1
|
Kotton CN, Kamar N, Wojciechowski D, Eder M, Hopfer H, Randhawa P, Sester M, Comoli P, Tedesco Silva H, Knoll G, Brennan DC, Trofe-Clark J, Pape L, Axelrod D, Kiberd B, Wong G, Hirsch HH. The Second International Consensus Guidelines on the Management of BK Polyomavirus in Kidney Transplantation. Transplantation 2024; 108:1834-1866. [PMID: 38605438 PMCID: PMC11335089 DOI: 10.1097/tp.0000000000004976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/10/2024] [Accepted: 01/18/2024] [Indexed: 04/13/2024]
Abstract
BK polyomavirus (BKPyV) remains a significant challenge after kidney transplantation. International experts reviewed current evidence and updated recommendations according to Grading of Recommendations, Assessment, Development, and Evaluations (GRADE). Risk factors for BKPyV-DNAemia and biopsy-proven BKPyV-nephropathy include recipient older age, male sex, donor BKPyV-viruria, BKPyV-seropositive donor/-seronegative recipient, tacrolimus, acute rejection, and higher steroid exposure. To facilitate early intervention with limited allograft damage, all kidney transplant recipients should be screened monthly for plasma BKPyV-DNAemia loads until month 9, then every 3 mo until 2 y posttransplant (3 y for children). In resource-limited settings, urine cytology screening at similar time points can exclude BKPyV-nephropathy, and testing for plasma BKPyV-DNAemia when decoy cells are detectable. For patients with BKPyV-DNAemia loads persisting >1000 copies/mL, or exceeding 10 000 copies/mL (or equivalent), or with biopsy-proven BKPyV-nephropathy, immunosuppression should be reduced according to predefined steps targeting antiproliferative drugs, calcineurin inhibitors, or both. In adults without graft dysfunction, kidney allograft biopsy is not required unless the immunological risk is high. For children with persisting BKPyV-DNAemia, allograft biopsy may be considered even without graft dysfunction. Allograft biopsies should be interpreted in the context of all clinical and laboratory findings, including plasma BKPyV-DNAemia. Immunohistochemistry is preferred for diagnosing biopsy-proven BKPyV-nephropathy. Routine screening using the proposed strategies is cost-effective, improves clinical outcomes and quality of life. Kidney retransplantation subsequent to BKPyV-nephropathy is feasible in otherwise eligible recipients if BKPyV-DNAemia is undetectable; routine graft nephrectomy is not recommended. Current studies do not support the usage of leflunomide, cidofovir, quinolones, or IVIGs. Patients considered for experimental treatments (antivirals, vaccines, neutralizing antibodies, and adoptive T cells) should be enrolled in clinical trials.
Collapse
Affiliation(s)
- Camille N. Kotton
- Transplant and Immunocompromised Host Infectious Diseases Unit, Infectious Diseases Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Nassim Kamar
- Department of Nephrology and Organ Transplantation, Toulouse Rangueil University Hospital, INSERM UMR 1291, Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University Paul Sabatier, Toulouse, France
| | - David Wojciechowski
- Department of Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| | - Michael Eder
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Helmut Hopfer
- Division of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Parmjeet Randhawa
- Division of Transplantation Pathology, The Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA
| | - Martina Sester
- Department of Transplant and Infection Immunology, Saarland University, Homburg, Germany
| | - Patrizia Comoli
- Cell Factory and Pediatric Hematology/Oncology Unit, Department of Mother and Child Health, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Helio Tedesco Silva
- Division of Nephrology, Hospital do Rim, Fundação Oswaldo Ramos, Paulista School of Medicine, Federal University of São Paulo, Brazil
| | - Greg Knoll
- Department of Medicine (Nephrology), University of Ottawa and The Ottawa Hospital, Ottawa, ON, Canada
| | | | - Jennifer Trofe-Clark
- Renal-Electrolyte Hypertension Division, Associated Faculty of the Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA
- Transplantation Division, Associated Faculty of the Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA
| | - Lars Pape
- Pediatrics II, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - David Axelrod
- Kidney, Pancreas, and Living Donor Transplant Programs at University of Iowa, Iowa City, IA
| | - Bryce Kiberd
- Division of Nephrology, Dalhousie University, Halifax, NS, Canada
| | - Germaine Wong
- Sydney School of Public Health, University of Sydney, Sydney, NSW, Australia
- Centre for Kidney Research, The Children’s Hospital at Westmead, Sydney, NSW, Australia
- Centre for Transplant and Renal Research, Westmead Hospital, Sydney, NSW, Australia
| | - Hans H. Hirsch
- Division of Transplantation and Clinical Virology, Department of Biomedicine, Faculty of Medicine, University of Basel, Basel, Switzerland
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
2
|
Sahragard I, Yaghobi R, Mohammadi A, Afshari A, Pakfetrat M, Hossein Karimi M, Reza Pourkarim M. Impact of BK Polyomavirus NCCR variations in post kidney transplant outcomes. Gene 2024; 913:148376. [PMID: 38490510 DOI: 10.1016/j.gene.2024.148376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/10/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
The human BK Polyomavirus (BKPyV) is a DNA virus that is prevalent in 80 % of the population. Infection with this virus may begin in childhood, followed by asymptomatic persistence in the urinary tract. However, in immunocompromised individuals, especially kidney transplant recipients (KTRs), heightened replication of BKPyV can lead to severe complications. The genome of this virus is divided into three parts; the early and late region, and the non-coding control region (NCCR). Mutations in the NCCR can change the archetype strain to the rearranged strain, and NCCR rearrangements play a significant in virus pathogenesis. Interestingly, diverse types of NCCR block rearrangement result in significant differences in conversion potential and host cell viability in the infected cells. A correlation has been detected between increased viral replication potential and pathogenesis in BKPyV-infected KTRs with specific NCCR rearrangements. The objective of this review study was to examine the disease-causing and clinical consequences of variations in the NCCR in BKPyV-infected KTRs such as virus-associated nephropathy (BKPyVAN).
