1
|
Spiliopoulou A, Lekkou A, Vrioni G, Leonidou L, Cogliati M, Christofidou M, Marangos M, Kolonitsiou F, Paliogianni F. Fungemia due to rare non-Candida yeasts between 2018 and 2021 in a Greek tertiary care university hospital. J Mycol Med 2023; 33:101386. [PMID: 37031651 DOI: 10.1016/j.mycmed.2023.101386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 04/01/2023] [Accepted: 04/02/2023] [Indexed: 04/05/2023]
Abstract
INTRODUCTION Non-Candida yeasts, although rare, are increasingly encountered and recognized as a growing threat. METHODS Cases of bloodstream infections (BSIs) due to non-Candida yeasts (NCYs) during the last four years (2018-2021) are presented. RESULTS During the study period, 16 cases caused by non-Candida yeasts out of 400 cases of yeast BSIs were recorded, corresponding to an incidence of 4%. Yeasts that were isolated included Cryptococcus spp (4 isolates-25%), Rhodotorula mucilaginosa (2 isolates-12.5%), Trichosporon asahii (7 isolates-43.75%) and Saccharomyces cerevisiae (3 isolates-18.75%). Predisposing factors involved mostly hematological malignancies, long term hospitalization or major surgical interventions. Most isolates, 15 out of 16 were susceptible to amphotericin B. Voriconazole was the most active azole in vitro. All isolates, except Saccharomyces spp., were resistant to echinocandins. DISCUSSION Early recognition of rare yeasts as causative agents of BSIs and prompt initiation of appropriate treatment based on current guidelines and expertise remain crucial in efficient patient management.
Collapse
Affiliation(s)
| | - Alexandra Lekkou
- Dept of Infectious Diseases, University Hospital of Patras, Patras, Greece
| | - Georgia Vrioni
- Dept of Microbiology, National and Kapodistrian University of Athens, Athens, Greece
| | - Lydia Leonidou
- Dept of Infectious Diseases, University Hospital of Patras, Patras, Greece
| | - Massimo Cogliati
- Dip. Scienze Biomediche per la Salute, Università degli Studi di Milano, Milano, Italy
| | | | - Markos Marangos
- Dept of Infectious Diseases, University Hospital of Patras, Patras, Greece
| | | | | |
Collapse
|
2
|
Thompson L, Porte L, Díaz V, Díaz MC, Solar S, Valenzuela P, Norley N, Pires Y, Carreño F, Valenzuela S, Shabani R, Rickerts V, Weitzel T. Cryptococcus bacillisporus (VGIII) Meningoencephalitis Acquired in Santa Cruz, Bolivia. J Fungi (Basel) 2021; 7:jof7010055. [PMID: 33467409 PMCID: PMC7830430 DOI: 10.3390/jof7010055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/12/2022] Open
Abstract
We describe a case of chronic meningoencephalitis with hydrocephalus caused by Cryptococcus bacillisporus (VGIII) in an immunocompetent patient from Santa Cruz, Bolivia. This first report of a member of the Cryptococcus gattii species complex from Bolivia suggests that C. bacillisporus (VGIII) is present in this tropical region of the country and complements our epidemiological and clinical knowledge of this group of emerging fungal pathogens in South America.
Collapse
Affiliation(s)
- Luis Thompson
- Unidad de Infectología, Clínica Alemana de Santiago, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7650568, Chile; (L.T.); (S.S.); (P.V.)
| | - Lorena Porte
- Laboratorio Clínico, Clínica Alemana de Santiago, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7650568, Chile;
| | - Violeta Díaz
- Servicio de Neurología, Departamento de Neurología y Psiquiatría, Clínica Alemana de Santiago, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7650568, Chile;
| | - María Cristina Díaz
- Programa de Microbiologia y Micologia, ICBM, Facultad de Medicina, Universidad de Chile, Santiago 7650568, Chile;
| | - Sebastián Solar
- Unidad de Infectología, Clínica Alemana de Santiago, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7650568, Chile; (L.T.); (S.S.); (P.V.)
| | - Pablo Valenzuela
- Unidad de Infectología, Clínica Alemana de Santiago, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7650568, Chile; (L.T.); (S.S.); (P.V.)
| | - Nicole Norley
- Mycology Section, FG 16, Robert-Koch Institute, 13353 Berlin, Germany; (N.N.); (R.S.)
| | - Yumai Pires
- Servicio de Anatomía Patológica, Clínica Alemana de Santiago, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7650568, Chile;
| | - Fernando Carreño
- Departamento de Imágenes, Clínica Alemana de Santiago, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7650568, Chile;
| | - Sergio Valenzuela
- Servicio de Neurocirugía, Clínica Alemana de Santiago, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7650568, Chile;
| | - Rukmane Shabani
- Mycology Section, FG 16, Robert-Koch Institute, 13353 Berlin, Germany; (N.N.); (R.S.)
| | - Volker Rickerts
- Mycology Section, FG 16, Robert-Koch Institute, 13353 Berlin, Germany; (N.N.); (R.S.)
