1
|
Di Bella S, Babich S, Luzzati R, Cavasio RA, Massa B, Braccialarghe N, Zerbato V, Iannetta M. Crimean-Congo haemorrhagic fever (CCHF): present and future therapeutic armamentarium. LE INFEZIONI IN MEDICINA 2024; 32:421-433. [PMID: 39660152 PMCID: PMC11627488 DOI: 10.53854/liim-3204-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/23/2024] [Indexed: 12/12/2024]
Abstract
Crimean-Congo haemorrhagic fever (CCHF) is an emerging severe tick-borne illness. The expanding habitat of Hyalomma ticks, coupled with migratory birds harbouring CCHF-infected ticks, contributes to an increasing number of potential hosts. The seroprevalence of anti-CCHF virus antibodies in livestock is approximately one-quarter, with a noticeable upward trend in recent years. The management of CCHF patients predominantly relies on supportive therapy, although a potential arsenal of antivirals, convalescent and hyperimmune plasma, monoclonal antibodies, and vaccines exists, both currently and in the future. This review aims to critically examine the current therapeutic approaches to managing CCHF, highlighting both the potential and limitations of existing treatments, and identifying future directions for improving patient outcomes.
Collapse
Affiliation(s)
- Stefano Di Bella
- Clinical Department of Medical, Surgical and Health Sciences, Trieste University, Trieste,
Italy
| | - Stella Babich
- Infectious Diseases Unit, Trieste University Hospital, Trieste,
Italy
| | - Roberto Luzzati
- Clinical Department of Medical, Surgical and Health Sciences, Trieste University, Trieste,
Italy
| | | | - Barbara Massa
- Department of Systems Medicine, Tor Vergata University, Rome,
Italy
| | | | - Verena Zerbato
- Infectious Diseases Unit, Trieste University Hospital, Trieste,
Italy
| | - Marco Iannetta
- Department of Systems Medicine, Tor Vergata University, Rome,
Italy
- Infectious Disease Clinic, Policlinico Tor Vergata, Rome,
Italy
| |
Collapse
|
2
|
de la Calle-Prieto F, Arsuaga M, Rodríguez-Sevilla G, Paiz NS, Díaz-Menéndez M. The current status of arboviruses with major epidemiological significance in Europe. ENFERMEDADES INFECCIOSAS Y MICROBIOLOGIA CLINICA (ENGLISH ED.) 2024; 42:516-526. [PMID: 39505461 DOI: 10.1016/j.eimce.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/10/2024] [Indexed: 11/08/2024]
Abstract
Currently, an increasing impact of some arboviruses has been observed in Europe, mainly Dengue (DENV), Chikungunya (CHIKV), Zika (ZIKV), West Nile (WNV), and Crimean-Congo hemorrhagic fever (CCHFV) analyzed through a One Health perspective that considers their expansion across the continent. Arboviruses are primarily transmitted by vectors such as mosquitoes and ticks, with human activities and climate change playing crucial roles in their spread. The review highlights the ecological and epidemiological aspects of arboviruses, emphasizing the roles of diverse hosts and reservoirs, including humans, animals, and vectors, in their life cycles. The influence of climate change on the ecology of the vector, which potentially favors the arbovirus transmission, is also reviewed. Focusing on diagnosis, prevention and in the absence of specific treatments, the importance of understanding vector-host interactions and environmental impacts to develop effective control and prevention strategies is emphasized. Ongoing research on vaccines and therapies is crucial to mitigate the public health impact of these diseases.
Collapse
Affiliation(s)
- Fernando de la Calle-Prieto
- National Referral Unit for Imported Diseases and International Health, High Level Isolation Unit, La Paz-Carlos III-CB University Hospital, Madrid, Spain; CIBERINFEC, Spain.
| | - Marta Arsuaga
- National Referral Unit for Imported Diseases and International Health, High Level Isolation Unit, La Paz-Carlos III-CB University Hospital, Madrid, Spain; CIBERINFEC, Spain
| | | | - Nancy Sandoval Paiz
- Internal Medicine-Infectious Diseases MSc, Tropical Parasitic Diseases, Roosevelt Hospital, Guatemala City, GT, United States
| | - Marta Díaz-Menéndez
- National Referral Unit for Imported Diseases and International Health, High Level Isolation Unit, La Paz-Carlos III-CB University Hospital, Madrid, Spain; CIBERINFEC, Spain
| |
Collapse
|
3
|
Pirincal A, Doymaz MZ. The Role of Nucleocapsid Protein (NP) in the Immunology of Crimean-Congo Hemorrhagic Fever Virus (CCHFV). Viruses 2024; 16:1547. [PMID: 39459881 PMCID: PMC11512346 DOI: 10.3390/v16101547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/06/2024] [Accepted: 09/13/2024] [Indexed: 10/28/2024] Open
Abstract
Crimean-Congo hemorrhagic fever virus (CCHFV) is an orthonairovirus from the Bunyavirales order that is widely distributed geographically and causes severe or fatal infections in humans. The viral genome consists of three segmented negative-sense RNA molecules. The CCHFV nucleocapsid protein (CCHFV NP) is encoded by the smallest segment of the virus. CCHFV NP, the primary function of which is the encapsidation of viral RNA molecules, plays a critical role in various mechanisms important for viral replication and pathogenesis. This review is an attempt to revisit the literature available on the highly immunogenic and highly conserved CCHFV NP, summarizing the multifunctional roles of this protein in the immunology of CCHFV. Specifically, the review addresses the impact of CCHFV NP on innate, humoral, and cellular immune responses, epitopes recognized by B and T cells that limit viral spread, and its role as a target for diagnostic tests and for vaccine design. Based on the extensive information generated by many research groups, it could be stated that NP constitutes a significant and critical player in the immunology of CCHFV.
