1
|
Fagg J, Beale R, Futschik ME, Turek E, Chapman D, Halstead S, Jones M, Cole-Hamilton J, Gunson R, Sudhanva M, Klapper PE, Vansteenhouse H, Tunkel S, Dominiczak A, Peto TE, Fowler T. Swab pooling enables rapid expansion of high-throughput capacity for SARS-CoV-2 community testing. J Clin Virol 2023; 167:105574. [PMID: 37639778 DOI: 10.1016/j.jcv.2023.105574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND The challenges of rapid upscaling of testing capacity were a major lesson from the COVID-19 pandemic response. The need for process adjustments in high-throughput testing laboratories made sample pooling a challenging option to implement. OBJECTIVE This study aimed to evaluate whether pooling samples at source (swab pooling) was as effective as qRT-PCR testing of individuals in identifying cases of SARS-CoV-2 in real-world community testing conditions using the same high-throughput pipeline. METHODS Two cohorts of 10 (Pool10: 1,030 participants and 103 pools) and 6 (Pool6: 1,284 participants and 214 pools) samples per pool were tested for concordance, sensitivity, specificity, and Ct value differences with individual testing as reference. RESULTS Swab pooling allowed unmodified application of an existing high-throughput SARS-Cov-2 testing pipeline with only marginal loss of accuracy. For Pool10, concordance was 98.1% (95% Confidence interval: 93.3-99.8%), sensitivity was 95.7% (85.5-99.5%), and specificity was 100.0% (93.6-100.0%). For Pool6, concordance was 97.2% (94.0-99.0%), sensitivity was 97.5% (93.7-99.3%), and specificity was 96.4% (87.7-99.6%). Differences of outcomes measure between pool size were not significant. Most positive individual samples, which were not detected in pools, had very low viral concentration. If only individual samples with a viral concentration > 400 copies/ml (i.e. Ct value < 30) were considered positive, the overall sensitivity of pooling increased to 99.5%. CONCLUSION The study demonstrated high sensitivity and specificity by swab pooling and the immediate capability of high-throughput laboratories to implement this method making it an option in planning of rapid upscaling of laboratory capacity for future pandemics.
Collapse
Affiliation(s)
- Jamie Fagg
- Royal Free London NHS Foundation Trust, London, UK
| | - Rupert Beale
- Royal Free London NHS Foundation Trust, London, UK; University College London, Division of Medicine, Royal Free Hospital, London, UK
| | - Matthias E Futschik
- UK Health Security Agency, London, UK; Faculty of Health, School of Biomedical Sciences, University of Plymouth, Plymouth, UK
| | | | | | | | - Marc Jones
- Lighthouse Labs, University of Glasgow, UK
| | | | - Rory Gunson
- West of Scotland Specialist Virology Centre, Glasgow, UK
| | - Malur Sudhanva
- UK Health Security Agency, London, UK; King's College Hospital NHS Foundation Trust, London, UK
| | - Paul E Klapper
- UK Health Security Agency, London, UK; University of Manchester, Manchester, UK
| | | | | | | | | | - Tom Fowler
- UK Health Security Agency, London, UK; William Harvey Research Institute, Queen Mary University of London, London, UK.