- Correspondence: (V.R.); (T.W.)
| | - Thomas Weitzel
- Laboratorio Clínico, Clínica Alemana de Santiago, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7650568, Chile;
- Instituto de Ciencias e Innovación en Medicina (ICIM), Universidad del Desarrollo, Santiago 7550000, Chile
- Correspondence: (V.R.); (T.W.)
| |
Collapse
|
3
|
Carvajal JG, Alaniz AJ, Carvajal MA, Acheson ES, Cruz R, Vergara PM, Cogliati M. Expansion of the Emerging Fungal Pathogen Cryptococcus bacillisporus Into America: Linking Phylogenetic Origin, Geographical Spread and Population Under Exposure Risk. Front Microbiol 2020; 11:2117. [PMID: 32983073 PMCID: PMC7485214 DOI: 10.3389/fmicb.2020.02117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/11/2020] [Indexed: 12/20/2022] Open
Abstract
In 2018 the fungal pathogen Cryptococcus bacillisporus (AFLP5/VGIII) was isolated for the first time in Chile, representing the only report in a temperate region in South America. We reconstructed the colonization process of C. bacillisporus in Chile, estimating the phylogenetic origin, the potential spread zone, and the population at risk. We performed a phylogenetic analysis of the strain and modeled the environmental niche of the pathogen projecting its potential spread zone into the new colonized region. Finally, we generated risk maps and quantified the people under potential risk. Phylogenetic analysis showed high similarity between the Chilean isolate and two clonal clusters from California, United States and Colombia in South America. The pathogen can expand into all the temperate Mediterranean zone in central Chile and western Argentina, exposing more than 12 million people to this pathogen in Chile. This study has epidemiological and public health implications for the response to a potential C. bacillisporus outbreak, optimizing budgets, routing for screening diagnosis, and treatment implementation.
Collapse
Affiliation(s)
- Jorge G Carvajal
- Facultad Tecnológica, Universidad de Santiago de Chile, Santiago, Chile
| | - Alberto J Alaniz
- Facultad de Ingeniería, Universidad de Santiago de Chile, Santiago, Chile
| | - Mario A Carvajal
- Facultad Tecnológica, Universidad de Santiago de Chile, Santiago, Chile
| | - Emily S Acheson
- Department of Geography, The University of British Columbia, Vancouver, BC, Canada
| | - Rodrigo Cruz
- Laboratorio de Micología, Universidad de Valparaíso, Valparaíso, Chile
| | - Pablo M Vergara
- Facultad Tecnológica, Universidad de Santiago de Chile, Santiago, Chile
| | - Massimo Cogliati
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
4
|
Trovato L, Oliveri S, Esposto MC, Prigitano A, Romanò L, Cogliati M. Cryptococcus neoformans and Cryptococcus gattii Species Complex Isolates on the Slopes of Mount Etna, SICILY, Italy. Front Microbiol 2019; 10:2390. [PMID: 31681242 PMCID: PMC6813189 DOI: 10.3389/fmicb.2019.02390] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 10/02/2019] [Indexed: 12/23/2022] Open
Abstract
This study investigated the presence of Cryptococcus neoformans and Cryptococcus gattii species complex isolates on olive trees growing in the Eastern part of Sicily (Italy) characterized by the presence of the volcano Etna and the ability of these fungal pathogens to sexually reproduce on medium containing volcanic soil. Samples from 124 olive trees were collected from 14 different sites around Mount Etna. Eighteen trees (14.5%) resulted colonized by C. neoformans VNI-αA isolates, one (0.8%) by VNIV-αD isolates, and two (1.6%) by C. gattii VGI-αB isolates. The ability of environmental and reference strains belonging to VNI, VNIV, and VGI molecular types to sexually reproduce on a medium containing volcanic soil was also tested. VNI and VNIV strains were able to produce filaments and basiodiospores more vigorously than on the control medium, whereas VGI strains were not fertile. In conclusion, the present study identified which C. neoformans and C. gattii species complex genotypes are circulating in Eastern Sicily and confirmed the ecological role of olive trees as environmental reservoir of these pathogens. It also showed that Cryptococcus is able to colonize and sexually reproduce in inhospitable environments such as the slopes of a volcano.
Collapse
Affiliation(s)
- Laura Trovato
- U.O.C. Laboratory Analysis Unit, A.O.U. "Policlinico-Vittorio Emanuele", Catania, Italy.,Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Salvatore Oliveri
- U.O.C. Laboratory Analysis Unit, A.O.U. "Policlinico-Vittorio Emanuele", Catania, Italy.,Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Maria Carmela Esposto
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| | - Anna Prigitano
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| | - Luisa Romanò
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| | - Massimo Cogliati
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
5
|
Khayhan K, Juntaboon S, Fang W, Chaowasku T, Amornthipayawong D, Boekhout T. Banana blossom agar (BABA), a new medium to isolate members of the Cryptococcus neoformans/Cryptococcus gattii species complex useful for resource limited countries. Mycoses 2018; 61:959-962. [PMID: 30047168 DOI: 10.1111/myc.12833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 07/19/2018] [Accepted: 07/19/2018] [Indexed: 11/28/2022]
Abstract
Isolation of representatives of the Cryptococcus neoformans/Cryptococcus gattii species complex can be made using dopamine containing media, such as Niger seed agar and l-DOPA agar. Here, we describe an alternative medium that uses banana flowers. Banana is a dopamine containing fruit and is widely available in tropical and subtropical countries that have high numbers of cryptococcosis patients. This banana blossom-based agar is useful for the enrichment of isolates of the C. neoformans/C. gattii species complex from environmental and clinical materials. The banana blossom agar (BABA) with and without creatinine can differentiate between the melanin forming isolates of the C. neoformans/C. gattii species complex from other yeasts that do not form melanin.