Collapse
Affiliation(s)
| | - Mehmet Z. Doymaz
- Department of Medical Microbiology, School of Medicine and Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakıf University, Istanbul 34093, Türkiye;
| |
Collapse
|
4
|
Eslava M, Carlos S, Reina G. Crimean-Congo Hemorrhagic Fever Virus: An Emerging Threat in Europe with a Focus on Epidemiology in Spain. Pathogens 2024; 13:770. [PMID: 39338961 PMCID: PMC11434923 DOI: 10.3390/pathogens13090770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/01/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
Crimean-Congo hemorrhagic fever (CCHF) is a tick-borne disease transmitted by ticks of the genus Hyalomma and caused by a virus of the Nairoviridae family. In humans, the virus can generate different clinical presentations that can range from asymptomatic to mild illness or produce an hemorrhagic fever with a mortality rate of approximately 30%. The virus pathogenicity and the lack of effective treatment or vaccine for its prevention make it an agent of concern from a public health point of view. The main transmission route is tick bites, so people most exposed to this risk are more likely to become infected. Another risk group are veterinarians and livestock farmers who are in contact with the blood and other fluids of animals that are mostly asymptomatic. Finally, due to its first phase with a non-characteristic symptomatology, there exists a risk of nosocomial infection. It is endemic in Africa, the Balkans, the Middle East, and those Asian countries south of the 50th parallel north, the geographical limit of the main vector. Recently, autochthonous cases have been observed in areas of Europe where the virus was not previously present. Human cases have been detected in Greece, Bulgaria, and Spain. Spain is one of the most affected countries, with a total of 17 autochthonous cases detected since 2013. In other countries, such as France, the virus is present in ticks and animals but has not spread to humans. A high-quality epidemiological surveillance system in these countries is essential to avoid the expansion of this virus to new areas and to limit the impact of current cases.
Collapse
Affiliation(s)
- María Eslava
- Microbiology Department, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Silvia Carlos
- Department of Preventive Medicine and Public Health, Universidad de Navarra, 31008 Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Gabriel Reina
- Microbiology Department, Clínica Universidad de Navarra, 31008 Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| |
Collapse
|
5
|
Muzammil K, Rayyani S, Abbas Sahib A, Gholizadeh O, Naji Sameer H, Jwad Kazem T, Badran Mohammed H, Ghafouri Kalajahi H, Zainul R, Yasamineh S. Recent Advances in Crimean-Congo Hemorrhagic Fever Virus Detection, Treatment, and Vaccination: Overview of Current Status and Challenges. Biol Proced Online 2024; 26:20. [PMID: 38926669 PMCID: PMC11201903 DOI: 10.1186/s12575-024-00244-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/16/2024] [Indexed: 06/28/2024] Open
Abstract
Crimean-Congo hemorrhagic fever virus (CCHFV) is a tick-borne virus, and zoonosis, and affects large regions of Asia, Southwestern and Southeastern Europe, and Africa. CCHFV can produce symptoms, including no specific clinical symptoms, mild to severe clinical symptoms, or deadly infections. Virus isolation attempts, antigen-capture enzyme-linked immunosorbent assay (ELISA), and reverse transcription polymerase chain reaction (RT-PCR) are all possible diagnostic tests for CCHFV. Furthermore, an efficient, quick, and cheap technology, including biosensors, must be designed and developed to detect CCHFV. The goal of this article is to offer an overview of modern laboratory tests available as well as other innovative detection methods such as biosensors for CCHFV, as well as the benefits and limits of the assays. Furthermore, confirmed cases of CCHF are managed with symptomatic assistance and general supportive care. This study examined the various treatment modalities, as well as their respective limitations and developments, including immunotherapy and antivirals. Recent biotechnology advancements and the availability of suitable animal models have accelerated the development of CCHF vaccines by a substantial margin. We examined a range of potential vaccines for CCHF in this research, comprising nucleic acid, viral particles, inactivated, and multi-epitope vaccines, as well as the present obstacles and developments in this field. Thus, the purpose of this review is to present a comprehensive summary of the endeavors dedicated to advancing various diagnostic, therapeutic, and preventive strategies for CCHF infection in anticipation of forthcoming hazards.
Collapse
Affiliation(s)
- Khursheed Muzammil
- Department of Public Health, College of Applied Medical Sciences, King Khalid University, Khamis Mushait Campus, Abha, 62561, Saudi Arabia
| | - Saba Rayyani
- Medical Faculty, University of Georgi, Tbilisi, Georgia
| | | | | | - Hayder Naji Sameer
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar, 64001, Iraq
| | - Tareq Jwad Kazem
- Scientific Affairs Department, Al-Mustaqbal University, Hillah, Babylon, 51001, Iraq
| | - Haneen Badran Mohammed
- Optics techniques department, health and medical techniques college, Al-Noor University, Mosul, Iraq
| | | | - Rahadian Zainul
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Padang, Padang, Indonesia.
| | - Saman Yasamineh
- Center for Advanced Material Processing, Artificial Intelligence, and Biophysics Informatics (CAMPBIOTICS), Universitas Negeri Padang, Padang, Indonesia.
| |
Collapse
|
6
|
Frank MG, Weaver G, Raabe V. Crimean-Congo Hemorrhagic Fever Virus for Clinicians-Diagnosis, Clinical Management, and Therapeutics. Emerg Infect Dis 2024; 30:864-873. [PMID: 38666553 PMCID: PMC11060459 DOI: 10.3201/eid3005.231648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2024] Open
Abstract
Crimean-Congo hemorrhagic fever virus (CCHFV) is the most geographically widespread tickborne viral infection worldwide and has a fatality rate of up to 62%. Despite its widespread range and high fatality rate, no vaccines or treatments are currently approved by regulatory agencies in the United States or Europe. Supportive treatment remains the standard of care, but the use of antiviral medications developed for other viral infections have been considered. We reviewed published literature to summarize the main aspects of CCHFV infection in humans. We provide an overview of diagnostic testing and management and medical countermeasures, including investigational vaccines and limited therapeutics. CCHFV continues to pose a public health threat because of its wide geographic distribution, potential to spread to new regions, propensity for genetic variability, potential for severe and fatal illness, and limited medical countermeasures for prophylaxis and treatment. Clinicians should become familiar with available diagnostic and management tools for CCHFV infections in humans.