Collapse
Affiliation(s)
- Ilnaz Sahragard
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Ramin Yaghobi
- Shiraz Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ali Mohammadi
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Afsoon Afshari
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Pakfetrat
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mahmoud Reza Pourkarim
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Rega Institute for Medical Research, Laboratory for Clinical and Epidemiological Virology, Herestraat 49 BE-3000, Leuven, Belgium
| |
Collapse
|
3
|
Signorini L, Dolci M, Favi E, Colico C, Ferraresso M, Ticozzi R, Basile G, Ferrante P, Delbue S. Viral Genomic Characterization and Replication Pattern of Human Polyomaviruses in Kidney Transplant Recipients. Viruses 2020; 12:1280. [PMID: 33182443 PMCID: PMC7696855 DOI: 10.3390/v12111280] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 02/06/2023] Open
Abstract
Human Polyomavirus (HPyV) infections are common, ranging from 60% to 100%. In kidney transplant (KTx) recipients, HPyVs have been associated with allograft nephropathy, progressive multifocal leukoencephalopathy, and skin cancer. Whether such complications are caused by viral reactivation or primary infection transmitted by the donor remains debated. This study aimed to investigate the replication pattern and genomic characterization of BK Polyomavirus (BKPyV), JC Polyomavirus (JCPyV), and Merkel Cell Polyomavirus (MCPyV) infections in KTx. Urine samples from 57 KTx donor/recipient pairs were collected immediately before organ retrieval/transplant and periodically up to post-operative day 540. Specimens were tested for the presence of BKPyV, JCPyV, and MCPyV genome by virus-specific Real-Time PCR and molecularly characterized. HPyVs genome was detected in 49.1% of donors and 77.2% of recipients. Sequences analysis revealed the archetypal strain for JCPyV, TU and Dunlop strains for BKPyV, and IIa-2 strain for MCPyV. VP1 genotyping showed a high frequency for JCPyV genotype 1 and BKPyV genotype I. Our experience demonstrates that after KTx, HPyVs genome remains stable over time with no emergence of quasi-species. HPyVs strains isolated in donor/recipient pairs are mostly identical, suggesting that viruses detected in the recipient may be transmitted by the allograft.
Collapse
Affiliation(s)
- Lucia Signorini
- Biomedical, Surgical and Dental Sciences, University of Milano, 20133 Milano, Italy; (M.D.); (R.T.); (P.F.); (S.D.)
| | - Maria Dolci
- Biomedical, Surgical and Dental Sciences, University of Milano, 20133 Milano, Italy; (M.D.); (R.T.); (P.F.); (S.D.)
| | - Evaldo Favi
- Department of Clinical Sciences and Community Health, University of Milano, 20122 Milano, Italy; (E.F.); (M.F.)
- Kidney Transplantation, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milano, Italy;
| | - Caterina Colico
- Kidney Transplantation, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milano, Italy;
| | - Mariano Ferraresso
- Department of Clinical Sciences and Community Health, University of Milano, 20122 Milano, Italy; (E.F.); (M.F.)
- Kidney Transplantation, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milano, Italy;
| | - Rosalia Ticozzi
- Biomedical, Surgical and Dental Sciences, University of Milano, 20133 Milano, Italy; (M.D.); (R.T.); (P.F.); (S.D.)
| | - Giuseppe Basile
- Service of Legal Medicine, San Siro Clinical Institute, 20148 Milano, Italy;
| | - Pasquale Ferrante
- Biomedical, Surgical and Dental Sciences, University of Milano, 20133 Milano, Italy; (M.D.); (R.T.); (P.F.); (S.D.)
| | - Serena Delbue
- Biomedical, Surgical and Dental Sciences, University of Milano, 20133 Milano, Italy; (M.D.); (R.T.); (P.F.); (S.D.)