| |
Collapse
|
2
|
Sanchez-Sandoval AL, Sánchez-Pérez C, García-García JA, Uriega-González SP, Guerrero-Avendaño GML, Barrón-Palma EV. Clinical validation of 3D-printed swabs in adults and children for SARS-CoV-2 detection. Biol Methods Protoc 2023; 8:bpad009. [PMID: 37351376 PMCID: PMC10281960 DOI: 10.1093/biomethods/bpad009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/24/2023] Open
Abstract
Throughout the entire coronavirus disease 19 (COVID-19) pandemic, there were disruptions in the supply chain of test materials around the world, primarily in poor- and middle-income countries. The use of 3D prints is an alternative to address swab supply shortages. In this study, the feasibility of the clinical use of 3D-printed swabs for oropharyngeal and nasopharyngeal sampling for the detection of SARS-CoV-2 infection was evaluated. For that purpose, paired samples with the 3D printed and the control swabs were taken from 42 adult patients and 10 pediatric patients, and the results obtained in the detection of SARS-CoV-2 by reverse transcription and quantitative polymerase chain reaction (RT-qPCR) were compared. Additionally, in those cases where the result was positive for SARS-CoV-2, the viral load was calculated by means of a mathematical algorithm proposed by us. For both adults and children, satisfactory results were obtained in the detection of SARS-CoV-2 by RT-qPCR; no significant differences were found in the quantification cycle values between the 3D-printed swab samples and the control samples. Furthermore, we corroborated that the 3D-printed swabs caused less discomfort and pain at the time of sampling. In conclusion, this study shows the feasibility of routinely using 3D-printed swabs for both adults and children. In this way, it is possible to maintain local and cheaper consumption along with fewer distribution difficulties.
Collapse
Affiliation(s)
| | - Celia Sánchez-Pérez
- Instituto de Ciencias Aplicadas y Tecnología de la Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - José Antonio García-García
- Dirección de Educación y Capacitación en Salud. Hospital General de México “Dr. Eduardo Liceaga”, Mexico City, Mexico
| | | | | | - Eira Valeria Barrón-Palma
- Correspondence to: Eira Valeria Barrón Palma, Servicio de Medicina Genómica, Hospital General de México “Dr. Eduardo Liceaga”, Calle Dr. Balmis # 148, Colonia Doctores, Alcaldía Cuauhtémoc, C.P. 06726, Mexico City, Mexico. Tel: 5255-2789-2000 (ext 5700); E-mail:
| |
Collapse
|
3
|
Wu TY, Liao YC, Fuh CS, Weng PW, Wang JY, Chen CY, Huang YM, Chen CP, Chu YL, Chen CK, Yeh KL, Yu CH, Wu HK, Lin WP, Liou TH, Wu MS, Liaw CK. An improvement of current hypercube pooling PCR tests for SARS-CoV-2 detection. Front Public Health 2022; 10:994712. [PMID: 36339215 PMCID: PMC9627488 DOI: 10.3389/fpubh.2022.994712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/20/2022] [Indexed: 01/26/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic can be effectively controlled by rapid and accurate identification of SARS-CoV-2-infected cases through large-scale screening. Hypercube pooling polymerase chain reaction (PCR) is frequently used as a pooling technique because of its high speed and efficiency. We attempted to implement the hypercube pooling strategy and found it had a large quantization effect. This raised two questions: is hypercube pooling with edge = 3 actually the optimal strategy? If not, what is the best edge and dimension? We used a C++ program to calculate the expected number of PCR tests per patient for different values of prevalence, edge, and dimension. The results showed that every edge had a best performance range. Then, using C++ again, we created a program to calculate the optimal edge and dimension required for pooling samples when entering prevalence into our program. Our program will be provided as freeware in the hope that it can help governments fight the SARS-CoV-2 pandemic.