Collapse
|
7
|
Vasmehjani AA, Pouriayevali MH, Shahmahmoodi S, Salehi-Vaziri M. Persistence of IgG and neutralizing antibodies in Crimean-Congo hemorrhagic fever survivors. J Med Virol 2024; 96:e29581. [PMID: 38572939 DOI: 10.1002/jmv.29581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/04/2024] [Accepted: 03/14/2024] [Indexed: 04/05/2024]
Abstract
The World Health Organization classified Crimean-Congo hemorrhagic fever (CCHF) as a high-priority infectious disease and emphasized the performance of research studies and product development against it. Little information is available about the immune response due to natural CCHF virus (CCHFV) infection in humans. Here, we investigated the persistence of IgG and neutralizing antibodies in serum samples collected from 61 Iranian CCHF survivors with various time points after recovery (<12, 12-60, and >60 months after disease). The ELISA results showed IgG seropositivity in all samples while a pseudotyped based neutralization assay findings revealed the presence of neutralizing antibody in 29 samples (46.77%). For both IgG and neutralizing antibodies, a decreasing trend of titer was observed with the increase in the time after recovery. Not only the mean titer of IgG (772.80 U/mL) was higher than mean neutralizing antibody (25.64) but also the IgG persistence was longer. In conclusion, our findings provide valuable information about the long-term persistence of humoral immune response in CCHF survivors indicating that IgG antibody can be detected at least 8 years after recovery and low titers of neutralizing antibody can be detected in CCHF survivors.
Collapse
Affiliation(s)
- Abbas Ahmadi Vasmehjani
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hassan Pouriayevali
- Department of Arboviruses and Viral Hemorrhagic Fevers (National Reference Laboratory), Pasteur Institute of Iran, Tehran, Iran
| | - Shohreh Shahmahmoodi
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Food Microbiology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mostafa Salehi-Vaziri
- Department of Arboviruses and Viral Hemorrhagic Fevers (National Reference Laboratory), Pasteur Institute of Iran, Tehran, Iran
- Research Center for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
8
|
Komut S, Çorakyer N, Kaplan G, Baykam N. An Evaluation of the Hitit Index in Differential Diagnosis of Crimean-Congo Hemorrhagic Fever in the Emergency Department. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1796. [PMID: 37893514 PMCID: PMC10608086 DOI: 10.3390/medicina59101796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023]
Abstract
Background and Objectives: Crimean-Congo Hemorrhagic Fever (CCHF) is a viral zoonotic infection, which is seen over a wide geographic area. The mortality rate is in inverse proportion to the ability of patients to access healthcare services. Therefore, early identification of patients is extremely important. The aim of this study was to test the sensitivity and specificity of the Hitit Index in the differentiation of CCHF cases at the time of presentation at the Emergency Department and to evaluate the agreement of this index with molecular (CCHFV RNA) and/or serological diagnostic tests (ELISA-CCHF IgM). Materials and Methods: The patients included were those who presented at the Emergency Department (ED) with the complaint of a tick bite or those identified as potential CCHF cases as a result of complaints and/or laboratory findings. For cases that met the study inclusion criteria, the Hitit Index score was calculated automatically from the parameters included in the index formula uploaded to the automation system in the ED at the time of presentation. Through comparisons of the agreement of the Hitit Index with the CCHFV-RNA and/or IgM results the power of the Hitit Index for differentiation of CCHF cases in ED was evaluated. Results: The data of 273 patients were analyzed. There was a history of tick bite in 236 (86%) cases. Of the evaluated cases, 110 (40.2%) were hospitalized; CCHF positivity was determined in 72 (26.4%). The Hitit Index values calculated in ED and at 24 h after hospitalization were determined to be significant in the prediction of the CCHF cases (p < 0.001, AUC = 0.919 (0.887-0.951); p < 0.001, AUC = 0.902 (0.841-0.962). For a cut-off point of 0 of the Hitit Index evaluated in ED, the classification success was found to have a sensitivity of 75% and specificity of 88% (PPV-NPV). For a cut-off point of 0 of the Hitit Index evaluated at 24 h after hospitalization, the classification success was found to have a sensitivity of 79.7% and specificity of 84% (PPV-NPV). Conclusions: The defined form of the Hitit Index can be used in the differentiation of CCHF cases in ED with high sensitivity and specificity levels. Just as evaluation with the Hitit Index prevents unnecessary hospitalization, it can also contribute to reducing mortality rates with the early identification of CCHF cases.