| |
Collapse
|
4
|
Emami A, Pirbonyeh N, Moattari A, Keshavarzi A, Javanmardi F. Possibility of BKV-Associated Nephropathy in Hospitalized Burn Patients. J Burn Care Res 2020; 41:593-597. [PMID: 31867602 DOI: 10.1093/jbcr/irz209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Although renal failure in burn patients results from some defined reasons, there are various causes which are still unclear. BK virus is a human polyomavirus, which, in case of reactivation, can cause late-onset renal dysfunction and cystitis among immunodeficient patients such as transplant, pregnant, diabetic, and HIV patients. Regarding the related challenges, Polyomavirus BK (BKV), as a ubiquitous virus, is considered as one of the potential threats in the occurrence of Polyomavirus-associated nephropathy (PAN). Hypovolemia, occurring due to the weakness of the immune system, may be regarded as the major reason for the possibility of PAN as a risk factor in burn patients. Accordingly, this study was designed to evaluate the reactivation of BKV as a probable risk factor for renal failure or a problem in the future life of burn patients. This case-control study was conducted from October 2014 to September 2016, during which 270 patients were admitted to the burn unit. The patients were divided into two groups of case and control according to the inclusion criteria, and 20 patients were assigned to each group. The serum samples were first assessed for BKV-IgG and then were quantified by specific quantitative real-time polymerase chain reaction for BKV load. Positive samples were assessed for changes in noncoding regulatory region (NCRR) compared to Archetype strain by PCR sequencing method. Amplified sequences were analyzed for NCRR arrangement while the reactivation was assessed through these changes in NCRR. In both groups, patients were seropositive for BKV-IgG. Eight patients (40%) in the case group and two patients (10%) in the control group were found to be positive for BKV DNA with a load of ≥1000 and ≥100 copies/ml, respectively. There was a significant association between BKV DNA and kidney injury in the case group. The NCRR of DNA-positive samples had a large rearrangement compared to standard strain, but they showed relatively high similarity. Compared with other patients, burn patients are among the most susceptible ones to PAN, which can be considered as a major risk factor in the treatment of burn patients and optimizing their therapy.
Collapse
Affiliation(s)
- Amir Emami
- Microbiology Department, Burn & Wound Healing Research Center, Shiraz University of Medical Sciences, Iran
| | - Neda Pirbonyeh
- Microbiology Department, Burn & Wound Healing Research Center, Shiraz University of Medical Sciences, Iran
| | - Afagh Moattari
- Bacteriology & Virology Department, Shiraz Medical School, Shiraz University of Medical Sciences, Iran
| | - Abdolkhalegh Keshavarzi
- Surgery Department, General Surgery Burn & Wound Healing Research Center, Shiraz University of Medical Sciences, Iran
| | - Fatemeh Javanmardi
- Microbiology Department, Burn & Wound Healing Research Center, Shiraz University of Medical Sciences, Iran
| |
Collapse
|
5
|
Blackard JT, Davies SM, Laskin BL. BK polyomavirus diversity-Why viral variation matters. Rev Med Virol 2020; 30:e2102. [PMID: 32128960 DOI: 10.1002/rmv.2102] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 02/06/2023]
Abstract
BK polyomavirus (BKPyV or BKV) is a non-enveloped, circular double-stranded DNA virus that may exceed 80% seroprevalence in adults. BKV infection typically occurs during childhood, and the majority of adults are latently infected. While BKV infection is rarely associated with clinical disease in most individuals, in immunosuppressed individuals, reactivation may cause kidney (BK-associated nephropathy) or bladder (hemorrhagic cystitis and ureteral stenosis) injury. No antiviral therapies have been approved for the treatment of BKV infection. Reducing immunosuppression is the most effective therapy, although this is not feasible in many patients. Thus, a robust understanding of viral pathogenesis and viral diversity remains important for the development of future therapeutic strategies. Studies of BKV diversity are quite sparse compared to other common viral infections; thus, much of our understanding of BVK variability and evolution relies heavily analogous studies of other viruses such as HIV or viral hepatitis. We provide a comprehensive review of BKV diversity at the population and individual level with careful consideration of how viral variability may impact viral replication, pathogenesis, tropism, and protein function. We also discuss a number of outstanding questions related to BK virus diversity that should be explored rigorously in future studies.