Collapse
Affiliation(s)
- Kantarawee Khayhan
- Department of Microbiology and Parasitology, Faculty of Medical Sciences, University of Phayao, Phayao, Thailand.,Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands.,Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands
| | - Siriprapa Juntaboon
- Department of Environmental Sciences, School of Energy and Environment, University of Phayao, Phayao, Thailand
| | - Wenjie Fang
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands.,Department of Dermatology, Changzheng Hospital, Second Military Medical University, Shanghai, China.,Shanghai Key Laboratory of Molecular Medical Mycology, Shanghai Institute of Medical Mycology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Tanawat Chaowasku
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Bioresources for Agriculture, Industry, and Medicine, Chiang Mai University, Chiang Mai, Thailand
| | | | - Teun Boekhout
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands.,Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands.,Department of Dermatology, Changzheng Hospital, Second Military Medical University, Shanghai, China.,Shanghai Key Laboratory of Molecular Medical Mycology, Shanghai Institute of Medical Mycology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
6
|
Montagna MT, De Donno A, Caggiano G, Serio F, De Giglio O, Bagordo F, D'Amicis R, Lockhart SR, Cogliati M. Molecular characterization of Cryptococcus neoformans and Cryptococcus gattii from environmental sources and genetic comparison with clinical isolates in Apulia, Italy. ENVIRONMENTAL RESEARCH 2018; 160:347-352. [PMID: 29054089 DOI: 10.1016/j.envres.2017.09.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 09/28/2017] [Accepted: 09/30/2017] [Indexed: 06/07/2023]
Abstract
The present study investigated the environmental distribution of Cryptococcus neoformans and C. gattii species complex molecular types, mating types and sequence types in Apulia, a region of Southern Italy. A total of 2078 specimens from arboreal and animal sources were analyzed. The percentage of positive samples was similar among both arboreal and animal specimens: 4.2% vs. 5.1% for C. neoformans species complex and 0.6% vs. 1.4% for C. gattii species complex. Molecular typing identified 78 isolates as VNI (76 αA and two aA), one as AD-hybrid αADa, and 16 as VGI aB. VNI isolates presented 10 different sequence types (STs) and VGI isolates two. The most frequent STs among C. neoformans and C. gattii species complex isolates were ST23 (51%) and ST156 (90%), respectively. Comparison with molecular types and STs results obtained from 21 clinical isolates collected in Apulia showed that one C. neoformans VNI clinical isolate shared an identical sequence type of one arboreal isolate (ST61) and that one C. gattii VGI clinical isolate matched with the main ST (ST156) present in the environment. In addition, molecular type VNIV was found only among clinical isolates and was absent in the investigated environmental area. In conclusion, the present study identified which C. neoformans and C. gattii species complex genotypes are circulating in Apulia, defined their ecological niches and revealed the relationship with clinical cases. It represents a basal study for addressing future investigations and public health interventions in the region.
Collapse
Affiliation(s)
- Maria Teresa Montagna
- Department of Biomedical Science and Human Oncology, University of Bari 'Aldo Moro', Bari, Italy
| | - Antonella De Donno
- Department of Biological and Environmental Science and Technology, University of Salento, Lecce, Italy
| | - Giuseppina Caggiano
- Department of Biomedical Science and Human Oncology, University of Bari 'Aldo Moro', Bari, Italy.
