1
|
Odoj K, Garlasco J, Pezzani MD, Magnabosco C, Ortiz D, Manco F, Galia L, Foster SK, Arieti F, Tacconelli E. Tracking Candidemia Trends and Antifungal Resistance Patterns across Europe: An In-Depth Analysis of Surveillance Systems and Surveillance Studies. J Fungi (Basel) 2024; 10:685. [PMID: 39452637 PMCID: PMC11514733 DOI: 10.3390/jof10100685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/11/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND The WHO fungal priority list classifies Candida species as critical and high-priority pathogens, and the WHO GLASS fungi initiative seeks to establish a standardised global framework for antifungal resistance monitoring. We aimed to review resistance rates and antifungal resistance patterns across European surveillance systems and studies in response to these recent calls for action. METHODS A systematic review of national and international surveillance systems and peer-reviewed surveillance studies available up to June 2024 was conducted. Descriptive and trend analyses were performed on surveillance data reporting resistance to different antifungals in Candida spp. RESULTS In total, 6 national surveillance systems and 28 studies from 13 countries provided candidemia resistance data, mostly about the C. albicans, C. glabrata and C. parapsilosis complex. Azole resistance was most frequently reported (6/6 surveillance systems and 27/28 studies) with the highest resistance rate, especially for C. glabrata, in Croatia (100%, 28/28 isolates) and Slovenia (85.7%, 82/96) and C. parapsilosis in Croatia (80.6%, 54/67) and Italy (72.6%, 106/146). Echinocandin and polyene resistance rates were nearly zero. The number of isolates included in the surveillance systems increased over the years, particularly for C. albicans (+40-60 isolates/year), C. glabrata, and C. parapsilosis (+15-30 isolates/year). No surveillance system or study reported resistance data for C. auris. Pooled data from national surveillance revealed a decreasing trend in azole resistance in C. albicans and C. glabrata. The increasing azole-resistance trend in C. parapsilosis disappeared after adjusting for between-country heterogeneity. Overall, echinocandin and polyene resistance trends appeared relatively stable. CONCLUSIONS Awareness of antifungal resistance is growing, but further actions are needed to strengthen surveillance capacity and knowledge-sharing networks across Europe.
Collapse
Affiliation(s)
- Karin Odoj
- Division of Infectious Diseases, Department of Internal Medicine I, University Hospital Tübingen, 72076 Tübingen, Germany; (K.O.); (D.O.); (S.K.F.)
| | - Jacopo Garlasco
- Infectious Disease Unit, Department of Diagnostic and Public Health, University of Verona, 37129 Verona, Italy; (J.G.); (C.M.); (F.M.); (L.G.); (F.A.); (E.T.)
| | - Maria Diletta Pezzani
- Infectious Disease Unit, Department of Diagnostic and Public Health, University of Verona, 37129 Verona, Italy; (J.G.); (C.M.); (F.M.); (L.G.); (F.A.); (E.T.)
| | - Cristina Magnabosco
- Infectious Disease Unit, Department of Diagnostic and Public Health, University of Verona, 37129 Verona, Italy; (J.G.); (C.M.); (F.M.); (L.G.); (F.A.); (E.T.)
| | - Diego Ortiz
- Division of Infectious Diseases, Department of Internal Medicine I, University Hospital Tübingen, 72076 Tübingen, Germany; (K.O.); (D.O.); (S.K.F.)
| | - Federica Manco
- Infectious Disease Unit, Department of Diagnostic and Public Health, University of Verona, 37129 Verona, Italy; (J.G.); (C.M.); (F.M.); (L.G.); (F.A.); (E.T.)
| | - Liliana Galia
- Infectious Disease Unit, Department of Diagnostic and Public Health, University of Verona, 37129 Verona, Italy; (J.G.); (C.M.); (F.M.); (L.G.); (F.A.); (E.T.)
| | - Sarah K. Foster
- Division of Infectious Diseases, Department of Internal Medicine I, University Hospital Tübingen, 72076 Tübingen, Germany; (K.O.); (D.O.); (S.K.F.)
| | - Fabiana Arieti
- Infectious Disease Unit, Department of Diagnostic and Public Health, University of Verona, 37129 Verona, Italy; (J.G.); (C.M.); (F.M.); (L.G.); (F.A.); (E.T.)
| | - Evelina Tacconelli
- Infectious Disease Unit, Department of Diagnostic and Public Health, University of Verona, 37129 Verona, Italy; (J.G.); (C.M.); (F.M.); (L.G.); (F.A.); (E.T.)
| |
Collapse
|
2
|
Li K, Yang X, Li L, Zhi L. Candidaemia: A 9-Year Retrospective Analysis of Epidemiology and Antimicrobial Susceptibility in Tertiary Care Hospitals in Western China. Infect Drug Resist 2024; 17:3891-3900. [PMID: 39253608 PMCID: PMC11382801 DOI: 10.2147/idr.s477815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/30/2024] [Indexed: 09/11/2024] Open
Abstract
Purpose This investigation endeavors to scrutinize the resistance profiles to antifungal agents, alongside the clinical distribution of Candida isolates that yielded positive results in blood cultures at Suining Central Hospital spanning the years 2015 to 2023. The objective is to provide crucial epidemiological insights that may aid in early clinical intervention and judicious deployment of antifungal therapies. Methods This retrospective analysis analyses data on 182 different Candida strains with positive clinical blood cultures obtained from the Microbiology Laboratory of Suining Central Hospital over a period of nine consecutive years. The study involved identification of Candida species and assessment of resistance patterns to fungal drugs. Results Our analysis revealed that the median age of patients diagnosed with Candidaemia from the 182 strains was 62 years, with a distribution of 63.7% females and 36.3% males. Within the cohort of 182 Candida strains, Candida albicans constituted 32.4%, while non-albicans Candida species comprised 67.6% of the cases. Specifically, Candida tropicalis represented 37.4%, Candida glabrata 12.1%, Candida parapsilosis 11.0%,Candida guilliermondii 3.8%, and both Candida krusei and Candida Dublin accounted for 1.6% each. These Candida species were predominantly identified in intensive care units (ICU), hematology, gastroenterology, neurology centers, and endocrine metabolism units. Conclusion The findings of this investigation suggest a shift in the prevalence of non-Candida albicans species, notably C. tropicalis, as the predominant cause of Candidaemia at Suining Central Hospital, surpassing C. albicans. Although instances of antifungal resistance are infrequent, there has been a notable rise in resistance to azoles. This study provides important insights into the local epidemiology, which will be essential for informing the selection of empirical antifungal therapy and contributing to the global surveillance of antifungal resistance.
Collapse
Affiliation(s)
- Kun Li
- Department of Clinical Laboratory Medicine, Suining Central Hospital, Suining, Sichuan, People's Republic of China
| | - Xue Yang
- Department of Clinical Laboratory Medicine, Suining Central Hospital, Suining, Sichuan, People's Republic of China
| | - Long Li
- Department of Clinical Laboratory Medicine, Suining Central Hospital, Suining, Sichuan, People's Republic of China
| | - Lan Zhi
- Department of Clinical Laboratory Medicine, Suining Central Hospital, Suining, Sichuan, People's Republic of China
| |
Collapse
|
3
|
Dolatabadi S, Najafzadeh MJ, Raeisabadi A, Zarrinfar H, Jalali M, Spruijtenburg B, Meijer EFJ, Meis JF, Lass-Flörl C, de Groot T. Epidemiology of Candidemia in Mashhad, Northeast Iran: A Prospective Multicenter Study (2019-2021). J Fungi (Basel) 2024; 10:481. [PMID: 39057366 PMCID: PMC11277834 DOI: 10.3390/jof10070481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Candidemia is a major cause of morbidity and mortality in health care settings, and its epidemiology is changing. In the last two decades, the proportion of non-albicans Candida (NAC) yeasts in candidemia has increased. These yeasts more often display resistance to common antifungals. In many western countries, candidemia is mainly caused by susceptible C. albicans, while in resource-limited countries, including Iran, the candidemia species distribution is studied less often. Here, we investigated the species distribution, resistance levels, and characteristics of patients with candidemia in five hospitals in Mashhad (northeast Iran) for two years (2019-2021). Yeast isolates from blood were identified with MALDI-TOF MS and subjected to antifungal susceptibility testing (AFST) using the broth microdilution method, while molecular genotyping was applied to Candida parapsilosis isolates. In total, 160 yeast isolates were recovered from 160 patients, of which the majority were adults (60%). Candidemia was almost equally detected in men (48%) and women (52%). Almost half of patients (n = 67, 49%) were from intensive care units (ICUs). C. parapsilosis (n = 58, 36%) was the most common causative agent, surpassing C. albicans (n = 52, 33%). The all-cause mortality rate was 53%, with C. albicans candidemia displaying the lowest mortality with 39%, in contrast to a mortality rate of 59% for NAC candidemia. With microbroth AFST, nearly all tested isolates were found to be susceptible, except for one C. albicans isolate that was resistant to anidulafungin. By applying short tandem repeat (STR) genotyping to C. parapsilosis, multiple clusters were found. To summarize, candidemia in Mashhad, Iran, from 2019 to 2021, is characterized by common yeast species, in particular C. parapsilosis, for which STR typing indicates potential nosocomial transmission. The overall mortality is high, while resistance rates were found to be low, suggesting that the high mortality is linked to limited diagnostic options and insufficient medical care, including the restricted use of echinocandins as the first treatment option.
Collapse
Affiliation(s)
- Somayeh Dolatabadi
- Department of Biology, Hakim Sabzevari University, Sabzevar 9617976487, Iran
| | - Mohammad Javad Najafzadeh
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 91766-99199, Iran
| | - Abbas Raeisabadi
- Department of Medical Mycology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari 48471-91628, Iran
| | - Hossein Zarrinfar
- Allergy Research Center, Mashhad University of Medical Sciences, Mashhad 91766-99199, Iran
| | - Mahsa Jalali
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 91766-99199, Iran
| | - Bram Spruijtenburg
- Radboudumc-CWZ Center of Expertise for Mycology, 6532 SZ Nijmegen, The Netherlands (E.F.J.M.)
- Canisius-Wilhelmina Hospital (CWZ)/Dicoon, 6532 SZ Nijmegen, The Netherlands
| | - Eelco F. J. Meijer
- Radboudumc-CWZ Center of Expertise for Mycology, 6532 SZ Nijmegen, The Netherlands (E.F.J.M.)
- Canisius-Wilhelmina Hospital (CWZ)/Dicoon, 6532 SZ Nijmegen, The Netherlands
| | - Jacques F. Meis
- Radboudumc-CWZ Center of Expertise for Mycology, 6532 SZ Nijmegen, The Netherlands (E.F.J.M.)
- Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), Excellence Center for Medical Mycology (ECMM), University of Cologne, 50931 Cologne, Germany
| | - Cornelia Lass-Flörl
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Excellence Center for Medical Mycology (ECMM), 6020 Innsbruck, Austria
| | - Theun de Groot
- Radboudumc-CWZ Center of Expertise for Mycology, 6532 SZ Nijmegen, The Netherlands (E.F.J.M.)
- Canisius-Wilhelmina Hospital (CWZ)/Dicoon, 6532 SZ Nijmegen, The Netherlands
| |
Collapse
|
4
|
Yu J, Yang W, Fan X, Cui E, Min R, Yuan H, Hu Y, Wang H, Zhang G, Zhao Y, Xu Y, Guo L. Emerging trends of invasive yeast infections and azole resistance in Beijing intensive care units. J Hosp Infect 2024; 149:46-55. [PMID: 38740299 DOI: 10.1016/j.jhin.2024.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND Invasive fungal infections pose a substantial threat to patients in healthcare settings globally. Recent changes in the prevalence of fungal species and challenges in conducting reference antifungal susceptibility testing emphasize the importance of monitoring fungi and their antifungal resistance. METHODS A two-phase surveillance project was conducted in Beijing, China, involving 37 centres across 12 districts, from January 2012 to December 2013 and from January 2016 to December 2017. FINDINGS We found that the proportion of Candida albicans in intensive care units (ICUs) during 2016-2017 exhibited a significant decline compared with the 2012-2013 period, although it remained the most predominant pathogen. In contrast, the prevalence of Nakaseomyces glabratus (formerly Candida glabrata) and Candida tropicalis notably increased during the two-phase surveillance. The high prevalence of C. tropicalis and its resistance to azole drugs posed a serious threat to patients in ICUs. The pathogens causing invasive fungal infections in Beijing were relatively sensitive to echinocandins. While C. albicans continued to exhibit susceptibility to azoles, the resistance and growth rates of C. tropicalis towards azoles were particularly prominent. Concerns were raised due to the emergence of multiple, short-term isolates of Clavispora lusitaniae and Candida parapsilosis complex in neonatal ICUs, given their similarity in antifungal susceptibilities. Such occurrences point towards the potential for transmission and persisting presence of these pathogens within the ICU environment. CONCLUSIONS Our study complements existing data on the epidemiology of invasive fungal infections. It is imperative to exercise cautious medication management for ICU patients in Beijing, paying particular attention to azole resistance in C. tropicalis.
Collapse
Affiliation(s)
- J Yu
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China; Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China; Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - W Yang
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China; Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China
| | - X Fan
- Department of Infectious Diseases and Clinical Microbiology, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - E Cui
- Clinical Laboratory Medical Center, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - R Min
- Department of Clinical Laboratory, Beijing Xuanwu Hospital, Capital Medical University, Beijing, China
| | - H Yuan
- Department of Clinical Laboratory, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Y Hu
- Department of Clinical Laboratory, Beijing Hospital, Beijing, China
| | - H Wang
- Department of Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - G Zhang
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China; Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China
| | - Y Zhao
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China; Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China
| | - Y Xu
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China; Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China
| | - L Guo
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China; Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China.
| |
Collapse
|
5
|
Beardsley J, Kim HY, Dao A, Kidd S, Alastruey-Izquierdo A, Sorrell TC, Tacconelli E, Chakrabarti A, Harrison TS, Bongomin F, Gigante V, Galas M, Siswanto S, Dagne DA, Roitberg F, Sati H, Morrissey CO, Alffenaar JW. Candida glabrata (Nakaseomyces glabrata): A systematic review of clinical and microbiological data from 2011 to 2021 to inform the World Health Organization Fungal Priority Pathogens List. Med Mycol 2024; 62:myae041. [PMID: 38935913 PMCID: PMC11210615 DOI: 10.1093/mmy/myae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/03/2023] [Accepted: 04/27/2024] [Indexed: 06/29/2024] Open
Abstract
Recognising the growing global burden of fungal infections, the World Health Organization (WHO) established an advisory group consisting of experts in fungal diseases to develop a Fungal Priority Pathogen List. Pathogens were ranked based on their research and development needs and perceived public health importance using a series of global surveys and pathogen characteristics derived from systematic reviews. This systematic review evaluates the features and global impact of invasive disease caused by Candida glabrata (Nakaseomyces glabrata). PubMed and Web of Science were searched for studies reporting on mortality, morbidity (hospitalization and disability), drug resistance (including isolates from sterile and non-sterile sites, since these reflect the same organisms causing invasive infections), preventability, yearly incidence, diagnostics, treatability, and distribution/emergence in the last 10 years. Candida glabrata (N. glabrata) causes difficult-to-treat invasive infections, particularly in patients with underlying conditions such as immunodeficiency, diabetes, or those who have received broad-spectrum antibiotics or chemotherapy. Beyond standard infection prevention and control measures, no specific preventative measures have been described. We found that infection is associated with high mortality rates and that there is a lack of data on complications and sequelae. Resistance to azoles is common and well described in echinocandins-in both cases, the resistance rates are increasing. Candida glabrata remains mostly susceptible to amphotericin and flucytosine. However, the incidence of the disease is increasing, both at the population level and as a proportion of all invasive yeast infections, and the increases appear related to the use of antifungal agents.
