiology Unit, University of Cambridge, Cambridge, CB22 0SL, UK
| | - Ravindra K. Gupta
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Cambridge, CB2 0SP, UK
- Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
- Africa Health Research Institute, Durban, South Africa
| |
Collapse
|
11
|
Gajbhiye A, Nalbant A, Heunis T, Sidgwick F, Porter A, Taha Y, Trost M. A fast and sensitive absolute quantification assay for the detection of SARS-CoV-2 peptides using parallel reaction monitoring mass spectrometry. J Proteomics 2022; 265:104664. [PMID: 35732269 PMCID: PMC9212948 DOI: 10.1016/j.jprot.2022.104664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/12/2022] [Accepted: 06/12/2022] [Indexed: 12/25/2022]
Abstract
The on-going SARS-CoV-2 (COVID-19) pandemic has called for an urgent need for rapid and high-throughput methods for mass testing and early detection, prevention as well as surveillance of the disease. We investigated whether targeted parallel reaction monitoring (PRM) quantification using high resolution Orbitrap instruments can provide the sensitivity and speed required for a high-throughput method that could be used for clinical diagnosis. We developed a high-throughput and sensitive PRM-MS assay that enables absolute quantification of SARS-CoV-2 nucleocapsid peptides with short turn-around times by using isotopically labelled synthetic SARS-CoV-2 concatenated peptides. We established a fast and high-throughput S-trap-based sample preparation method and utilized it for testing 25 positive and 25 negative heat-inactivated clinical nasopharyngeal swab samples for SARS-CoV-2 detection. The method was able to differentiate between negative and some of the positive patients with high viral load. Moreover, based on the absolute quantification calculations, our data show that patients with Ct values as low as 17.8 correspond to NCAP protein amounts of around 7.5 pmol in swab samples. The present high-throughput method could potentially be utilized in specialized clinics as an alternative tool for detection of SARS-CoV-2 but will require enrichment of viral proteins in order to compete with RT-qPCR.
Collapse
Affiliation(s)
- Akshada Gajbhiye
- Laboratory for Biomedical Mass Spectrometry, Newcastle University, Newcastle upon Tyne, UK
| | - Atakan Nalbant
- Laboratory for Biomedical Mass Spectrometry, Newcastle University, Newcastle upon Tyne, UK
| | - Tiaan Heunis
- Laboratory for Biomedical Mass Spectrometry, Newcastle University, Newcastle upon Tyne, UK
| | - Frances Sidgwick
- Laboratory for Biomedical Mass Spectrometry, Newcastle University, Newcastle upon Tyne, UK
| | - Andrew Porter
- Laboratory for Biomedical Mass Spectrometry, Newcastle University, Newcastle upon Tyne, UK
| | - Yusri Taha
- The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, Newcastle upon Tyne NE1 4LP, UK
| | - Matthias Trost
- Laboratory for Biomedical Mass Spectrometry, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
12
|
Fragkou PC, De Angelis G, Menchinelli G, Can F, Garcia F, Morfin-Sherpa F, Dimopoulou D, Mack E, de Salazar A, Grossi A, Lytras T, Skevaki C. ESCMID COVID-19 guidelines: diagnostic testing for SARS-CoV-2. Clin Microbiol Infect 2022; 28:812-822. [PMID: 35218978 PMCID: PMC8863949 DOI: 10.1016/j.cmi.2022.02.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/03/2022] [Accepted: 02/06/2022] [Indexed: 02/07/2023]
Abstract
SCOPE The objective of these guidelines is to identify the most appropriate diagnostic test and/or diagnostic approach for SARS-CoV-2. The recommendations are intended to provide guidance to clinicians, clinical microbiologists, other health care personnel, and decision makers. METHODS An ESCMID COVID-19 guidelines task force was established by the ESCMID Executive Committee. A small group was established, half appointed by the chair and the remaining selected with an open call. Each panel met virtually once a week. For all decisions, a simple majority vote was used. A list of clinical questions using the PICO (population, intervention, comparison, outcome) format was developed at the beginning of the process. For each PICO, two panel members performed a literature search focusing on systematic reviews, with a third panellist involved in case of inconsistent results. Quality of evidence assessment was based on the GRADE-ADOLOPMENT (Grading of Recommendations Assessment, Development and Evaluation - adoption, adaptation, and de novo development of recommendations) approach. RECOMMENDATIONS A total of 43 PICO questions were selected that involve the following types of populations: (a) patients with signs and symptoms of COVID-19; (b) travellers, healthcare workers, and other individuals at risk for exposure to SARS-CoV-2; (c) asymptomatic individuals, and (d) close contacts of patients infected with SARS-CoV-2. The type of diagnostic test (commercial rapid nucleic acid amplification tests and rapid antigen detection), biomaterial, time since onset of symptoms/contact with an infectious case, age, disease severity, and risk of developing severe disease are also taken into consideration.
Collapse
Affiliation(s)
- Paraskevi C Fragkou
- First Department of Critical Care Medicine & Pulmonary Services, Evangelismos General Hospital, National and Kapodistrian University of Athens, Athens, Greece; European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Respiratory Viruses, Basel, Switzerland
| | - Giulia De Angelis
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy; Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Giulia Menchinelli
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy; Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Fusun Can
- Department of Medical Microbiology, Koc University School of Medicine, Istanbul, Turkey; Koc University IsBank Research Center for Infectious Diseases (KUISCID), Istanbul, Turkey
| | - Federico Garcia
- Servicio de Microbiología Clínica, Hospital Universitario Clínico San Cecilio, Instituto de Investigación Biosanitaria, Granada, Spain; CIBER de Enfermedades Infecciosas, CIBERINFEC, ISCIII, Madrid, Spain
| | - Florence Morfin-Sherpa
- Laboratory of Virology, Institut des Agents Infectieux, National Reference Centre for Respiratory Viruses, Hospices Civils de Lyon, Université Claude Bernard Lyon1, Lyon, France
| | - Dimitra Dimopoulou
- European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Respiratory Viruses, Basel, Switzerland; Second Department of Paediatrics, P. and A. Kyriakou Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Elisabeth Mack
- Department of Hematology, Oncology and Immunology, University Hospital Giessen and Marburg Campus Marburg and Faculty of Medicine, Philipps University Marburg, Marburg, Germany
| | - Adolfo de Salazar
- Servicio de Microbiología Clínica, Hospital Universitario Clínico San Cecilio, Instituto de Investigación Biosanitaria, Granada, Spain; CIBER de Enfermedades Infecciosas, CIBERINFEC, ISCIII, Madrid, Spain
| | - Adriano Grossi
- Sezione di Igiene, Istituto di Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Theodore Lytras
- School of Medicine, European University Cyprus, Nicosia, Cyprus
| | - Chrysanthi Skevaki
- European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Respiratory Viruses, Basel, Switzerland; Institute of Laboratory Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Philipps University Marburg, German Center for Lung Research (DZL), Marburg, Germany.
| |
Collapse
|
13
|
Soltan AAS, Yang J, Pattanshetty R, Novak A, Yang Y, Rohanian O, Beer S, Soltan MA, Thickett DR, Fairhead R, Zhu T, Eyre DW, Clifton DA, Watson A, Bhargav A, Tough A, Rogers A, Shaikh A, Valensise C, Lee C, Otasowie C, Metcalfe D, Agarwal E, Zareh E, Thangaraj E, Pickles F, Kelly G, Tadikamalla G, Shaw G, Tong H, Davies H, Bahra J, Morgan J, Wilson J, Cutteridge J, O'Byrne K, Farache Trajano L, Oliver M, Pikoula M, Mendoza M, Keevil M, Faisal M, Dole N, Deal O, Conway-Jones R, Sattar S, Kundoor S, Shah S, Muthusami V. Real-world evaluation of rapid and laboratory-free COVID-19 triage for emergency care: external validation and pilot deployment of artificial intelligence driven screening. Lancet Digit Health 2022; 4:e266-e278. [PMID: 35279399 PMCID: PMC8906813 DOI: 10.1016/s2589-7500(21)00272-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/22/2021] [Accepted: 11/24/2021] [Indexed: 12/14/2022]
Abstract
Background Uncertainty in patients' COVID-19 status contributes to treatment delays, nosocomial transmission, and operational pressures in hospitals. However, the typical turnaround time for laboratory PCR remains 12–24 h and lateral flow devices (LFDs) have limited sensitivity. Previously, we have shown that artificial intelligence-driven triage (CURIAL-1.0) can provide rapid COVID-19 screening using clinical data routinely available within 1 h of arrival to hospital. Here, we aimed to improve the time from arrival to the emergency department to the availability of a result, do external and prospective validation, and deploy a novel laboratory-free screening tool in a UK emergency department. Methods We optimised our previous model, removing less informative predictors to improve generalisability and speed, developing the CURIAL-Lab model with vital signs and readily available blood tests (full blood count [FBC]; urea, creatinine, and electrolytes; liver function tests; and C-reactive protein) and the CURIAL-Rapide model with vital signs and FBC alone. Models were validated externally for emergency admissions to University Hospitals Birmingham, Bedfordshire Hospitals, and Portsmouth Hospitals University National Health Service (NHS) trusts, and prospectively at Oxford University Hospitals, by comparison with PCR testing. Next, we compared model performance directly against LFDs and evaluated a combined pathway that triaged patients who had either a positive CURIAL model result or a positive LFD to a COVID-19-suspected clinical area. Lastly, we deployed CURIAL-Rapide alongside an approved point-of-care FBC analyser to provide laboratory-free COVID-19 screening at the John Radcliffe Hospital (Oxford, UK). Our primary improvement outcome was time-to-result, and our performance measures were sensitivity, specificity, positive and negative predictive values, and area under receiver operating characteristic curve (AUROC). Findings 72 223 patients met eligibility criteria across the four validating hospital groups, in a total validation period spanning Dec 1, 2019, to March 31, 2021. CURIAL-Lab and CURIAL-Rapide performed consistently across trusts (AUROC range 0·858–0·881, 95% CI 0·838–0·912, for CURIAL-Lab and 0·836–0·854, 0·814–0·889, for CURIAL-Rapide), achieving highest sensitivity at Portsmouth Hospitals (84·1%, Wilson's 95% CI 82·5–85·7, for CURIAL-Lab and 83·5%, 81·8–85·1, for CURIAL-Rapide) at specificities of 71·3% (70·9–71·8) for CURIAL-Lab and 63·6% (63·1–64·1) for CURIAL-Rapide. When combined with LFDs, model predictions improved triage sensitivity from 56·9% (51·7–62·0) for LFDs alone to 85·6% with CURIAL-Lab (81·6–88·9; AUROC 0·925) and 88·2% with CURIAL-Rapide (84·4–91·1; AUROC 0·919), thereby reducing missed COVID-19 cases by 65% with CURIAL-Lab and 72% with CURIAL-Rapide. For the prospective deployment of CURIAL-Rapide, 520 patients were enrolled for point-of-care FBC analysis between Feb 18 and May 10, 2021, of whom 436 received confirmatory PCR testing and ten (2·3%) tested positive. Median time from arrival to a CURIAL-Rapide result was 45 min (IQR 32–64), 16 min (26·3%) sooner than with LFDs (61 min, 37–99; log-rank p<0·0001), and 6 h 52 min (90·2%) sooner than with PCR (7 h 37 min, 6 h 5 min to 15 h 39 min; p<0·0001). Classification performance was high, with sensitivity of 87·5% (95% CI 52·9–97·8), specificity of 85·4% (81·3–88·7), and negative predictive value of 99·7% (98·2–99·9). CURIAL-Rapide correctly excluded infection for 31 (58·5%) of 53 patients who were triaged by a physician to a COVID-19-suspected area but went on to test negative by PCR. Interpretation Our findings show the generalisability, performance, and real-world operational benefits of artificial intelligence-driven screening for COVID-19 over standard-of-care in emergency departments. CURIAL-Rapide provided rapid, laboratory-free screening when used with near-patient FBC analysis, and was able to reduce the number of patients who tested negative for COVID-19 but were triaged to COVID-19-suspected areas. Funding The Wellcome Trust, University of Oxford Medical and Life Sciences Translational Fund.