Collapse
Affiliation(s)
- Seval Komut
- Department of Emergency Medicine, Faculty of Medicine, Hitit University, 19040 Çorum, Turkey;
| | - Nurullah Çorakyer
- Department of Emergency Medicine, Faculty of Medicine, Hitit University, 19040 Çorum, Turkey;
| | - Gülcan Kaplan
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Hitit University, 19040 Çorum, Turkey; (G.K.); (N.B.)
| | - Nurcan Baykam
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Hitit University, 19040 Çorum, Turkey; (G.K.); (N.B.)
| |
Collapse
|
9
|
Riccò M, Baldassarre A, Corrado S, Bottazzoli M, Marchesi F. Seroprevalence of Crimean Congo Hemorrhagic Fever Virus in Occupational Settings: Systematic Review and Meta-Analysis. Trop Med Infect Dis 2023; 8:452. [PMID: 37755913 PMCID: PMC10538165 DOI: 10.3390/tropicalmed8090452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/11/2023] [Accepted: 09/17/2023] [Indexed: 09/28/2023] Open
Abstract
Crimean Congo Hemorrhagic Fever (CCHF) Virus can cause a serious human disease, with the case fatality ratio previously estimated to be 30-40%. Our study summarized seroprevalence data from occupational settings, focusing on the following occupational groups: animal handlers, abattoir workers, farmers, healthcare workers, veterinarians, rangers, and hunters. Systematic research was performed on three databases (PubMed, EMBASE, MedRxiv), and all studies reporting seroprevalence rates (IgG-positive status) for CCHF virus were retrieved and their results were reported, summarized, and compared. We identified a total of 33 articles, including a total of 20,195 samples, i.e., 13,197 workers from index occupational groups and 6998 individuals from the general population. Pooled seroprevalence rates ranged from 4.751% (95% confidence intervals (95% CI) 1.834 to 11.702) among animal handlers, to 3.403% (95% CI 2.44 to 3.932) for farmers, 2.737% (95% CI 0.896 to 8.054) among rangers and hunters, 1.900% (95% CI 0.738 to 4.808) for abattoir workers, and 0.644% (95% CI 0.223-1.849) for healthcare workers, with the lowest estimate found in veterinarians (0.283%, 95% CI 0.040-1.977). Seroprevalence rates for abattoir workers (odds ratio (OR) 4.198, 95% CI 1.060-16.464), animal handlers (OR 2.399, 95% CI 1.318-4.369), and farmers (OR 2.280, 95% CI 1.419 to 3.662) largely exceeded the official notification rates for CCHF in the general population. CCHF is reasonably underreported, and pooled estimates stress the importance of improving the adherence to personal protective equipment use and appropriate preventive habits.
Collapse
Affiliation(s)
- Matteo Riccò
- AUSL–IRCCS di Reggio Emilia, Servizio di Prevenzione e Sicurezza Negli Ambienti di Lavoro (SPSAL), Local Health Unit of Reggio Emilia, 42122 Reggio Emilia, Italy
| | - Antonio Baldassarre
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy;
| | - Silvia Corrado
- ASST Rhodense, Dipartimento della donna e Area Materno-Infantile, UOC Pediatria, 20024 Garbagnate Milanese, Italy;
| | - Marco Bottazzoli
- Department of Otorhinolaryngology, APSS Trento, 38122 Trento, Italy;
| | - Federico Marchesi
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy;
| |
Collapse
|
10
|
Rishi E, Thomas J, Fashina T, Kim L, Yeh S. Emerging Pathogenic Viral Infections of the Eye. Annu Rev Vis Sci 2023; 9:71-89. [PMID: 37018917 DOI: 10.1146/annurev-vision-100820-010504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Global health security threats and the public health impact resulting from emerging infectious diseases including the ongoing COVID-19 pandemic and recent Ebola virus disease outbreaks continuously emphasize the need for a comprehensive approach to preparedness, management of disease outbreaks, and health sequelae associated with emergent pathogens. A spectrum of associated ophthalmic manifestations, along with the potential persistence of emerging viral pathogens in ocular tissues, highlight the importance of an ophthalmic approach to contributing to efforts in the response to public health emergencies from disease outbreaks. This article summarizes the ophthalmic and systemic findings, epidemiology, and therapeutics for emerging viral pathogens identified by the World Health Organization as high-priority pathogens with epidemic potential.
Collapse
Affiliation(s)
- Ekta Rishi
- Department of Ophthalmology and Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, Nebraska, USA; , ,
| | | | - Tolulope Fashina
- Department of Ophthalmology and Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, Nebraska, USA; , ,
| | - Lucas Kim
- Mercer University School of Medicine, Augusta, Georgia, USA;
| | - Steven Yeh
- Department of Ophthalmology and Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, Nebraska, USA; , ,
- Global Center for Health Security, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
11
|
Febrer-Sendra B, Fernández-Soto P, García-Bernalt Diego J, Crego-Vicente B, Negredo A, Muñor-Bellido JL, Belhassen-García M, Sánchez-Seco MP, Muro A. A Novel RT-LAMP for the Detection of Different Genotypes of Crimean–Congo Haemorrhagic Fever Virus in Patients from Spain. Int J Mol Sci 2023; 24:ijms24076411. [PMID: 37047384 PMCID: PMC10094476 DOI: 10.3390/ijms24076411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/25/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Crimean–Congo haemorrhagic fever (CCHF) is a potentially lethal tick-borne viral disease with a wide distribution. In Spain, 12 human cases of CCHF have been confirmed, with four deaths. The diagnosis of CCHF is hampered by the nonspecific symptoms, the high genetic diversity of CCHFV, and the biosafety requirements to manage the virus. RT-qPCR and serological tests are used for diagnosis with limitations. Reverse-transcription loop-mediated isothermal amplification (RT-LAMP) could be an effective alternative in the diagnosis of the disease. However, none of the few RT-LAMP assays developed to date has detected different CCHFV genotypes. Here, we designed a RT-LAMP using a degenerate primer set to compensate for the variability of the CCHFV target sequence. RT-LAMP was performed in colorimetric and real-time tests on RT-qPCR-confirmed CCHF patient samples notified in Spain in 2020 and 2021. Urine from an inpatient was analysed by RT-LAMP for the first time and compared with RT-qPCR. The amplicons obtained by RT-qPCR were sequenced and African III and European V genotypes were identified. RT-LAMP amplified both genotypes and was more sensitive than RT-qPCR in urine samples. We have developed a novel, rapid, specific, and sensitive RT-LAMP test that allows the detection of different CCHFV genotypes in clinical samples. This pan-CCHFV RT-LAMP detected viral RNA for the first time in urine samples. It can be easily performed as a single-tube isothermal colorimetric method on a portable platform in real time and without the need for expensive equipment, thus bringing molecular diagnostics closer to rural or resource-poor areas, where CCHF usually occurs.