| | - Francesca Serio
- Department of Biological and Environmental Science and Technology, University of Salento, Lecce, Italy
| | - Osvalda De Giglio
- Department of Biomedical Science and Human Oncology, University of Bari 'Aldo Moro', Bari, Italy
| | - Francesco Bagordo
- Department of Biological and Environmental Science and Technology, University of Salento, Lecce, Italy
| | - R D'Amicis
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milano, Italy
| | - Shawn R Lockhart
- Fungal Reference Laboratory, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Massimo Cogliati
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
7
|
Hagen F, Lumbsch HT, Arsic Arsenijevic V, Badali H, Bertout S, Billmyre RB, Bragulat MR, Cabañes FJ, Carbia M, Chakrabarti A, Chaturvedi S, Chaturvedi V, Chen M, Chowdhary A, Colom MF, Cornely OA, Crous PW, Cuétara MS, Diaz MR, Espinel-Ingroff A, Fakhim H, Falk R, Fang W, Herkert PF, Ferrer Rodríguez C, Fraser JA, Gené J, Guarro J, Idnurm A, Illnait-Zaragozi MT, Khan Z, Khayhan K, Kolecka A, Kurtzman CP, Lagrou K, Liao W, Linares C, Meis JF, Nielsen K, Nyazika TK, Pan W, Pekmezovic M, Polacheck I, Posteraro B, de Queiroz Telles F, Romeo O, Sánchez M, Sampaio A, Sanguinetti M, Sriburee P, Sugita T, Taj-Aldeen SJ, Takashima M, Taylor JW, Theelen B, Tomazin R, Verweij PE, Wahyuningsih R, Wang P, Boekhout T. Importance of Resolving Fungal Nomenclature: the Case of Multiple Pathogenic Species in the Cryptococcus Genus. mSphere 2017; 2:e00238-17. [PMID: 28875175 PMCID: PMC5577652 DOI: 10.1128/msphere.00238-17] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cryptococcosis is a major fungal disease caused by members of the Cryptococcus gattii and Cryptococcus neoformans species complexes. After more than 15 years of molecular genetic and phenotypic studies and much debate, a proposal for a taxonomic revision was made. The two varieties within C. neoformans were raised to species level, and the same was done for five genotypes within C. gattii. In a recent perspective (K. J. Kwon-Chung et al., mSphere 2:e00357-16, 2017, https://doi.org/10.1128/mSphere.00357-16), it was argued that this taxonomic proposal was premature and without consensus in the community. Although the authors of the perspective recognized the existence of genetic diversity, they preferred the use of the informal nomenclature "C. neoformans species complex" and "C. gattii species complex." Here we highlight the advantage of recognizing these seven species, as ignoring these species will impede deciphering further biologically and clinically relevant differences between them, which may in turn delay future clinical advances.
Collapse
Affiliation(s)
- Ferry Hagen
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, Nijmegen, The Netherlands
- Centre of Expertise in Mycology Radboudumc/CWZ, Nijmegen, The Netherlands
| | | | | | - Hamid Badali
- Department of Medical Mycology and Parasitology/Invasive Fungi Research Center (IFRC), Mazandaran University of Medical Sciences, Sari, Iran
| | - Sebastien Bertout
- Unité Mixte Internationale Recherches Translationnelles sur l’Infection à VIH et les Maladies Infectieuses, Laboratoire de Parasitologie et Mycologie Médicale, UFR Pharmacie, Université Montpellier, Montpellier, France
| | - R. Blake Billmyre
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - M. Rosa Bragulat
- Veterinary Mycology Group, Department of Animal Health and Anatomy, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - F. Javier Cabañes
- Veterinary Mycology Group, Department of Animal Health and Anatomy, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Mauricio Carbia
- Departamento de Parasitología y Micología, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Arunaloke Chakrabarti
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sudha Chaturvedi
- Mycology Laboratory, Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Vishnu Chaturvedi
- Mycology Laboratory, Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Min Chen
- Shanghai Key Laboratory of Molecular Medical Mycology, Shanghai Institute of Medical Mycology, Second Military Medical University, Shanghai, China
- Department of Dermatology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Anuradha Chowdhary
- Department of Medical Mycology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | | | - Oliver A. Cornely
- CECAD Cluster of Excellence, University of Cologne, Cologne, Germany
- Department I for Internal Medicine, University Hospital of Cologne, Cologne, Germany
- Center for Clinical Trials, University Hospital Cologne, Cologne, Germany
| | - Pedro W. Crous
- Phytopathology Research, Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Maria S. Cuétara
- Department of Microbiology, Hospital Severo Ochoa, Madrid, Spain
| | - Mara R. Diaz
- University of Miami, NSF NIEHS Oceans and Human Health Center, Miami, Florida, USA
- Rosentiel School of Marine and Atmospheric Science, Division of Marine Biology and Fisheries, University of Miami, Miami, Florida, USA
| | | | - Hamed Fakhim
- Department of Medical Parasitology and Mycology/Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Rama Falk
- Department of Clinical Microbiology and Infectious Diseases, Hadassah-Hebrew University Medical Center, Ein Kerem, Jerusalem, Israel
- Department of Fisheries and Aquaculture, Ministry of Agriculture and Rural Development, Nir-David, Israel
| | - Wenjie Fang
- Shanghai Key Laboratory of Molecular Medical Mycology, Shanghai Institute of Medical Mycology, Second Military Medical University, Shanghai, China
- Department of Dermatology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Patricia F. Herkert
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, Nijmegen, The Netherlands
- Postgraduate Program in Microbiology, Parasitology and Pathology, Biological Sciences, Department of Basic Pathology, Federal University of Parana, Curitiba, Brazil
| | | | - James A. Fraser
- Australian Infectious Diseases Research Centre, School of Chemistry & Molecular Biosciences, University of Queensland, Brisbane, Australia
| | - Josepa Gené
- Unitat de Micologia, Facultat de Medicina i Ciències de la Salut, IISPV, Universitat Rovira i Virgili, Reus, Spain
| | - Josep Guarro
- Unitat de Micologia, Facultat de Medicina i Ciències de la Salut, IISPV, Universitat Rovira i Virgili, Reus, Spain
| | - Alexander Idnurm