Collapse
|
14
|
Barnacle JR, Houston H, Baltas I, Takata J, Kavallieros K, Vaughan N, Amin AK, Aali SA, Moore K, Milner P, Wright AG, John L. Diagnostic accuracy of the Abbott ID NOW SARS-CoV-2 rapid test for the triage of acute medical admissions. J Hosp Infect 2022; 123:92-99. [PMID: 35217130 PMCID: PMC8863956 DOI: 10.1016/j.jhin.2022.02.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/05/2022] [Accepted: 02/06/2022] [Indexed: 12/15/2022]
Abstract
Background Decisions to isolate patients at risk of having coronavirus disease 2019 (COVID-19) in the emergency department (ED) must be rapid and accurate to ensure prompt treatment and maintain patient flow whilst minimising nosocomial spread. Reverse transcription polymerase chain reaction (RT-PCR) assays are too slow to achieve this, and near-patient testing is being used increasingly to facilitate triage. The ID NOW severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) assay is an isothermal nucleic acid amplification near-patient test which targets the RNA-dependent RNA-polymerase gene. Aim To assess the diagnostic performance of ID NOW as a COVID-19 triage tool for medical admissions from the ED of a large acute hospital. Methods All adult acute medical admissions from the ED between 31st March and 31st July 2021 with valid ID NOW and RT-PCR results were included. The diagnostic accuracy of ID NOW [sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV)] was calculated against the laboratory reference standard. Discrepant results were explored further using cycle threshold values and clinical data. Findings Two percent (124/6050) of medical admissions were SARS-CoV-2 positive on RT-PCR. Compared with PCR, ID NOW had sensitivity and specificity of 83.1% [95% confidence interval (CI) 75.4–88.7] and 99.5% (95% CI 99.3–99.6), respectively. PPV and NPV were 76.9% (95% CI 69.0–83.2) and 99.6% (95% CI 99.5–99.8), respectively. The median time from arrival in the ED to ID NOW result was 59 min. Conclusion ID NOW provides a rapid and reliable adjunct for the safe triage of patients with COVID-19, and can work effectively when integrated into an ED triage algorithm.
Collapse
Affiliation(s)
- James R Barnacle
- Northwick Park Hospital, London North West University Healthcare NHS Trust.
| | - Hamish Houston
- Northwick Park Hospital, London North West University Healthcare NHS Trust
| | - Ioannis Baltas
- Northwick Park Hospital, London North West University Healthcare NHS Trust
| | - Junko Takata
- Northwick Park Hospital, London North West University Healthcare NHS Trust
| | | | - Natalie Vaughan
- Northwick Park Hospital, London North West University Healthcare NHS Trust
| | - Amit K Amin
- Northwick Park Hospital, London North West University Healthcare NHS Trust
| | - Sayyed Adnan Aali
- Northwick Park Hospital, London North West University Healthcare NHS Trust
| | - Kisha Moore
- Northwick Park Hospital, London North West University Healthcare NHS Trust
| | - Piers Milner
- Northwick Park Hospital, London North West University Healthcare NHS Trust
| | - Ankur Gupta Wright
- Northwick Park Hospital, London North West University Healthcare NHS Trust
| | - Laurence John
- Northwick Park Hospital, London North West University Healthcare NHS Trust
| |
Collapse
|
15
|
Manzanas C, Alam MM, Loeb JC, Lednicky JA, Wu CY, Fan ZH. A Valve-Enabled Sample Preparation Device with Isothermal Amplification for Multiplexed Virus Detection at the Point-of-Care. ACS Sens 2021; 6:4176-4184. [PMID: 34767357 PMCID: PMC8609915 DOI: 10.1021/acssensors.1c01718] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Early and accurate detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza viruses at the point-of-care is crucial for reducing disease transmission during the current pandemic and future flu seasons. To prepare for potential cocirculation of these two viruses, we report a valve-enabled, paper-based sample preparation device integrated with isothermal amplification for their simultaneous detection. The device incorporates (1) virus lysis and RNA enrichment, enabled by ball-based valves for sequential delivery of reagents with no pipet requirement, (2) reverse transcription loop-mediated isothermal amplification, carried out in a coffee mug, and (3) colorimetric detection. We have used the device for simultaneously detecting inactivated SARS-CoV-2 and influenza A H1N1 viruses in 50 min, with limits of detection at 2 and 6 genome equivalents, respectively. The device was further demonstrated to detect both viruses in environmental samples.
Collapse
Affiliation(s)
- Carlos Manzanas
- Interdisciplinary Microsystems Group, Department of Mechanical and Aerospace Engineering, University of Florida, P. O. Box 116250, Gainesville, Florida 32611, United States
| | - Md Mahbubul Alam
- Department of Environmental and Global Health, University of Florida, Gainesville, Florida 32610, United States
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida 32610, United States
| | - Julia C Loeb
- Department of Environmental and Global Health, University of Florida, Gainesville, Florida 32610, United States
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida 32610, United States
| | - John A Lednicky
- Department of Environmental and Global Health, University of Florida, Gainesville, Florida 32610, United States
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida 32610, United States
| | - Chang-Yu Wu
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, Florida 32611, United States
| | - Z Hugh Fan
- Interdisciplinary Microsystems Group, Department of Mechanical and Aerospace Engineering, University of Florida, P. O. Box 116250, Gainesville, Florida 32611, United States
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
16
|
Boyle AA, Hardwick S, Warne B, Nwuba CK, Brown N, Shaw A. Evaluating the Sensitivity and Specificity of Siemens Clinitest Lateral Flow Test and the Simple AMplification-Based Assay (SAMBA)-2 PCR Test for SARS-CoV-2 Infection. Cureus 2021; 13:e18319. [PMID: 34725589 PMCID: PMC8553283 DOI: 10.7759/cureus.18319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2021] [Indexed: 11/17/2022] Open
Abstract
Introduction Accurate point-of-care testing for SARS-CoV-2 could quickly identify which patients need to be isolated and improve flow for patients being admitted as an emergency to the hospital. We evaluated two diagnostic tests with shorter turnaround times, the Siemens Clinitest Lateral Flow (Siemens Healthineers AG, Erlangen, Germany) and the Simple AMplification-Based Assay (SAMBA)-2 PCR test against a standard laboratory PCR test. Methods We conducted a prospective diagnostic cohort study in a single English emergency department. Adult participants underwent three swabs: the Siemens Clinitest Lateral Flow Test, the SAMBA-2 and a standard laboratory PCR test. Results A total of 212 participants were recruited. The sensitivity and specificity of the Siemens Clinitest Lateral Flow Test against the laboratory PCR test was 55.6% (95% CI 30.8-78.5) and 100% (95% CI 98.1-100) respectively. The sensitivity and specificity of the SAMBA-2 PCR test against the laboratory PCR test was 60.0% (95% CI 32.3-83.7) and 100% (95% CI 97.9-100) respectively. Conclusion Neither the Siemens Clinitest Lateral Flow Test nor the SAMBA-2 PCR test demonstrated sufficient sensitivity to rule out active SARS-CoV-2 infection. Both tests demonstrated high specificity.