Collapse
Affiliation(s)
- Justin Beardsley
- Sydney Infectious Diseases Institute, The University of Sydney, Sydney, Australia
- Westmead Institute for Medical Research, Sydney, Australia
| | - Hannah Yejin Kim
- Sydney Infectious Diseases Institute, The University of Sydney, Sydney, Australia
- School of Pharmacy, University of Sydney, Sydney, Australia
- Department of Pharmacy, Westmead Hospital, Sydney, Australia
| | - Aiken Dao
- Sydney Infectious Diseases Institute, The University of Sydney, Sydney, Australia
- Westmead Institute for Medical Research, Sydney, Australia
| | - Sarah Kidd
- National Mycology Reference Centre, SA Pathology, Adelaide, Australia
| | | | - Tania C Sorrell
- Sydney Infectious Diseases Institute, The University of Sydney, Sydney, Australia
- Westmead Institute for Medical Research, Sydney, Australia
| | | | - Arunaloke Chakrabarti
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Thomas S Harrison
- Institute of Infection and Immunity, St. George's, University of London, London, and MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Felix Bongomin
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Gulu University, Gulu, Uganda
| | - Valeria Gigante
- Impact Initiatives and Research Coordination Unit, Global Coordination and Partnership Department, Antimicrobial Resistance Division, World Health Organization, Geneva, Switzerland
| | - Marcelo Galas
- Antimicrobial Resistance Special Program, Communicable Diseases and Environmental Determinants of Health, Pan American Health Organization, Washington, DC, USA
| | - Siswanto Siswanto
- World Health Organization, South East Asia Region Office, New Delhi, India
| | - Daniel Argaw Dagne
- Department of Control of Neglected Tropical Diseases, World Health Organization, Geneva, Switzerland
| | - Felipe Roitberg
- Department of Noncommunicable Diseases, World Health Organization, Geneva, Switzerland
| | - Hatim Sati
- Impact Initiatives and Research Coordination Unit, Global Coordination and Partnership Department, Antimicrobial Resistance Division, World Health Organization, Geneva, Switzerland
| | - C Orla Morrissey
- Alfred Health/ Department of Infectious Diseases, Monash University, Melbourne, Australia
| | - Jan-Willem Alffenaar
- Sydney Infectious Diseases Institute, The University of Sydney, Sydney, Australia
- School of Pharmacy, University of Sydney, Sydney, Australia
| |
Collapse
|
6
|
El Ayoubi LW, Allaw F, Moussa E, Kanj SS. Ibrexafungerp: A narrative overview. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 6:100245. [PMID: 38873590 PMCID: PMC11170096 DOI: 10.1016/j.crmicr.2024.100245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024] Open
Abstract
Ibrexafungerp (IBX) is a new antifungal drug that recently entered the antifungal landscape. It disrupts fungal cell wall synthesis by non-competitive inhibition of the β-(1,3)-D-glucan (BDG) synthase enzyme. It has demonstrated activity against a range of pathogens including Candida and Aspergillus spp., as well as retaining its activity against azole-resistant and echinocandin-resistant strains. It also exhibits anti-biofilm properties. Pharmacokinetic (PK) studies revealed favorable bioavailability, high protein binding, and extensive tissue distribution with a low potential for CYP-mediated drug interactions. It is characterized by the same mechanism of action of echinocandins with limited cross-resistance with other antifungal agents. Resistance to this drug can arise from mutations in the FKS genes, primarily FKS2 mutations in Nakaseomyces glabrata. In vivo, IBX was found to be effective in murine models of invasive candidiasis (IC) and invasive pulmonary aspergillosis (IPA). It also showed promising results in preventing and treating Pneumocystis jirovecii infections. Clinical trials showed that IBX was effective and non-inferior to fluconazole in treating vulvovaginal candidiasis (VVC), including complicated cases, as well as in preventing its recurrence. These trials positioned it as a Food and Drug Administration (FDA)-approved option for the treatment and prophylaxis of VVC. Trials showed comparable responses to standard-of-care in IC, with favorable preliminary results in C. auris infections in terms of efficacy and tolerability as well as in refractory cases of IC. Mild adverse reactions have been reported including gastrointestinal symptoms. Overall, IBX represents a significant addition to the antifungal armamentarium, with its unique action, spectrum of activity, and encouraging clinical trial results warranting further investigation.
Collapse
Affiliation(s)
- L'Emir Wassim El Ayoubi
- Division of Infectious Diseases, American University of Beirut Medical Center, Beirut, Lebanon
| | - Fatima Allaw
- Division of Infectious Diseases, American University of Beirut Medical Center, Beirut, Lebanon
| | - Elie Moussa
- Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Souha S. Kanj
- Division of Infectious Diseases, American University of Beirut Medical Center, Beirut, Lebanon
- Center for Infectious Diseases Research, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
7
|
Márton R, Nagy B, Molnár M. Biofilm development of Candida boidinii and the effect of tyrosol on biofilm formation. Biotechnol Lett 2023; 45:1541-1554. [PMID: 37831285 PMCID: PMC10635961 DOI: 10.1007/s10529-023-03432-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 07/26/2023] [Accepted: 09/06/2023] [Indexed: 10/14/2023]
Abstract
OBJECTIVES The applicability of a simple and high-throughput method for quantitative characterization of biofilm formation by Candida boidinii was tested in order to evaluate the effects of exogenous tyrosol on yeast growth and biofilm formation capacity. RESULTS Significant concentration-, temperature and time-dependent effect of tyrosol (2-(4-hydroxyphenyl)ethanol) was demonstrated, but it differentially affected the growth and biofilm formation (characterized by crystal violet staining and XTT-reduction assay) of Candida boidinii. Testing biofilm based on metabolic activity displayed sensitively the differences in the intensity of biofilm in terms of temperature, tyrosol concentration, and exposure time. At 22 °C after 24 h none of the tyrosol concentrations had significant effect, while at 30 °C tyrosol-mediated inhibition was observed at 50 mM and 100 mM concentration. After 48 h and 72 h at 22 °C, biofilm formation was stimulated at 6.25-25 mM concentrations, meanwhile at 30 °C tyrosol decreased the biofilm metabolic activity proportionally with the concentration. CONCLUSIONS The research concludes that exogenous tyrosol exerts unusual effects on Candida boidinii growth and biofilm formation ability and predicts its potential application as a regulating factor of various fermentations by Candida boidinii.
Collapse
Affiliation(s)
- Rita Márton
- Budapest University of Technology and Economics Department of Applied Biotechnology and Food Science, Műegyetem rkp. 3, 1111, Budapest, Hungary
| | - Blanka Nagy
- Budapest University of Technology and Economics Department of Applied Biotechnology and Food Science, Műegyetem rkp. 3, 1111, Budapest, Hungary
| | - Mónika Molnár
- Budapest University of Technology and Economics Department of Applied Biotechnology and Food Science, Műegyetem rkp. 3, 1111, Budapest, Hungary.
| |
Collapse
|
8
|
Arendrup MC, Arikan-Akdagli S, Jørgensen KM, Barac A, Steinmann J, Toscano C, Arsenijevic VA, Sartor A, Lass-Flörl C, Hamprecht A, Matos T, Rogers BRS, Quiles I, Buil J, Özenci V, Krause R, Bassetti M, Loughlin L, Denis B, Grancini A, White PL, Lagrou K, Willinger B, Rautemaa-Richardson R, Hamal P, Ener B, Unalan-Altintop T, Evren E, Hilmioglu-Polat S, Oz Y, Ozyurt OK, Aydin F, Růžička F, Meijer EFJ, Gangneux JP, Lockhart DEA, Khanna N, Logan C, Scharmann U, Desoubeaux G, Roilides E, Talento AF, van Dijk K, Koehler P, Salmanton-García J, Cornely OA, Hoenigl M. European candidaemia is characterised by notable differential epidemiology and susceptibility pattern: Results from the ECMM Candida III study. J Infect 2023; 87:428-437. [PMID: 37549695 DOI: 10.1016/j.jinf.2023.08.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/25/2023] [Accepted: 08/03/2023] [Indexed: 08/09/2023]
Abstract
The objectives of this study were to assess Candida spp. distribution and antifungal resistance of candidaemia across Europe. Isolates were collected as part of the third ECMM Candida European multicentre observational study, conducted from 01 to 07-07-2018 to 31-03-2022. Each centre (maximum number/country determined by population size) included ∼10 consecutive cases. Isolates were referred to central laboratories and identified by morphology and MALDI-TOF, supplemented by ITS-sequencing when needed. EUCAST MICs were determined for five antifungals. fks sequencing was performed for echinocandin resistant isolates. The 399 isolates from 41 centres in 17 countries included C. albicans (47.1%), C. glabrata (22.3%), C. parapsilosis (15.0%), C. tropicalis (6.3%), C. dubliniensis and C. krusei (2.3% each) and other species (4.8%). Austria had the highest C. albicans proportion (77%), Czech Republic, France and UK the highest C. glabrata proportions (25-33%) while Italy and Turkey had the highest C. parapsilosis proportions (24-26%). All isolates were amphotericin B susceptible. Fluconazole resistance was found in 4% C. tropicalis, 12% C. glabrata (from six countries across Europe), 17% C. parapsilosis (from Greece, Italy, and Turkey) and 20% other Candida spp. Four isolates were anidulafungin and micafungin resistant/non-wild-type and five resistant to micafungin only. Three/3 and 2/5 of these were sequenced and harboured fks-alterations including a novel L657W in C. parapsilosis. The epidemiology varied among centres and countries. Acquired echinocandin resistance was rare but included differential susceptibility to anidulafungin and micafungin, and resistant C. parapsilosis. Fluconazole and voriconazole cross-resistance was common in C. glabrata and C. parapsilosis but with different geographical prevalence.
Collapse
Affiliation(s)
- Maiken Cavling Arendrup
- Unit of Mycology, Statens Serum Institut, Copenhagen, Denmark; Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| | - Sevtap Arikan-Akdagli
- Department of Medical Microbiology, Hacettepe University Medical School, Ankara, Turkey
| | | | - Aleksandra Barac
- Clinic for Infectious and Tropical Diseases, University Clinical Center of Serbia, Belgrade, Serbia
| | - Jörg Steinmann
- Institute for Clincal Hygiene, Medical Microbiology and Infectiology, Paracelsus Medical University, Klinikum Nürnberg, Nuremberg, Germany
| | - Cristina Toscano
- Microbiology Laboratory, Centro Hospitalar de Lisboa Ocidental, Lisboa, Portugal
| | - Valentina Arsic Arsenijevic
- Faculty of Medicine University of Belgrade, Institute of Microbiology and Immunology, Medical Mycology Reference Laboratory (MMRL), Belgrade, Serbia
| | - Assunta Sartor
- SC Microbiology, Department of Laboratory Medicine, Friuli Centrale University Health Authority, Udin, Italy
| | - Cornelia Lass-Flörl
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Axel Hamprecht
- University of Cologne, University Hospital Cologne, Institute for Medical Microbiology, Immunology and Hygiene, Cologne, Germany; University of Oldenburg, Institute for Medical Microbiology and Virology, Oldenburg, Germany
| | - Tadeja Matos
- Institute of Microbiology and Immunology, Medical Faculty, University of Ljubljana, Slovenia
| | - Benedict R S Rogers
- Department of Clinical Microbiology, University Hospitals of Leicester NHS Trust, Leicester, United Kingdom
| | - Inmaculada Quiles
- Department of Microbiology, La Paz University Hospital, Madrid, Spain
| | - Jochem Buil
- Canisius Wilhelmina Hospital (CWZ), Medical Microbiology and Infectious Diseases, Nijmegen, the Netherlands; Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands; Center of Expertise in Mycology Radboudumc/CWZ, Nijmegen, the Netherlands
| | - Volkan Özenci
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Sweden; Department of Clinical Microbiology, Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Robert Krause
- Biotech Med, Graz, Austria; Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Matteo Bassetti
- Infectious Diseases Unit, IRCCS San Martino Polyclinic Hospital, Genoa, Italy; Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Laura Loughlin
- Belfast Health and Social Care Trust, Belfast, United Kingdom
| | - Blandine Denis
- Department of Infectious Diseases, Hôpital Saint-Louis, Fernand Widal, Lariboisière, AP-HP, Paris, France
| | - Anna Grancini
- U.O.S Microbiology - Analysis Laboratory, IRCCS Foundation, Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - P Lewis White
- Public Health Wales Microbiology Cardiff and Cardiff University School of Medicine, United Kingdom
| | - Katrien Lagrou
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium; Department of Laboratory Medicine and National Reference Center for Mycosis University Hospitals Leuven, Leuven, Belgium
| | - Birgit Willinger
- Division of Clinical Microbiology, Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Riina Rautemaa-Richardson
- Mycology Reference Centre Manchester and Department of Infectious Diseases, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, United Kingdom; Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom
| | - Petr Hamal
- Department of Microbiology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Beyza Ener
- Department of Medical Microbiology, Bursa Uludağ University Medical School, Bursa, Turkey
| | - Tugce Unalan-Altintop
- Department of Medical Microbiology, Hacettepe University Medical School, Ankara, Turkey
| | - Ebru Evren
- Department of Medical Microbiology, Ankara University Medical School, Ankara, Turkey
| | | | - Yasemin Oz
- Department of Medical Microbiology, Eskisehir Osmangazi University Medical School, Eskisehir, Turkey
| | - Ozlem Koyuncu Ozyurt
- Department of Medical Microbiology, Akdeniz University Medical School, Antalya, Turkey
| | - Faruk Aydin
- KTÜ Tıp Fakültesi Tıbbi Mikrobiyoloji AbD, Trabzon, Turkey
| | - Filip Růžička
- Masaryk University, Faculty of Medicine and St. Anne's Faculty Hospital, Department of Microbiology, Brno, Czech Republic
| | - Eelco F J Meijer
- Canisius Wilhelmina Hospital (CWZ), Medical Microbiology and Infectious Diseases, Nijmegen, the Netherlands; Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands; Center of Expertise in Mycology Radboudumc/CWZ, Nijmegen, the Netherlands
| | - Jean Pierre Gangneux
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, F-35000 Rennes, France
| | - Deborah E A Lockhart
- Department of Medical Microbiology, Aberdeen Royal Infirmary, Foresterhill, Aberdeen AB25 2ZN, United Kingdom; Institute of Medical Sciences, School of Medicine Medical Sciences & Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, United Kingdom
| | - Nina Khanna
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital of Basel, Basel, Switzerland
| | - Clare Logan
- Clinical Infection Unit, St Georges University NHS Hospital Foundation Trust, Blackshaw Road, London, United Kingdom; Institute of Infection & Immunity, St Georges University London, Cranmer Terrace, London, United Kingdom
| | - Ulrike Scharmann
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Guillaume Desoubeaux
- Department of Parasitology-Mycology-Tropical medicine, CHRU Tours, Tours, France
| | - Emmanuel Roilides
- Hippokration General Hospital, Infectious Diseases Department, Medical School, Aristotle University of Thessaloniki, Greece
| | | | - Karin van Dijk
- Department of Medical Microbiology and Infection Control, Amsterdam University Medical Centers, Academic Medical Center, Amsterdam Infection and Immunity Institute, Amsterdam, the Netherlands
| | - Philipp Koehler
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, and Excellence Center for Medical Mycology (ECMM), Cologne, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Institute of Translational Research, Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Jon Salmanton-García
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, and Excellence Center for Medical Mycology (ECMM), Cologne, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Institute of Translational Research, Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Oliver A Cornely
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, and Excellence Center for Medical Mycology (ECMM), Cologne, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Institute of Translational Research, Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Martin Hoenigl
- Biotech Med, Graz, Austria; Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, Graz, Austria.
| |
Collapse
|
9
|
Askari F, Vasavi B, Kaur R. Phosphatidylinositol 3-phosphate regulates iron transport via PI3P-binding CgPil1 protein. Cell Rep 2023; 42:112855. [PMID: 37490387 DOI: 10.1016/j.celrep.2023.112855] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 05/23/2023] [Accepted: 07/07/2023] [Indexed: 07/27/2023] Open
Abstract
Iron homeostasis, which is pivotal to virulence, is regulated by the phosphatidylinositol 3-kinase CgVps34 in the human fungal pathogen Candida glabrata. Here, we identify CgPil1 as a phosphatidylinositol 3-phosphate (PI3P)-binding protein and unveil its role in retaining the high-affinity iron transporter CgFtr1 at the plasma membrane (PM), with PI3P negatively regulating CgFtr1-CgPil1 interaction. PI3P production and its PM localization are elevated in the high-iron environment. Surplus iron also leads to intracellular distribution and vacuolar delivery of CgPil1 and CgFtr1, respectively, from the PM. Loss of CgPil1 or CgFtr1 ubiquitination at lysines 391 and 401 results in CgFtr1 trafficking to the endoplasmic reticulum and a decrease in vacuole-localized CgFtr1. The E3-ubiquitin ligase CgRsp5 interacts with CgFtr1 and forms distinct CgRsp5-CgFtr1 puncta at the PM, with high iron resulting in their internalization. Finally, PI3P controls retrograde transport of many PM proteins. Altogether, we establish PI3P as a key regulator of membrane transport in C. glabrata.