- School of BioSciences, BioSciences 2, University of Melbourne, Melbourne, Australia
| | | | - Ziauddin Khan
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat, Kuwait
| | - Kantarawee Khayhan
- Department of Microbiology and Parasitology, Faculty of Medical Sciences, University of Phayao, Phayao, Thailand
- Yeast Research, Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - Anna Kolecka
- Yeast Research, Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - Cletus P. Kurtzman
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, USDA-ARS, Peoria, Illinois, USA
| | - Katrien Lagrou
- Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium
- Department of Microbiology and Immunology, KU Leuven - University of Leuven, Leuven, Belgium
| | - Wanqing Liao
- Shanghai Key Laboratory of Molecular Medical Mycology, Shanghai Institute of Medical Mycology, Second Military Medical University, Shanghai, China
- Department of Dermatology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Carlos Linares
- Medical School, Universidad Miguel Hernández, Alicante, Spain
| | - Jacques F. Meis
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, Nijmegen, The Netherlands
- Centre of Expertise in Mycology Radboudumc/CWZ, Nijmegen, The Netherlands
| | - Kirsten Nielsen
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Tinashe K. Nyazika
- Department of Medical Microbiology, College of Health Sciences, University of Zimbabwe, Harare, Zimbabwe
- Malawi-Liverpool-Wellcome Trust, College of Medicine, University of Malawi, Blantyre, Malawi
- School of Tropical Medicine, Liverpool, United Kingdom
| | - Weihua Pan
- Shanghai Key Laboratory of Molecular Medical Mycology, Shanghai Institute of Medical Mycology, Second Military Medical University, Shanghai, China
- Department of Dermatology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | | | - Itzhack Polacheck
- Department of Clinical Microbiology and Infectious Diseases, Hadassah-Hebrew University Medical Center, Ein Kerem, Jerusalem, Israel
| | - Brunella Posteraro
- Institute of Public Health (Section of Hygiene), Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| | - Flavio de Queiroz Telles
- Department of Communitarian Health, Hospital de Clínicas, Federal University of Parana, Curitiba, Brazil
| | - Orazio Romeo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
- IRCCS Centro Neurolesi Bonino-Pulejo, Messina, Italy
| | - Manuel Sánchez
- Medical School, Universidad Miguel Hernández, Alicante, Spain
| | - Ana Sampaio
- Centro de Investigação e de Tecnologias Agro-ambientais e Biológicas (CITAB), Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta dos Prados, Vila Real, Portugal
| | - Maurizio Sanguinetti
- Institute of Microbiology, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| | - Pojana Sriburee
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Takashi Sugita
- Department of Microbiology, Meiji Pharmaceutical University, Noshio, Kiyose, Tokyo, Japan
| | - Saad J. Taj-Aldeen
- Mycology Unit, Microbiology Division, Department of Laboratory Medicine and Pathology, Hamad Medical Corporation, Doha, Qatar
| | - Masako Takashima
- Japan Collection of Microorganisms, RIKEN BioResource Center, Koyadai, Tsukuba, Ibaraki, Japan
| | - John W. Taylor
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, USA
| | - Bart Theelen
- Yeast Research, Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - Rok Tomazin
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Paul E. Verweij
- Centre of Expertise in Mycology Radboudumc/CWZ, Nijmegen, The Netherlands
- Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Retno Wahyuningsih
- Department of Parasitology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Department of Parasitology, School of Medicine, Universitas Kristen Indonesia, Jakarta, Indonesia
| | - Ping Wang
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
- Department of Pediatrics, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Teun Boekhout
- Institute of Biodiversity and Ecosystems Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands
- Yeast Research, Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| |
Collapse
|
8
|
Cogliati M, D'Amicis R, Zani A, Montagna MT, Caggiano G, De Giglio O, Balbino S, De Donno A, Serio F, Susever S, Ergin C, Velegraki A, Ellabib MS, Nardoni S, Macci C, Oliveri S, Trovato L, Dipineto L, Rickerts V, McCormick-Smith I, Akcaglar S, Tore O, Mlinaric-Missoni E, Bertout S, Mallié M, Martins MDL, Vencà ACF, Vieira ML, Sampaio AC, Pereira C, Criseo G, Romeo O, Ranque S, Al-Yasiri MHY, Kaya M, Cerikcioglu N, Marchese A, Vezzulli L, Ilkit M, Desnos-Ollivier M, Pasquale V, Korem M, Polacheck I, Scopa A, Meyer W, Ferreira-Paim K, Hagen F, Theelen B, Boekhout T, Lockhart SR, Tintelnot K, Tortorano AM, Dromer F, Varma A, Kwon-Chung KJ, Inácio J, Alonso B, Colom MF. Environmental distribution of Cryptococcus neoformans and C. gattii around the Mediterranean basin. FEMS Yeast Res 2016; 16:fow045. [PMID: 27188887 DOI: 10.1093/femsyr/fow045] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2016] [Indexed: 11/15/2022] Open
Abstract
In order to elucidate the distribution of Cryptococcus neoformans and C. gattii in the Mediterranean basin, an extensive environmental survey was carried out during 2012-2015. A total of 302 sites located in 12 countries were sampled, 6436 samples from 3765 trees were collected and 5% of trees were found to be colonized by cryptococcal yeasts. Cryptococcus neoformans was isolated from 177 trees and C. gattii from 13. Cryptococcus neoformans colonized 27% of Ceratonia, 10% of Olea, Platanus and Prunus trees and a lower percentage of other tree genera. The 13 C. gattii isolates were collected from five Eucalyptus, four Ceratonia, two Pinus and two Olea trees. Cryptococcus neoformans was distributed all around the Mediterranean basin, whereas C. gattii was isolated in Greece, Southern Italy and Spain, in agreement with previous findings from both clinical and environmental sources. Among C. neoformans isolates, VNI was the prevalent molecular type but VNII, VNIV and VNIII hybrid strains were also isolated. With the exception of a single VGIV isolate, all C. gattii isolates were VGI. The results confirmed the presence of both Cryptococcus species in the Mediterranean environment, and showed that both carob and olive trees represent an important niche for these yeasts.