Collapse
Affiliation(s)
- Adrian A Boyle
- Emergency Medicine, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, GBR
| | - Susie Hardwick
- Emergency Medicine, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, GBR
| | - Ben Warne
- Infectious Disease, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, GBR
| | | | - Nicholas Brown
- Microbiology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, GBR
| | - Ashley Shaw
- Radiology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, GBR
| |
Collapse
|
17
|
Rajh E, Šket T, Praznik A, Sušjan P, Šmid A, Urbančič D, Mlinarič-Raščan I, Kogovšek P, Demšar T, Milavec M, Prosenc Trilar K, Jensterle Ž, Zidarn M, Tomič V, Turel G, Lejko-Zupanc T, Jerala R, Benčina M. Robust Saliva-Based RNA Extraction-Free One-Step Nucleic Acid Amplification Test for Mass SARS-CoV-2 Monitoring. Molecules 2021; 26:6617. [PMID: 34771026 PMCID: PMC8588466 DOI: 10.3390/molecules26216617] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 01/19/2023] Open
Abstract
Early diagnosis with rapid detection of the virus plays a key role in preventing the spread of infection and in treating patients effectively. In order to address the need for a straightforward detection of SARS-CoV-2 infection and assessment of viral spread, we developed rapid, sensitive, extraction-free one-step reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and reverse transcription loop-mediated isothermal amplification (RT-LAMP) tests for detecting SARS-CoV-2 in saliva. We analyzed over 700 matched pairs of saliva and nasopharyngeal swab (NSB) specimens from asymptomatic and symptomatic individuals. Saliva, as either an oral cavity swab or passive drool, was collected in an RNA stabilization buffer. The stabilized saliva specimens were heat-treated and directly analyzed without RNA extraction. The diagnostic sensitivity of saliva-based RT-qPCR was at least 95% in individuals with subclinical infection and outperformed RT-LAMP, which had at least 70% sensitivity when compared to NSBs analyzed with a clinical RT-qPCR test. The diagnostic sensitivity for passive drool saliva was higher than that of oral cavity swab specimens (95% and 87%, respectively). A rapid, sensitive one-step extraction-free RT-qPCR test for detecting SARS-CoV-2 in passive drool saliva is operationally simple and can be easily implemented using existing testing sites, thus allowing high-throughput, rapid, and repeated testing of large populations. Furthermore, saliva testing is adequate to detect individuals in an asymptomatic screening program and can help improve voluntary screening compliance for those individuals averse to various forms of nasal collections.
Collapse
Affiliation(s)
- Eva Rajh
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, SI-1001 Ljubljana, Slovenia; (E.R.); (T.Š.); (A.P.); (P.S.); (R.J.)
| | - Tina Šket
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, SI-1001 Ljubljana, Slovenia; (E.R.); (T.Š.); (A.P.); (P.S.); (R.J.)
| | - Arne Praznik
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, SI-1001 Ljubljana, Slovenia; (E.R.); (T.Š.); (A.P.); (P.S.); (R.J.)
| | - Petra Sušjan
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, SI-1001 Ljubljana, Slovenia; (E.R.); (T.Š.); (A.P.); (P.S.); (R.J.)
| | - Alenka Šmid
- Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (A.Š.); (D.U.); (I.M.-R.)
| | - Dunja Urbančič
- Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (A.Š.); (D.U.); (I.M.-R.)
| | - Irena Mlinarič-Raščan
- Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (A.Š.); (D.U.); (I.M.-R.)
| | - Polona Kogovšek
- Department of Biotechnology and Systems Biology, National Institute of Biology, SI-1000 Ljubljana, Slovenia; (P.K.); (T.D.); (M.M.)
| | - Tina Demšar
- Department of Biotechnology and Systems Biology, National Institute of Biology, SI-1000 Ljubljana, Slovenia; (P.K.); (T.D.); (M.M.)
| | - Mojca Milavec
- Department of Biotechnology and Systems Biology, National Institute of Biology, SI-1000 Ljubljana, Slovenia; (P.K.); (T.D.); (M.M.)
| | - Katarina Prosenc Trilar
- National Laboratory of Health, Environment, and Food, Laboratory for Public Health Virology, SI-1000 Ljubljana, Slovenia; (K.P.T.); (Ž.J.)
| | - Žiga Jensterle
- National Laboratory of Health, Environment, and Food, Laboratory for Public Health Virology, SI-1000 Ljubljana, Slovenia; (K.P.T.); (Ž.J.)
| | - Mihaela Zidarn
- Emergency Service, Health Centre Jesenice, SI-4270 Jesenice, Slovenia;
| | - Viktorija Tomič
- University Clinic of Respiratory and Allergic Diseases, SI-4204 Golnik, Slovenia;
| | - Gabriele Turel
- Department for Infectious Diseases, University Medical Center Ljubljana, SI-1000 Ljubljana, Slovenia; (G.T.); (T.L.-Z.)
| | - Tatjana Lejko-Zupanc
- Department for Infectious Diseases, University Medical Center Ljubljana, SI-1000 Ljubljana, Slovenia; (G.T.); (T.L.-Z.)
| | - Roman Jerala
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, SI-1001 Ljubljana, Slovenia; (E.R.); (T.Š.); (A.P.); (P.S.); (R.J.)
- EN-FIST Centre of Excellence, SI-1000 Ljubljana, Slovenia
| | - Mojca Benčina
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, SI-1001 Ljubljana, Slovenia; (E.R.); (T.Š.); (A.P.); (P.S.); (R.J.)
- EN-FIST Centre of Excellence, SI-1000 Ljubljana, Slovenia
- Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
18
|
Chen FE, Lee PW, Trick AY, Park JS, Chen L, Shah K, Mostafa H, Carroll KC, Hsieh K, Wang TH. Point-of-care CRISPR-Cas-assisted SARS-CoV-2 detection in an automated and portable droplet magnetofluidic device. Biosens Bioelectron 2021; 190:113390. [PMID: 34171821 PMCID: PMC8170879 DOI: 10.1016/j.bios.2021.113390] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/14/2021] [Accepted: 05/26/2021] [Indexed: 12/26/2022]
Abstract
In the fight against COVID-19, there remains an unmet need for point-of-care (POC) diagnostic testing tools that can rapidly and sensitively detect the causative SARS-CoV-2 virus to control disease transmission and improve patient management. Emerging CRISPR-Cas-assisted SARS-CoV-2 detection assays are viewed as transformative solutions for POC diagnostic testing, but their lack of streamlined sample preparation and full integration within an automated and portable device hamper their potential for POC use. We report herein POC-CRISPR - a single-step CRISPR-Cas-assisted assay that incoporates sample preparation with minimal manual operation via facile magnetic-based nucleic acid concentration and transport. Moreover, POC-CRISPR has been adapted into a compact thermoplastic cartridge within a palm-sized yet fully-integrated and automated device. During analytical evaluation, POC-CRISPR was able detect 1 genome equivalent/μL SARS-CoV-2 RNA from a sample volume of 100 μL in < 30 min. When evaluated with 27 unprocessed clinical nasopharyngeal swab eluates that were pre-typed by standard RT-qPCR (Cq values ranged from 18.3 to 30.2 for the positive samples), POC-CRISPR achieved 27 out of 27 concordance and could detect positive samples with high SARS-CoV-2 loads (Cq < 25) in 20 min.
Collapse
Affiliation(s)
- Fan-En Chen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Pei-Wei Lee
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Alexander Y Trick
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Joon Soo Park
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Liben Chen
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Kushagra Shah
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Heba Mostafa
- Department of Pathology, Johns Hopkins University, School of Medicine, Baltimore, MD, 21287, USA
| | - Karen C Carroll
- Department of Pathology, Johns Hopkins University, School of Medicine, Baltimore, MD, 21287, USA
| | - Kuangwen Hsieh
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA.
| | - Tza-Huei Wang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA; Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA; Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, 21218, USA.
| |
Collapse
|
19
|
Craney A, Petrik D, Sukhu A, Qiu Y, Racine-Brzostek S, Rennert H, Piscatelli H, Rathnaiah G, Hangman A, Carrie M, Cushing M. Performance Evaluation of the MatMaCorp COVID-19 2SF Assay for the Detection of SARS-CoV-2 from Nasopharyngeal Swabs. Microbiol Spectr 2021; 9:e0008321. [PMID: 34378961 PMCID: PMC8552687 DOI: 10.1128/spectrum.00083-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/26/2021] [Indexed: 12/05/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has taken an unprecedented toll on clinical diagnostic testing, and the need for PCR-based testing remains to be met. Nucleic acid amplification testing (NAAT) is the recommended method for the diagnosis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) due to the inherent advantages in sensitivity and specificity. In this study, we evaluated the performance of the MatMaCorp COVID-19 2SF test, a reverse transcription-PCR (RT-PCR) assay for the qualitative detection of SARS-CoV-2 from nasopharyngeal (NP) swabs, run on the Solas 8 instrument (MatMaCorp, Lincoln, NE). The Solas 8 device is portable, and the kit is a lab-in-a-box design which provides reagents in a shelf-stable lyophilized powder format. A total of 78 remnant clinical specimens were used to evaluate the COVID-19 2SF test. Sixty-two clinical specimens originally tested by the Xpert Xpress SARS-CoV-2 assay (Cepheid, Inc., Sunnyvale, CA) were used to evaluate the clinical accuracy of the COVID-19 2SF test. The negative percent agreement (NPA) was 100% (95% confidence interval [CI], 83.9% to 100%), and the positive percent agreement (PPA) was 85.4% (95% CI, 70.8% to 94.4%). Sixteen remnant specimens positive for other common respiratory pathogens (FilmArray respiratory panel 2.0; BioFire, Salt Lake City, UT) were assayed on the Solas 8 device to evaluate specificity. No cross-reactivity with other respiratory pathogens was identified. The unique lab-in-a-box design and shelf-stable reagents of the MatMaCorp COVID-19 2SF test offer laboratories a rapid option for a diagnostic NAAT for SARS-CoV-2 that can help meet diagnostic needs. IMPORTANCE The demand for molecular testing for COVID-19 remains to be met. This study of the MatMaCorp Solas 8 device and COVID-19 test provides the first evaluation of this platform.