Collapse
Affiliation(s)
- Tai-Yin Wu
- Department of Family Medicine, Zhongxing Branch, Taipei City Hospital, Taipei, Taiwan
- Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, Taiwan
- General Education Center, University of Taipei, Taipei, Taiwan
| | - Yu-Ciao Liao
- Institute of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan
| | - Chiou-Shann Fuh
- Institute of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan
| | - Pei-Wei Weng
- Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Orthopedics, Shuang Ho Hospital, Taipei Medical University, New Taipei, Taiwan
- Graduate Institute of Biomedical Optomechatronics, College of Biomedical Engineering, Research Center of Biomedical Device, Taipei Medical University, Taipei, Taiwan
| | - Jr-Yi Wang
- Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Orthopedics, Shuang Ho Hospital, Taipei Medical University, New Taipei, Taiwan
| | - Chih-Yu Chen
- Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Orthopedics, Shuang Ho Hospital, Taipei Medical University, New Taipei, Taiwan
- Graduate Institute of Biomedical Optomechatronics, College of Biomedical Engineering, Research Center of Biomedical Device, Taipei Medical University, Taipei, Taiwan
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Yu-Min Huang
- Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Orthopedics, Shuang Ho Hospital, Taipei Medical University, New Taipei, Taiwan
| | - Chung-Pei Chen
- Department of Orthopedics, Cathay General Hospital, Taipei, Taiwan
| | - Yo-Lun Chu
- Department of Orthopedics, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
- School of Medicine, College of Medicine, Fu Jen Catholic University, Taipei, Taiwan
- Department of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| | - Cheng-Kuang Chen
- Department of Orthopedics, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
- Department of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| | - Kuei-Lin Yeh
- Institute of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan
- Department of Orthopaedics, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
- Department of Long-Term Care and Management, WuFeng University, Chiayi, Taiwan
| | - Ching-Hsiao Yu
- Department of Orthopaedic Surgery, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan
- Department of Orthopaedic Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Hung-Kang Wu
- Department of Orthopaedic Surgery, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan
- Department of Orthopaedic Surgery, National Taiwan University Hospital, Taipei, Taiwan
- Department of Nursing, Yuanpei University of Medical Technology, Hsinchu, Taiwan
| | - Wei-Peng Lin
- Department of Orthopaedic Surgery, National Taiwan University Hospital, Taipei, Taiwan
- Department of Orthopedics, Postal Hospital, Taipei, Taiwan
| | - Tsan-Hon Liou
- Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Mai-Szu Wu
- Division of Nephrology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chen-Kun Liaw
- Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Orthopedics, Shuang Ho Hospital, Taipei Medical University, New Taipei, Taiwan
- Graduate Institute of Biomedical Optomechatronics, College of Biomedical Engineering, Research Center of Biomedical Device, Taipei Medical University, Taipei, Taiwan
- TMU Biodesign Center, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
4
|
Cohen Y, Bamberger N, Mor O, Walfisch R, Fleishon S, Varkovitzky I, Younger A, Levi DO, Kohn Y, Steinberg DM, Zeevi D, Erster O, Mendelson E, Livneh Z. Effective bubble-based testing for SARS-CoV-2 using swab-pooling. Clin Microbiol Infect 2022; 28:859-864. [PMID: 35182758 PMCID: PMC8849906 DOI: 10.1016/j.cmi.2022.02.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 02/03/2022] [Accepted: 02/08/2022] [Indexed: 12/15/2022]
Abstract
OBJECTIVES Despite the success in developing COVID-19 vaccines, containment of the disease is obstructed worldwide by vaccine production bottlenecks, logistics hurdles, vaccine refusal, transmission through unvaccinated children, and the appearance of new viral variants. This underscores the need for effective strategies for identifying carriers/patients, which was the main aim of this study. METHODS We present a bubble-based PCR testing approach using swab-pooling into lysis buffer. A bubble is a cluster of people who can be periodically tested for SARS-CoV-2 by swab-pooling. A positive test of a pool mandates quarantining each of its members, who are then individually tested while in isolation to identify the carrier(s) for further epidemiological contact tracing. RESULTS We tested an overall sample of 25 831 individuals, divided into 1273 bubbles, with an average size of 20.3 ± 7.7 swabs/test tube, obtaining for all pools (≤37 swabs/pool) a specificity of 97.5% (lower bound 96.6%) and a sensitivity of 86.3% (lower bound 78.2%) and a post hoc analyzed sensitivity of 94.6% (lower bound 86.7%) and a specificity of 97.2% (lower bound 96.2%) in pools with ≤25 swabs, relative to individual testing. DISCUSSION This approach offers a significant scale-up in sampling and testing throughput and savings in testing cost, without reducing sensitivity or affecting the standard PCR testing laboratory routine. It can be used in school classes, airplanes, hospitals, military units, and workplaces, and may be applicable to future pandemics.