Collapse
|
12
|
Hoste ACR, Djadjovski I, Jiménez-Clavero MÁ, Rueda P, Barr JN, Sastre P. Multiplex Assay for Simultaneous Detection of Antibodies against Crimean-Congo Hemorrhagic Fever Virus Nucleocapsid Protein and Glycoproteins in Ruminants. Microbiol Spectr 2023; 11:e0260022. [PMID: 36815788 PMCID: PMC10101078 DOI: 10.1128/spectrum.02600-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 02/04/2023] [Indexed: 02/24/2023] Open
Abstract
Crimean-Congo hemorrhagic fever virus (CCHFV) is a widespread tick-borne zoonotic virus that causes Crimean-Congo hemorrhagic fever (CCHF). CCHF is asymptomatic in infected animals but can develop into severe illness in humans, with high case-fatality rates. Due to complex environmental and socio-economic factors, the distribution of CCHFV vectors is changing, leading to disease occurrence in previously unaffected countries. Neither an effective treatment nor a vaccine has been developed against CCHFV; thus, surveillance programs are essential to limit and control the spread of the virus. Furthermore, the WHO highlighted the need of assays that can cover a range of CCHFV antigenic targets, DIVA (differentiating infected from vaccinated animals) assays, or assays for future vaccine evaluation. Here, we developed a multiplex assay, based on a suspension microarray, able to detect specific antibodies in ruminants to three recombinantly produced CCHFV proteins: the nucleocapsid (N) protein and two glycoproteins, GN ectodomain (GNe), and GP38. This triplex assay was used to assess the antibody response in naturally infected animals. Out of the 29 positive field sera to the N protein, 40% showed antibodies against GNe or GP38, with 11 out of these 12 samples being positive to both glycoproteins. To determine the diagnostic specificity of the test, a total of 147 sera from Spanish farms free of CCHFV were included in the study. This multiplex assay could be useful to detect antibodies to different proteins of CCHFV as vaccine target candidates and to study the immune response to CCHFV in infected animals and for surveillance programs to prevent the further spread of the virus. IMPORTANCE Crimean-Congo hemorrhagic fever virus (CCHFV) causes Crimean-Congo hemorrhagic fever, which is one of the most important tick-borne viral diseases of humans and has recently been found in previously unaffected countries such as Spain. The disease is asymptomatic in infected animals but can develop into severe illness in humans. As neither an effective treatment nor a vaccine has been developed against CCHFV, surveillance programs are essential to limit and control the spread of the virus. In this study, a multiplex assay detecting antibodies against different CCHFV antigens in a single sample and independent of the ruminant species has been developed. This assay could be very useful in surveillance studies, to control the spread of CCHFV and prevent future outbreaks, and to better understand the immune response induced by CCHFV.
Collapse
Affiliation(s)
- Alexis C. R. Hoste
- Eurofins-Inmunología y Genética Aplicada S.A. (Eurofins-INGENASA S.A.), Madrid, Spain
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Igor Djadjovski
- Ss. Cyril and Methodius University in Skopje, Faculty of Veterinary Medicine, Skopje, North Macedonia
| | - Miguel Ángel Jiménez-Clavero
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Valdeolmos, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Paloma Rueda
- Eurofins-Inmunología y Genética Aplicada S.A. (Eurofins-INGENASA S.A.), Madrid, Spain
| | - John N. Barr
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Patricia Sastre
- Eurofins-Inmunología y Genética Aplicada S.A. (Eurofins-INGENASA S.A.), Madrid, Spain
| |
Collapse
|
13
|
Nimo-Paintsil SC, Mosore M, Addo SO, Lura T, Tagoe J, Ladzekpo D, Addae C, Bentil RE, Behene E, Dafeamekpor C, Asoala V, Fox A, Watters CM, Koehler JW, Schoepp RJ, Arimoto H, Dadzie S, Letizia A, Diclaro JW. Ticks and prevalence of tick-borne pathogens from domestic animals in Ghana. Parasit Vectors 2022; 15:86. [PMID: 35279200 PMCID: PMC8917784 DOI: 10.1186/s13071-022-05208-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/17/2022] [Indexed: 11/20/2022] Open
Abstract
Background Ticks are important vectors of various pathogenic protozoa, bacteria and viruses that cause serious and life-threatening illnesses in humans and animals worldwide. Estimating tick-borne pathogen prevalence in tick populations is necessary to delineate how geographical differences, environmental variability and host factors influence pathogen prevalence and transmission. This study identified ticks and tick-borne pathogens in samples collected from June 2016 to December 2017 at seven sites within the Coastal, Sudan and Guinea savanna ecological zones of Ghana. Methods A total of 2016 ticks were collected from domestic animals including cattle, goats and dogs. Ticks were morphologically identified and analysed for pathogens such as Crimean-Congo haemorrhagic fever virus (CCHFV), Alkhurma haemorrhagic fever virus (AHFV), Rickettsia spp. and Coxiella burnetii using polymerase chain reaction assays (PCR) and sequence analysis. Results Seven species were identified, with Amblyomma variegatum (60%) most frequently found, followed by Rhipicephalus sanguineus sensu lato (21%), Rhipicephalus spp. (9%), Hyalomma truncatum (6%), Hyalomma rufipes (3%), Rhipicephalus evertsi (1%) and Rhipicephalus (Boophilus) sp. (0.1%). Out of 912 pools of ticks tested, Rickettsia spp. and Coxiella burnetii DNA was found in 45.6% and 16.7% of pools, respectively, whereas no CCHFV or AHFV RNA were detected. Co-infection of bacterial DNA was identified in 9.6% of tick pools, with no statistical difference among the ecozones studied. Conclusions Based on these data, humans and animals in these ecological zones are likely at the highest risk of exposure to rickettsiosis, since ticks infected with Rickettsia spp. displayed the highest rates of infection and co-infection with C. burnetii, compared to other tick-borne pathogens in Ghana. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05208-8.