Collapse
Affiliation(s)
- Jason T Blackard
- Division of Digestive Diseases, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Stella M Davies
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center and the Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Benjamin L Laskin
- Division of Nephrology, The Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
6
|
Thongprayoon C, Khoury NJ, Bathini T, Aeddula NR, Boonpheng B, Leeaphorn N, Ungprasert P, Bruminhent J, Lertjitbanjong P, Watthanasuntorn K, Chesdachai S, Mao MA, Cheungpasitporn W. BK polyomavirus genotypes in renal transplant recipients in the United States: A meta-analysis. J Evid Based Med 2019; 12:291-299. [PMID: 31769221 DOI: 10.1111/jebm.12366] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/13/2019] [Accepted: 11/03/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND In the United States, increasing ethnic diversity has been apparent. However, the epidemiology and trends of BKV genotypes remain unclear. This meta-analysis was conducted with the aim to assess the prevalence of BKV genotypes among kidney transplant (KTx) recipients in the United States. METHODS A comprehensive literature review was conducted through October 2018 utilizing MEDLINE, Embase, and Cochrane Database to identify studies that reported the prevalence of BKV subtypes and/or subgroups in KTx recipients in the United States. Pooled prevalence rates were combined using random effects, generic inverse variance method. The protocol for this study is registered with PROSPERO (no. CRD42019134582). RESULTS A total of eight observational studies with a total of 193 samples (urine, blood, and kidney tissues) from 188 BKV-infected KTX recipients were enrolled. Overall, the pooled estimated prevalence rates of BKV subtypes were 72.2% (95% confidence of interval [CI]: 62.7-80.0%) for subtype I, 6.8% (95% CI: 2.5-16.9%) for subtype II, 8.3% (95% CI: 4.4-15.1%) for subtype III, and 16.1% (95% CI: 10.4-24.2%) for subtype IV, respectively. While metaregression analysis demonstrated a significant positive correlation between year of study and the prevalence of BKV subtype I (slopes = +0.1023, P = .01), there were no significant correlations between year of study and percentages of BKV subtype II-IV (P > .05). Among KTx recipients with BKV subtype I, the pooled estimated percentages of BKV subgroups were 22.4% (95% CI: 13.7-34.5%) for subgroup Ia, 30.6% (95% CI: 17.7-47.5%) for subgroup Ib1, 47.7% (95% CI: 35.8-59.9%) for subgroup Ib2, and 4.1% (95% CI:1.2-13.3%) for subgroup Ic, respectively. CONCLUSION BKV subtype I is the most prevalent subtype among KTx recipients in the United States and its prevalence seems to increasing overtime. Subgroup Ib2 is the most common subgroup among BKV subtype I.
Collapse
Affiliation(s)
| | - Nadeen J Khoury
- Division of Nephrology and Hypertension, Henry Ford Health System, Detroit, Michigan
| | - Tarun Bathini
- Department of Internal Medicine, University of Arizona, Tucson, Arizona
| | - Narothama Reddy Aeddula
- Department of Medicine, Indiana University School of Medicine and, Deaconess Health System, Evansville, Indiana
| | - Boonphiphop Boonpheng
- Department of Internal Medicine, East Tennessee State University, Johnson City, Tennessee
| | - Napat Leeaphorn
- Renal Transplant Program, University of Missouri-Kansas City School of Medicine/Saint Luke's Health System, Kansas City, Missouri
| | - Patompong Ungprasert
- Clinical Epidemiology Unit, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Jackrapong Bruminhent
- Division of Infectious Diseases, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | | | | | | | - Michael A Mao
- Division of Nephrology and Hypertension, Mayo Clinic, Jacksonville, Florida
| | - Wisit Cheungpasitporn
- Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, Mississippi
| |
Collapse
|
7
|
Jagannath S, Sachithanandham J, Ramalingam VV, Demosthenes JP, Abraham AM, Zachariah A, Varghese GM, Kannangai R. BK virus characterisation among HIV-1-Infected individuals and its association with immunosuppression. Indian J Med Microbiol 2018; 36:172-177. [PMID: 30084406 DOI: 10.4103/ijmm.ijmm_18_54] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Purpose BK virus (BKV) is an opportunistic pathogen which causes significant morbidity and mortality in individuals who are immunodeficient. We aimed to quantitate and characterise BKV and to correlate with the degree of immunosuppression among human immunodeficiency virus (HIV)-1-infected individuals. Methods BKV DNA detection was carried out using an in-house quantitative real-time polymerase chain reaction on paired whole-blood and urine samples collected from 187 antiretroviral therapy (ART)-naïve HIV-1-infected individuals and 93 healthy individuals who served as controls. Sequencing was performed for a proportion of high BK viral load (VL) samples to observe non-coding control region (NCCR) rearrangements. Results BKV positivity in urine was 25.6% among HIV-infected individuals and 10.7% in control individuals (P = 0.03). The BK VL showed a significant negative correlation with CD4+ T-cell counts, a positive correlation with WHO clinical staging and no significant correlation with HIV-1 VL. Of 42 BKVs from urine samples sequenced, two showed rearrangements without clinically severe disease or high VL. Their NCCR and VP1 sequence-based genotyping revealed genotype I. In a small subset of individuals (n = 8) on ART who were being followed up, six individuals showed either decrease or complete clearance of virus with ART. Conclusion There was a higher frequency of BK viruria in HIV-1-infected individuals than among healthy controls and the positivity correlated with the degree of immunosuppression. There was no association of high VL with NCCR rearrangements in urine.