Collapse
Affiliation(s)
- Arryn Craney
- Department of Pathology and Laboratory Medicine, New York Presbyterian Hospital–Weill Cornell Medicine, New York, New York, USA
| | | | - Ashley Sukhu
- Department of Pathology and Laboratory Medicine, New York Presbyterian Hospital–Weill Cornell Medicine, New York, New York, USA
| | - Yuqing Qiu
- Department of Population Health Sciences, Weill Cornell Medicine, New York, New York, USA
| | - Sabrina Racine-Brzostek
- Department of Pathology and Laboratory Medicine, New York Presbyterian Hospital–Weill Cornell Medicine, New York, New York, USA
| | - Hanna Rennert
- Department of Pathology and Laboratory Medicine, New York Presbyterian Hospital–Weill Cornell Medicine, New York, New York, USA
| | | | | | | | | | - Melissa Cushing
- Department of Pathology and Laboratory Medicine, New York Presbyterian Hospital–Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
20
|
Craney A, Petrik D, Suhku A, Qiu Y, Racine-Brzostek S, Rennert H, Piscatelli H, Rathnaiah G, Hangman A, Carrie M, Cushing M. Performance Evaluation of the MatMaCorp COVID-19 2SF Assay for the Detection of SARS-CoV-2 from Nasopharyngeal Swabs. Microbiol Spectr 2021. [PMID: 34378961 DOI: 10.1128/spectrum.00083-21/asset/20dda6a3-cf04-4b25-bf05-3f0b4593f107/assets/images/large/spectrum.00083-21-f001.jpg] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has taken an unprecedented toll on clinical diagnostic testing, and the need for PCR-based testing remains to be met. Nucleic acid amplification testing (NAAT) is the recommended method for the diagnosis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) due to the inherent advantages in sensitivity and specificity. In this study, we evaluated the performance of the MatMaCorp COVID-19 2SF test, a reverse transcription-PCR (RT-PCR) assay for the qualitative detection of SARS-CoV-2 from nasopharyngeal (NP) swabs, run on the Solas 8 instrument (MatMaCorp, Lincoln, NE). The Solas 8 device is portable, and the kit is a lab-in-a-box design which provides reagents in a shelf-stable lyophilized powder format. A total of 78 remnant clinical specimens were used to evaluate the COVID-19 2SF test. Sixty-two clinical specimens originally tested by the Xpert Xpress SARS-CoV-2 assay (Cepheid, Inc., Sunnyvale, CA) were used to evaluate the clinical accuracy of the COVID-19 2SF test. The negative percent agreement (NPA) was 100% (95% confidence interval [CI], 83.9% to 100%), and the positive percent agreement (PPA) was 85.4% (95% CI, 70.8% to 94.4%). Sixteen remnant specimens positive for other common respiratory pathogens (FilmArray respiratory panel 2.0; BioFire, Salt Lake City, UT) were assayed on the Solas 8 device to evaluate specificity. No cross-reactivity with other respiratory pathogens was identified. The unique lab-in-a-box design and shelf-stable reagents of the MatMaCorp COVID-19 2SF test offer laboratories a rapid option for a diagnostic NAAT for SARS-CoV-2 that can help meet diagnostic needs. IMPORTANCE The demand for molecular testing for COVID-19 remains to be met. This study of the MatMaCorp Solas 8 device and COVID-19 test provides the first evaluation of this platform.
Collapse
Affiliation(s)
- Arryn Craney
- Department of Pathology and Laboratory Medicine, New York Presbyterian Hospital-Weill Cornell Medicine, New York, New York, USA
| | | | - Ashley Suhku
- Department of Pathology and Laboratory Medicine, New York Presbyterian Hospital-Weill Cornell Medicine, New York, New York, USA
| | - Yuqing Qiu
- Department of Population Health Sciences, Weill Cornell Medicine, New York, New York, USA
| | - Sabrina Racine-Brzostek
- Department of Pathology and Laboratory Medicine, New York Presbyterian Hospital-Weill Cornell Medicine, New York, New York, USA
| | - Hanna Rennert
- Department of Pathology and Laboratory Medicine, New York Presbyterian Hospital-Weill Cornell Medicine, New York, New York, USA
| | | | | | | | | | - Melissa Cushing
- Department of Pathology and Laboratory Medicine, New York Presbyterian Hospital-Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
21
|
Cowan SL, Wiegand M, Preller J, Goudie RJB. Validation of The 4C Deterioration Model for COVID-19 in a UK Teaching Hospital During Wave 2. Am J Med Sci 2021; 362:512-515. [PMID: 34437869 PMCID: PMC8381635 DOI: 10.1016/j.amjms.2021.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/18/2021] [Indexed: 12/15/2022]
Affiliation(s)
- Sarah L Cowan
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Martin Wiegand
- MRC Biostatistics Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Jacobus Preller
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Robert J B Goudie
- MRC Biostatistics Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
22
|
Aoki A, Mori Y, Okamoto Y, Jinno H. Development of a genotyping platform for SARS-CoV-2 variants using high-resolution melting analysis. J Infect Chemother 2021; 27:1336-1341. [PMID: 34154921 PMCID: PMC8196315 DOI: 10.1016/j.jiac.2021.06.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 05/14/2021] [Accepted: 06/06/2021] [Indexed: 01/08/2023]
Abstract
Introduction Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel coronavirus causing coronavirus disease 2019 (COVID-19), has been expanding globally since late 2019. SARS-CoV-2, an RNA virus, has a genome sequence that can easily undergo mutation. Several mutated SARS-CoV-2 strains, including those with higher infectivity than others, have been reported. To reduce SARS-CoV-2 transmission, it is crucial to trace its infection sources. Here, we developed a simple, easy-to-use genotyping method to identify SARS-CoV-2 variants using a high-resolution melting (HRM) analysis. Methods We investigated five mutation sites, A23403G, G25563T, G26144T, T28144C, and G28882A, which are known strain determinants according to GISAID clades (L, S, V, G, GH, and GR). Results We first employed synthetic DNA fragments containing the five characteristic sites for HRM analysis. All sequences clearly differentiated wild-type from mutant viruses. We then confirmed that RNA fragments were suitable for HRM analysis following reverse transcription. Human saliva did not negatively affect the HRM analysis, which supports the absence of a matrix effect. Conclusions Our results indicate that this HRM-based genotyping method can identify SARS-CoV-2 variants. This novel assay platform potentially paves the way for accurate and rapid identification of SARS-CoV-2 infection sources.
Collapse
Affiliation(s)
- Akira Aoki
- Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-Ku, Nagoya, 468-8503, Japan
| | - Yoko Mori
- Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-Ku, Nagoya, 468-8503, Japan
| | - Yoshinori Okamoto
- Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-Ku, Nagoya, 468-8503, Japan
| | - Hideto Jinno
- Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-Ku, Nagoya, 468-8503, Japan.
| |
Collapse
|
23
|
Dinnes J, Deeks JJ, Berhane S, Taylor M, Adriano A, Davenport C, Dittrich S, Emperador D, Takwoingi Y, Cunningham J, Beese S, Domen J, Dretzke J, Ferrante di Ruffano L, Harris IM, Price MJ, Taylor-Phillips S, Hooft L, Leeflang MM, McInnes MD, Spijker R, Van den Bruel A. Rapid, point-of-care antigen and molecular-based tests for diagnosis of SARS-CoV-2 infection. Cochrane Database Syst Rev 2021; 3:CD013705. [PMID: 33760236 PMCID: PMC8078597 DOI: 10.1002/14651858.cd013705.pub2] [Citation(s) in RCA: 298] [Impact Index Per Article: 99.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Accurate rapid diagnostic tests for SARS-CoV-2 infection could contribute to clinical and public health strategies to manage the COVID-19 pandemic. Point-of-care antigen and molecular tests to detect current infection could increase access to testing and early confirmation of cases, and expediate clinical and public health management decisions that may reduce transmission. OBJECTIVES To assess the diagnostic accuracy of point-of-care antigen and molecular-based tests for diagnosis of SARS-CoV-2 infection. We consider accuracy separately in symptomatic and asymptomatic population groups. SEARCH METHODS Electronic searches of the Cochrane COVID-19 Study Register and the COVID-19 Living Evidence Database from the University of Bern (which includes daily updates from PubMed and Embase and preprints from medRxiv and bioRxiv) were undertaken on 30 Sept 2020. We checked repositories of COVID-19 publications and included independent evaluations from national reference laboratories, the Foundation for Innovative New Diagnostics and the Diagnostics Global Health website to 16 Nov 2020. We did not apply language restrictions. SELECTION CRITERIA We included studies of people with either suspected SARS-CoV-2 infection, known SARS-CoV-2 infection or known absence of infection, or those who were being screened for infection. We included test accuracy studies of any design that evaluated commercially produced, rapid antigen or molecular tests suitable for a point-of-care setting (minimal equipment, sample preparation, and biosafety requirements, with results within two hours of sample collection). We included all reference standards that define the presence or absence of SARS-CoV-2 (including reverse transcription polymerase chain reaction (RT-PCR) tests and established diagnostic criteria). DATA COLLECTION AND ANALYSIS Studies were screened independently in duplicate with disagreements resolved by discussion with a third author. Study characteristics were extracted by one author and checked by a second; extraction of study results and assessments of risk of bias and applicability (made using the QUADAS-2 tool) were undertaken independently in duplicate. We present sensitivity and specificity with 95% confidence intervals (CIs) for each test and pooled data using the bivariate model separately for antigen and molecular-based tests. We tabulated results by test manufacturer and compliance with manufacturer instructions for use and according to symptom status. MAIN RESULTS Seventy-eight study cohorts were included (described in 64 study reports, including 20 pre-prints), reporting results for 24,087 samples (7,415 with confirmed SARS-CoV-2). Studies were mainly from Europe (n = 39) or North America (n = 20), and evaluated 16 antigen and five molecular assays. We considered risk of bias to be high in 29 (50%) studies because of participant selection; in 66 (85%) because of weaknesses in the reference standard for absence of infection; and in 29 (45%) for participant flow and timing. Studies of antigen tests were of a higher methodological quality compared to studies of molecular tests, particularly regarding the risk of bias for participant selection and the index test. Characteristics of participants in 35 (45%) studies differed from those in whom the test was intended to be used and the delivery of the index test in 39 (50%) studies differed from the way in which the test was intended to be used. Nearly all studies (97%) defined the presence or absence of SARS-CoV-2 based on a single RT-PCR result, and none included