Collapse
Affiliation(s)
- Massimo Cogliati
- Dip. Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Pascal 36, 20133 Milano, Italy
| | - Roberta D'Amicis
- Dip. Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Pascal 36, 20133 Milano, Italy
| | - Alberto Zani
- Dip. Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Pascal 36, 20133 Milano, Italy
| | - Maria Teresa Montagna
- Dip. Scienze Biomediche ed Oncologia Umana, Università degli Studi di Bari 'Aldo Moro', Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Giuseppina Caggiano
- Dip. Scienze Biomediche ed Oncologia Umana, Università degli Studi di Bari 'Aldo Moro', Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Osvalda De Giglio
- Dip. Scienze Biomediche ed Oncologia Umana, Università degli Studi di Bari 'Aldo Moro', Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Stella Balbino
- Dip. Scienze Biomediche ed Oncologia Umana, Università degli Studi di Bari 'Aldo Moro', Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Antonella De Donno
- Dip. di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Via Monteroni, 73100 Lecce, Italy
| | - Francesca Serio
- Dip. di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Via Monteroni, 73100 Lecce, Italy
| | - Serdar Susever
- Dept. of Nutrition and Dietetics, Cyprus Near East University, Near East Boulevard, 99138 Nicosia, Cyprus
| | - Cagri Ergin
- Medical School, Pamukkale University, Kliniki Kampusu, 20160 Denizli, Turkey
| | - Aristea Velegraki
- Medical School National and Kapodistrian University of Athens, Mikras Asias 75, 11527 Athens, Greece
| | - Mohamed S Ellabib
- Medical College, University of Tripoli, Tripoli University Road, Tripoli, Libya
| | - Simona Nardoni
- Dip. Scienze Veterinarie, Università di Pisa, Via delle Piagge 2, 56124 Pisa, Italy
| | - Cristina Macci
- Istituto per lo Studio degli Ecosistemi (ISE), National Research Council (CNR), Via Moruzzi 1, 56124 Pisa, Italy
| | - Salvatore Oliveri
- Dip. di Scienze Microbiologiche e Scienze Ginecologiche, Università degli Studi di Catania, Via Androne 81, 95124 Catania, Italy
| | - Laura Trovato
- Dip. di Scienze Microbiologiche e Scienze Ginecologiche, Università degli Studi di Catania, Via Androne 81, 95124 Catania, Italy
| | - Ludovico Dipineto
- Dip. di Medicina Veterinaria e Produzioni Animali, University of Napoli Federico II, C.so Umberto I 40, 80138 Napoli, Italy
| | - Volker Rickerts
- Dept. of Infeciuos Diseases, Robert-Koch Institute, D-13302 Berlin, Germany
| | | | - Sevim Akcaglar
- School of Medicine, Uludag University, Gorukle Kampusu, 16059 Bursa, Turkey
| | - Okan Tore
- School of Medicine, Uludag University, Gorukle Kampusu, 16059 Bursa, Turkey
| | | | - Sebastien Bertout
- Unité Mixte Internationale 'Recherches Translationnelles sur l'infection à VIH et les Maladies Infectieuses', Université de Montpellier, 15 Avenue Charles Flahault, 34093 Montpellier, France
| | - Michele Mallié
- Unité Mixte Internationale 'Recherches Translationnelles sur l'infection à VIH et les Maladies Infectieuses', Université de Montpellier, 15 Avenue Charles Flahault, 34093 Montpellier, France
| | - Maria da Luz Martins
- Instituto de Higiene e Medicina Tropical, Rua da Junqueira 100, 1349-008 Lisbon, Portugal
| | - Ana C F Vencà
- Instituto de Higiene e Medicina Tropical, Rua da Junqueira 100, 1349-008 Lisbon, Portugal
| | - Maria L Vieira
- Instituto de Higiene e Medicina Tropical, Rua da Junqueira 100, 1349-008 Lisbon, Portugal
| | - Ana C Sampaio
- CITAB, Universidade de Trás-os-Montes e Alto Douro, Quinta dos Prados, 5000-801 Vila Real, Portugal
| | - Cheila Pereira
- CITAB, Universidade de Trás-os-Montes e Alto Douro, Quinta dos Prados, 5000-801 Vila Real, Portugal
| | - Giuseppe Criseo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Piazza Pugliatti 1, 98122 Messina, Italy
| | - Orazio Romeo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Piazza Pugliatti 1, 98122 Messina, Italy
| | - Stéphane Ranque
- IP-TPT Infections Parasitaires Transmission Pphysiopathologie et Therapeutiques, Aix-Marseille University, 27 Blv. Jean Moulin, 13005 Marseille, France
| | - Mohammed H Y Al-Yasiri
- IP-TPT Infections Parasitaires Transmission Pphysiopathologie et Therapeutiques, Aix-Marseille University, 27 Blv. Jean Moulin, 13005 Marseille, France
| | - Meltem Kaya
- School of Medicine, Marmara University, MÜ Göztepe Kampüsü, 34722 Istanbul, Turkey