Collapse
Affiliation(s)
- Yuval Cohen
- Directorate of Defense Research & Development, Israeli Ministry of Defense, Tel Aviv, Israel
| | - Nadav Bamberger
- Directorate of Defense Research & Development, Israeli Ministry of Defense, Tel Aviv, Israel
| | - Orna Mor
- Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical Center, Tel-Hashomer, Israel; Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Ronen Walfisch
- Directorate of Defense Research & Development, Israeli Ministry of Defense, Tel Aviv, Israel
| | | | - Itay Varkovitzky
- Directorate of Defense Research & Development, Israeli Ministry of Defense, Tel Aviv, Israel
| | | | | | - Yishai Kohn
- Directorate of Defense Research & Development, Israeli Ministry of Defense, Tel Aviv, Israel
| | - David M Steinberg
- Department of Statistics and Operations Research, Tel Aviv University, Tel Aviv, Israel
| | - Danny Zeevi
- Department of Biotechnology, Hadassah Academic College, Jerusalem, Israel
| | - Oran Erster
- Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical Center, Tel-Hashomer, Israel
| | - Ella Mendelson
- Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical Center, Tel-Hashomer, Israel; Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Zvi Livneh
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
5
|
Abstract
Scaling up SARS-CoV-2 testing during the COVID-19 pandemic was critical to maintaining clinical operations and an open society. Pooled testing and automation were two critical strategies used by laboratories to meet the unprecedented demand. Here, we review these and other cutting-edge strategies that sought to expand SARS-CoV-2 testing capacity while maintaining high individual test performance.
Collapse
Affiliation(s)
- Sanchita Das
- Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, MD 20892, USA
| | - Karen M Frank
- Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, MD 20892, USA.
| |
Collapse
|
6
|
Oba J, Taniguchi H, Sato M, Takanashi M, Yokemura M, Sato Y, Nishihara H. SARS-CoV-2 RT-qPCR testing of pooled saliva samples: A case study of 824 asymptomatic individuals and a questionnaire survey in Japan. PLoS One 2022; 17:e0263700. [PMID: 35550622 PMCID: PMC9098043 DOI: 10.1371/journal.pone.0263700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/21/2022] [Indexed: 11/18/2022] Open
Abstract
From the beginning of the COVID-19 pandemic, the demand for diagnostic and screening tests has exceeded supply. Although the proportion of vaccinated people has increased in wealthier countries, breakthrough infections have occurred amid the emergence of new variants. Pooled-sample COVID-19 testing using saliva has been proposed as an efficient, inexpensive, and non-invasive method to allow larger-scale testing, especially in a screening setting. In this study, we aimed to evaluate pooled RT-qPCR saliva testing and to compare the results with individual tests. Employees of Philips Japan, Ltd. were recruited to participate in COVID-19 screening from October to December 2020. Asymptomatic individuals (n = 824) submitted self-collected saliva samples. Samples were tested for the presence of SARS-CoV-2 by RT-qPCR in both 10-sample pools and individual tests. We also surveyed participants regarding their thoughts and behaviors after the PCR screening project. Two of the 824 individuals were positive by RT-qPCR. In the pooled testing, one of these two had no measurable Ct value, but showed an amplification trend at the end of the PCR cycle. Both positive individuals developed cold-like symptoms, but neither required hospitalization. Of the 824 participants, 471 responded to our online questionnaire. Overall, while respondents agreed that PCR screening should be performed regularly, the majority were willing to undergo PCR testing only when it was provided for free or at low cost. In conclusion, pooled testing of saliva samples can support frequent large-scale screening that is rapid, efficient, and inexpensive.