Collapse
Affiliation(s)
- Subha Jagannath
- Department of Clinical Virology, Christian Medical College, Vellore, Tamil Nadu, India
| | | | - Veena V Ramalingam
- Department of Clinical Virology, Christian Medical College, Vellore, Tamil Nadu, India
| | - John Paul Demosthenes
- Department of Clinical Virology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Asha M Abraham
- Department of Clinical Virology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Anand Zachariah
- Department of Medicine and Infectious Diseases, Christian Medical College, Vellore, Tamil Nadu, India
| | - George M Varghese
- Department of Medicine and Infectious Diseases, Christian Medical College, Vellore, Tamil Nadu, India
| | - Rajesh Kannangai
- Department of Clinical Virology, Christian Medical College, Vellore, Tamil Nadu, India
| |
Collapse
|
8
|
Abstract
Circular single-stranded DNA viruses infect archaea, bacteria, and eukaryotic organisms. The relatively recent emergence of single-stranded DNA viruses, such as chicken anemia virus (CAV) and porcine circovirus 2 (PCV2), as serious pathogens of eukaryotes is due more to growing awareness than to the appearance of new pathogens or alteration of existing pathogens. In the case of the ubiquitous human circular single-stranded DNA virus family Anelloviridae, there is still no convincing direct causal relation to any specific disease. However, infections may play a role in autoimmunity by changing the homeostatic balance of proinflammatory cytokines and the human immune system, indirectly affecting the severity of diseases caused by other pathogens. Infections with CAV (family Anelloviridae, genus Gyrovirus) and PCV2 (family Circoviridae, genus Circovirus) are presented here because they are immunosuppressive and affect health in domesticated animals. CAV shares genomic organization, genomic orientation, and common features of major proteins with human anelloviruses, and PCV2 DNA may be present in human food and vaccines.
Collapse
Affiliation(s)
- L M Shulman
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel; .,Laboratory of Environmental Virology, Central Virology Laboratory, Sheba Medical Center Public Health Services, Israel Ministry of Health, Tel Hashomer, 52621, Israel
| | - I Davidson
- Division of Avian Diseases, Kimron Veterinary Institute, Bet Dagan, 50250, Israel;
| |
Collapse
|
9
|
Burger-Calderon R, Ramsey KJ, Dolittle-Hall JM, Seaman WT, Jeffers-Francis LK, Tesfu D, Nickeleit V, Webster-Cyriaque J. Distinct BK polyomavirus non-coding control region (NCCR) variants in oral fluids of HIV- associated Salivary Gland Disease patients. Virology 2016; 493:255-66. [PMID: 27085139 DOI: 10.1016/j.virol.2016.03.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 03/22/2016] [Accepted: 03/24/2016] [Indexed: 11/27/2022]
Abstract
HIV-associated Salivary Gland Disease (HIVSGD) is among the most common salivary gland-associated complications in HIV positive individuals and was associated with the small DNA tumorvirus BK polyomavirus (BKPyV). The BKPyV non-coding control region (NCCR) is the main determinant of viral replication and rearranges readily. This study analyzed the BKPyV NCCR architecture and viral loads of 35 immunosuppressed individuals. Throatwash samples from subjects diagnosed with HIVSGD and urine samples from transplant patients were BKPyV positive and yielded BKPyV NCCR sequences. 94.7% of the BKPyV HIVSGD NCCRs carried a rearranged OPQPQQS block arrangement, suggesting a distinct architecture among this sample set. BKPyV from HIV positive individuals without HIVSGD harbored NCCR block sequences that were distinct from OPQPQQS. Cloned HIVSGD BKPyV isolates displayed active promoters and efficient replication capability in human salivary gland cells. The unique HIVSGD NCCR architecture may represent a potentially significant oral-tropic BKPyV substrain.
Collapse
Affiliation(s)
- Raquel Burger-Calderon
- Epidemiology Department, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Microbiology and Immunology Department, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kathy J Ramsey
- Department of Dental Ecology, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Janet M Dolittle-Hall
- Department of Dental Ecology, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - William T Seaman
- Department of Dental Ecology, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Daniel Tesfu
- Department of Dental Ecology, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Volker Nickeleit
- Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jennifer Webster-Cyriaque
- Microbiology and Immunology Department, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Dental Ecology, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
10
|
Burger-Calderon R, Webster-Cyriaque J. Human BK Polyomavirus-The Potential for Head and Neck Malignancy and Disease. Cancers (Basel) 2015; 7:1244-70. [PMID: 26184314 PMCID: PMC4586768 DOI: 10.3390/cancers7030835] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 06/25/2015] [Accepted: 06/25/2015] [Indexed: 12/22/2022] Open
Abstract
Members of the human Polyomaviridae family are ubiquitous and pathogenic among immune-compromised individuals. While only Merkel cell polyomavirus (MCPyV) has conclusively been linked to human cancer, all members of the polyomavirus (PyV) family encode the oncoprotein T antigen and may be potentially carcinogenic. Studies focusing on PyV pathogenesis in humans have become more abundant as the number of PyV family members and the list of associated diseases has expanded. BK polyomavirus (BKPyV) in particular has emerged as a new opportunistic pathogen among HIV positive individuals, carrying harmful implications. Increasing evidence links BKPyV to HIV-associated salivary gland disease (HIVSGD). HIVSGD is associated with elevated risk of lymphoma formation and its prevalence has increased among HIV/AIDS patients. Determining the relationship between BKPyV, disease and tumorigenesis among immunosuppressed individuals is necessary and will allow for expanding effective anti-viral treatment and prevention options in the future.