| | - Nilgun Cerikcioglu
- School of Medicine, Marmara University, MÜ Göztepe Kampüsü, 34722 Istanbul, Turkey
| | - Anna Marchese
- Sezione di Microbiologia del DISC, Università di Genova-IRCCS San Martino IST Genova, Largo Benzi 10, 16132 Genova, Italy
| | - Luigi Vezzulli
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita (DISTAV), Università di Genova, C.so europa 26, 16132 Genova, Italy
| | - Macit Ilkit
- Dept. of Microbiology, University of Çukurova Sariçam, Çukurova Üniversitesi Rektörlüğü, 01330 Adana, Turkey
| | - Marie Desnos-Ollivier
- Institut Pasteur, CNRS, Unité de Mycologie Moléculaire, 25-28 Rue du Dr Roux, 75015 Paris, France
| | - Vincenzo Pasquale
- Dip. di Scienze e Tecnologie, Università degli Studi di Napoli Parthenope, Via Amm. F. Acton 38, 80133 Napoli, Italy
| | - Maya Korem
- Div. of Microbiology and Infectious Diseases, Hadassah-Hebrew University Medical Center, Ein Kerem, P.O. Box 12271 Jerusalem, Israel
| | - Itzhack Polacheck
- Div. of Microbiology and Infectious Diseases, Hadassah-Hebrew University Medical Center, Ein Kerem, P.O. Box 12271 Jerusalem, Israel
| | - Antonio Scopa
- Facoltà di Scienze Agrarie, Forestali e Ambientali, Università degli Studi della Basilicata, Via Nazario Sauro 85, 85100 Potenza, Italy
| | - Wieland Meyer
- Molecular Mycology Research Laboratory, CIDM, MBI, Sydney Medical School-Westmead Hospital, University of Sydney/Westmead Millennium Institute, 176 Hawkesbury Rd, NSW 2145 Westmead, NSW, Australia
| | - Kennio Ferreira-Paim
- Molecular Mycology Research Laboratory, CIDM, MBI, Sydney Medical School-Westmead Hospital, University of Sydney/Westmead Millennium Institute, 176 Hawkesbury Rd, NSW 2145 Westmead, NSW, Australia
| | - Ferry Hagen
- Canisius-Wilhelmina Hospital, Weg door Jonkerbos 100, 6532 SZ Nijmegen, The Netherlands
| | - Bart Theelen
- CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Teun Boekhout
- CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Shawn R Lockhart
- Centers for Disease Control and Prevention, 1600 Clifton Rd, Atlanta, GA 30333 Atlanta, USA
| | - Kathrin Tintelnot
- Dept. of Infeciuos Diseases, Robert-Koch Institute, D-13302 Berlin, Germany
| | - Anna Maria Tortorano
- Dip. Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Pascal 36, 20133 Milano, Italy
| | - Françoise Dromer
- Institut Pasteur, CNRS, Unité de Mycologie Moléculaire, 25-28 Rue du Dr Roux, 75015 Paris, France
| | - Ashok Varma
- National Institute of Allergy and Infectious Diseases, 31 Center Dr, Bethesda, MD 20892 Bethesda, USA
| | - Kyung J Kwon-Chung
- National Institute of Allergy and Infectious Diseases, 31 Center Dr, Bethesda, MD 20892 Bethesda, USA
| | - Joäo Inácio
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Lewes Road, BN2 4GJ Brighton, UK
| | - Beatriz Alonso
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Lewes Road, BN2 4GJ Brighton, UK
| | - Maria F Colom
- Medical School, Universidad Miguel Hernández, Avenida de la Universidad, 03202 Alicante, Spain
| |
Collapse
|
9
|
|
10
|
Hagen F, Khayhan K, Theelen B, Kolecka A, Polacheck I, Sionov E, Falk R, Parnmen S, Lumbsch HT, Boekhout T. Recognition of seven species in the Cryptococcus gattii/Cryptococcus neoformans species complex. Fungal Genet Biol 2015; 78:16-48. [PMID: 25721988 DOI: 10.1016/j.fgb.2015.02.009] [Citation(s) in RCA: 473] [Impact Index Per Article: 52.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 02/12/2015] [Accepted: 02/15/2015] [Indexed: 02/08/2023]
Abstract
Phylogenetic analysis of 11 genetic loci and results from many genotyping studies revealed significant genetic diversity with the pathogenic Cryptococcus gattii/Cryptococcus neoformans species complex. Genealogical concordance, coalescence-based, and species tree approaches supported the presence of distinct and concordant lineages within the complex. Consequently, we propose to recognize the current C. neoformans var. grubii and C. neoformans var. neoformans as separate species, and five species within C. gattii. The type strain of C. neoformans CBS132 represents a serotype AD hybrid and is replaced. The newly delimited species differ in aspects of pathogenicity, prevalence for patient groups, as well as biochemical and physiological aspects, such as susceptibility to antifungals. MALDI-TOF mass spectrometry readily distinguishes the newly recognized species.