participants meeting case definitions for probable COVID-19. Antigen tests Forty-eight studies reported 58 evaluations of antigen tests. Estimates of sensitivity varied considerably between studies. There were differences between symptomatic (72.0%, 95% CI 63.7% to 79.0%; 37 evaluations; 15530 samples, 4410 cases) and asymptomatic participants (58.1%, 95% CI 40.2% to 74.1%; 12 evaluations; 1581 samples, 295 cases). Average sensitivity was higher in the first week after symptom onset (78.3%, 95% CI 71.1% to 84.1%; 26 evaluations; 5769 samples, 2320 cases) than in the second week of symptoms (51.0%, 95% CI 40.8% to 61.0%; 22 evaluations; 935 samples, 692 cases). Sensitivity was high in those with cycle threshold (Ct) values on PCR ≤25 (94.5%, 95% CI 91.0% to 96.7%; 36 evaluations; 2613 cases) compared to those with Ct values >25 (40.7%, 95% CI 31.8% to 50.3%; 36 evaluations; 2632 cases). Sensitivity varied between brands. Using data from instructions for use (IFU) compliant evaluations in symptomatic participants, summary sensitivities ranged from 34.1% (95% CI 29.7% to 38.8%; Coris Bioconcept) to 88.1% (95% CI 84.2% to 91.1%; SD Biosensor STANDARD Q). Average specificities were high in symptomatic and asymptomatic participants, and for most brands (overall summary specificity 99.6%, 95% CI 99.0% to 99.8%). At 5% prevalence using data for the most sensitive assays in symptomatic people (SD Biosensor STANDARD Q and Abbott Panbio), positive predictive values (PPVs) of 84% to 90% mean that between 1 in 10 and 1 in 6 positive results will be a false positive, and between 1 in 4 and 1 in 8 cases will be missed. At 0.5% prevalence applying the same tests in asymptomatic people would result in PPVs of 11% to 28% meaning that between 7 in 10 and 9 in 10 positive results will be false positives, and between 1 in 2 and 1 in 3 cases will be missed. No studies assessed the accuracy of repeated lateral flow testing or self-testing. Rapid molecular assays Thirty studies reported 33 evaluations of five different rapid molecular tests. Sensitivities varied according to test brand. Most of the data relate to the ID NOW and Xpert Xpress assays. Using data from evaluations following the manufacturer's instructions for use, the average sensitivity of ID NOW was 73.0% (95% CI 66.8% to 78.4%) and average specificity 99.7% (95% CI 98.7% to 99.9%; 4 evaluations; 812 samples, 222 cases). For Xpert Xpress, the average sensitivity was 100% (95% CI 88.1% to 100%) and average specificity 97.2% (95% CI 89.4% to 99.3%; 2 evaluations; 100 samples, 29 cases). Insufficient data were available to investigate the effect of symptom status or time after symptom onset. AUTHORS' CONCLUSIONS Antigen tests vary in sensitivity. In people with signs and symptoms of COVID-19, sensitivities are highest in the first week of illness when viral loads are higher. The assays shown to meet appropriate criteria, such as WHO's priority target product profiles for COVID-19 diagnostics ('acceptable' sensitivity ≥ 80% and specificity ≥ 97%), can be considered as a replacement for laboratory-based RT-PCR when immediate decisions about patient care must be made, or where RT-PCR cannot be delivered in a timely manner. Positive predictive values suggest that confirmatory testing of those with positive results may be considered in low prevalence settings. Due to the variable sensitivity of antigen tests, people who test negative may still be infected. Evidence for testing in asymptomatic cohorts was limited. Test accuracy studies cannot adequately assess the ability of antigen tests to differentiate those who are infectious and require isolation from those who pose no risk, as there is no reference standard for infectiousness. A small number of molecular tests showed high accuracy and may be suitable alternatives to RT-PCR. However, further evaluations of the tests in settings as they are intended to be used are required to fully establish performance in practice. Several important studies in asymptomatic individuals have been reported since the close of our search and will be incorporated at the next update of this review. Comparative studies of antigen tests in their intended use settings and according to test operator (including self-testing) are required.
Collapse
Affiliation(s)
- Jacqueline Dinnes
- Test Evaluation Research Group, Institute of Applied Health Research, University of Birmingham, Birmingham , UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
| | - Jonathan J Deeks
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
- Test Evaluation Research Group, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Sarah Berhane
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
| | - Melissa Taylor
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Ada Adriano
- Test Evaluation Research Group, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Clare Davenport
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
- Test Evaluation Research Group, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | | | | | - Yemisi Takwoingi
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
- Test Evaluation Research Group, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Jane Cunningham
- Global Malaria Programme, World Health Organization, Geneva , Switzerland
| | - Sophie Beese
- Test Evaluation Research Group, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Julie Domen
- Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Janine Dretzke
- Test Evaluation Research Group, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Lavinia Ferrante di Ruffano
- Test Evaluation Research Group, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Isobel M Harris
- Test Evaluation Research Group, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Malcolm J Price
- Test Evaluation Research Group, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Sian Taylor-Phillips
- Division of Health Sciences, Warwick Medical School, University of Warwick , Coventry, UK
| | - Lotty Hooft
- Cochrane Netherlands, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht , Netherlands
| | - Mariska Mg Leeflang
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | | | - René Spijker
- Medical Library, Amsterdam UMC, University of Amsterdam, Amsterdam Public Health, Amsterdam, Netherlands
- Cochrane Netherlands, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Ann Van den Bruel
- Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| |
Collapse
|
24
|
Xu R, Pauley TA, Missfelder-Lobos H, Haddon RJ, Gupta RK, Chong HP. Samba II PCR testing for COVID-19 in pregnant women: a retrospective cohort study and literature review. BMC Pregnancy Childbirth 2021; 21:212. [PMID: 33731037 PMCID: PMC7968137 DOI: 10.1186/s12884-021-03653-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/18/2021] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Asymptomatic carriage of COVID-19 in pregnant women has been reported and could lead to outbreaks in maternity units. We sought to ascertain the impact of rapid isothernal nucleic acid based testing for COVID-19 in an unselected cohort of pregnant women attending our maternity unit. We also assessed the correlation between community prevalence and asymptomatic carriage. METHODS Data for the retrospective cohort study were collected from a large UK tertiary maternity unit over a 4-week period using computerised hospital records. Literature searches were performed across multiple repositories. COVID-19 prevalence was extracted from online repositories. RESULTS Nasopharyngeal and oropharyngeal swabs were obtained from 457/465 (98%) women during the study period. The median turnaround time for results was 5.3 h (interquartile range (IQR) 2.6-8.9 h), with 92% of the results returned within 24 h. In our cohort, only one woman tested positive, giving a screen positive rate of 0.22% (1/457; 95% CI: 0.04-1.23%). One woman who tested negative developed a fever postnatally following discharge but was lost to follow-up. From our literature review, we did not find any correlation between asymptomatic carriage in pregnant women and the reported regional prevalence of COVID-19. CONCLUSIONS Testing using the SAMBA-II machine was acceptable to the vast majority of pregnant women requiring admission and had a low turnaround time. Asymptomatic carriage is low, but not correlated to community prevalence rates. Screening pregnant women on admission will remain an important component in order to minimise nosocomial infection.
Collapse
Affiliation(s)
- Ruiling Xu
- Department of Obstetrics & Gynaecology, Rosie Maternity Hospital, Cambridge, CB2 0SQ UK
| | - Tara Alicia Pauley
- Department of Obstetrics & Gynaecology, Rosie Maternity Hospital, Cambridge, CB2 0SQ UK
| | | | - Richard John Haddon
- Department of Anaesthesia, Cambridge University NHS Hospitals Foundation Trust, Cambridge, CB2 0QQ UK
| | | | - Hsu Phern Chong
- Department of Obstetrics & Gynaecology, Rosie Maternity Hospital, Cambridge, CB2 0SQ UK
| |
Collapse
|
25
|
Parsons IT, Parsons AT, Balme E, Hazell G, Gifford R, Stacey M, Woods DR, Russell-Jones D. The use of routine blood tests to assist the diagnosis of COVID-19 in symptomatic hospitalized patients. Ann Clin Biochem 2021; 58:318-326. [PMID: 33591793 PMCID: PMC8258729 DOI: 10.1177/0004563221999076] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Introduction Specific patterns of blood test results are associated with COVID-19 infection. The aim of this study was to identify which blood tests could be used to assist in diagnosing COVID-19. Method A retrospective review was performed on consecutive patients referred to hospital with a clinical suspicion of COVID-19 over a period of four weeks. The patient’s clinical presentation and severe acute respiratory syndrome coronavirus 2 reverse-transcription polymerase chain reaction (SARS-CoV-2 RT-PCR) were recorded. The patients were divided by diagnosis into COVID (COVID-19 infection) or CONTROL (an alternate diagnosis). A retrospective review of consecutive patients over a further two-week period was used for the purposes of validation. Results Overall, 399 patients (53% COVID, 47% CONTROL) were analysed. White cell count, neutrophils and lymphocytes were significantly lower, while lactate dehydrogenase and ferritin were significantly higher, in the COVID group in comparison to CONTROL. Combining the white cell count, lymphocytes and ferritin results into a COVID Combined Blood Test (CCBT) had an area under the curve of 0.79. Using a threshold CCBT of –0.8 resulted in a sensitivity of 0.85 and a specificity of 0.63. Analysing this against a further retrospective review of 181 suspected COVID-19 patients, using the same CCBT threshold, resulted in a sensitivity of 0.73 and a specificity of 0.75. The sensitivity was comparable to the SARS-CoV-2 RT PCR. Discussion Mathematically combining the blood tests has the potential to assist clinical acumen allowing for rapid streaming and more accurate patient flow pending definitive diagnosis. This may be of particular use in low-resource settings.