Collapse
Affiliation(s)
- Fizza Askari
- Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India; Graduate Studies, Regional Centre for Biotechnology, Faridabad 121001, Haryana, India
| | - Bhogadi Vasavi
- Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India
| | - Rupinder Kaur
- Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India.
| |
Collapse
|
10
|
Chen M, Hu D, Li T, Zheng D, Liao W, Xia X, Cao C. The Epidemiology and Clinical Characteristics of Fungemia in a Tertiary Hospital in Southern China: A 6-Year Retrospective Study. Mycopathologia 2023; 188:353-360. [PMID: 37380875 DOI: 10.1007/s11046-023-00757-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 05/29/2023] [Indexed: 06/30/2023]
Abstract
Knowledge of the epidemiology and clinical characteristics of fungemia in southern China is limited. We conducted a six-year retrospective descriptive study to analyze the epidemiological and clinical characteristics of fungemia at the largest tertiary hospital in Guangxi, southern China. Data were obtained from the laboratory registry of patients with fungemia between January 2014 and December 2019. Demographic characteristics, underlying medical conditions, and outcomes for each case were analyzed. A total of 455 patients with fungemia were identified. Unexpectedly, Talaromyces marneffei (T. marneffei) was the most frequently isolated agent causing fungemia in the region (149/475, 31.4%), and Candida albicans (C. albicans) was the most commonly isolated Candida spp. (100/475, 21.1%). We identified that more than 70% of talaromycosis fungemia developed in AIDS patients, whereas candidemia was most commonly associated with a history of recent surgery. Notably, the total mortality rate of fungemia and the mortality rate in patients with T. marneffei and Cryptococcus neoformans (C. neoformans) fungemia were significantly higher in HIV-uninfected patients than in HIV-infected patients. In conclusion, the clinical pattern of fungemia in Guangxi is different from that in previous studies. Our study may provide new guidance for the early diagnosis and prompt treatment of fungemia in similar geographic regions.
Collapse
Affiliation(s)
- Meini Chen
- Eye Center of Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- Department of Dermatology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
- Hunan Key Laboratory of Ophthalmology, Changsha, 410008, Hunan, People's Republic of China
| | - Dongmei Hu
- Department of Dermatology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Mycosis Prevention and Treatment, Nanning, 530021, China
| | - Tianmin Li
- Department of Dermatology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Mycosis Prevention and Treatment, Nanning, 530021, China
| | - Dongyan Zheng
- Department of Dermatology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Mycosis Prevention and Treatment, Nanning, 530021, China
| | - Wanqing Liao
- Shanghai Key Laboratory of Medical Fungal Molecular Biology, Second Military Medical University, Shanghai, China.
| | - Xiaobo Xia
- Eye Center of Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
- Hunan Key Laboratory of Ophthalmology, Changsha, 410008, Hunan, People's Republic of China.
- National Clinical Research Center for Geriatric Diseases (Xiangya Hospital), Changsha, 410008, Hunan, People's Republic of China.
| | - Cunwei Cao
- Department of Dermatology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
- Guangxi Key Laboratory of Mycosis Prevention and Treatment, Nanning, 530021, China.
| |
Collapse
|
11
|
Deng R, Meng X, Li R, Wang A, Song Y. Asymptomatic Candida glabrata urinary tract infection in an immunocompetent young female: A case report. Medicine (Baltimore) 2023; 102:e33798. [PMID: 37335701 DOI: 10.1097/md.0000000000033798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/21/2023] Open
Abstract
INTRODUCTION Fungal urinary tract infections (UTIs) are becoming increasingly common in hospitalized patients and Candida species are the most prevalent organisms. However, recurrent candiduria in young healthy outpatients is rare thus require further examination to find the etiologic factors. CASE PRESENTATION We described a case of recurrent asymptomatic c caused by azole-resistant C. glabrata in a healthy young female who only had previous use of antibiotics without other risk factors. However, after removal of the predisposing factor and the use of sensitive antifungal agents, the patient's urine cultures remained positive. This phenomenon indicated to us that the patient might have an immune-related genetic deficiency. We found a novel caspase-associated recruitment domain-containing protein 9 (CARD9) gene mutation (c.808-11G > T) which might be the cause of recurrent asymptomatic candiduria in this immune-competent young female without any underlying diseases. CONCLUSIONS We report a case of recurrent asymptomatic candiduria caused by azole-resistant Candida glabrata in a young healthy female with a novel CARD9 mutation. A functional study of this mutation should be performed in the future to determine its effect on asymptomatic fungal UTIs.
Collapse
Affiliation(s)
- Ruixin Deng
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, China
- Research Center for Medical Mycology, Peking University, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
| | - Xingye Meng
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, China
- Research Center for Medical Mycology, Peking University, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
| | - Ruoyu Li
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, China
- Research Center for Medical Mycology, Peking University, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
| | - Aiping Wang
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, China
- Research Center for Medical Mycology, Peking University, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
| | - Yinggai Song
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, China
- Research Center for Medical Mycology, Peking University, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
| |
Collapse
|
12
|
Dalyan Cilo B. Species Distribution and Antifungal Susceptibilities of Candida Species Isolated From Blood Culture. Cureus 2023; 15:e38183. [PMID: 37252597 PMCID: PMC10224711 DOI: 10.7759/cureus.38183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2023] [Indexed: 05/31/2023] Open
Abstract
Introduction Candida species (spp.) are among the leading agents of bloodstream infections. Candidemias are a major cause of morbidity and mortality. Having an understanding of Candida epidemiology and antifungal susceptibility patterns in each center is crucial in guiding the management of candidemia. In this study, the species distribution and antifungal susceptibility of Candida spp. isolated from blood culture at the University of Health Sciences, Bursa Yuksek Ihtisas Training & Research Hospital were examined and the first data on the epidemiology of candidemia in our center were presented. Methods A total of 236 Candida strains isolated from blood cultures in our hospital over a four-year period were analyzed and their antifungal susceptibilities were studied retrospectively. Strains were identified at the species complex (SC) level by the germ tube test, morphology in cornmeal-tween 80 medium, and the automated VITEK 2 Compact (bioMérieux, Marcy-l'Étoile, France) system. Antifungal susceptibility tests were performed on VITEK 2 Compact (bioMérieux, Marcy-l'Étoile, France) system. The susceptibilities of the strains to fluconazole, voriconazole, micafungin, and amphotericin B were determined according to Clinical and Laboratory Standards Institute (CLSI) guidelines and epidemiologic cut-off values. Results Of the Candida (C.) strains, 131 were C. albicans (55.5%), 40 were C. parapsilosis SC (16.9%), 21 were C. tropicalis (8.9%), 19 were C. glabrata SC (8.1%), eight were C. lusitaniae (3.4%), seven were C. kefyr (3.0%), six were C. krusei (2.6%), two were C. guilliermondii (0.8%) and two were C. dubliniensis (0.8%). Amphotericin B resistance was not detected in Candida strains. Micafungin susceptibility was 98.3%, and four C. parapsilosis SC strains (10%) were intermediate (I) to micafungin. Fluconazole susceptibility was 87.2%. Apart from C. krusei strains which intrinsically resistant to fluconazole, three C. parapsilosis (7.5%), one C. glabrata SC (5.3%) strain were resistant (R) to fluconazole, and one C. lusitaniae (12.5%) strain was wild-type (WT). Voriconazole susceptibility of Candida strains was 98.6%. Two C. parapsilosis SC strains were I to voriconazole, while one strain was R. Conclusion In this study, the first epidemiological data of candidemia agents in our hospital were presented. It was determined that rare and naturally resistant species did not cause any problem in our center yet. C. parapsilosis SC strains showed decreased susceptibility to fluconazole, whereas Candida strains were highly susceptible to the four antifungals tested. Close monitoring of these data will help guide the treatment of candidemia.
Collapse
Affiliation(s)
- Burcu Dalyan Cilo
- Section of Medical Mycology, University of Health Sciences, Bursa Yuksek Ihtisas Training & Research Hospital, Bursa, TUR
| |
Collapse
|
13
|
Lamoth F. Novel Therapeutic Approaches to Invasive Candidiasis: Considerations for the Clinician. Infect Drug Resist 2023; 16:1087-1097. [PMID: 36855391 PMCID: PMC9968438 DOI: 10.2147/idr.s375625] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/01/2023] [Indexed: 02/24/2023] Open
Abstract
Invasive candidiasis (IC), due to the yeast pathogen Candida, is still a major cause of in-hospital morbidity and mortality. The limited number of antifungal drug classes and the emergence of multi-resistant Candida species, such as Candida auris and some Candida glabrata isolates, is concerning. However, recent advances in antifungal drug development provide promising perspectives for the therapeutic approach of IC. Notably, three novel antifungal agents, currently in Phase II/III clinical trials, are expected to have an important place for the treatment of IC in the future. Rezafungin is a novel echinocandin with prolonged half-life. Ibrexafungerp and fosmanogepix are two first-in-class antifungal drugs with broad spectrum activity against Candida spp., including C. auris and echinocandin-resistant species. These novel antifungal agents also represent interesting alternative options because of their acceptable oral bioavailability (ibrexafungerp and fosmanogepix) or their large interdose interval (once weekly intravenous administration for rezafungin) for prolonged and/or outpatient treatment of complicated IC. This review discusses the potential place of these novel antifungal drugs for the treatment of IC considering their pharmacologic properties and their preclinical and clinical data.
Collapse
Affiliation(s)
- Frederic Lamoth
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Institute of Microbiology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Correspondence: Frederic Lamoth, Service of Infectious Diseases and Institute of Microbiology, CHUV | Centre Hospitalier Universitaire Vaudois, Rue du Bugnon 48, Lausanne, 1011, Switzerland, Tel +41 21 314 10 10, Email
| |
Collapse
|
14
|
Okamoto M, Nakano K, Takahashi-Nakaguchi A, Sasamoto K, Yamaguchi M, Teixeira MC, Chibana H. In Candida glabrata, ERMES Component GEM1 Controls Mitochondrial Morphology, mtROS, and Drug Efflux Pump Expression, Resulting in Azole Susceptibility. J Fungi (Basel) 2023; 9:jof9020240. [PMID: 36836353 PMCID: PMC9965728 DOI: 10.3390/jof9020240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/05/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
Mitochondrial dysfunction or morphological abnormalities in human pathogenic fungi are known to contribute to azole resistance; however, the underlying molecular mechanisms are unknown. In this study, we investigated the link between mitochondrial morphology and azole resistance in Candida glabrata, which is the second most common cause of human candidiasis worldwide. The ER-mitochondrial encounter structure (ERMES) complex is thought to play an important role in the mitochondrial dynamics necessary for mitochondria to maintain their function. Of the five components of the ERMES complex, deletion of GEM1 increased azole resistance. Gem1 is a GTPase that regulates the ERMES complex activity. Point mutations in GEM1 GTPase domains were sufficient to confer azole resistance. The cells lacking GEM1 displayed abnormalities in mitochondrial morphology, increased mtROS levels, and increased expression of azole drug efflux pumps encoded by CDR1 and CDR2. Interestingly, treatment with N-acetylcysteine (NAC), an antioxidant, reduced ROS production and the expression of CDR1 in Δgem1 cells. Altogether, the absence of Gem1 activity caused an increase in mitochondrial ROS concentration, leading to Pdr1-dependent upregulation of the drug efflux pump Cdr1, resulting in azole resistance.
Collapse
Affiliation(s)
- Michiyo Okamoto
- Medical Mycology Research Center, Chiba University, Chiba 260-8673, Japan
| | - Keiko Nakano
- Medical Mycology Research Center, Chiba University, Chiba 260-8673, Japan
| | | | - Kaname Sasamoto
- Medical Mycology Research Center, Chiba University, Chiba 260-8673, Japan
| | - Masashi Yamaguchi
- Medical Mycology Research Center, Chiba University, Chiba 260-8673, Japan
| | - Miguel Cacho Teixeira
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| | - Hiroji Chibana
- Medical Mycology Research Center, Chiba University, Chiba 260-8673, Japan
- Correspondence:
| |
Collapse
|
15
|
Meyahnwi D, Siraw BB, Reingold A. Epidemiologic features, clinical characteristics, and predictors of mortality in patients with candidemia in Alameda County, California; a 2017–2020 retrospective analysis. BMC Infect Dis 2022; 22:843. [DOI: 10.1186/s12879-022-07848-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
Background
Bloodstream infections caused by Candida species are responsible for significant morbidity and mortality worldwide, with an ever-changing epidemiology. We conducted this study to assess trends in the epidemiologic features, risk factors and Candida species distribution in candidemia patients in Alameda County, California.
Methods
We analyzed data collected from patients in Alameda County, California between 2017 and 2020 as part of the California Emerging Infections Program (CEIP). This is a laboratory-based, active surveillance program for candidemia. In our study, we included incident cases only.
Results
During the 4-year period from January 1st, 2017, to December 31st, 2020, 392 incident cases of candidemia were identified. The mean crude annual cumulative incidence was 5.9 cases per 100,000 inhabitants (range 5.0–6.5 cases per 100,000 population). Candida glabrata was the most common Candida species and was present as the only Candida species in 149 cases (38.0%), followed by Candida albicans, 130 (33.2%). Mixed Candida species were present in 13 patients (3.3%). Most of the cases of candidemia occurred in individuals with one or more underlying conditions. Multivariate regression models showed that age ≥ 65 years (RR 1.66, CI 1.28–2.14), prior administration of systemic antibiotic therapy, (RR 1.84, CI 1.06–3.17), cirrhosis of the liver, (RR 2.01, CI 1.51–2.68), and prior admission to the ICU (RR1.82, CI 1.36–2.43) were significant predictors of mortality.
Conclusions
Non-albicans Candida species currently account for the majority of candidemia cases in Alameda County.
Collapse
|
16
|
Rayens E, Rabacal W, Willems HME, Kirton GM, Barber JP, Mousa JJ, Celia-Sanchez BN, Momany M, Norris KA. Immunogenicity and protective efficacy of a pan-fungal vaccine in preclinical models of aspergillosis, candidiasis, and pneumocystosis. PNAS NEXUS 2022; 1:pgac248. [PMID: 36712332 PMCID: PMC9802316 DOI: 10.1093/pnasnexus/pgac248] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022]
Abstract
Invasive fungal infections cause over 1.5 million deaths worldwide. Despite increases in fungal infections as well as the numbers of individuals at risk, there are no clinically approved fungal vaccines. We produced a "pan-fungal" peptide, NXT-2, based on a previously identified vaccine candidate and homologous sequences from Pneumocystis, Aspergillus,Candida, and Cryptococcus. We evaluated the immunogenicity and protective capacity of NXT-2 in murine and nonhuman primate models of invasive aspergillosis, systemic candidiasis, and pneumocystosis. NXT-2 was highly immunogenic and immunized animals had decreased mortality and morbidity compared to nonvaccinated animals following induction of immunosuppression and challenge with Aspergillus, Candida, or Pneumocystis. Data in multiple animal models support the concept that immunization with a pan-fungal vaccine prior to immunosuppression induces broad, cross-protective antifungal immunity in at-risk individuals.