Collapse
Affiliation(s)
- Ferry Hagen
- CBS-KNAW Fungal Biodiversity Centre, Basidiomycete and Yeast Research, Utrecht, The Netherlands; Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, Nijmegen, The Netherlands
| | - Kantarawee Khayhan
- CBS-KNAW Fungal Biodiversity Centre, Basidiomycete and Yeast Research, Utrecht, The Netherlands; Department of Microbiology and Parasitology, Faculty of Medical Sciences, University of Phayao, Phayao, Thailand
| | - Bart Theelen
- CBS-KNAW Fungal Biodiversity Centre, Basidiomycete and Yeast Research, Utrecht, The Netherlands
| | - Anna Kolecka
- CBS-KNAW Fungal Biodiversity Centre, Basidiomycete and Yeast Research, Utrecht, The Netherlands
| | - Itzhack Polacheck
- Department of Clinical Microbiology and Infectious Diseases, Hadassah-Hebrew University Medical Center, Ein Kerem, Jerusalem, Israel
| | - Edward Sionov
- Department of Clinical Microbiology and Infectious Diseases, Hadassah-Hebrew University Medical Center, Ein Kerem, Jerusalem, Israel; Department of Food Quality & Safety, Institute for Postharvest and Food Sciences, Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel
| | - Rama Falk
- Department of Clinical Microbiology and Infectious Diseases, Hadassah-Hebrew University Medical Center, Ein Kerem, Jerusalem, Israel; Department of Fisheries and Aquaculture, Ministry of Agriculture and Rural Development, Nir-David, Israel
| | - Sittiporn Parnmen
- Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | | | - Teun Boekhout
- CBS-KNAW Fungal Biodiversity Centre, Basidiomycete and Yeast Research, Utrecht, The Netherlands; Shanghai Key Laboratory of Molecular Medical Mycology, Changzheng Hospital, Second Military Medical University, Shanghai, China; Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
11
|
Development of two molecular approaches for differentiation of clinically relevant yeast species closely related to Candida guilliermondii and Candida famata. J Clin Microbiol 2014; 52:3190-5. [PMID: 24951804 DOI: 10.1128/jcm.01297-14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The emerging pathogens Candida palmioleophila, Candida fermentati, and Debaryomyces nepalensis are often misidentified as Candida guilliermondii or Candida famata in the clinical laboratory. Due to the significant differences in antifungal susceptibilities and epidemiologies among these closely related species, a lot of studies have focused on the identification of these emerging yeast species in clinical specimens. Nevertheless, limited tools are currently available for their discrimination. Here, two new molecular approaches were established to distinguish these closely related species. The first approach differentiates these species by use of restriction fragment length polymorphism analysis of partial internal transcribed spacer 2 (ITS2) and large subunit ribosomal DNA with the enzymes BsaHI and XbaI in a double digestion. The second method involves a multiplex PCR based on the intron size differences of RPL18, a gene coding for a protein component of the large (60S) ribosomal subunit, and species-specific amplification. These two methods worked well in differentiation of these closely related yeast species and have the potential to serve as effective molecular tools suitable for laboratory diagnoses and epidemiological studies.
Collapse
|
12
|
|
13
|
Identification and differentiation of Candida parapsilosis complex species by use of exon-primed intron-crossing PCR. J Clin Microbiol 2014; 52:1758-61. [PMID: 24622093 DOI: 10.1128/jcm.00105-14] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Candida parapsilosis complex is composed of Candida parapsilosis sensu stricto, Candida orthopsilosis, Candida metapsilosis, and the closely related species Lodderomyces elongisporus. An exon-primed intron-crossing PCR assay was developed here to distinguish the members of the species complex on the basis of the distinct sizes of amplicons, and Candida orthopsilosis and Candida metapsilosis were further discriminated by restriction enzyme analysis.
Collapse
|