Collapse
Affiliation(s)
- I T Parsons
- School of Life Sciences and Medicine, King's College London, St Thomas' Hospital, London, UK
| | - A T Parsons
- School of Electronic, Electrical & Systems Engineering, Edgbaston, University of Birmingham, Birmingham, UK
| | - E Balme
- Royal Surrey County Hospital NHS Trust, Guildford, UK
| | - G Hazell
- Royal Surrey County Hospital NHS Trust, Guildford, UK
| | - R Gifford
- Academic Department of Military Medicine, Research and Clinical Innovation, Royal Centre for Defence Medicine, Birmingham, UK
| | - M Stacey
- Academic Department of Military Medicine, Research and Clinical Innovation, Royal Centre for Defence Medicine, Birmingham, UK
| | - D R Woods
- Academic Department of Military Medicine, Research and Clinical Innovation, Royal Centre for Defence Medicine, Birmingham, UK
| | | |
Collapse
|
26
|
Ristić M, Nikolić N, Čabarkapa V, Turkulov V, Petrović V. Validation of the STANDARD Q COVID-19 antigen test in Vojvodina, Serbia. PLoS One 2021; 16:e0247606. [PMID: 33617597 PMCID: PMC7899368 DOI: 10.1371/journal.pone.0247606] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/09/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Since COVID-19 pandemic is a global crisis, tests with high sensitivity and specificity are crucial for the identification and management of COVID-19 patients. There is an urgent need for low-cost rapid antigen COVID-19 test with a good diagnostic performance. Although various antigen rapid detection tests are widely available, strong evidence of their usefulness in clinical practice are still limited. Therefore, our aim was to evaluate clinical performance of STANDARD Q COVID-19 Ag Test (SD Biosensor, Gyeonggi-do, South Korea). METHODS The performance of the STANDARD Q COVID-19 Ag Test for the detection of SARS-CoV-2 antigen was evaluated in comparison to RT-qPCR results in 120 symptomatic patients (median age 49, IQR 36-70) who presented to health care facility in Novi Sad, Vojvodina, Serbia. RESULTS Twenty five out of 120 samples have been tested positive using STANDARD Q COVID-19 Ag Test, and all of them were also positive on RT-qPCR. Overall, the STANDARD Q COVID-19 Ag Test showed sensitivity of 58.1% (95% CI 42.1-73.0) but it was higher in the early days of disease, when the highest viral loads were detected. During the first five days after the symptom onset, the sensitivity ranged from 66.7% to 100% and the pooled accuracy and Kappa values were high (0.92 and 0.852). CONCLUSIONS A strong agreement between performance of STANDARD Q COVID-19 Ag Test and RT-qPCR was observed during the first five days of illness, suggesting that this rapid antigenic test can be very useful for COVID-19 diagnosis in the early phase of disease.
Collapse
Affiliation(s)
- Mioljub Ristić
- Department of Epidemiology, University of Novi Sad, Faculty of Medicine, Novi Sad, Serbia
- Institute of Public Health of Vojvodina, Novi Sad, Serbia
| | - Nataša Nikolić
- Institute of Public Health of Vojvodina, Novi Sad, Serbia
- Department of Microbiology with Parasitology and Immunology, University of Novi Sad, Faculty of Medicine, Novi Sad, Serbia
| | - Velibor Čabarkapa
- Faculty of Medicine, Department of Pathophysiology and Laboratory Medicine, University of Novi Sad, University of Novi Sad, Novi Sad, Serbia
- Centre of Laboratory Medicine, Clinical Centre of Vojvodina, Novi Sad, Serbia
| | - Vesna Turkulov
- Department of Infectious Diseases, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
- Clinic for Infectious Diseases, Clinical Centre of Vojvodina, Novi Sad, Serbia
| | - Vladimir Petrović
- Department of Epidemiology, University of Novi Sad, Faculty of Medicine, Novi Sad, Serbia
- Institute of Public Health of Vojvodina, Novi Sad, Serbia
| |
Collapse
|
27
|
Subsoontorn P, Lohitnavy M, Kongkaew C. The diagnostic accuracy of isothermal nucleic acid point-of-care tests for human coronaviruses: A systematic review and meta-analysis. Sci Rep 2020; 10:22349. [PMID: 33339871 PMCID: PMC7749114 DOI: 10.1038/s41598-020-79237-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 12/04/2020] [Indexed: 02/01/2023] Open
Abstract
Many recent studies reported coronavirus point-of-care tests (POCTs) based on isothermal amplification. However, the performances of these tests have not been systematically evaluated. Cochrane Handbook for Systematic Reviews of Diagnostic Test Accuracy was used as a guideline for conducting this systematic review. We searched peer-reviewed and preprint articles in PubMed, BioRxiv and MedRxiv up to 28 September 2020 to identify studies that provide data to calculate sensitivity, specificity and diagnostic odds ratio (DOR). Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) was applied for assessing quality of included studies and Preferred Reporting Items for a Systematic Review and Meta-analysis of Diagnostic Test Accuracy Studies (PRISMA-DTA) was followed for reporting. We included 81 studies from 65 research articles on POCTs of SARS, MERS and COVID-19. Most studies had high risk of patient selection and index test bias but low risk in other domains. Diagnostic specificities were high (> 0.95) for included studies while sensitivities varied depending on type of assays and sample used. Most studies (n = 51) used reverse transcription loop-mediated isothermal amplification (RT-LAMP) to diagnose coronaviruses. RT-LAMP of RNA purified from COVID-19 patient samples had pooled sensitivity at 0.94 (95% CI: 0.90-0.96). RT-LAMP of crude samples had substantially lower sensitivity at 0.78 (95% CI: 0.65-0.87). Abbott ID Now performance was similar to RT-LAMP of crude samples. Diagnostic performances by CRISPR and RT-LAMP on purified RNA were similar. Other diagnostic platforms including RT- recombinase assisted amplification (RT-RAA) and SAMBA-II also offered high sensitivity (> 0.95). Future studies should focus on the use of un-bias patient cohorts, double-blinded index test and detection assays that do not require RNA extraction.
Collapse
Affiliation(s)
- Pakpoom Subsoontorn
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand.
| | - Manupat Lohitnavy
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand
- Center of Excellence for Environmental Health and Toxicology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, 65000, Thailand
| | - Chuenjid Kongkaew
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand
- Research Centre for Safety and Quality in Health, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, 65000, Thailand
- Research Department of Practice and Policy, UCL School of Pharmacy, 29-39 Brunswick Square, London, WC1N 1AX, UK
| |
Collapse
|
28
|
Gibani MM, Toumazou C, Sohbati M, Sahoo R, Karvela M, Hon TK, De Mateo S, Burdett A, Leung KYF, Barnett J, Orbeladze A, Luan S, Pournias S, Sun J, Flower B, Bedzo-Nutakor J, Amran M, Quinlan R, Skolimowska K, Herrera C, Rowan A, Badhan A, Klaber R, Davies G, Muir D, Randell P, Crook D, Taylor GP, Barclay W, Mughal N, Moore LSP, Jeffery K, Cooke GS. Assessing a novel, lab-free, point-of-care test for SARS-CoV-2 (CovidNudge): a diagnostic accuracy study. THE LANCET. MICROBE 2020; 1:e300-e307. [PMID: 32964211 PMCID: PMC7498257 DOI: 10.1016/s2666-5247(20)30121-x] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Access to rapid diagnosis is key to the control and management of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Laboratory RT-PCR testing is the current standard of care but usually requires a centralised laboratory and significant infrastructure. We describe our diagnostic accuracy assessment of a novel, rapid point-of-care real time RT-PCR CovidNudge test, which requires no laboratory handling or sample pre-processing. METHODS Between April and May, 2020, we obtained two nasopharyngeal swab samples from individuals in three hospitals in London and Oxford (UK). Samples were collected from three groups: self-referred health-care workers with suspected COVID-19; patients attending emergency departments with suspected COVID-19; and hospital inpatient admissions with or without suspected COVID-19. For the CovidNudge test, nasopharyngeal swabs were inserted directly into a cartridge which contains all reagents and components required for RT-PCR reactions, including multiple technical replicates of seven SARS-CoV-2 gene targets (rdrp1, rdrp2, e-gene, n-gene, n1, n2 and n3) and human ribonuclease P (RNaseP) as sample adequacy control. Swab samples were tested in parallel using the CovidNudge platform, and with standard laboratory RT-PCR using swabs in viral transport medium for processing in a central laboratory. The primary analysis was to compare the sensitivity and specificity of the point-of-care CovidNudge test with laboratory-based testing. FINDINGS We obtained 386 paired samples: 280 (73%) from self-referred health-care workers, 15 (4%) from patients in the emergency department, and 91 (23%) hospital inpatient admissions. Of the 386 paired samples, 67 tested positive on the CovidNudge point-of-care platform and 71 with standard laboratory RT-PCR. The overall sensitivity of the point-of-care test compared with laboratory-based testing was 94% (95% CI 86-98) with an overall specificity of 100% (99-100). The sensitivity of the test varied by group (self-referred healthcare workers 94% [95% CI 85-98]; patients in the emergency department 100% [48-100]; and hospital inpatient admissions 100% [29-100]). Specificity was consistent between groups (self-referred health-care workers 100% [95% CI 98-100]; patients in the emergency department 100% [69-100]; and hospital inpatient admissions 100% [96-100]). Point of care testing performance was similar during a period of high background prevalence of laboratory positive tests (25% [95% 20-31] in April, 2020) and low prevalence (3% [95% 1-9] in inpatient screening). Amplification of viral nucleocapsid (n1, n2, and n3) and envelope protein gene (e-gene) were most sensitive for detection of spiked SARS-CoV-2 RNA. INTERPRETATION The CovidNudge platform was a sensitive, specific, and rapid point of care test for the presence of SARS-CoV-2 without laboratory handling or sample pre-processing. The device, which has been implemented in UK hospitals since May, 2020, could enable rapid decisions for clinical care and testing programmes. FUNDING National Institute of Health Research (NIHR) Imperial Biomedical Research Centre, NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at Oxford University in partnership with Public Health England, NIHR Biomedical Research Centre Oxford, and DnaNudge.