Collapse
Affiliation(s)
- Raquel Burger-Calderon
- Microbiology and Immunology Department, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Jennifer Webster-Cyriaque
- Microbiology and Immunology Department, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
- Department of Dental Ecology, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
11
|
Abstract
BK polyomavirus (BKPyV) is the most common viral pathogen among allograft patients. Increasing evidence links BKPyV to the human oral compartment and to HIV-associated salivary gland disease (HIVSGD). To date, few studies have analyzed orally derived BKPyV. This study aimed to characterize BKPyV isolated from throat wash (TW) samples from HIVSGD patients. The replication potential of HIVSGD-derived clinical isolates HIVSGD-1 and HIVSGD-2, both containing the noncoding control region (NCCR) architecture OPQPQQS, were assessed and compared to urine-derived virus. The BKPyV isolates displayed significant variation in replication potential. Whole-genome alignment of the two isolates revealed three nucleotide differences that were analyzed for a potential effect on the viral life cycle. Analysis revealed a negligible difference in NCCR promoter activity despite sequence variation and emphasized the importance of functional T antigen (Tag) for efficient replication. HIVSGD-1 encoded full-length Tag, underwent productive infection in both human salivary gland cells and kidney cells, and expressed viral DNA and Tag protein. Additionally, HIVSGD-1 generated DNase-resistant particles and by far surpassed the replication potential of the kidney-derived isolate in HSG cells. HIVSGD-2 encoded a truncated form of Tag and replicated much less efficiently. Quantitation of infectious virus, via the fluorescent forming unit assay, suggested that HIVSGD BKPyV had preferential tropism for salivary gland cells over kidney cells. Similarly, the results suggested that kidney-derived virus had preferential tropism for kidney cells over salivary gland cells. Evidence of HIVSGD-derived BKPyV oral tropism and adept viral replication in human salivary gland cells corroborated the potential link between HIVSGD pathogenesis and BKPyV.
Collapse
|
12
|
Drew RJ, Walsh A, Laoi BN, Crowley B. Phylogenetic analysis of the complete genome of 11 BKV isolates obtained from allogenic stem cell transplant recipients in Ireland. J Med Virol 2012; 84:1037-48. [PMID: 22585720 DOI: 10.1002/jmv.23240] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BK polyomavirus (family Polyomaviridae) may cause hemorrhagic cystitis (BKV-HC) in hematopoietic stem cell transplant recipients. Eleven complete BKV genomes (GenBank accession numbers: JN192431-JN192441) were sequenced from urine samples of allogenic hematopoietic stem cell transplant recipients and compared to complete BKV genomes in the published literature. Of the 11 isolates, seven (64%) were subgroup Ib-1, three (27%) isolates belonged to subgroup Ib-2 and a single isolate belonged to subtype III. The analysis of single-nucleotide polymorphisms in this study showed that isolates could be subclassified into subtypes I-IV and subgroups Ib-1 and Ib-2 on the basis of VP1 of the first part of the Large T-antigen (LTag). The non-coding control region (NCCR) of the 11 isolates was also sequenced. These sequences showed that there was consistent sequence homology within subgroups Ib-1 and Ib-2. Two new mutations were described in the isolates, G→C at O(84) in isolate SJH-LG-310, and a deletion at R(2-7) in isolate SJH-LG-309. No known transcription factor is thought to be present at the site of either of these mutations. There were no rearrangements seen in isolates and this may be because the patients were not followed up over time. There were five nucleotide positions at which subgroup Ib-1 isolated differed from subgroup Ib-2 isolates in the NCCR sequence, O(41) , P(18) , P(31) , R(4) , and S(18) . The mutation O(41) is present in the promoter granulocyte/macrophage stimulating factor) gene and the P(31) mutation is present in the NF-1 gene.
Collapse
Affiliation(s)
- Richard John Drew
- Sir Patrick Dun Translational Research Laboratory, Trinity College Dublin, St James's Hospital Campus, Dublin, Ireland.
| | | | | | | |
Collapse
|
13
|
Kuypers DRJ. Management of polyomavirus-associated nephropathy in renal transplant recipients. Nat Rev Nephrol 2012; 8:390-402. [DOI: 10.1038/nrneph.2012.64] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
14
|
Liang B, Tikhanovich I, Nasheuer HP, Folk WR. Stimulation of BK virus DNA replication by NFI family transcription factors. J Virol 2012; 86:3264-75. [PMID: 22205750 PMCID: PMC3302295 DOI: 10.1128/jvi.06369-11] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 12/22/2011] [Indexed: 12/15/2022] Open
Abstract
BK polyomavirus (BKV) establishes persistent, low-level, and asymptomatic infections in most humans and causes polyomavirus-associated nephropathy (PVAN) and other pathologies in some individuals. The activation of BKV replication following kidney transplantation, leading to viruria, viremia, and, ultimately, PVAN, is associated with immune suppression as well as inflammation and stress from ischemia-reperfusion injury of the allograft, but the stimuli and molecular mechanisms leading to these pathologies are not well defined. The replication of BKV DNA in cell cultures is regulated by the viral noncoding control region (NCCR) comprising the core origin and flanking sequences, to which BKV T antigen (Tag), cellular proteins, and small regulatory RNAs bind. Six nuclear factor I (NFI) binding sites occur in sequences flanking the late side of the core origin (the enhancer) of the archetype virus, and their mutation, either individually or in toto, reduces BKV DNA replication when placed in competition with templates containing intact BKV NCCRs. NFI family members interacted with the helicase domain of BKV Tag in pulldown assays, suggesting that NFI helps recruit Tag to the viral core origin and may modulate its function. However, Tag may not be the sole target of the replication-modulatory activities of NFI: the NFIC/CTF1 isotype stimulates BKV template replication in vitro at low concentrations of DNA polymerase-α primase (Pol-primase), and the p58 subunit of Pol-primase associates with NFIC/CTF1, suggesting that NFI also recruits Pol-primase to the NCCR. These results suggest that NFI proteins (and the signaling pathways that target them) activate BKV replication and contribute to the consequent pathologies caused by acute infection.