Collapse
Affiliation(s)
- Junna Oba
- Keio Cancer Center, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
- Department of Extended Intelligence for Medicine, The Ishii-Ishibashi Laboratory, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Hiroaki Taniguchi
- Keio Cancer Center, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
- Research and Development Center for Precision Medicine, University of Tsukuba, Innovation Medical Research Institute, Tsukuba-shi, Ibaraki, Japan
- Keio University Hospital Clinical and Translational Research Center, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
- * E-mail:
| | - Masae Sato
- Keio Cancer Center, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Masaki Takanashi
- LSI Medience Corporation Central Laboratory Center, Itabashi-ku, Tokyo, Japan
| | - Moe Yokemura
- LSI Medience Corporation Central Laboratory Center, Itabashi-ku, Tokyo, Japan
| | - Yasunori Sato
- Department of Preventive Medicine and Public Health, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Hiroshi Nishihara
- Keio Cancer Center, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
- Research and Development Center for Precision Medicine, University of Tsukuba, Innovation Medical Research Institute, Tsukuba-shi, Ibaraki, Japan
- Keio University Hospital Clinical and Translational Research Center, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
7
|
Daniel EA, Esakialraj L BH, S A, Muthuramalingam K, Karunaianantham R, Karunakaran LP, Nesakumar M, Selvachithiram M, Pattabiraman S, Natarajan S, Tripathy SP, Hanna LE. Pooled Testing Strategies for SARS-CoV-2 diagnosis: A comprehensive review. Diagn Microbiol Infect Dis 2021; 101:115432. [PMID: 34175613 PMCID: PMC8127528 DOI: 10.1016/j.diagmicrobio.2021.115432] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/09/2021] [Indexed: 12/23/2022]
Abstract
SARS-CoV-2 has surged across the globe causing the ongoing COVID-19 pandemic. Systematic testing to facilitate index case isolation and contact tracing is needed for efficient containment of viral spread. The major bottleneck in leveraging testing capacity has been the lack of diagnostic resources. Pooled testing is a potential approach that could reduce cost and usage of test kits. This method involves pooling individual samples and testing them 'en bloc'. Only if the pool tests positive, retesting of individual samples is performed. Upon reviewing recent articles on this strategy employed in various SARS-CoV-2 testing scenarios, we found substantial diversity emphasizing the requirement of a common protocol. In this article, we review various theoretically simulated and clinically validated pooled testing models and propose practical guidelines on applying this strategy for large scale screening. If implemented properly, the proposed approach could contribute to proper utilization of testing resources and flattening of infection curve.
Collapse
Affiliation(s)
- Evangeline Ann Daniel
- Department of HIV/AIDS, National Institute for Research in Tuberculosis, Chennai, India.
| | | | - Anbalagan S
- Department of HIV/AIDS, National Institute for Research in Tuberculosis, Chennai, India
| | | | | | | | - Manohar Nesakumar
- Department of HIV/AIDS, National Institute for Research in Tuberculosis, Chennai, India
| | | | | | - Sudhakar Natarajan
- Department of HIV/AIDS, National Institute for Research in Tuberculosis, Chennai, India
| | | | - Luke Elizabeth Hanna
- Department of HIV/AIDS, National Institute for Research in Tuberculosis, Chennai, India.
| |
Collapse
|
8
|
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiologic agent of COVID-19. Testing for SARS-CoV-2 infection is a critical element of the public health response to COVID-19. Point-of-care (POC) tests can drive patient management decisions for infectious diseases, including COVID-19. POC tests are available for the diagnosis of SARS-CoV-2 infections and include those that detect SARS-CoV-2 antigens as well as amplified RNA sequences. We provide a review of SARS-CoV-2 POC tests including their performance, settings for which they might be used, their impact and future directions. Further optimization and validation, new technologies as well as studies to determine clinical and epidemiological impact of SARS-CoV-2 POC tests are needed.