Collapse
Affiliation(s)
- Malick M Gibani
- Department of Infectious Disease, Imperial College London, UK
- Imperial College Healthcare NHS Trust, Hammersmith Hospital, UK
| | - Christofer Toumazou
- DnaNudge, Translation and Innovation Hub, Imperial College White City Campus, London, UK
- Department of Electrical and Electronic Engineering, Imperial College London, London, UK
| | - Mohammadreza Sohbati
- DnaNudge, Translation and Innovation Hub, Imperial College White City Campus, London, UK
| | - Rashmita Sahoo
- DnaNudge, Translation and Innovation Hub, Imperial College White City Campus, London, UK
| | - Maria Karvela
- DnaNudge, Translation and Innovation Hub, Imperial College White City Campus, London, UK
| | - Tsz-Kin Hon
- DnaNudge, Translation and Innovation Hub, Imperial College White City Campus, London, UK
| | - Sara De Mateo
- DnaNudge, Translation and Innovation Hub, Imperial College White City Campus, London, UK
| | - Alison Burdett
- Department of Electrical and Electronic Engineering, Imperial College London, London, UK
| | - K Y Felice Leung
- DnaNudge, Translation and Innovation Hub, Imperial College White City Campus, London, UK
| | - Jake Barnett
- DnaNudge, Translation and Innovation Hub, Imperial College White City Campus, London, UK
| | - Arman Orbeladze
- DnaNudge, Translation and Innovation Hub, Imperial College White City Campus, London, UK
| | - Song Luan
- DnaNudge, Translation and Innovation Hub, Imperial College White City Campus, London, UK
| | - Stavros Pournias
- DnaNudge, Translation and Innovation Hub, Imperial College White City Campus, London, UK
| | - Jiayang Sun
- DnaNudge, Translation and Innovation Hub, Imperial College White City Campus, London, UK
| | - Barney Flower
- Department of Infectious Disease, Imperial College London, UK
- Imperial College Healthcare NHS Trust, Hammersmith Hospital, UK
| | - Judith Bedzo-Nutakor
- DnaNudge, Translation and Innovation Hub, Imperial College White City Campus, London, UK
| | - Maisarah Amran
- Imperial College Healthcare NHS Trust, Hammersmith Hospital, UK
| | - Rachael Quinlan
- Department of Infectious Disease, Imperial College London, UK
| | - Keira Skolimowska
- Department of Infectious Disease, Imperial College London, UK
- Imperial College Healthcare NHS Trust, Hammersmith Hospital, UK
| | | | - Aileen Rowan
- Department of Infectious Disease, Imperial College London, UK
| | - Anjna Badhan
- Department of Infectious Disease, Imperial College London, UK
| | - Robert Klaber
- Imperial College Healthcare NHS Trust, Hammersmith Hospital, UK
| | - Gary Davies
- Chelsea & Westminster NHS Foundation Trust, London, UK
| | - David Muir
- Imperial College Healthcare NHS Trust, Hammersmith Hospital, UK
| | - Paul Randell
- Imperial College Healthcare NHS Trust, Hammersmith Hospital, UK
| | - Derrick Crook
- Nuffield Department of Medicine, Oxford University, Oxford, UK
| | - Graham P Taylor
- Department of Infectious Disease, Imperial College London, UK
| | - Wendy Barclay
- Department of Infectious Disease, Imperial College London, UK
| | - Nabeela Mughal
- Department of Infectious Disease, Imperial College London, UK
- Imperial College Healthcare NHS Trust, Hammersmith Hospital, UK
- Chelsea & Westminster NHS Foundation Trust, London, UK
| | - Luke S P Moore
- Department of Infectious Disease, Imperial College London, UK
- Imperial College Healthcare NHS Trust, Hammersmith Hospital, UK
- Chelsea & Westminster NHS Foundation Trust, London, UK
| | - Katie Jeffery
- Nuffield Department of Medicine, Oxford University, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Graham S Cooke
- Department of Infectious Disease, Imperial College London, UK
- Imperial College Healthcare NHS Trust, Hammersmith Hospital, UK
| |
Collapse
|
29
|
Jokela P, Jääskeläinen AE, Jarva H, Holma T, Ahava MJ, Mannonen L, Lappalainen M, Kurkela S, Loginov R. SARS-CoV-2 sample-to-answer nucleic acid testing in a tertiary care emergency department: evaluation and utility. J Clin Virol 2020; 131:104614. [PMID: 32889495 PMCID: PMC7451096 DOI: 10.1016/j.jcv.2020.104614] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Rapid sample-to-answer tests for detection of SARS-CoV-2 are emerging and data on their relative performance is urgently needed. OBJECTIVES We evaluated the analytical performance of two rapid nucleic acid tests, Cepheid Xpert® Xpress SARS-CoV-2 and Mobidiag Novodiag® Covid-19, in comparison to a combination reference of three large-scale PCR tests. Moreover, utility of the Novodiag® test in tertiary care emergency departments was assessed. RESULTS In the preliminary evaluation, analysis of 90 respiratory samples resulted in 100% specificity and sensitivity for Xpert®, whereas analysis of 107 samples resulted in 93.4% sensitivity and 100% specificity for Novodiag®. Rapid SARS-CoV-2 testing with Novodiag® was made available for four tertiary care emergency departments in Helsinki, Finland between 18 and 31 May, coinciding with a rapidly declining epidemic phase. Altogether 361 respiratory specimens, together with relevant clinical data, were analyzed with Novodiag® and reference tests: 355/361 of the specimens were negative with both methods, and 1/361 was positive in Novodiag® and negative by the reference method. Of the 5 remaining specimens, two were negative with Novodiag®, but positive with the reference method with late Ct values. On average, a test result using Novodiag® was available nearly 8 hours earlier than that obtained with the large-scale PCR tests. CONCLUSIONS While the performance of novel sample-to-answer PCR tests need to be carefully evaluated, they may provide timely and reliable results in detection of SARS-CoV-2 and thus facilitate patient management including effective cohorting.
Collapse
Affiliation(s)
- Pia Jokela
- HUS Diagnostic Center, HUSLAB, Clinical Microbiology, University of Helsinki and Helsinki University Hospital, Finland
| | - Anu E Jääskeläinen
- HUS Diagnostic Center, HUSLAB, Clinical Microbiology, University of Helsinki and Helsinki University Hospital, Finland.
| | - Hanna Jarva
- HUS Diagnostic Center, HUSLAB, Clinical Microbiology, University of Helsinki and Helsinki University Hospital, Finland; Translational Immunology Research Program and Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland
| | - Tanja Holma
- HUS Diagnostic Center, HUSLAB, Clinical Microbiology, University of Helsinki and Helsinki University Hospital, Finland
| | - Maarit J Ahava
- HUS Diagnostic Center, HUSLAB, Clinical Microbiology, University of Helsinki and Helsinki University Hospital, Finland
| | - Laura Mannonen
- HUS Diagnostic Center, HUSLAB, Clinical Microbiology, University of Helsinki and Helsinki University Hospital, Finland
| | - Maija Lappalainen
- HUS Diagnostic Center, HUSLAB, Clinical Microbiology, University of Helsinki and Helsinki University Hospital, Finland
| | - Satu Kurkela
- HUS Diagnostic Center, HUSLAB, Clinical Microbiology, University of Helsinki and Helsinki University Hospital, Finland
| | - Raisa Loginov
- HUS Diagnostic Center, HUSLAB, Clinical Microbiology, University of Helsinki and Helsinki University Hospital, Finland
| |
Collapse
|
30
|
Mlcochova P, Collier D, Ritchie A, Assennato SM, Hosmillo M, Goel N, Meng B, Chatterjee K, Mendoza V, Temperton N, Kiss L, James LC, Ciazynska KA, Xiong X, Briggs JA, Nathan JA, Mescia F, Bergamaschi L, Zhang H, Barmpounakis P, Demeris N, Skells R, Lyons PA, Bradley J, Baker S, Allain JP, Smith KG, Bousfield R, Wilson M, Sparkes D, Amoroso G, Gkrania-Klotsas E, Hardwick S, Boyle A, Goodfellow I, Gupta RK. Combined Point-of-Care Nucleic Acid and Antibody Testing for SARS-CoV-2 following Emergence of D614G Spike Variant. Cell Rep Med 2020; 1:100099. [PMID: 32905045 PMCID: PMC7462534 DOI: 10.1016/j.xcrm.2020.100099] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/05/2020] [Accepted: 08/27/2020] [Indexed: 12/20/2022]
Abstract
Rapid COVID-19 diagnosis in the hospital is essential, although this is complicated by 30%-50% of nose/throat swabs being negative by SARS-CoV-2 nucleic acid amplification testing (NAAT). Furthermore, the D614G spike mutant dominates the pandemic and it is unclear how serological tests designed to detect anti-spike antibodies perform against this variant. We assess the diagnostic accuracy of combined rapid antibody point of care (POC) and nucleic acid assays for suspected COVID-19 disease due to either wild-type or the D614G spike mutant SARS-CoV-2. The overall detection rate for COVID-19 is 79.2% (95% CI 57.8-92.9) by rapid NAAT alone. The combined point of care antibody test and rapid NAAT is not affected by D614G and results in very high sensitivity for COVID-19 diagnosis with very high specificity.