Collapse
Affiliation(s)
- Bo Liang
- Department of Biochemistry and Genetics Area Program, University of Missouri—Columbia, Columbia, Missouri, USA
| | - Irina Tikhanovich
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland, Galway, Galway, Ireland
| | - Heinz Peter Nasheuer
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland, Galway, Galway, Ireland
| | - William R. Folk
- Department of Biochemistry and Genetics Area Program, University of Missouri—Columbia, Columbia, Missouri, USA
| |
Collapse
|
15
|
Luo C, Hirsch HH, Kant J, Randhawa P. VP-1 quasispecies in human infection with polyomavirus BK. J Med Virol 2011; 84:152-61. [PMID: 22052529 DOI: 10.1002/jmv.22147] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2011] [Indexed: 11/06/2022]
Abstract
Polyomavirus BK is a recognized cause of nephropathy and hemorrhagic cystitis in kidney or allogeneic hematopoietic stem cell transplant recipients. This study explored a role of genetic variations in capsid protein VP-1 gene as a factor in viral pathogenesis. VP-1 was amplified from 7 healthy subjects with viruria, 7 transplant patients with viruria, and 11 patients with viremia or nephropathy. PCR products were cloned and a total of 558 clonal sequences were subjected to phylogenetic analysis using standard methods. VP-1 quasispecies were found in 25/25 and coinfection with different genotypes in 12/25 subjects. Genotype II was found as an unexpected minority species in 5/25 individuals. Recombinant strains of uncertain biologic significance, which frequently contained genotype II and IV sequences were identified in 9/25 subjects. Viremia/nephropathy group was characterized by (a) greater sequence complexity in whole VP-1 versus BC loop and BC loop compared to the HI loop, (b) greater intra-strain genetic diversity in the BC loop compared to whole VP-1 protein and HI loop, (c) more non-synonymous substitutions (dN) in the BC loop compared to whole VP-1 and HI loop, (e) fewer synonymous substitutions (dS) compared to healthy-viruria group, and (f) selection pressure (dN/dS >1.0) exerted on VP-1. In conclusion, this study documents frequent occurrence of quasispecies in a host DNA polymerase dependent virus, which is theoretically expected to show high replication fidelity. Quasispecies occur even in healthy subjects with viruria, but evolutionary selection pressure directed at the viral capsid protein (VP-1) is seen only in patients with viremia or nephropathy.
Collapse
Affiliation(s)
- Chunqing Luo
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | | |
Collapse
|
16
|
Luo C, Hirsch HH, Kant J, Randhawa P. VP-1 quasispecies in human infection with polyomavirus BK. J Med Virol 2011. [PMID: 22052529 DOI: 10.1002/22147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Polyomavirus BK is a recognized cause of nephropathy and hemorrhagic cystitis in kidney or allogeneic hematopoietic stem cell transplant recipients. This study explored a role of genetic variations in capsid protein VP-1 gene as a factor in viral pathogenesis. VP-1 was amplified from 7 healthy subjects with viruria, 7 transplant patients with viruria, and 11 patients with viremia or nephropathy. PCR products were cloned and a total of 558 clonal sequences were subjected to phylogenetic analysis using standard methods. VP-1 quasispecies were found in 25/25 and coinfection with different genotypes in 12/25 subjects. Genotype II was found as an unexpected minority species in 5/25 individuals. Recombinant strains of uncertain biologic significance, which frequently contained genotype II and IV sequences were identified in 9/25 subjects. Viremia/nephropathy group was characterized by (a) greater sequence complexity in whole VP-1 versus BC loop and BC loop compared to the HI loop, (b) greater intra-strain genetic diversity in the BC loop compared to whole VP-1 protein and HI loop, (c) more non-synonymous substitutions (dN) in the BC loop compared to whole VP-1 and HI loop, (e) fewer synonymous substitutions (dS) compared to healthy-viruria group, and (f) selection pressure (dN/dS >1.0) exerted on VP-1. In conclusion, this study documents frequent occurrence of quasispecies in a host DNA polymerase dependent virus, which is theoretically expected to show high replication fidelity. Quasispecies occur even in healthy subjects with viruria, but evolutionary selection pressure directed at the viral capsid protein (VP-1) is seen only in patients with viremia or nephropathy.