Collapse
Affiliation(s)
- Emily Rayens
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA
| | - Whitney Rabacal
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA
| | | | - Gabrielle M Kirton
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA
| | - James P Barber
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
| | - Jarrod J Mousa
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA
| | - Brandi N Celia-Sanchez
- Fungal Biology Group, Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Michelle Momany
- Fungal Biology Group, Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | | |
Collapse
|
17
|
Activities of Manogepix and Comparators against 1,435 Recent Fungal Isolates Collected during an International Surveillance Program (2020). Antimicrob Agents Chemother 2022; 66:e0102822. [DOI: 10.1128/aac.01028-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We evaluated the
in vitro
activity of manogepix and comparator agents against 1,435 contemporary fungal isolates collected worldwide from 73 medical centers in North America, Europe, the Asia-Pacific region, and Latin America during 2020. Of the isolates tested, 74.7% were
Candida
spp.; 3.7% were non-
Candida
yeasts, including 27
Cryptococcus neoformans
var.
grubii
(1.9%); 17.1% were
Aspergillus
spp.; and 4.5% were other molds.
Collapse
|
18
|
Bhakt P, Raney M, Kaur R. The SET-domain protein CgSet4 negatively regulates antifungal drug resistance via the ergosterol biosynthesis transcriptional regulator CgUpc2a. J Biol Chem 2022; 298:102485. [PMID: 36108742 PMCID: PMC9576903 DOI: 10.1016/j.jbc.2022.102485] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/27/2022] Open
Abstract
Invasive fungal infections, which pose a serious threat to human health, are increasingly associated with a high mortality rate and elevated health care costs, owing to rising resistance to current antifungals and emergence of multidrug-resistant fungal species. Candida glabrata is the second to fourth common cause of Candida bloodstream infections. Its high propensity to acquire resistance toward two mainstream drugs, azoles (inhibit ergosterol biosynthesis) and echinocandins (target cell wall), in clinical settings, and its inherent low azole susceptibility render antifungal therapy unsuccessful in many cases. Here, we demonstrate a pivotal role for the SET {suppressor of variegation 3 to 9 [Su(var)3-9], enhancer of zeste [E(z)], and trithorax (Trx)} domain-containing protein, CgSet4, in azole and echinocandin resistance via negative regulation of multidrug transporter-encoding and ergosterol biosynthesis (ERG) genes through the master transcriptional factors CgPdr1 and CgUpc2A, respectively. RNA-Seq analysis revealed that C. glabrata responds to caspofungin (CSP; echinocandin antifungal) stress by downregulation and upregulation of ERG and cell wall organization genes, respectively. Although CgSet4 acts as a repressor of the ergosterol biosynthesis pathway via CgUPC2A transcriptional downregulation, the CSP-induced ERG gene repression is not dependent on CgSet4, as CgSet4 showed diminished abundance on the CgUPC2A promoter in CSP-treated cells. Furthermore, we show a role for the last three enzymes of the ergosterol biosynthesis pathway, CgErg3, CgErg5, and CgErg4, in antifungal susceptibility and virulence in C. glabrata. Altogether, our results unveil the link between ergosterol biosynthesis and echinocandin resistance and have implications for combination antifungal therapy.
Collapse
Affiliation(s)
- Priyanka Bhakt
- Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | - Mayur Raney
- Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India; Graduate Studies, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Rupinder Kaur
- Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India.
| |
Collapse
|
19
|
Kajihara T, Yahara K, Nagi M, Kitamura N, Hirabayashi A, Hosaka Y, Abe M, Miyazaki Y, Sugai M. Distribution, trends, and antifungal susceptibility of Candida species causing candidemia in Japan, 2010-2019: A retrospective observational study based on national surveillance data. Med Mycol 2022; 60:6696379. [PMID: 36095139 PMCID: PMC9521341 DOI: 10.1093/mmy/myac071] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 08/08/2022] [Accepted: 09/09/2022] [Indexed: 11/14/2022] Open
Abstract
The increasing incidence of candidemia and the emergence of drug-resistant Candida species are major concerns worldwide. Therefore, long-term surveillance studies are required. Here, we provide one of the largest longitudinal overviews of the trends in the prevalence of Candida species using national data of 57 001 candidemia isolates obtained from more than 2000 hospitals for the 2010-2019 period in the Japan Nosocomial Infections Surveillance database. The proportion of Candida species, except Candida krusei and Candida guilliermondii, was almost the same during the study period. The proportion of C. guilliermondii surpassed that of C. krusei in 2014. The incidence of candidemia due to C. albicans (p < 0.0001), C. parapsilosis (p = 0.0002), and C. tropicalis (p < 0.0001) have decreased significantly over this period. Azole susceptibility of Candida tropicalis was low, with 17.8% of isolates resistant to fluconazole and 13.5% resistant to voriconazole. The micafungin susceptibility of C. glabrata was low, with 8.0% of isolates showing resistance. The resistance rate of C. krusei toward amphotericin B fluctuated considerably (between 3.2% and 35.7%) over this period. The incidence rate of candidemia caused by C. parapsilosis and C. guilliermondii in hospitals responsible for bone marrow transplantation was significantly higher than that in other hospitals. Overall, our study suggests that in Japan, the species distribution of Candida was almost the same in this period and similar to that reported in North America and Europe. A relatively high resistance to azoles and micafungin was observed in C. glabrata, C. tropicalis, and C. krusei isolates, which require continued surveillance.
Collapse
Affiliation(s)
- Toshiki Kajihara
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, 4-2-1 Aoba-cho Higashimurayama, Tokyo 189-0002, Japan
| | - Koji Yahara
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, 4-2-1 Aoba-cho Higashimurayama, Tokyo 189-0002, Japan
| | - Minoru Nagi
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, 4-2-1 Aoba-cho Higashimurayama, Tokyo 189-0002, Japan.,Department of Fungal Infection, National Institute of Infectious Diseases, 1-23-1 Toyama Shinjuku-ku, Tokyo 162-8640, Japan
| | - Norikazu Kitamura
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, 4-2-1 Aoba-cho Higashimurayama, Tokyo 189-0002, Japan
| | - Aki Hirabayashi
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, 4-2-1 Aoba-cho Higashimurayama, Tokyo 189-0002, Japan
| | - Yumiko Hosaka
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, 4-2-1 Aoba-cho Higashimurayama, Tokyo 189-0002, Japan
| | - Masahiro Abe
- Department of Fungal Infection, National Institute of Infectious Diseases, 1-23-1 Toyama Shinjuku-ku, Tokyo 162-8640, Japan
| | - Yoshitsugu Miyazaki
- Department of Fungal Infection, National Institute of Infectious Diseases, 1-23-1 Toyama Shinjuku-ku, Tokyo 162-8640, Japan
| | - Motoyuki Sugai
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, 4-2-1 Aoba-cho Higashimurayama, Tokyo 189-0002, Japan
| |
Collapse
|
20
|
Fisher MC, Alastruey-Izquierdo A, Berman J, Bicanic T, Bignell EM, Bowyer P, Bromley M, Brüggemann R, Garber G, Cornely OA, Gurr SJ, Harrison TS, Kuijper E, Rhodes J, Sheppard DC, Warris A, White PL, Xu J, Zwaan B, Verweij PE. Tackling the emerging threat of antifungal resistance to human health. Nat Rev Microbiol 2022; 20:557-571. [PMID: 35352028 PMCID: PMC8962932 DOI: 10.1038/s41579-022-00720-1] [Citation(s) in RCA: 381] [Impact Index Per Article: 190.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2022] [Indexed: 12/12/2022]
Abstract
Invasive fungal infections pose an important threat to public health and are an under-recognized component of antimicrobial resistance, an emerging crisis worldwide. Across a period of profound global environmental change and expanding at-risk populations, human-infecting pathogenic fungi are evolving resistance to all licensed systemic antifungal drugs. In this Review, we highlight the main mechanisms of antifungal resistance and explore the similarities and differences between bacterial and fungal resistance to antimicrobial control. We discuss the research and innovation topics that are needed for risk reduction strategies aimed at minimizing the emergence of resistance in pathogenic fungi. These topics include links between the environment and One Health, surveillance, diagnostics, routes of transmission, novel therapeutics and methods to mitigate hotspots for fungal adaptation. We emphasize the global efforts required to steward our existing antifungal armamentarium, and to direct the research and development of future therapies and interventions.
Collapse
Affiliation(s)
- Matthew C Fisher
- MRC Centre for Global Infectious Disease Outbreak Analysis, Imperial College London, London, UK.
| | - Ana Alastruey-Izquierdo
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Judith Berman
- Shmunis School of Biomedical and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel
| | - Tihana Bicanic
- Institute of Infection and Immunity, St George's University London, London, UK
| | - Elaine M Bignell
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Paul Bowyer
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Michael Bromley
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Roger Brüggemann
- Department of Pharmacy, Radboudumc Institute for Health Sciences and Radboudumc - CWZ Centre of Expertise for Mycology, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Gary Garber
- Department of Medicine and the School of Public Health and Epidemiology, University of Ottawa, Ottawa, Ontario, Canada
| | - Oliver A Cornely
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Excellence Center for Medical Mycology (ECMM), Cologne, Germany
| | | | - Thomas S Harrison
- Institute of Infection and Immunity, St George's University London, London, UK
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Ed Kuijper
- Centre for Infectious Diseases Research, Diagnostics and Laboratory Surveillance, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Johanna Rhodes
- MRC Centre for Global Infectious Disease Outbreak Analysis, Imperial College London, London, UK
| | - Donald C Sheppard
- Infectious Disease in Global Health Program and McGill Interdisciplinary Initiative in Infection and Immunity, McGill University Health Centre, Montreal, Québec, Canada
| | - Adilia Warris
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - P Lewis White
- Public Health Wales Mycology Reference Laboratory, University Hospital of Wales, Cardiff, UK
| | - Jianping Xu
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Bas Zwaan
- Department of Plant Science, Laboratory of Genetics, Wageningen University & Research, Wageningen, Netherlands
| | - Paul E Verweij
- Centre for Infectious Diseases Research, Diagnostics and Laboratory Surveillance, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands.
- Department of Medical Microbiology and Radboudumc - CWZ Centre of Expertise for Mycology, Radboud University Medical Centre, Nijmegen, Netherlands.
| |
Collapse
|
21
|
Epigenetic Regulation of Antifungal Drug Resistance. J Fungi (Basel) 2022; 8:jof8080875. [PMID: 36012862 PMCID: PMC9409733 DOI: 10.3390/jof8080875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 11/23/2022] Open
Abstract
In medical mycology, epigenetic mechanisms are emerging as key regulators of multiple aspects of fungal biology ranging from development, phenotypic and morphological plasticity to antifungal drug resistance. Emerging resistance to the limited therapeutic options for the treatment of invasive fungal infections is a growing concern. Human fungal pathogens develop drug resistance via multiple mechanisms, with recent studies highlighting the role of epigenetic changes involving the acetylation and methylation of histones, remodeling of chromatin and heterochromatin-based gene silencing, in the acquisition of antifungal resistance. A comprehensive understanding of how pathogens acquire drug resistance will aid the development of new antifungal therapies as well as increase the efficacy of current antifungals by blocking common drug-resistance mechanisms. In this article, we describe the epigenetic mechanisms that affect resistance towards widely used systemic antifungal drugs: azoles, echinocandins and polyenes. Additionally, we review the literature on the possible links between DNA mismatch repair, gene silencing and drug-resistance mechanisms.
Collapse
|
22
|
Kaur H, Krishnamoorthi S, Dhaliwal N, Biswal M, Singh S, Muthu V, Rudramurthy SM, Agarwal R, Ghoshal S, Singh S, Malhotra P, Jain S, Samujh R, Ghosh A, Chakrabarti A. Antifungal prescription practices and consumption in a tertiary care hospital of a developing country. Mycoses 2022; 65:935-945. [PMID: 35934811 DOI: 10.1111/myc.13514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/12/2022] [Accepted: 08/01/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Antifungal stewardship is a less explored component of antimicrobial stewardship programmes, especially in developing countries. OBJECTIVE We aimed to determine antifungal prescription practices in a tertiary centre of a developing country to identify the challenges for antifungal stewardship programmes. METHODS Four single-day point prevalent surveys were performed in inpatient units and data were collected from medical records. Antifungal use was recorded in terms of consumption, therapeutic strategies and appropriateness. RESULTS We found a 2.42%-point prevalence of antifungal prescriptions. Antifungal use was higher in children than adults (4.1% vs. 2.03%), medical than surgical units (3.7% vs. 1.24%) and ICUs than general wards (5.8% vs. 1.9%). The highest antifungal use was observed in the haematology-oncology units (29.3%) followed by emergency (16.2%) and gastroenterology units (11.6%). Among 215 prescriptions, amphotericin B was the most commonly prescribed (50.2%) followed by fluconazole (31.6%). The targeted antifungal therapy was practised more commonly (31.5%) than empiric (29.1%), pre-emptive (22.6%) and prophylactic (16.8%) therapy. Amphotericin B was commonly used for pre-emptive (p = .001) and targeted (p = .049) therapy, while fluconazole (p = .001) and voriconazole (p = .011) for prophylaxis. The prescriptions were inappropriate in 25.1% due to the wrong choice of antifungal (44.4%), indication (27.7%) and dosage (24%). The overall mean antifungal consumption was 2.71 DDD/1000 PD and 8.96 DOT/1000 PD. CONCLUSIONS We report here the low prevalence of antifungal use at a tertiary care centre in a developing country. Though training for antifungal use would be important for antifungal stewardship, the challenge would remain with the affordability of antifungals.
Collapse
Affiliation(s)
- Harsimran Kaur
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | | | - Navneet Dhaliwal
- Department of Hospital Administration, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Manisha Biswal
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Shreya Singh
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Valliappan Muthu
- Department of Pulmonary Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Shivaprakash M Rudramurthy
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Ritesh Agarwal
- Department of Pulmonary Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Sushmita Ghoshal
- Department of Radiotherapy and Oncology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Surjit Singh
- Department of Paediatric Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Pankaj Malhotra
- Department of Clinical Hematology & Medical Oncology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Sanjay Jain
- Department of Internal Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Ram Samujh
- Department of Paediatric Surgery, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Anup Ghosh
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | | |
Collapse
|
23
|
Synergistic In Vitro Interaction of Isavuconazole and Isoquercitrin against Candida glabrata. J Fungi (Basel) 2022; 8:jof8050525. [PMID: 35628780 PMCID: PMC9147185 DOI: 10.3390/jof8050525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/14/2022] [Accepted: 05/19/2022] [Indexed: 02/05/2023] Open
Abstract
In vitro interactions of broad-spectrum azole isavuconazole with flavonoid isoquercitrin were evaluated by a broth microdilution checkerboard technique based on the European Committee on Antimicrobial Susceptibility Testing (EUCAST) reference methodology for antifungal susceptibility testing against 60 Candida strains belonging to the species Candida albicans (n = 10), Candida glabrata (n = 30), Candida kefyr (n = 6), Candida krusei (n = 5), Candida parapsilosis (n = 4), and Candida tropicalis (n = 5). The results were analyzed with the fractional inhibitory concentration index and by response surface analysis based on the Bliss model. Synergy was found for all C. glabrata strains, when the results were interpreted by the fractional inhibitory concentration index, and for 60% of the strains when response surface analysis was used. Interaction for all other species was indifferent for all strains tested, whatever interpretation model used. Importantly, antagonistic interaction was never observed.