Collapse
Affiliation(s)
| | - Mba Mosore
- United States Naval Medical Research Unit No. 3, Ghana Detachment, Accra, Ghana.,Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Seth Offei Addo
- United States Naval Medical Research Unit No. 3, Ghana Detachment, Accra, Ghana.,Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Taylor Lura
- Navy Entomology Center of Excellence, Jacksonville, FL, USA
| | - Janice Tagoe
- United States Naval Medical Research Unit No. 3, Ghana Detachment, Accra, Ghana.,Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Danielle Ladzekpo
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Charlotte Addae
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Ronald E Bentil
- United States Naval Medical Research Unit No. 3, Ghana Detachment, Accra, Ghana.,Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Eric Behene
- United States Naval Medical Research Unit No. 3, Ghana Detachment, Accra, Ghana.,Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | | | - Victor Asoala
- Navrongo Health Research Center, Navrongo, Upper East Region, Ghana
| | - Anne Fox
- United States Naval Medical Research Unit No. 3, Ghana Detachment, Accra, Ghana
| | - Chaselynn M Watters
- United States Naval Medical Research Unit No. 3, Ghana Detachment, Accra, Ghana
| | - Jeffrey W Koehler
- Diagnostic Systems Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
| | - Randy J Schoepp
- Diagnostic Systems Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
| | - Hanayo Arimoto
- Navy Environmental and Preventive Medicine Unit No. 5, San Diego, CA, USA
| | - Samuel Dadzie
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana.
| | - Andrew Letizia
- Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring,, MD, USA
| | | |
Collapse
|
14
|
Lombe BP, Saito T, Miyamoto H, Mori-Kajihara A, Kajihara M, Saijo M, Masumu J, Hattori T, Igarashi M, Takada A. Mapping of Antibody Epitopes on the Crimean-Congo Hemorrhagic Fever Virus Nucleoprotein. Viruses 2022; 14:v14030544. [PMID: 35336951 PMCID: PMC8955205 DOI: 10.3390/v14030544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 02/05/2023] Open
Abstract
Crimean-Congo hemorrhagic fever virus (CCHFV), a nairovirus, is a tick-borne zoonotic virus that causes hemorrhagic fever in humans. The CCHFV nucleoprotein (NP) is the antigen most used for serological screening of CCHFV infection in animals and humans. To gain insights into antibody epitopes on the NP molecule, we produced recombinant chimeric NPs between CCHFV and Nairobi sheep disease virus (NSDV), which is another nairovirus, and tested rabbit and mouse antisera/immune ascites, anti-NP monoclonal antibodies, and CCHFV-infected animal/human sera for their reactivities to the NP antigens. We found that the amino acids at positions 161–320 might include dominant epitopes recognized by anti-CCHFV IgG antibodies, whereas cross-reactivity between anti-CCHFV and anti-NSDV antibodies was limited. Their binding capacities were further tested using a series of synthetic peptides whose sequences were derived from CCHFV NP. IgG antibodies in CCHFV-infected monkeys and patients were reactive to some of the synthetic peptide antigens (e.g., amino acid residues at positions 131–150 and 211–230). Only a few peptides were recognized by IgG antibodies in the anti-NSDV serum. These results provide useful information to improve NP-based antibody detection assays as well as antigen detection tests relying on anti-NP monoclonal antibodies.
Collapse
Affiliation(s)
- Boniface Pongombo Lombe
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; (B.P.L.); (T.S.); (H.M.); (A.M.-K.); (M.K.); (T.H.); (M.I.)
- Central Veterinary Laboratory of Kinshasa, Kinshasa B.P. 8842, Democratic Republic of the Congo;
- Faculty of Veterinary Medicine, National Pedagogic University, Kinshasa B.P. 8815, Democratic Republic of the Congo
| | - Takeshi Saito
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; (B.P.L.); (T.S.); (H.M.); (A.M.-K.); (M.K.); (T.H.); (M.I.)
| | - Hiroko Miyamoto
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; (B.P.L.); (T.S.); (H.M.); (A.M.-K.); (M.K.); (T.H.); (M.I.)
| | - Akina Mori-Kajihara
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; (B.P.L.); (T.S.); (H.M.); (A.M.-K.); (M.K.); (T.H.); (M.I.)
| | - Masahiro Kajihara
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; (B.P.L.); (T.S.); (H.M.); (A.M.-K.); (M.K.); (T.H.); (M.I.)
| | - Masayuki Saijo
- Department of Virology 1, National Institute of Infectious Diseases, Musashimurayama 208-0011, Japan;
| | - Justin Masumu
- Central Veterinary Laboratory of Kinshasa, Kinshasa B.P. 8842, Democratic Republic of the Congo;
- Faculty of Veterinary Medicine, National Pedagogic University, Kinshasa B.P. 8815, Democratic Republic of the Congo
- National Institute of Biomedical Research, Kinshasa B.P. 1197, Democratic Republic of the Congo
| | - Takanari Hattori
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; (B.P.L.); (T.S.); (H.M.); (A.M.-K.); (M.K.); (T.H.); (M.I.)
| | - Manabu Igarashi
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; (B.P.L.); (T.S.); (H.M.); (A.M.-K.); (M.K.); (T.H.); (M.I.)