Collapse
Affiliation(s)
- Chunqing Luo
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | | |
Collapse
|
17
|
Anzivino E, Bellizzi A, Mitterhofer AP, Tinti F, Barile M, Colosimo MT, Fioriti D, Mischitelli M, Chiarini F, Ferretti G, Taliani G, Pietropaolo V. Early monitoring of the human polyomavirus BK replication and sequencing analysis in a cohort of adult kidney transplant patients treated with basiliximab. Virol J 2011; 8:407. [PMID: 21849069 PMCID: PMC3179958 DOI: 10.1186/1743-422x-8-407] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Accepted: 08/17/2011] [Indexed: 01/08/2023] Open
Abstract
Background Nowadays, better immunosuppressors have decreased the rates of acute rejection in kidney transplantation, but have also led to the emergence of BKV-associated nephropathy (BKVAN). Therefore, we prospectively investigated BKV load in plasma and urine samples in a cohort of kidney transplants, receiving basiliximab combined with a mycophenolate mofetil-based triple immunotherapy, to evaluate the difference between BKV replication during the first 3 months post-transplantation, characterized by the non-depleting action of basiliximab, versus the second 3 months, in which the maintenance therapy acts alone. We also performed sequencing analysis to assess whether a particular BKV subtype/subgroup or transcriptional control region (TCR) variants were present. Methods We monitored BK viruria and viremia by quantitative polymerase chain reaction (Q-PCR) at 12 hours (Tx), 1 (T1), 3 (T2) and 6 (T3) months post-transplantation among 60 kidney transplant patients. Sequencing analysis was performed by nested-PCR with specific primers for TCR and VP1 regions. Data were statistically analyzed using χ2 test and Student's t-test. Results BKV was detected at Tx in 4/60 urine and in 16/60 plasma, with median viral loads of 3,70 log GEq/mL and 3,79 log GEq/mL, respectively, followed by a significant increase of both BKV-positive transplants (32/60) and median values of viruria (5,78 log GEq/mL) and viremia (4,52 log GEq/mL) at T2. Conversely, a significantly decrease of patients with viruria and viremia (17/60) was observed at T3, together with a reduction of the median urinary and plasma viral loads (4,09 log GEq/mL and 4,00 log GEq/mL, respectively). BKV TCR sequence analysis always showed the presence of archetypal sequences, with a few single-nucleotide substitutions and one nucleotide insertion that, interestingly, were all representative of the particular subtypes/subgroups we identified by VP1 sequencing analysis: I/b-2 and IV/c-2. Conclusions Our results confirm previous studies indicating that BKV replication may occur during the early hours after kidney transplantation, reaches the highest incidence in the third post-transplantation month and then decreases within the sixth month, maybe due to induction therapy. Moreover, it might become clinically useful whether specific BKV subtypes or rearrangements could be linked to a particular disease state in order to detect them before BKVAN onset.
Collapse
Affiliation(s)
- Elena Anzivino
- Department of Public Health and Infectious Diseases, "Sapienza" University of Rome, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Clinical polyomavirus BK variants with agnogene deletion are non-functional but rescued by trans-complementation. Virology 2010; 398:12-20. [DOI: 10.1016/j.virol.2009.11.029] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 08/13/2009] [Accepted: 11/17/2009] [Indexed: 11/24/2022]
|
19
|
Olsen GH, Hirsch HH, Rinaldo CH. Functional analysis of polyomavirus BK non-coding control region quasispecies from kidney transplant recipients. J Med Virol 2009; 81:1959-67. [PMID: 19774689 DOI: 10.1002/jmv.21605] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Replication of the human polyomavirus BK (BKV) in renal tubular epithelial cells causes viruria and BKV-nephropathy in kidney transplant recipients. Following prolonged high-level BKV replication, rearrangement of the archetype non-coding control region (NCCR) leads to a mixture of BKV variants. The aim of this study was to compare potential functional differences of 12 rearranged (rr)-NCCR variants with the archetype (ww)-NCCR (WWT) found in allograft biopsies or urine from three kidney transplant recipients including two with BKV-nephropathy. Twelve different rr-NCCRs and one archetype ww-NCCR were inserted between the early and late protein coding region of BKV(Dunlop) to make recombinant BKV genomes for transfection into Vero cells. Immunoblotting, immunofluorescence staining, and quantitative PCR demonstrated that viral protein expression and extracellular BKV loads of 10 rr-NCCR variants were similar or higher than observed for the ww-NCCR BKV. Two rr-NCCR variants (RH-2 and RH-19) were non-functional. The functional rr-NCCRs produced infectious progeny successfully infecting primary renal proximal tubular epithelial cells. The number of infected cells and extracellular BKV loads corresponded to the activity seen in Vero cells. Three rr-NCCR variants (RH-1, RH-10, RH-13) only gave rise to a few infected cells similar to ww-NCCR, whereas seven variants had intermediate activity (RH-5, RH-6, RH-8, RH-9, RH-11) or high replication activity (RH-7 and RH-18) with several hundred infected cells per well. The results indicate that both functional and non-functional BKV rr-NCCR variants arise during BKV replication in kidney transplant recipients and that most functional rr-NCCR variants confer a higher replication capacity than archetype ww-NCCR.
Collapse
Affiliation(s)
- Gunn-Hege Olsen
- Department of Microbiology and Virology, Institute for Medical Biology, University of Tromsø, Tromsø N-9038, Norway
| | | | | |
Collapse
|