Collapse
|
24
|
Kane A, Carter DA. Augmenting Azoles with Drug Synergy to Expand the Antifungal Toolbox. Pharmaceuticals (Basel) 2022; 15:482. [PMID: 35455479 PMCID: PMC9027798 DOI: 10.3390/ph15040482] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 12/23/2022] Open
Abstract
Fungal infections impact the lives of at least 12 million people every year, killing over 1.5 million. Wide-spread use of fungicides and prophylactic antifungal therapy have driven resistance in many serious fungal pathogens, and there is an urgent need to expand the current antifungal arsenal. Recent research has focused on improving azoles, our most successful class of antifungals, by looking for synergistic interactions with secondary compounds. Synergists can co-operate with azoles by targeting steps in related pathways, or they may act on mechanisms related to resistance such as active efflux or on totally disparate pathways or processes. A variety of sources of potential synergists have been explored, including pre-existing antimicrobials, pharmaceuticals approved for other uses, bioactive natural compounds and phytochemicals, and novel synthetic compounds. Synergy can successfully widen the antifungal spectrum, decrease inhibitory dosages, reduce toxicity, and prevent the development of resistance. This review highlights the diversity of mechanisms that have been exploited for the purposes of azole synergy and demonstrates that synergy remains a promising approach for meeting the urgent need for novel antifungal strategies.
Collapse
Affiliation(s)
| | - Dee A. Carter
- School of Life and Environmental Sciences and Sydney ID, University of Sydney, Camperdown, NSW 2006, Australia;
| |
Collapse
|
25
|
Elderly versus nonelderly patients with invasive fungal infections: species distribution and antifungal resistance, SENTRY antifungal surveillance program 2017-2019. Diagn Microbiol Infect Dis 2022; 102:115627. [DOI: 10.1016/j.diagmicrobio.2021.115627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 12/14/2021] [Accepted: 12/18/2021] [Indexed: 11/21/2022]
|
26
|
Bohner F, Papp C, Gácser A. The effect of antifungal resistance development on the virulence of Candida species. FEMS Yeast Res 2022; 22:6552956. [PMID: 35325128 PMCID: PMC9466593 DOI: 10.1093/femsyr/foac019] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/24/2022] [Accepted: 03/21/2022] [Indexed: 11/12/2022] Open
Abstract
In recent years, the relevance of diseases associated with fungal pathogens increased worldwide. Members of the Candida genus are responsible for the greatest number of fungal bloodstream infections every year. Epidemiological data consistently indicate a modest shift toward non-albicans species, albeit Candidaalbicans is still the most recognizable species within the genus. As a result, the number of clinically relevant pathogens has increased, and, despite their distinct pathogenicity features, the applicable antifungal agents remained the same. For bloodstream infections, only three classes of drugs are routinely used, namely polyenes, azoles and echinocandins. Antifungal resistance toward all three antifungal drug classes frequently occurs in clinical settings. Compared with the broad range of literature on virulence and antifungal resistance of Candida species separately, only a small portion of studies examined the effect of resistance on virulence. These studies found that resistance to polyenes and echinocandins concluded in significant decrease in the virulence in different Candida species. Meanwhile, in some cases, resistance to azole type antifungals resulted in increased virulence depending on the species and isolates. These findings underline the importance of studies aiming to dissect the connections of virulence and resistance in Candida species.
Collapse
Affiliation(s)
- Flora Bohner
- HCEMM-USZ Fungal Pathogens Research Group, Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Csaba Papp
- HCEMM-USZ Fungal Pathogens Research Group, Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Attila Gácser
- HCEMM-USZ Fungal Pathogens Research Group, Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary.,MTA-SZTE "Lendület" Mycobiome Research Group, University of Szeged, Szeged, Hungary
| |
Collapse
|
27
|
Surveillance of Antifungal Resistance in Candidemia Fails to Inform Antifungal Stewardship in European Countries. J Fungi (Basel) 2022; 8:jof8030249. [PMID: 35330251 PMCID: PMC8950249 DOI: 10.3390/jof8030249] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 11/17/2022] Open
Abstract
Background: The increasing burden of candidemia and the emergence of resistance, especially among non-Candida albicans strains, represent a new threat for public health. We aimed to assess the status of surveillance and to identify publicly accessible resistance data in Candida spp blood isolates from surveillance systems and epidemiological studies in 28 European and 4 European Free Trade Association member states. Methods: A systematic review of national and international surveillance networks, from 2015 to 2020, and peer-reviewed epidemiological surveillance studies, from 2005 to 2020, lasting for at least 12 consecutive months and with at least two centers involved, was completed to assess reporting of resistance to amphotericin B, azoles, and echinocandins in C. albicans, C. glabrata, C. parapsilosis, C. tropicalis, C. krusei, and C. auris. Results: Only 5 (Austria, Italy, Norway, Spain, and United Kingdom) of 32 countries provided resistance data for Candida spp blood isolates. Among 322 surveillance studies identified, 19 were included from Belgium, Denmark, Iceland, Italy, Portugal, Spain, Sweden, Switzerland, and United Kingdom. C. albicans and C. glabrata were the most monitored species, followed by C. parapsilosis and C. tropicalis. C. krusei was not included in any national surveillance system; 13 studies assessed resistance. No surveillance system or study reported resistance for C. auris. Fluconazole, voriconazole, caspofungin, and amphotericin B resistance in C. albicans, C. glabrata, and C. parapsilosis were the most common drug–species combination monitored. Quality of surveillance data was poor, with only two surveillance systems reporting microbiological methods and clinical data. High heterogeneity was observed in modalities of reporting, data collection, and definitions. Conclusion: Surveillance of antifungal resistance in Candida spp blood-isolates is fragmented and heterogeneous, delaying the application of a translational approach to the threat of antifungal resistance and the identification of proper targets for antifungal stewardship activities. International efforts are needed to implement antifungal resistance surveillance programs in order to adequately monitor antifungal resistance.
Collapse
|
28
|
The Utility of EQUAL Candida Score in Predicting Mortality in Patients with Candidemia. J Fungi (Basel) 2022; 8:jof8030238. [PMID: 35330240 PMCID: PMC8952788 DOI: 10.3390/jof8030238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 12/02/2022] Open
Abstract
In an effort to standardize practice, the European Confederation of Medical Mycology (ECMM) developed the European Confederation of Medical Mycology Quality of Clinical Candidaemia Management (EQUAL) Candida score. This study investigated the utility of the EQUAL Candida score in predicting mortality in patients with candidemia admitted between January 2004 and July 2019. A total of 142 cases were included in the study, and 43.6% died within 30 days of candidemia diagnosis. There were no significant differences between survivors and non-survivors in terms of comorbidities predisposing to candidemia, except for malignancy (p = 0.021). The overall mean EQUAL score was 11.5 in the total population and 11.8 ± 3.82 and 11.03 ± 4.59 in survivors and non-survivors, respectively. When patients with a central venous catheter (CVC) were considered alone, survivors were found to have significantly higher scores than non-survivors (13.1 ± 3.19 vs. 11.3 ± 4.77, p = 0.025). When assessing components of the EQUAL Score separately, only candida speciation (p = 0.013), susceptibility testing (p = 0.012) and echocardiography results (p = 0.012) were significantly associated with a lower case-fatality rate. A higher EQUAL Candida score was able to predict a lower case-fatality rate in patients with a CVC.
Collapse
|
29
|
Askari F, Rasheed M, Kaur R. The yapsin family of aspartyl proteases regulate glucose homeostasis in Candida glabrata. J Biol Chem 2022; 298:101593. [PMID: 35051415 PMCID: PMC8844688 DOI: 10.1016/j.jbc.2022.101593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/18/2021] [Accepted: 12/22/2021] [Indexed: 12/03/2022] Open
Abstract
Invasive candidiasis poses a major healthcare threat. The human opportunistic fungal pathogen Candida glabrata, which causes mucosal and deep-seated infections, is armed with distinct virulence attributes, including a family of 11 glycosylphosphatidylinositol-linked aspartyl proteases, CgYapsins. Here, we have profiled total membrane proteomes of the C. glabrata wildtype and 11 proteases-deficient strain, Cgyps1-11Δ, by mass spectrometry analysis and uncovered a novel role for fungal yapsins in glucose sensing and homeostasis. Furthermore, through label-free quantitative membrane proteome analysis, we showed differential abundance of 42% of identified membrane proteins, with electron transport chain and glycolysis proteins displaying lower and higher abundance in Cgyps1-11Δ cells, compared with wildtype cells, respectively. We also demonstrated elevated glucose uptake and upregulation of genes that code for the low-glucose sensor CgSnf3, transcriptional regulators CgMig1 and CgRgt1, and hexose transporter CgHxt2/10 in the Cgyps1-11Δ mutant. We further elucidated a potential underlying mechanism through genetic and transcript measurement analysis under low- and high-glucose conditions and found CgSNF3 deletion to rescue high glucose uptake and attenuated growth of the Cgyps1-11Δ mutant in YPD medium, thereby linking CgYapsins with regulation of the CgSnf3-dependent low-glucose sensing pathway. Last, high ethanol production, diminished mitochondrial membrane potential, and elevated susceptibility to oxidative phosphorylation inhibitors point toward increased fermentative and decreased respiratory metabolism in the Cgyps1-11Δ mutant. Altogether, our findings revealed new possible glucose metabolism-regulatory roles for putative cell surface-associated CgYapsins and advanced our understanding of fungal carbohydrate homeostasis mechanisms.
Collapse
Affiliation(s)
- Fizza Askari
- Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India; Graduate Studies, Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Mubashshir Rasheed
- Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | - Rupinder Kaur
- Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India.
| |
Collapse
|
30
|
A Pragmatic Approach to Susceptibility Classification of Yeasts without EUCAST Clinical Breakpoints. J Fungi (Basel) 2022; 8:jof8020141. [PMID: 35205895 PMCID: PMC8877802 DOI: 10.3390/jof8020141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/14/2022] [Accepted: 01/15/2022] [Indexed: 11/17/2022] Open
Abstract
EUCAST has established clinical breakpoints for the six most common Candida species and Cryptococcus neoformans but not for less common yeasts because sufficient evidence is lacking. Consequently, the question “How to interpret the MIC?” for other yeasts often arises. We propose a pragmatic classification for amphotericin B, anidulafungin, fluconazole, and voriconazole MICs against 30 different rare yeasts. This classification takes advantage of MIC data for more than 4000 isolates generated in the EUCAST Development Laboratory for Fungi validated by alignment to published EUCAST MIC data. The classification relies on the following two important assumptions: first, that when isolates are genetically related, pathogenicity and intrinsic susceptibility patterns may be similar; and second, that even if species are not phylogenetically related, the rare yeasts will likely respond to therapy, provided the MIC is comparable to that against wild-type isolates of more prevalent susceptible species because rare yeasts are most likely “rare” due to a lower pathogenicity. In addition, the treatment recommendations available in the current guidelines based on the in vivo efficacy data and clinical experience are taken into consideration. Needless to say, it is of utmost importance (a) to ascertain that the species identification is correct (using MALDI-TOF or sequencing), and (b) to re-test the isolate once or twice to confirm that the MIC is representative for the isolate (because of the inherent variability in MIC determinations). We hope this pragmatic guidance is helpful until evidence-based EUCAST breakpoints can be formally established.
Collapse
|
31
|
Mamali V, Siopi M, Charpantidis S, Samonis G, Tsakris A, Vrioni G. Increasing Incidence and Shifting Epidemiology of Candidemia in Greece: Results from the First Nationwide 10-Year Survey. J Fungi (Basel) 2022; 8:jof8020116. [PMID: 35205870 PMCID: PMC8879520 DOI: 10.3390/jof8020116] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/14/2022] [Accepted: 01/23/2022] [Indexed: 12/30/2022] Open
Abstract
Globally, candidemia displays geographical variety in terms of epidemiology and incidence. In that respect, a nationwide Greek study was conducted, reporting the epidemiology of Candida bloodstream infections and susceptibility of isolates to antifungal agents providing evidence for empirical treatment. All microbiologically confirmed candidemia cases in patients hospitalized in 28 Greek centres during the period 2009–2018 were recorded. The study evaluated the incidence of infection/100,000 inhabitants, species distribution, and antifungal susceptibilities of isolated strains. Overall, 6057 candidemic episodes occurred during the study period, with 3% of them being mixed candidemias. The average annual incidence was 5.56/100,000 inhabitants, with significant increase over the years (p = 0.0002). C. parapsilosis species complex (SC) was the predominant causative agent (41%), followed by C. albicans (37%), C. glabrata SC (10%), C. tropicalis (7%), C. krusei (1%), and other rare Candida spp. (4%). C. albicans rates decreased from 2009 to 2018 (48% to 31%) in parallel with a doubling incidence of C. parapsilosis SC rates (28% to 49%, p < 0.0001). Resistance to amphotericin B and flucytosine was not observed. Resistance to fluconazole was detected in 20% of C. parapsilosis SC isolates, with a 4% of them being pan-azole-resistant. A considerable rising rate of resistance to this agent was observed over the study period (p < 0.0001). Echinocandin resistance was found in 3% of C. glabrata SC isolates, with 70% of them being pan-echinocandin-resistant. Resistance rate to this agent was stable over the study period. This is the first multicentre nationwide study demonstrating an increasing incidence of candidemia in Greece with a species shift toward C. parapsilosis SC. Although the overall antifungal resistance rates remain relatively low, fluconazole-resistant C. parapsilosis SC raises concern.
Collapse
Affiliation(s)
- Vasiliki Mamali
- Department of Microbiology, Tzaneio General Hospital, 18536 Piraeus, Greece;
| | - Maria Siopi
- Clinical Microbiology Laboratory, “Attikon” University General Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Stefanos Charpantidis
- Department of Microbiology, “Elena Venizelou” Maternity Hospital, 11521 Athens, Greece;
| | - George Samonis
- Department of Internal Medicine, School of Medicine, University of Crete, 71003 Heraklion, Greece;
| | - Athanasios Tsakris
- Department of Microbiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Georgia Vrioni
- Department of Microbiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
- Correspondence: ; Tel.: +30-210-746-2129
| | | |
Collapse
|
32
|
Helweg-Larsen J, Steensen M, Møller Pedersen F, Bredahl Jensen P, Perch M, Møller K, Riis Olesen B, Søderlund M, Cavling Arendrup M. Intensive Care Antifungal Stewardship Programme Based on T2Candida PCR and Candida Mannan Antigen: A Prospective Study. J Fungi (Basel) 2021; 7:jof7121044. [PMID: 34947026 PMCID: PMC8705527 DOI: 10.3390/jof7121044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 12/17/2022] Open
Abstract
Non-culture-based biomarkers may improve diagnosis and antifungal treatment (AFT) of invasive candidiasis (IC). We evaluated an antifungal stewardship programme (AFSP) in a prospective intensive care unit (ICU) study, which included T2Candida and Candida mannan antigen (MAg) screening of patients with sepsis and a high risk of IC. Patients with non-neutropenic sepsis and a high risk of IC from two large tertiary ICUs were prospectively included, during a one-year period. IC was classified as proven, likely, possible or unlikely. The AFSP, diagnostic values of T2Candida and MAg, and the consumption of antifungals were evaluated. An amount of 219 patients with 504 T2Candida/MAg samples were included. IC was classified as proven in 29 (13.2%), likely in 7 (3.2%) and possible in 10 (5.5%) patients. Sensitivity/specificity/PPV/NPV values, comparing proven/likely versus unlikely IC, were 47%/100%/94%/90% for BC alone, 50%/97%/75%/90% for T2Candida alone, and 39%/96%/67%/88% for MAg alone. For the combination of T2Candida/MAg taken ≤3 days after AFT initiation, sensitivity/specificity/PPV/NPV was 70%/90%/63%/93%. T2Candida/MAg contributed to early (<3 days) AFT initiation in 13%, early AFT discontinuation in 25% and abstaining from AFT in 24% of patients. No reduction in overall use of AFT during the study period compared with the previous year was observed. An AFSP based on T2Candida and MAg screening contributed to a reduction of unnecessary treatment, but not overall AFT use. The diagnostic performance of T2Candida was lower than previously reported, but increased if T2Candida was combined with MAg.