Collapse
Affiliation(s)
- Petra Mlcochova
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Dami Collier
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Allyson Ritchie
- Diagnostics for the Real World EU, Chesterford Research Park, UK
| | | | - Myra Hosmillo
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Neha Goel
- Diagnostics for the Real World EU, Chesterford Research Park, UK
| | - Bo Meng
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | | | - Vivien Mendoza
- NIHR Cambridge Clinical Research Facility, Cambridge, UK
| | - Nigel Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent, Kent, UK
| | - Leo Kiss
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Leo C. James
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | | | - Xiaoli Xiong
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - John A.G. Briggs
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - James A. Nathan
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Federica Mescia
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Laura Bergamaschi
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Hongyi Zhang
- Clinical Microbiology & Public Health Laboratory, Cambridge University NHS Hospitals Foundation Trust, Cambridge, UK
| | - Petros Barmpounakis
- Department of Statistics, Athens University of Economics and Business, Athens, Greece
| | - Nikos Demeris
- Department of Statistics, Athens University of Economics and Business, Athens, Greece
- Cambridge Clinical Trials Unit-Cancer Theme, University of Cambridge, Cambridge, UK
| | - Richard Skells
- NIHR Cambridge Clinical Research Facility, Cambridge, UK
- Cambridge Clinical Trials Unit-Cancer Theme, University of Cambridge, Cambridge, UK
| | - Paul A. Lyons
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - John Bradley
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
- National Institutes for Health Research Cambridge Biomedical Research Centre, Cambridge, UK
| | - Steven Baker
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | | | - Kenneth G.C. Smith
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Rachel Bousfield
- Department of Infectious Diseases, Cambridge University NHS Hospitals Foundation Trust, Cambridge, UK
| | - Michael Wilson
- Department of Infectious Diseases, Cambridge University NHS Hospitals Foundation Trust, Cambridge, UK
| | - Dominic Sparkes
- Department of Infectious Diseases, Cambridge University NHS Hospitals Foundation Trust, Cambridge, UK
| | - Glenn Amoroso
- Department of Emergency Medicine, Cambridge University NHS Hospitals Foundation Trust, Cambridge, UK
| | - Effrosyni Gkrania-Klotsas
- Department of Infectious Diseases, Cambridge University NHS Hospitals Foundation Trust, Cambridge, UK
| | - Susie Hardwick
- Department of Emergency Medicine, Cambridge University NHS Hospitals Foundation Trust, Cambridge, UK
| | - Adrian Boyle
- Department of Emergency Medicine, Cambridge University NHS Hospitals Foundation Trust, Cambridge, UK
| | - Ian Goodfellow
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Ravindra K. Gupta
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
- Department of Infectious Diseases, Cambridge University NHS Hospitals Foundation Trust, Cambridge, UK
- Africa Health Research Institute, Durban, South Africa
| |
Collapse
|
31
|
Dinnes J, Deeks JJ, Adriano A, Berhane S, Davenport C, Dittrich S, Emperador D, Takwoingi Y, Cunningham J, Beese S, Dretzke J, Ferrante di Ruffano L, Harris IM, Price MJ, Taylor-Phillips S, Hooft L, Leeflang MM, Spijker R, Van den Bruel A. Rapid, point-of-care antigen and molecular-based tests for diagnosis of SARS-CoV-2 infection. Cochrane Database Syst Rev 2020; 8:CD013705. [PMID: 32845525 PMCID: PMC8078202 DOI: 10.1002/14651858.cd013705] [Citation(s) in RCA: 348] [Impact Index Per Article: 87.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the resulting COVID-19 pandemic present important diagnostic challenges. Several diagnostic strategies are available to identify or rule out current infection, identify people in need of care escalation, or to test for past infection and immune response. Point-of-care antigen and molecular tests to detect current SARS-CoV-2 infection have the potential to allow earlier detection and isolation of confirmed cases compared to laboratory-based diagnostic methods, with the aim of reducing household and community transmission. OBJECTIVES To assess the diagnostic accuracy of point-of-care antigen and molecular-based tests to determine if a person presenting in the community or in primary or secondary care has current SARS-CoV-2 infection. SEARCH METHODS On 25 May 2020 we undertook electronic searches in the Cochrane COVID-19 Study Register and the COVID-19 Living Evidence Database from the University of Bern, which is updated daily with published articles from PubMed and Embase and with preprints from medRxiv and bioRxiv. In addition, we checked repositories of COVID-19 publications. We did not apply any language restrictions. SELECTION CRITERIA We included studies of people with suspected current SARS-CoV-2 infection, known to have, or not to have SARS-CoV-2 infection, or where tests were used to screen for infection. We included test accuracy studies of any design that evaluated antigen or molecular tests suitable for a point-of-care setting (minimal equipment, sample preparation, and biosafety requirements, with results available within two hours of sample collection). We included all reference standards to define the presence or absence of SARS-CoV-2 (including reverse transcription polymerase chain reaction (RT-PCR) tests and established clinical diagnostic criteria). DATA COLLECTION AND ANALYSIS Two review authors independently screened studies and resolved any disagreements by discussion with a third review author. One review author independently extracted study characteristics, which were checked by a second review author. Two review authors independently extracted 2x2 contingency table data and assessed risk of bias and applicability of the studies using the QUADAS-2 tool. We present sensitivity and specificity, with 95% confidence intervals (CIs), for each test using paired forest plots. We pooled data using the bivariate hierarchical model separately for antigen and molecular-based tests, with simplifications when few studies were available. We tabulated available data by test manufacturer. MAIN RESULTS We included 22 publications reporting on a total of 18 study cohorts with 3198 unique samples, of which 1775 had confirmed SARS-CoV-2 infection. Ten studies took place in North America, two in South America, four in Europe, one in China and one was conducted internationally. We identified data for eight commercial tests (four antigen and four molecular) and one in-house antigen test. Five of the studies included were only available as preprints. We did not find any studies at low risk of bias for all quality domains and had concerns about applicability of results across all studies. We judged patient selection to be at high risk of bias in 50% of the studies because of deliberate over-sampling of samples with confirmed COVID-19 infection and unclear in seven out of 18 studies because of poor reporting. Sixteen (89%) studies used only a single, negative RT-PCR to confirm the absence of COVID-19 infection, risking missing infection. There was a lack of information on blinding of index test (n = 11), and around participant exclusions from analyses (n = 10). We did not observe differences in methodological quality between antigen and molecular test evaluations. Antigen tests Sensitivity varied considerably across studies (from 0% to 94%): the average sensitivity was 56.2% (95% CI 29.5 to 79.8%) and average specificity was 99.5% (95% CI 98.1% to 99.9%; based on 8 evaluations in 5 studies on 943 samples). Data for individual antigen tests were limited with no more than two studies for any test. Rapid molecular assays Sensitivity showed less variation compared to antigen tests (from 68% to 100%), average sensitivity was 95.2% (95% CI 86.7% to 98.3%) and specificity 98.9% (95% CI 97.3% to 99.5%) based on 13 evaluations in 11 studies of on 2255 samples. Predicted values based on a hypothetical cohort of 1000 people with suspected COVID-19 infection (with a prevalence of 10%) result in 105 positive test results including 10 false positives (positive predictive value 90%), and 895 negative results including 5 false negatives (negative predictive value 99%). Individual tests We calculated pooled results of individual tests for ID NOW (Abbott Laboratories) (5 evaluations) and Xpert Xpress (Cepheid Inc) (6 evaluations). Summary sensitivity for the Xpert Xpress assay (99.4%, 95% CI 98.0% to 99.8%) was 22.6 (95% CI 18.8 to 26.3) percentage points higher than that of ID NOW (76.8%, (95% CI 72.9% to 80.3%), whilst the specificity of Xpert Xpress (96.8%, 95% CI 90.6% to 99.0%) was marginally lower than ID NOW (99.6%, 95% CI 98.4% to 99.9%; a difference of -2.8% (95% CI -6.4 to 0.8)) AUTHORS' CONCLUSIONS: This review identifies early-stage evaluations of point-of-care tests for detecting SARS-CoV-2 infection, largely based on remnant laboratory samples. The findings currently have limited applicability, as we are uncertain whether tests will perform in the same way in clinical practice, and according to symptoms of COVID-19, duration of symptoms, or in asymptomatic people. Rapid tests have the potential to be used to inform triage of RT-PCR use, allowing earlier detection of those testing positive, but the evidence currently is not strong enough to determine how useful they are in clinical practice. Prospective and comparative evaluations of rapid tests for COVID-19 infection in clinically relevant settings are urgently needed. Studies should recruit consecutive series of eligible participants, including both those presenting for testing due to symptoms and asymptomatic people who may have come into contact with confirmed cases. Studies should clearly describe symptomatic status and document time from symptom onset or time since exposure. Point-of-care tests must be conducted on samples according to manufacturer instructions for use and be conducted at the point of care. Any future research study report should conform to the Standards for Reporting of Diagnostic Accuracy (STARD) guideline.
Collapse
Affiliation(s)
- Jacqueline Dinnes
- Test Evaluation Research Group, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
| | - Jonathan J Deeks
- Test Evaluation Research Group, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
| | - Ada Adriano
- Test Evaluation Research Group, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Sarah Berhane
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
| | - Clare Davenport
- Test Evaluation Research Group, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
| | | | | | - Yemisi Takwoingi
- Test Evaluation Research Group, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
| | - Jane Cunningham
- Global Malaria Programme, World Health Organization, Geneva, Switzerland
| | - Sophie Beese
- Test Evaluation Research Group, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Janine Dretzke
- Test Evaluation Research Group, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Lavinia Ferrante di Ruffano
- Test Evaluation Research Group, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Isobel M Harris
- Test Evaluation Research Group, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Malcolm J Price
- Test Evaluation Research Group, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Sian Taylor-Phillips
- Division of Health Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Lotty Hooft
- Cochrane Netherlands, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Mariska Mg Leeflang
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
- Biomarker and Test Evaluation Programme (BiTE), Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - René Spijker
- Cochrane Netherlands, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Medical Library, Amsterdam UMC, University of Amsterdam, Amsterdam Public Health, Amsterdam, Netherlands
| | - Ann Van den Bruel
- Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| |
Collapse
|
32
|
Point of Care Nucleic Acid Testing for SARS-CoV-2 in Hospitalized Patients: A Clinical Validation Trial and Implementation Study. Cell Rep Med 2020; 1:100062. [PMID: 32838340 PMCID: PMC7362826 DOI: 10.1016/j.xcrm.2020.100062] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/26/2020] [Accepted: 07/08/2020] [Indexed: 01/18/2023]
Abstract
There is an urgent need for rapid SARS-CoV-2 testing in hospitals to limit nosocomial spread. We report an evaluation of point of care (POC) nucleic acid amplification testing (NAAT) in 149 participants with parallel combined nasal and throat swabbing for POC versus standard lab RT-PCR testing. Median time to result is 2.6 (IQR 2.3-4.8) versus 26.4 h (IQR 21.4-31.4, p < 0.001), with 32 (21.5%) positive and 117 (78.5%) negative. Cohen's κ correlation between tests is 0.96 (95% CI 0.91-1.00). When comparing nearly 1,000 tests pre- and post-implementation, the median time to definitive bed placement from admission is 23.4 (8.6-41.9) versus 17.1 h (9.0-28.8), p = 0.02. Mean length of stay on COVID-19 "holding" wards is 58.5 versus 29.9 h (p < 0.001). POC testing increases isolation room availability, avoids bed closures, allows discharge to care homes, and expedites access to hospital procedures. POC testing could mitigate the impact of COVID-19 on hospital systems.
Collapse
|