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
| | - Ayato Takada
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; (B.P.L.); (T.S.); (H.M.); (A.M.-K.); (M.K.); (T.H.); (M.I.)
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
- Department of Disease Control, School of Veterinary Medicine, The University of Zambia, Lusaka 10101, Zambia
- Correspondence:
| |
Collapse
|
15
|
Bendary HA, Rasslan F, Wainwright M, Alfarraj S, Zaki AM, Abdulall AK. Crimean-Congo hemorrhagic fever virus in ticks collected from imported camels in Egypt. Saudi J Biol Sci 2021; 29:2597-2603. [PMID: 35531170 PMCID: PMC9072913 DOI: 10.1016/j.sjbs.2021.12.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/21/2021] [Accepted: 12/16/2021] [Indexed: 10/29/2022] Open
|
16
|
Castillo-León J, Trebbien R, Castillo JJ, Svendsen WE. Commercially available rapid diagnostic tests for the detection of high priority pathogens: status and challenges. Analyst 2021; 146:3750-3776. [PMID: 34060546 DOI: 10.1039/d0an02286a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The ongoing COVID-19 pandemic has shown the importance of having analytical devices that allow a simple, fast, and robust detection of pathogens which cause epidemics and pandemics. The information these devices can collect is crucial for health authorities to make effective decisions to contain the disease's advance. The World Health Organization published a list of primary pathogens that have raised concern as potential causes of future pandemics. Unfortunately, there are no rapid diagnostic tests commercially available and approved by the regulatory bodies to detect most of the pathogens listed by the WHO. This report describes these pathogens, the available detection methods, and highlights areas where more attention is needed to produce rapid diagnostic tests for future pandemic surveillance.
Collapse
Affiliation(s)
- Jaime Castillo-León
- Bioengineering Department, Technical University of Denmark, Ørsteds Plads, DK-2800 Kgs. Lyngby, Denmark.
| | - Ramona Trebbien
- Statens Serum Institut, 5 Artillerivej, DK-2300 Copenhagen, Denmark
| | - John J Castillo
- Escuela de Química, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Winnie E Svendsen
- Bioengineering Department, Technical University of Denmark, Ørsteds Plads, DK-2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
17
|
Jalali T, Salehi-Vaziri M, Pouriayevali MH, Gargari SLM. Aptamer based diagnosis of crimean-congo hemorrhagic fever from clinical specimens. Sci Rep 2021; 11:12639. [PMID: 34135365 PMCID: PMC8209218 DOI: 10.1038/s41598-021-91826-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 06/01/2021] [Indexed: 11/09/2022] Open
Abstract
Crimean-Congo hemorrhagic fever (CCHF) is an acute viral zoonotic disease. The widespread geographic distribution of the disease and the increase in the incidence of the disease from new regions, placed CCHF in a list of public health emergency contexts. The rapid diagnosis, in rural and remote areas where the majority of cases occur, is essential for patient management. Aptamers are considered as a specific and sensitive tool for being used in rapid diagnostic methods. The Nucleoprotein (NP) of the CCHF virus (CCHFV) was selected as the target for the isolation of aptamers based on its abundance and conservative structure, among other viral proteins. A total of 120 aptamers were obtained through 9 rounds of SELEX (Systematic Evolution of Ligands by Exponential Enrichment) from the ssDNA aptamer library, including the random 40-nucleotide ssDNA region between primer binding sites (GCCTGTTGTGAGCCTCCTAAC(N40)GGGAGACAAGAATAAGCA). The KD of aptamers was calculated using the SPR technique. The Apt33 with the highest affinity to NP was selected to design the aptamer-antibody ELASA test. It successfully detected CCHF NP in the concentration of 90 ng/ml in human serum. Evaluation of aptamer-antibody ELASA with clinical samples showed 100% specificity and sensitivity of the test. This simple, specific, and the sensitive assay can be used as a rapid and early diagnosis tool, as well as the use of this aptamer in point of care test near the patient. Our results suggest that the discovered aptamer can be used in various aptamer-based rapid diagnostic tests for the diagnosis of CCHF virus infection.
Collapse
Affiliation(s)
- Tahmineh Jalali
- Department of Biology, Faculty of Basic Sciences, Shahed University, Tehran, Iran.,Department of Arboviruses and Viral Hemorrhagic Fevers (National Reference Laboratory), Pasteur Institute of Iran, Tehran, Iran
| | - Mostafa Salehi-Vaziri
- Department of Arboviruses and Viral Hemorrhagic Fevers (National Reference Laboratory), Pasteur Institute of Iran, Tehran, Iran.,Reaserch Center for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
| | - Mohammad Hassan Pouriayevali
- Department of Arboviruses and Viral Hemorrhagic Fevers (National Reference Laboratory), Pasteur Institute of Iran, Tehran, Iran
| | | |
Collapse
|
18
|
Gilbride C, Saunders J, Sharpe H, Maze EA, Limon G, Ludi AB, Lambe T, Belij-Rammerstorfer S. The Integration of Human and Veterinary Studies for Better Understanding and Management of Crimean-Congo Haemorrhagic Fever. Front Immunol 2021; 12:629636. [PMID: 33815379 PMCID: PMC8012513 DOI: 10.3389/fimmu.2021.629636] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 03/01/2021] [Indexed: 12/15/2022] Open
Abstract
Outbreaks that occur as a result of zoonotic spillover from an animal reservoir continue to highlight the importance of studying the disease interface between species. One Health approaches recognise the interdependence of human and animal health and the environmental interplay. Improving the understanding and prevention of zoonotic diseases may be achieved through greater consideration of these relationships, potentially leading to better health outcomes across species. In this review, special emphasis is given on the emerging and outbreak pathogen Crimean-Congo Haemorrhagic Fever virus (CCHFV) that can cause severe disease in humans. We discuss the efforts undertaken to better understand CCHF and the importance of integrating veterinary and human research for this pathogen. Furthermore, we consider the use of closely related nairoviruses to model human disease caused by CCHFV. We discuss intervention approaches with potential application for managing CCHFV spread, and how this concept may benefit both animal and human health.