Collapse
Affiliation(s)
- Jannik Helweg-Larsen
- Department of Infectious Diseases, Rigshospitalet, 2100 Copenhagen, Denmark;
- Correspondence:
| | - Morten Steensen
- Department of Intensive Care, Rigshospitalet, 2100 Copenhagen, Denmark;
| | - Finn Møller Pedersen
- Department of Thoracic Anesthesiology, Rigshospitalet, 2100 Copenhagen, Denmark; (F.M.P.); (P.B.J.)
| | - Pia Bredahl Jensen
- Department of Thoracic Anesthesiology, Rigshospitalet, 2100 Copenhagen, Denmark; (F.M.P.); (P.B.J.)
| | - Michael Perch
- Department of Cardiology, Section for Lung Transplantation, Rigshospitalet, 2100 Copenhagen, Denmark;
| | - Kirsten Møller
- Department of Neuro Anesthesiology, Rigshospitalet, 2100 Copenhagen, Denmark;
- Department of Clinical Medicine, University of Copenhagen, 2100 Copenhagen, Denmark;
| | | | - Mathias Søderlund
- Department of Infectious Diseases, Rigshospitalet, 2100 Copenhagen, Denmark;
| | - Maiken Cavling Arendrup
- Department of Clinical Medicine, University of Copenhagen, 2100 Copenhagen, Denmark;
- Unit of Mycology, Statens Serum Institut, 2300 Copenhagen, Denmark
- Department of Clinical Microbiology, Rigshospitalet, 2100 Copenhagen, Denmark
| |
Collapse
|
33
|
Szarvas J, Rebelo AR, Bortolaia V, Leekitcharoenphon P, Schrøder Hansen D, Nielsen HL, Nørskov-Lauritsen N, Kemp M, Røder BL, Frimodt-Møller N, Søndergaard TS, Coia JE, Østergaard C, Westh H, Aarestrup FM. Danish Whole-Genome-Sequenced Candida albicans and Candida glabrata Samples Fit into Globally Prevalent Clades. J Fungi (Basel) 2021; 7:jof7110962. [PMID: 34829249 PMCID: PMC8622182 DOI: 10.3390/jof7110962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 11/16/2022] Open
Abstract
Candida albicans and Candida glabrata are opportunistic fungal pathogens with increasing incidence worldwide and higher-than-expected prevalence in Denmark. We whole-genome sequenced yeast isolates collected from Danish Clinical Microbiology Laboratories to obtain an overview of the Candida population in the country. The majority of the 30 C. albicans isolates were found to belong to three globally prevalent clades, and, with one exception, the remaining isolates were also predicted to cluster with samples from other geographical locations. Similarly, most of the eight C. glabrata isolates were predicted to be prevalent subtypes. Antifungal susceptibility testing proved all C. albicans isolates to be susceptible to both azoles and echinocandins. Two C. glabrata isolates presented azole-resistant phenotypes, yet all were susceptible to echinocandins. There is no indication of causality between population structure and resistance phenotypes for either species.
Collapse
Affiliation(s)
- Judit Szarvas
- Division for Global Surveillance, National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (A.R.R.); (V.B.); (P.L.); (F.M.A.)
- Correspondence:
| | - Ana Rita Rebelo
- Division for Global Surveillance, National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (A.R.R.); (V.B.); (P.L.); (F.M.A.)
| | - Valeria Bortolaia
- Division for Global Surveillance, National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (A.R.R.); (V.B.); (P.L.); (F.M.A.)
| | - Pimlapas Leekitcharoenphon
- Division for Global Surveillance, National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (A.R.R.); (V.B.); (P.L.); (F.M.A.)
| | | | - Hans Linde Nielsen
- Department of Clinical Microbiology, Aalborg University Hospital, 9100 Aalborg, Denmark;
| | | | - Michael Kemp
- Department of Clinical Microbiology, Odense University Hospital, 5000 Odense, Denmark;
| | - Bent Løwe Røder
- Department of Clinical Microbiology, Slagelse Hospital, 4200 Slagelse, Denmark;
| | | | | | - John Eugenio Coia
- Department of Clinical Microbiology, Sydvestjysk Hospital, 6700 Esbjerg, Denmark;
| | - Claus Østergaard
- Department of Clinical Microbiology, Vejle Hospital, 7100 Vejle, Denmark;
| | - Henrik Westh
- Department of Clinical Microbiology, Hvidovre Hospital, 2650 Hvidovre, Denmark;
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Frank Møller Aarestrup
- Division for Global Surveillance, National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (A.R.R.); (V.B.); (P.L.); (F.M.A.)
| |
Collapse
|
34
|
Adam KM, Osthoff M, Lamoth F, Conen A, Erard V, Boggian K, Schreiber PW, Zimmerli S, Bochud PY, Neofytos D, Fleury M, Fankhauser H, Goldenberger D, Mühlethaler K, Riat A, Zbinden R, Kronenberg A, Quiblier C, Marchetti O, Khanna N. Trends of the Epidemiology of Candidemia in Switzerland: A 15-Year FUNGINOS Survey. Open Forum Infect Dis 2021; 8:ofab471. [PMID: 34660836 PMCID: PMC8514178 DOI: 10.1093/ofid/ofab471] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/15/2021] [Indexed: 11/25/2022] Open
Abstract
Background The increasing incidence of candidemia and emergence of drug-resistant Candida species are major concerns worldwide. Long-term surveillance studies are needed. Methods The Fungal Infection Network of Switzerland (FUNGINOS) conducted a 15-year (2004–2018), nationwide, epidemiological study of candidemia. Hospital-based incidence of candidemia, Candida species distribution, antifungal susceptibility, and consumption were stratified in 3 periods (2004–2008, 2009–2013, 2014–2018). Population-based incidence over the period 2009–2018 derived from the Swiss Antibiotic Resistance Surveillance System (ANRESIS). Results A total of 2273 Candida blood isolates were studied. Population and hospital-based annual incidence of candidemia increased from 2.96 to 4.20/100 000 inhabitants (P = .022) and 0.86 to 0.99/10 000 patient-days (P = .124), respectively. The proportion of Candida albicans decreased significantly from 60% to 53% (P = .0023), whereas Candida glabrata increased from 18% to 27% (P < .0001). Other non-albicans Candida species remained stable. Candida glabrata bloodstream infections occurred predominantly in the age group 18–40 and above 65 years. A higher proportional increase of C glabrata was recorded in wards (18% to 29%, P < .0001) versus intensive care units (19% to 24%, P = .22). According to Clinical and Laboratory Standards Institute, nonsusceptibility to fluconazole in C albicans was observed in 1% of isolates, and anidulafungin and micafungin nonsusceptibility was observed in 2% of C albicans and C glabrata. Fluconazole consumption, the most frequently used antifungal, remained stable, whereas use of mold-active triazoles and echinocandins increased significantly in the last decade (P < .0001). Conclusions Over the 15-year period, the incidence of candidemia increased. A species shift toward C glabrata was recently observed, concurring with increased consumption of mold-active triazoles.
Collapse
Affiliation(s)
- Kai-Manuel Adam
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital of Basel, Basel, Switzerland
| | - Michael Osthoff
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital of Basel, Basel, Switzerland.,Department of Clinical Research, University Basel, Basel, Switzerland
| | - Frédéric Lamoth
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Anna Conen
- Division of Infectious Diseases and Hospital Epidemiology, Cantonal Hospital of Aarau, Aarau, Switzerland
| | - Véronique Erard
- Infectious Diseases Service, Department of Medicine, Cantonal Hospital, Fribourg, Switzerland
| | - Katia Boggian
- Division of Infectious Diseases and Hospital Epidemiology, Cantonal Hospital, St. Gallen, Switzerland
| | - Peter W Schreiber
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital of Zurich and University of Zurich, Zurich, Switzerland
| | - Stefan Zimmerli
- Department of Infectious Diseases, Bern University Hospital, Bern, Switzerland.,Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Pierre-Yves Bochud
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Dionysios Neofytos
- Infectious Diseases Service, University Hospital and University of Geneva, Geneva, Switzerland
| | - Mapi Fleury
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Hans Fankhauser
- Institute of Laboratory Medicine, Cantonal Hospital of Aarau, Aarau, Switzerland
| | - Daniel Goldenberger
- Clinical Bacteriology and Mycology, University Hospital of Basel and University of Basel, Basel, Switzerland
| | - Konrad Mühlethaler
- Department of Infectious Diseases, Bern University Hospital, Bern, Switzerland.,Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Arnaud Riat
- Division of Laboratory Medicine, Laboratory of Bacteriology, University Hospital of Geneva, Geneva, Switzerland
| | - Reinhard Zbinden
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Andreas Kronenberg
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Chantal Quiblier
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Oscar Marchetti
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,Department of Medicine, Ensemble Hospitalier de la Côte, Morges, Switzerland
| | - Nina Khanna
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital of Basel, Basel, Switzerland.,Department of Clinical Research, University Basel, Basel, Switzerland
| | | |
Collapse
|
35
|
Hoenigl M, Sprute R, Egger M, Arastehfar A, Cornely OA, Krause R, Lass-Flörl C, Prattes J, Spec A, Thompson GR, Wiederhold N, Jenks JD. The Antifungal Pipeline: Fosmanogepix, Ibrexafungerp, Olorofim, Opelconazole, and Rezafungin. Drugs 2021; 81:1703-1729. [PMID: 34626339 PMCID: PMC8501344 DOI: 10.1007/s40265-021-01611-0] [Citation(s) in RCA: 202] [Impact Index Per Article: 67.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2021] [Indexed: 01/08/2023]
Abstract
The epidemiology of invasive fungal infections is changing, with new populations at risk and the emergence of resistance caused by the selective pressure from increased usage of antifungal agents in prophylaxis, empiric therapy, and agriculture. Limited antifungal therapeutic options are further challenged by drug-drug interactions, toxicity, and constraints in administration routes. Despite the need for more antifungal drug options, no new classes of antifungal drugs have become available over the last 2 decades, and only one single new agent from a known antifungal class has been approved in the last decade. Nevertheless, there is hope on the horizon, with a number of new antifungal classes in late-stage clinical development. In this review, we describe the mechanisms of drug resistance employed by fungi and extensively discuss the most promising drugs in development, including fosmanogepix (a novel Gwt1 enzyme inhibitor), ibrexafungerp (a first-in-class triterpenoid), olorofim (a novel dihyroorotate dehydrogenase enzyme inhibitor), opelconazole (a novel triazole optimized for inhalation), and rezafungin (an echinocandin designed to be dosed once weekly). We focus on the mechanism of action and pharmacokinetics, as well as the spectrum of activity and stages of clinical development. We also highlight the potential future role of these drugs and unmet needs.
Collapse
Affiliation(s)
- Martin Hoenigl
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria.
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, La Jolla, San Diego, CA, USA.
- Clinical and Translational Fungal-Working Group, University of California San Diego, La Jolla, San Diego, CA, USA.
| | - Rosanne Sprute
- Department I of Internal Medicine, Excellence Center for Medical Mycology (ECMM), University Hospital Cologne, Faculty of Medicine, University of Cologne, Cologne, Germany
- Chair Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University Hospital Cologne, Faculty of Medicine, University of Cologne, Cologne, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Matthias Egger
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
| | - Amir Arastehfar
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | - Oliver A Cornely
- Department I of Internal Medicine, Excellence Center for Medical Mycology (ECMM), University Hospital Cologne, Faculty of Medicine, University of Cologne, Cologne, Germany
- Chair Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University Hospital Cologne, Faculty of Medicine, University of Cologne, Cologne, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
- Clinical Trials Centre Cologne (ZKS Köln), University Hospital Cologne, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Robert Krause
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
| | - Cornelia Lass-Flörl
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Juergen Prattes
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
| | - Andrej Spec
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MI, USA
| | - George R Thompson
- Division of Infectious Diseases, Departments of Internal Medicine and Medical Microbiology and Immunology, University of California Davis Medical Center, Sacramento, CA, USA
| | - Nathan Wiederhold
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Jeffrey D Jenks
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, La Jolla, San Diego, CA, USA
- Clinical and Translational Fungal-Working Group, University of California San Diego, La Jolla, San Diego, CA, USA
- Division of General Internal Medicine, Department of Medicine, University of California San Diego, La Jolla, San Diego, CA, USA
| |
Collapse
|
36
|
Emerging of Fatal Colitis with Multidrug-Resistant Candida glabrata after Small Bowel Transplantation. Case Rep Transplant 2021; 2021:9995583. [PMID: 34540305 PMCID: PMC8448591 DOI: 10.1155/2021/9995583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 08/09/2021] [Indexed: 12/26/2022] Open
Abstract
Background Small bowel transplantation is a potential option for patients with intestinal-failure, and the incidences of infections caused by Candida species that are more resistant to antifungal drugs are increasing in these patients. In this manuscript, we reported a case of fatal colitis after small bowel transplantation induces by multidrug-resistant (MDR) Candida glabrata. Case Presentation. A 52-year-old man has undergone an extensive small bowel resection with the length of the remaining bowel which was less than 40 cm who became a candidate for transplantation. Four months after transplantation, the patient experienced severe bloody diarrhea with abdominal distension. Ileoscopy and colonoscopy did not show neither pathological change and rejection nor cytomegalovirus (CMV) infection posttransplantation. Abdomen computed tomography showed diffuse moderate small bowel wall thickening. After detection of budding yeast in the stool samples, stool culture was positive for Candida, DNA was extracted, and ITS1-5.8s-ITS2 region of the fungal agent was amplified. Sequencing analysis of PCR and antifungal susceptibility testing revealed that this isolate was multidrug-resistant C. glabrata. Besides, there was no evidence for other pathogens known to cause infection in various laboratory tests. Immediate antifungal treatments with caspofungin remained unsuccessful, and on the eighteenth day of admission, the patient expires with septic shock. Conclusion These findings highlight the challenging management of candidiasis in patients with small bowel transplantation. Infectious diseases due to MDR organisms have emerged as a vital clinical problem in this patient population.
Collapse
|
37
|
Arastehfar A, Marcet-Houben M, Daneshnia F, Taj-Aldeen S, Batra D, Lockhart S, Shor E, Gabaldón T, Perlin D. Comparative genomic analysis of clinical Candida glabrata isolates identifies multiple polymorphic loci that can improve existing multilocus sequence typing strategy. Stud Mycol 2021; 100:100133. [PMID: 34909054 PMCID: PMC8640552 DOI: 10.1016/j.simyco.2021.100133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Candida glabrata is the second leading cause of candidemia in many countries and is one of the most concerning yeast species of nosocomial importance due to its increasing rate of antifungal drug resistance and emerging multidrug-resistant isolates. Application of multilocus sequence typing (MLST) to clinical C. glabrata isolates revealed an association of certain sequence types (STs) with drug resistance and mortality. The current C. glabrata MLST scheme is based on single nucleotide polymorphisms (SNPs) at six loci and is therefore relatively laborious and costly. Furthermore, only a few high-quality C. glabrata reference genomes are available, limiting rapid analysis of clinical isolates by whole genome sequencing. In this study we provide long-read based assemblies for seven additional clinical strains belonging to three different STs and use this information to simplify the C. glabrata MLST scheme. Specifically, a comparison of these genomes identified highly polymorphic loci (HPL) defined by frequent insertions and deletions (indels), two of which proved to be highly resolutive for ST. When challenged with 53 additional isolates, a combination of TRP1 (a component of the current MLST scheme) with either of the two HPL fully recapitulated ST identification. Therefore, our comparative genomic analysis identified a new typing approach combining SNPs and indels and based on only two loci, thus significantly simplifying ST identification in C. glabrata. Because typing tools are instrumental in addressing numerous clinical and biological questions, our new MLST scheme can be used for high throughput typing of C. glabrata in clinical and research settings.