Collapse
|
9
|
Newsom K, Zhang Y, Chamala S, Martinez K, Clare-Salzler M, Starostik P. The Hologic Aptima SARS-CoV-2 assay enables high ratio pooling saving reagents and improving turnaround time. J Clin Lab Anal 2021; 35:e23888. [PMID: 34213803 PMCID: PMC8418467 DOI: 10.1002/jcla.23888] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND The Hologic Aptima™ TMA SARS-CoV-2 assay was employed to test pooled nasopharyngeal (NP) samples to evaluate the performance of pooled sample testing and characterize variables influencing results. METHODS Results on 1033 previously tested NP samples were retrieved to characterize the relative light units (RLU) of SARS-CoV-2-positive samples in the tested population. The pooling strategy of combining 10 SARS-CoV-2 samples into one pool (10/1) was used in this study. The results were compared with neat sample testing using the same Aptima™ TMA SARS-CoV-2 assay and also the CDC RT-PCR and the Cepheid SARS-CoV-2 assays. RESULTS The Aptima assay compares favorably with both CDC RT-PCR and the Cepheid SARS-CoV-2 assays. Once samples are pooled 10 to 1 as in our experiments, the resulting signal strength of the assay suffers. A divide opens between pools assembled from strong-positive versus only weak-positive samples. Pools of the former can be reliably detected with positive percent agreement (PPA) of 95.2%, while pools of the latter are frequently misclassified as negative with PPA of 40%. When the weak-positive samples with kRLU value lower than 1012 constitute 3.4% of the total sample profile, the assay PPA approaches 93.4% suggesting that 10/1 pooled sample testing by the Aptima assay is an effective screening tool for SARS-CoV-2. CONCLUSION Performing pooled testing, one should monitor the weak positives with kRLU lower than 1012 or quantification cycle (Cq) value higher than 35 on an ongoing basis and adjust pooling approaches to avoid reporting false negatives.
Collapse
Affiliation(s)
- Kimberly Newsom
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Yuan Zhang
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Srikar Chamala
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Katherine Martinez
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Michael Clare-Salzler
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Petr Starostik
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
10
|
Al-Hail H, Mirza F, Al Hashemi A, Ahmad MN, Iqbal M, Tang P, Hasan MR. Evaluation of automated molecular tests for the detection of SARS-CoV-2 in pooled nasopharyngeal and saliva specimens. J Clin Lab Anal 2021; 35:e23876. [PMID: 34132419 PMCID: PMC8373324 DOI: 10.1002/jcla.23876] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 05/26/2021] [Accepted: 06/01/2021] [Indexed: 12/31/2022] Open
Abstract
Background Pooling of samples for SARS‐CoV‐2 testing in low‐prevalence settings has been used as an effective strategy to expand testing capacity and mitigate challenges with the shortage of supplies. We evaluated two automated molecular test systems for the detection of SARS‐CoV‐2 RNA in pooled specimens. Methods Pooled nasopharyngeal and saliva specimens were tested by Qiagen QIAstat‐Dx Respiratory SARS‐CoV‐2 Panel (QIAstat) or Cepheid Xpert Xpress SARS‐CoV‐2 (Xpert), and the results were compared to that of standard RT‐qPCR tests without pooling. Results In nasopharyngeal specimens, the sensitivity/specificity of the pool testing approach, with 5 and 10 specimens per pool, were 77%/100% (n = 105) and 74.1%/100% (n = 260) by QIAstat, and 97.1%/100% (n = 250) and 100%/99.5% (n = 200) by Xpert, respectively. Pool testing of saliva (10 specimens per pool; n = 150) by Xpert resulted in 87.5% sensitivity and 99.3% specificity compared to individual tests. Pool size of 5 or 10 specimens did not significantly affect the difference of RT‐qPCR cycle threshold (CT) from standard testing. RT‐qPCR CT values obtained with pool testing by both QIAstat and Xpert were positively correlated with that of individual testing (Pearson's correlation coefficient r = 0.85 to 0.99, p < 0.05). However, the CT values from Xpert were significantly stronger (p < 0.01, paired t test) than that of QIAstat in a subset of SARS‐CoV‐2 positive specimens, with mean differences of −4.3 ± 2.43 and −4.6 ± 2 for individual and pooled tests, respectively. Conclusion Our results suggest that Xpert SARS‐CoV‐2 can be utilized for pooled sample testing for COVID‐19 screening in low‐prevalence settings providing significant cost savings and improving throughput without affecting test quality.
Collapse
Affiliation(s)
| | | | | | | | | | - Patrick Tang
- Sidra Medicine, Doha, Qatar.,Weill Cornell Medical College in Qatar, Doha, Qatar
| | | |
Collapse
|