Collapse
Affiliation(s)
- Ciaran Gilbride
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Jack Saunders
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Hannah Sharpe
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | | | | | | - Teresa Lambe
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
19
|
Kuehnert PA, Stefan CP, Badger CV, Ricks KM. Crimean-Congo Hemorrhagic Fever Virus (CCHFV): A Silent but Widespread Threat. CURRENT TROPICAL MEDICINE REPORTS 2021; 8:141-147. [PMID: 33747715 PMCID: PMC7959879 DOI: 10.1007/s40475-021-00235-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2021] [Indexed: 12/22/2022]
Abstract
Purpose of Review This review is aimed at highlighting recent research and articles on the complicated relationship between virus, vector, and host and how biosurveillance at each level informs disease spread and risk. Recent Findings While human cases of CCHFV and tick identification in non-endemic areas in 2019–2020 were reported to sites such as ProMed, there is a gap in recent published literature on these and broader CCHFV surveillance efforts from the late 2010s. Summary A review of the complex aspects of CCHFV maintenance in the environment coupled with high fatality rate and lack of vaccines and therapeutics warrants the need for a One-Health approach toward detection and increased biosurveillance programs for CCHFV.
Collapse
Affiliation(s)
- Paul A Kuehnert
- Diagnostic Systems Division, US Army Medical Research Institute of Infectious Diseases, 1425 Porter St, Frederick, MD 21702 USA
| | - Christopher P Stefan
- Diagnostic Systems Division, US Army Medical Research Institute of Infectious Diseases, 1425 Porter St, Frederick, MD 21702 USA
| | - Catherine V Badger
- Virology Division, US Army Medical Research Institute of Infectious Diseases, 1425 Porter St, Frederick, MD 21702 USA
| | - Keersten M Ricks
- Diagnostic Systems Division, US Army Medical Research Institute of Infectious Diseases, 1425 Porter St, Frederick, MD 21702 USA
| |
Collapse
|
20
|
Sorvillo TE, Rodriguez SE, Hudson P, Carey M, Rodriguez LL, Spiropoulou CF, Bird BH, Spengler JR, Bente DA. Towards a Sustainable One Health Approach to Crimean-Congo Hemorrhagic Fever Prevention: Focus Areas and Gaps in Knowledge. Trop Med Infect Dis 2020; 5:tropicalmed5030113. [PMID: 32645889 PMCID: PMC7558268 DOI: 10.3390/tropicalmed5030113] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 12/13/2022] Open
Abstract
Crimean–Congo hemorrhagic fever virus (CCHFV) infection is identified in the 2018 World Health Organization Research and Development Blueprint and the National Institute of Allergy and Infectious Diseases (NIH/NIAID) priority A list due to its high risk to public health and national security. Tick-borne CCHFV is widespread, found in Europe, Asia, Africa, the Middle East, and the Indian subcontinent. It circulates between ticks and several vertebrate hosts without causing overt disease, and thus can be present in areas without being noticed by the public. As a result, the potential for zoonotic spillover from ticks and animals to humans is high. In contrast to other emerging viruses, human-to-human transmission of CCHFV is typically limited; therefore, prevention of spillover events should be prioritized when considering countermeasures. Several factors in the transmission dynamics of CCHFV, including a complex transmission cycle that involves both ticks and vertebrate hosts, lend themselves to a One Health approach for the prevention and control of the disease that are often overlooked by current strategies. Here, we examine critical focus areas to help mitigate CCHFV spillover, including surveillance, risk assessment, and risk reduction strategies concentrated on humans, animals, and ticks; highlight gaps in knowledge; and discuss considerations for a more sustainable One Health approach to disease control.
Collapse
Affiliation(s)
- Teresa E. Sorvillo
- One Health Institute, School of Veterinary Medicine, University of California Davis, 1089 Veterinary Medicine Drive, Davis, CA 95616, USA;
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA; (S.E.R.); (C.F.S.); (J.R.S.)
- Correspondence: ; Tel.: +1-530-752-7526
| | - Sergio E. Rodriguez
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA; (S.E.R.); (C.F.S.); (J.R.S.)
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (M.C.); (D.A.B.)
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Peter Hudson
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA;
| | - Megan Carey
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (M.C.); (D.A.B.)
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Luis L. Rodriguez
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Orient Point, NY 11957, USA;
| | - Christina F. Spiropoulou
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA; (S.E.R.); (C.F.S.); (J.R.S.)
| | - Brian H. Bird
- One Health Institute, School of Veterinary Medicine, University of California Davis, 1089 Veterinary Medicine Drive, Davis, CA 95616, USA;
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA; (S.E.R.); (C.F.S.); (J.R.S.)
| | - Jessica R. Spengler
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA; (S.E.R.); (C.F.S.); (J.R.S.)
| | - Dennis A. Bente
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (M.C.); (D.A.B.)
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|