Collapse
Affiliation(s)
- A. Arastehfar
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
| | - M. Marcet-Houben
- Barcelona Supercomputing Centre (BSC-CNS), Jordi Girona 29, 08034, Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - F. Daneshnia
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
| | | | - D. Batra
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
| | - S.R. Lockhart
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
| | - E. Shor
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
- Hackensack Meridian Health School of Medicine, Nutley, NJ, 07710, USA
| | - T. Gabaldón
- Barcelona Supercomputing Centre (BSC-CNS), Jordi Girona 29, 08034, Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - D.S. Perlin
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
- Hackensack Meridian Health School of Medicine, Nutley, NJ, 07710, USA
- Georgetown University Lombardi Comprehensive Cancer Center, Department of Microbiology and Immunology, Washington, DC, 20057, USA
| |
Collapse
|
38
|
In vitro activity of posaconazole and comparators versus opportunistic filamentous fungal pathogens globally collected during 8 years. Diagn Microbiol Infect Dis 2021; 101:115473. [PMID: 34352433 DOI: 10.1016/j.diagmicrobio.2021.115473] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 11/21/2022]
Abstract
The epidemiology of invasive filamentous fungal diseases requires monitoring due to changes in susceptibility patterns of new and established antifungal agents that may affect clinical practices. We evaluated the activity of posaconazole against 2,157 invasive moulds collected worldwide from 2010-2017. The isolates included 1,775 Aspergillus spp. and 382 non-Aspergillus moulds, including 81 Fusarium spp., 62 Mucorales group, and 57 Scedosporium spp. Isolates were tested using the CLSI reference broth microdilution method. Posaconazole showed similar activity to itraconazole and voriconazole against A. fumigatus. Applying published ECV, 98.0% of the A. fumigatus and 97.7% to 100.0% of other common Aspergillus species were wildtype to posaconazole. Categorical agreement between posaconazole and the other azoles tested against A. fumigatus was 98.7%. Notably, most of the Aspergillus spp. isolates recovered from this large collection were wildtype to echinocandins and all azoles. Posaconazole non-wildtype rates of A. fumigatus varied across the different geographic regions, with 2.1% in Europe, 2.2% in North America, 1.8% in Latin America, and 0.7% in the Asia-Pacific region. The frequency of azole non-wildtype A. fumigatus isolates from Europe increased steadily from 2010-2017 for all 3 triazoles (0.0%-5.0%). The azole non-wildtype A. fumigatus rates from the other geographic areas were stable over time. Fusarium and/or Scedosporium spp. isolates were highly resistant to azoles and echinocandins. Posaconazole and amphotericin B were the most active agents against the Mucorales. Posaconazole was very active against most species of Aspergillus and was comparable to itraconazole and voriconazole against the less common moulds. Posaconazole should provide a useful addition to the anti-mould grouping of antifungal agents.
Collapse
|
39
|
Kotey FCN, Dayie NTKD, Tetteh-Uarcoo PB, Donkor ES. Candida Bloodstream Infections: Changes in Epidemiology and Increase in Drug Resistance. Infect Dis (Lond) 2021; 14:11786337211026927. [PMID: 34248358 PMCID: PMC8236779 DOI: 10.1177/11786337211026927] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/30/2021] [Indexed: 11/17/2022] Open
Abstract
The literature on bloodstream infections (BSIs) have predominantly been biased towards bacteria, given their superior clinical significance in comparison with the other types of microorganisms. Fungal pathogens have epidemiologically received relatively less attention, although they constitute an important proportion of BSI aetiologies. In this review, the authors discuss the clinical relevance of fungal BSIs in the context of Candida species, as well as treatment options for the infections, emphasizing the compelling need to develop newer antifungals and strengthen antimicrobial stewardship programmes in the wake of the rapid spread of antifungal resistance.
Collapse
Affiliation(s)
- Fleischer CN Kotey
- Department of Medical Microbiology, University of Ghana Medical School, Korle Bu, Accra, Ghana
- FleRhoLife Research Consult, Teshie, Accra, Ghana
| | - Nicholas TKD Dayie
- Department of Medical Microbiology, University of Ghana Medical School, Korle Bu, Accra, Ghana
| | | | - Eric S Donkor
- Department of Medical Microbiology, University of Ghana Medical School, Korle Bu, Accra, Ghana
| |
Collapse
|
40
|
Update 2016-2018 of the Nationwide Danish Fungaemia Surveillance Study: Epidemiologic Changes in a 15-Year Perspective. J Fungi (Basel) 2021; 7:jof7060491. [PMID: 34205349 PMCID: PMC8235436 DOI: 10.3390/jof7060491] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 01/11/2023] Open
Abstract
As part of a national surveillance programme initiated in 2004, fungal blood isolates from 2016–2018 underwent species identification and EUCAST susceptibility testing. The epidemiology was described and compared to data from previous years. In 2016–2018, 1454 unique isolates were included. The fungaemia rate was 8.13/100,000 inhabitants compared to 8.64, 9.03, and 8.38 in 2004–2007, 2008–2011, and 2012–2015, respectively. Half of the cases (52.8%) involved patients 60–79 years old and the incidence was highest in males ≥70 years old. Candida albicans accounted for 42.1% of all isolates and Candida glabrata for 32.1%. C. albicans was more frequent in males (p = 0.03) and C. glabrata in females (p = 0.03). During the four periods, the proportion of C. albicans decreased (p < 0.001), and C. glabrata increased (p < 0.001). Consequently, fluconazole susceptibility gradually decreased from 68.5% to 59.0% (p < 0.001). Acquired fluconazole resistance was found in 4.6% Candida isolates in 2016–2018. Acquired echinocandin resistance increased during the four periods 0.0%, 0.6%, 1.7% to 1.5% (p < 0.0001). Sixteen echinocandin-resistant isolates from 2016–2018 harboured well-known FKS resistance-mutations and one echinocandin-resistant C. albicans had an FKS mutation outside the hotspot (P1354P/S) of unknown importance. In C. glabrata specifically, echinocandin resistance was detected in 12/460 (2.6%) in 2016–2018 whereas multidrug-class resistance was rare (1/460 isolates (0.2%)). Since the increase in incidence during 2004–2011, the incidence has stabilised. In contrast, the species distribution has changed gradually over the 15 years, with increased C. glabrata at the expense of C. albicans. The consequent decreased fluconazole susceptibility and the emergence of acquired echinocandin resistance complicates the management of fungaemia and calls for antifungal drug development.
Collapse
|
41
|
Pfaller MA, Huband MD, Flamm RK, Bien PA, Castanheira M. Antimicrobial activity of manogepix, a first-in-class antifungal, and comparator agents tested against contemporary invasive fungal isolates from an international surveillance programme (2018-2019). J Glob Antimicrob Resist 2021; 26:117-127. [PMID: 34051400 DOI: 10.1016/j.jgar.2021.04.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/06/2021] [Accepted: 04/30/2021] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVES Manogepix, the active moiety of the prodrug fosmanogepix, is a novel antifungal with activity against major fungal pathogens including Candida (except Candida krusei), Aspergillus and difficult-to-treat/rare moulds. We tested manogepix and comparators against 2669 contemporary (2018-2019) fungal isolates collected from 82 medical centres in North America (42.3%), Europe (37.9%), Asia-Pacific (12.3%) and Latin America (7.6%). Of these, 70.7% were Candida spp., 3.6% were non-Candida yeasts including 49 Cryptococcus neoformans var. grubii, 21.7% were Aspergillus spp. and 4.1% were other moulds. METHODS Isolates were tested for antifungal susceptibility by the CLSI reference broth microdilution method. RESULTS Manogepix (MIC50/90, 0.008/0.06 mg/L) was the most active agent tested against Candida spp. isolates; corresponding anidulafungin, micafungin and fluconazole MIC90 values were 16- to 64-fold higher. Similarly, manogepix (MIC50/90, 0.5/2 mg/L) was ≥4-fold more active than anidulafungin, micafungin and fluconazole against C. neoformans var. grubii. Against Aspergillus spp., manogepix (MEC50/90, 0.015/0.03 mg/L) had comparable activity to anidulafungin and micafungin. Low manogepix concentrations inhibited uncommon species of Candida, non-Candida yeasts, and rare moulds including Scedosporium spp. and Lomentospora (Scedosporium) prolificans. CONCLUSION Manogepix exhibited potent activity against contemporary fungal isolates, including echinocandin- and azole-resistant strains of Candida and Aspergillus spp., respectively. Although rare, Candida strains that were non-wild type for manogepix demonstrated resistance to fluconazole. However, the clinical relevance of this finding is unknown. The extended spectrum of manogepix is noteworthy for its activity against many less-common yet antifungal-resistant strains. Clinical studies are underway to evaluate the utility of fosmanogepix against difficult-to-treat resistant fungal infections.
Collapse
Affiliation(s)
- Michael A Pfaller
- JMI Laboratories, North Liberty, IA, USA; University of Iowa, Iowa City, IA, USA
| | | | | | | | | |
Collapse
|
42
|
Two Functionally Redundant FK506-Binding Proteins Regulate Multidrug Resistance Gene Expression and Govern Azole Antifungal Resistance. Antimicrob Agents Chemother 2021; 65:AAC.02415-20. [PMID: 33722894 DOI: 10.1128/aac.02415-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/06/2021] [Indexed: 12/14/2022] Open
Abstract
Increasing resistance to antifungal therapy is an impediment to the effective treatment of fungal infections. Candida glabrata is an opportunistic human fungal pathogen that is inherently less susceptible to cost-effective azole antifungals. Gain-of-function mutations in the Zn-finger pleiotropic drug resistance transcriptional activator-encoding gene CgPDR1 are the most prevalent causes of azole resistance in clinical settings. CgPDR1 is also transcriptionally activated upon azole exposure; however, factors governing CgPDR1 gene expression are not yet fully understood. Here, we have uncovered a novel role for two FK506-binding proteins, CgFpr3 and CgFpr4, in the regulation of the CgPDR1 regulon. We show that CgFpr3 and CgFpr4 possess a peptidyl-prolyl isomerase domain and act redundantly to control CgPDR1 expression, as a Cgfpr3Δ4Δ mutant displayed elevated expression of the CgPDR1 gene along with overexpression of its target genes, CgCDR1, CgCDR2, and CgSNQ2, which code for ATP-binding cassette multidrug transporters. Furthermore, CgFpr3 and CgFpr4 are required for the maintenance of histone H3 and H4 protein levels, and fluconazole exposure leads to elevated H3 and H4 protein levels. Consistent with the role of histone proteins in azole resistance, disruption of genes coding for the histone demethylase CgRph1 and the histone H3K36-specific methyltransferase CgSet2 leads to increased and decreased susceptibility to fluconazole, respectively, with the Cgrph1Δ mutant displaying significantly lower basal expression levels of the CgPDR1 and CgCDR1 genes. These data underscore a hitherto unknown role of histone methylation in modulating the most common azole antifungal resistance mechanism. Altogether, our findings establish a link between CgFpr-mediated histone homeostasis and CgPDR1 gene expression and implicate CgFpr in the virulence of C. glabrata.
Collapse
|
43
|
Zeng BS, Zeng BY, Hung CM, Chen TY, Wu YC, Tu YK, Lin PY, Su KP, Stubbs B, Sun CK, Cheng YS, Li DJ, Liang CS, Hsu CW, Chen YW, Tseng PT, Chen CH. Efficacy and acceptability of different anti-fungal interventions in oropharyngeal or esophageal candidiasis in HIV co-infected adults: a pilot network meta-analysis. Expert Rev Anti Infect Ther 2021; 19:1469-1479. [PMID: 33899657 DOI: 10.1080/14787210.2021.1922078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Background: Oropharyngeal/esophageal candidiasis are the most common opportunistic infections observed in patients with human immunodeficiency virus (HIV). While the commonly recommended treatment is fluconazole, relapse of oropharyngeal or esophageal candidiasis has been gradually increasing in recent decades.Methods: The current network meta-analysis (NMA) included randomized controlled trials (RCTs) investigating the efficacy and acceptability (i.e. drop-out rate) of different anti-fungal interventions against oropharyngeal or esophageal candidiasis in adults with HIV. All NMA procedures were conducted using the frequentist model.Results: Twenty-seven RCTs and 6277 participants were included. For oropharyngeal candidiasis, photosensitizer-based antimicrobial photodynamic therapy (aPDT) with laser irradiation plus methylene blue was associated with the highest cure rate and the lowest relapse rate among the investigated interventions [odds ratio (OR) = 6.82, 95% confidence intervals (95%CIs) = 0.19 to 244.42, p = 0.293, and OR = 0.03, 95%CIs = 0.00 to 0.77, p = 0.034, compared to fluconazole]. None of the investigated anti-fungal interventions were superior to fluconazole for esophageal candidiasis in respect of cure rates/relapse rates. All investigated anti-fungal interventions were well-accepted.Conclusions: aPDT could be the preferred strategy to manage oropharyngeal candidiasis; however the evidence for esophageal candidiasis still remained inconclusive.
Collapse
Affiliation(s)
- Bing-Syuan Zeng
- Department of Internal Medicine, E-Da Hospital, Kaohsiung, Taiwan
| | - Bing-Yan Zeng
- Department of Internal Medicine, E-Da Hospital, Kaohsiung, Taiwan
| | - Chao-Ming Hung
- Division of General Surgery, Department of Surgery, E-Da Cancer Hospital, Kaohsiung, Taiwan.,School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Tien-Yu Chen
- Department of Psychiatry, Tri-Service General Hospital; School of Medicine, National Defense Medical Center, Taipei, Taiwan.,Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Cheng Wu
- Department of Sports Medicine, Landseed International Hospital, Taoyuan, Taiwan
| | - Yu-Kang Tu
- Institute of Epidemiology & Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan.,Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Pao-Yen Lin
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Institute for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Kuan-Pin Su
- Department of Psychiatry & Mind-Body Interface Laboratory (Mbi-lab), China Medical University Hospital, Taichung, Taiwan.,College of Medicine, China Medical University, Taichung, Taiwan.,An-Nan Hospital, China Medical University, Tainan, Taiwan.,Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Brendon Stubbs
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,Physiotherapy Department, South London and Maudsley NHS Foundation Trust, London, UK.,Faculty of Health, Social Care Medicine and Education, Anglia Ruskin University, Chelmsford, UK
| | - Cheuk-Kwan Sun
- Department of Emergency Medicine, E-Da Hospital, I-Shou University School of Medicine for International Students, Kaohsiung, Taiwan
| | - Yu-Shian Cheng
- Department of Psychiatry, Tsyr-Huey Mental Hospital, Kaohsiung, Taiwan
| | - Dian-Jeng Li
- Department of Addiction Science, Kaohsiung Municipal Kai-Syuan Psychiatric Hospital, Kaohsiung City, Taiwan
| | - Chih-Sung Liang
- Department of Psychiatry, Beitou Branch, Tri-Service General Hospital; School of Medicine, National Defense Medical Center, Taipei, Taiwan.,Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Chih-Wei Hsu
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yen-Wen Chen
- Prospect Clinic for Otorhinolaryngology & Neurology, Kaohsiung, Taiwan
| | - Ping-Tao Tseng
- Prospect Clinic for Otorhinolaryngology & Neurology, Kaohsiung, Taiwan.,Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan.,Department of Psychology, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Chang-Hua Chen
- Program in Translational Medicine, National Chung Hsing University, Taichung City, Taiwan.,Rong Hsing Research Center For Translational Medicine, National Chung Hsing University, Taichung City, Taiwan.,Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan
| |
Collapse
|
44
|
Bretagne S, Desnos-Ollivier M, Sitbon K, Lortholary O, Che D, Dromer F. No Impact of Fluconazole to Echinocandins Replacement as First-Line Therapy on the Epidemiology of Yeast Fungemia (Hospital-Driven Active Surveillance, 2004-2017, Paris, France). Front Med (Lausanne) 2021; 8:641965. [PMID: 33959624 PMCID: PMC8093410 DOI: 10.3389/fmed.2021.641965] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/15/2021] [Indexed: 12/20/2022] Open
Abstract
Replacement of fluconazole by echinocandins as the first-line therapy for yeast-related fungemia could have an impact on both the mortality rate and the epidemiology of yeast species responsible for candidemia. We analyzed the individual clinical and microbiological data collected through the active surveillance program on yeast fungemia (YEASTS program, 2004-2016, Paris area, France) within 14 University Hospitals. The cohort included 3,092 patients [male:female ratio: 1.56; median age 61.0 years (IQR: 23.8)]. The mean mortality rate within 30 days was 38.5% (1,103/2,868) and significantly higher in intensive care units (690/1,358, 50.8%) than outside (413/1,510, 27.4%, p < 0.0001) without significant change over time. The yeast species distribution [Candida albicans (n = 1,614, 48.0%), Candida glabrata (n = 607, 18.1%), Candida parapsilosis (n = 390, 11.6%), Candida tropicalis (n = 299, 8.9%), Candida krusei (n = 96, 2.9%), rare species (n = 357, 10.6%)], minimal inhibitory concentration distribution, and the distribution between the patient populations (hematological malignancies, solid tumors, without malignancy) did not change either while the proportion of patients ≥60-years increased from 48.7% (91/187) in 2004 to 56.8% (133/234) in 2017 (p = 0.0002). Fluconazole as first-line therapy dramatically decreased (64.4% in 2004 to 27.7% in 2017, p < 0.0001) with a corresponding increase in echinocandins (11.6% in 2004 to 57.8% in 2017, p < 0.0001). Survival rates did not differ according to the first antifungal therapy. The progressive replacement of fluconazole by echinocandins as the first-line antifungal therapy was not associated with change in global mortality, regardless of species involved and antifungal susceptibility profiles. Other factors remain to be uncovered to improve the prognosis of yeast fungemia.
Collapse
Affiliation(s)
- Stéphane Bretagne
- Institut Pasteur, CNRS, Unité de Mycologie Moléculaire, Centre National de Référence Mycoses Invasives et Antifongiques, Paris, France.,Laboratoire de Parasitologie-Mycologie, Hôpital Saint Louis, AP-HP, Paris, France.,Université de Paris, Paris, France
| | - Marie Desnos-Ollivier
- Institut Pasteur, CNRS, Unité de Mycologie Moléculaire, Centre National de Référence Mycoses Invasives et Antifongiques, Paris, France
| | - Karine Sitbon
- Institut Pasteur, CNRS, Unité de Mycologie Moléculaire, Centre National de Référence Mycoses Invasives et Antifongiques, Paris, France
| | - Olivier Lortholary
- Institut Pasteur, CNRS, Unité de Mycologie Moléculaire, Centre National de Référence Mycoses Invasives et Antifongiques, Paris, France.,Université de Paris, Paris, France.,Service des Maladies Infectieuses et Tropicales, Centre d'Infectiologie Necker-Pasteur, Hôpital Necker-Enfants Malades, APHP, IHU Imagine, Paris, France
| | - Didier Che
- Santé publique France, Saint Maurice, France
| | - Françoise Dromer
- Institut Pasteur, CNRS, Unité de Mycologie Moléculaire, Centre National de Référence Mycoses Invasives et Antifongiques, Paris, France
| | | |
Collapse
|
45
|
Epidemiological Trends of Candidemia and the Impact of Adherence to the Candidemia Guideline: Six-Year Single-Center Experience. J Fungi (Basel) 2021; 7:jof7040275. [PMID: 33917626 PMCID: PMC8067511 DOI: 10.3390/jof7040275] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 03/27/2021] [Accepted: 04/03/2021] [Indexed: 12/25/2022] Open
Abstract
This study aimed to investigate the epidemiology of candidemia and evaluate the impact of adherence to the candidemia guideline defined by the European Confederation of Medical Mycology Quality of Clinical Candidemia Management (EQUAL) Candida score. Adult candidemia patients ≥ 19 years diagnosed at a tertiary care hospital in the Republic of Korea from 2013 to 2018 were enrolled (period 1 2013–2015, period 2 2016–2018). There was a total of 223 patients. The annual incidence of candidemia increased from 0.43 to 1.33 cases per 1000 admissions between 2013 and 2018, p < 0.001. A significant increase of fluconazole-resistant C. parapsilosis candidemia was noted in period 2 (35.3%) when compared to period 1 (0.0%), p = 0.020. The 30-day mortality rate was not different between period 1 and 2 (43.5% vs. 48.1%, p = 0.527). Multivariate analysis revealed that a Charlson comorbidity index score ≥ 4, neutropenia, duration of hospital stay ≥ 21 days before candidemia diagnosis, septic shock, mycological failure, and EQUAL Candida score < 15 were significantly associated with 30-day mortality. An increase in the incidence of candidemia and fluconazole resistance in the non-albicans Candida species over time was observed. Disease severity, comorbidities, and lower adherence to the candidemia guideline were associated with mortality.
Collapse
|
46
|
Demin KA, Refeld AG, Bogdanova AA, Prazdnova EV, Popov IV, Kutsevalova OY, Ermakov AM, Bren AB, Rudoy DV, Chistyakov VA, Weeks R, Chikindas ML. Mechanisms of Candida Resistance to Antimycotics and Promising Ways to Overcome It: The Role of Probiotics. Probiotics Antimicrob Proteins 2021; 13:926-948. [PMID: 33738706 DOI: 10.1007/s12602-021-09776-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2021] [Indexed: 12/12/2022]
Abstract
Pathogenic Candida and infections caused by those species are now considered as a serious threat to public health. The treatment of candidiasis is significantly complicated by the increasing resistance of pathogenic strains to current treatments and the stagnant development of new antimycotic drugs. Many species, such as Candida auris, have a wide range of resistance mechanisms. Among the currently used synthetic and semi-synthetic antifungal drugs, the most effective are azoles, echinocandins, polyenes, nucleotide analogs, and their combinations. However, the use of probiotic microorganisms and/or the compounds they produce is quite promising, although underestimated by modern pharmacology, to control the spread of pathogenic Candida species.
Collapse
Affiliation(s)
- Konstantin A Demin
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Aleksandr G Refeld
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Anna A Bogdanova
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Evgenya V Prazdnova
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Igor V Popov
- Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don, Russia
| | | | - Alexey M Ermakov
- Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don, Russia
| | - Anzhelica B Bren
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia.,Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don, Russia
| | - Dmitry V Rudoy
- Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don, Russia
| | - Vladimir A Chistyakov
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Richard Weeks
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers State University, New Brunswick, NJ, USA
| | - Michael L Chikindas
- Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don, Russia. .,Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers State University, New Brunswick, NJ, USA. .,I.M. Sechenov First Moscow State Medical University, Moscow, Russia.
| |
Collapse
|
47
|
Díaz-García J, Mesquida A, Sánchez-Carrillo C, Reigadas E, Muñoz P, Escribano P, Guinea J. Monitoring the Epidemiology and Antifungal Resistance of Yeasts Causing Fungemia in a Tertiary Care Hospital in Madrid, Spain: Any Relevant Changes in the Last 13 Years? Antimicrob Agents Chemother 2021; 65:e01827-20. [PMID: 33468487 PMCID: PMC8097463 DOI: 10.1128/aac.01827-20] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 12/29/2020] [Indexed: 02/06/2023] Open
Abstract
We conducted an updated analysis on yeast isolates causing fungemia in patients admitted to a tertiary hospital in Madrid, Spain, over a 13-year period. We studied 896 isolates associated with 872 episodes of fungemia in 857 hospitalized patients between January 2007 and December 2019. Antifungal susceptibility was assessed by EUCAST EDef 7.3.2. Mutations conferring azole and echinocandin resistance were further studied, and genotyping of resistant clones was performed with species-specific microsatellite markers. Candida albicans (45.8%) was the most frequently identified species, followed by the Candida parapsilosis complex (26.4%), Candida glabrata (12.3%), Candida tropicalis (7.3%), Candida krusei (2.3%), other Candida spp. (3.1%), and non-Candida yeasts (2.8%). The rate of fluconazole resistance in Candida spp. was 4.7%, ranging from 0% (C. parapsilosis) to 9.1% (C. glabrata). The overall rate of echinocandin resistance was 3.1%. Resistance was highly influenced by the presence of intrinsically resistant species. Although the number of isolates between 2007 and 2013 was almost 2-fold higher than that in the period from 2014 to 2019 (566 versus 330), fluconazole resistance in Candida spp. was greater in the second period (3.5% versus 6.8%; P < 0.05), while overall resistance to echinocandins remained stable (3.5% versus 2.4%; P > 0.05). Resistant clones were collected from different wards and/or time points, suggesting that there were no epidemiological links. The number of fungemia episodes has been decreasing over the last 13 years, with a slight increase in the rate of fluconazole resistance and stable echinocandin resistance. Antifungal resistance is not the cause of the spread of resistant clones.
Collapse
Affiliation(s)
- Judith Díaz-García
- Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Aina Mesquida
- Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Carlos Sánchez-Carrillo
- Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- CIBER Enfermedades Respiratorias-CIBERES (CB06/06/0058), Madrid, Spain
| | - Elena Reigadas
- Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Patricia Muñoz
- Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- CIBER Enfermedades Respiratorias-CIBERES (CB06/06/0058), Madrid, Spain
- Medicine Department, Faculty of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Pilar Escribano
- Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Jesús Guinea
- Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- CIBER Enfermedades Respiratorias-CIBERES (CB06/06/0058), Madrid, Spain
| |
Collapse
|
48
|
Xu Z, Green B, Benoit N, Sobel JD, Schatz MC, Wheelan S, Cormack BP. Cell wall protein variation, break-induced replication, and subtelomere dynamics in Candida glabrata. Mol Microbiol 2021; 116:260-276. [PMID: 33713372 DOI: 10.1111/mmi.14707] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 02/12/2021] [Accepted: 02/23/2021] [Indexed: 01/08/2023]
Abstract
Candida glabrata is an opportunistic pathogen of humans, responsible for up to 30% of disseminated candidiasis. Adherence of C. glabrata to host cells is mediated by adhesin-like proteins (ALPs), about half of which are encoded in the subtelomeres. We performed a de novo assembly of two C. glabrata strains, BG2 and BG3993, using long single-molecule real-time (SMRT) reads, and constructed high-quality telomere-to-telomere assemblies of all 13 chromosomes to assess differences between C. glabrata strains. We documented variation between strains, and in agreement with earlier studies, found high (~0.5%-1%) frequencies of SNVs across the genome, including within subtelomeric regions. We documented changes in ALP gene structure and complement: there are large length differences in ALP genes in different strains, resulting from copy number variation in tandem repeats. We compared strains to characterize chromosome rearrangement events including within the poorly characterized subtelomeric regions. We show that rearrangements within the subtelomere regions all affect ALP-encoding genes, and 14/16 involve just the most terminal ALP gene. We present evidence that these rearrangements are mediated by break-induced replication. This study highlights the constrained nature of subtelomeric changes impacting ALP gene complement and subtelomere structure.
Collapse
Affiliation(s)
- Zhuwei Xu
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Brian Green
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,AgriMetis, Lutherville, MD, USA
| | - Nicole Benoit
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jack D Sobel
- Division of Infectious Diseases, Wayne State University School of Medicine, Detroit, MI, USA
| | - Michael C Schatz
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - Sarah Wheelan
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Brendan P Cormack
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
49
|
Battu A, Purushotham R, Dey P, Vamshi SS, Kaur R. An aspartyl protease-mediated cleavage regulates structure and function of a flavodoxin-like protein and aids oxidative stress survival. PLoS Pathog 2021; 17:e1009355. [PMID: 33630938 PMCID: PMC7943015 DOI: 10.1371/journal.ppat.1009355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 03/09/2021] [Accepted: 02/02/2021] [Indexed: 11/30/2022] Open
Abstract
A family of eleven glycosylphosphatidylinositol-anchored aspartyl proteases, commonly referred to as CgYapsins, regulate a myriad of cellular processes in the pathogenic yeast Candida glabrata, but their protein targets are largely unknown. Here, using the immunoprecipitation-mass spectrometry approach, we identify the flavodoxin-like protein (Fld-LP), CgPst2, to be an interactor of one of the aspartyl protease CgYps1. We also report the presence of four Fld-LPs in C. glabrata, which are required for survival in kidneys in the murine model of systemic candidiasis. We further demonstrated that of four Fld-LPs, CgPst2 was solely required for menadione detoxification. CgPst2 was found to form homo-oligomers, and contribute to cellular NADH:quinone oxidoreductase activity. CgYps1 cleaved CgPst2 at the C-terminus, and this cleavage was pivotal to oligomerization, activity and function of CgPst2. The arginine-174 residue in CgPst2 was essential for CgYps1-mediated cleavage, with alanine substitution of the arginine-174 residue also leading to elevated activity and oligomerization of CgPst2. Finally, we demonstrate that menadione treatment led to increased CgPst2 and CgYps1 protein levels, diminished CgYps1-CgPst2 interaction, and enhanced CgPst2 cleavage and activity, thereby implicating CgYps1 in activating CgPst2. Altogether, our findings of proteolytic cleavage as a key regulatory determinant of CgPst2, which belongs to the family of highly conserved, electron-carrier flavodoxin-fold-containing proteins, constituting cellular oxidative stress defense system in diverse organisms, unveil a hidden regulatory layer of environmental stress response mechanisms.
Collapse
Affiliation(s)
- Anamika Battu
- Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
- Graduate studies, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Rajaram Purushotham
- Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | - Partha Dey
- Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | - S. Surya Vamshi
- Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | - Rupinder Kaur
- Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| |
Collapse
|
50
|
The Protein Kinase A-Dependent Phosphoproteome of the Human Pathogen Aspergillus fumigatus Reveals Diverse Virulence-Associated Kinase Targets. mBio 2020; 11:mBio.02880-20. [PMID: 33323509 PMCID: PMC7773993 DOI: 10.1128/mbio.02880-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PKA is essential for the virulence of eukaryotic human pathogens. Understanding PKA signaling mechanisms is therefore fundamental to deciphering pathogenesis and developing novel therapies. Protein kinase A (PKA) signaling plays a critical role in the growth and development of all eukaryotic microbes. However, few direct targets have been characterized in any organism. The fungus Aspergillus fumigatus is a leading infectious cause of death in immunocompromised patients, but the specific molecular mechanisms responsible for its pathogenesis are poorly understood. We used this important pathogen as a platform for a comprehensive and multifaceted interrogation of both the PKA-dependent whole proteome and phosphoproteome in order to elucidate the mechanisms through which PKA signaling regulates invasive microbial disease. Employing advanced quantitative whole-proteomic and phosphoproteomic approaches with two complementary phosphopeptide enrichment strategies, coupled to an independent PKA interactome analysis, we defined distinct PKA-regulated pathways and identified novel direct PKA targets contributing to pathogenesis. We discovered three previously uncharacterized virulence-associated PKA effectors, including an autophagy-related protein, Atg24; a CCAAT-binding transcriptional regulator, HapB; and a CCR4-NOT complex-associated ubiquitin ligase, Not4. Targeted mutagenesis, combined with in vitro kinase assays, multiple murine infection models, structural modeling, and molecular dynamics simulations, was employed to characterize the roles of these new PKA targets in growth, environmental and antimicrobial stress responses, and pathogenesis in a mammalian system. We also elucidated the molecular mechanisms of PKA regulation for these effectors by defining the functionality of phosphorylation at specific PKA target sites. We have comprehensively characterized the PKA-dependent phosphoproteome and validated PKA targets as direct regulators of infectious disease for the first time in any pathogen, providing new insights into PKA signaling and control over microbial pathogenesis.
Collapse
|