1
|
Zuckerman NS, Bucris E, Morad-Eliyahu H, Weiss L, Vasserman R, Fratty IS, Aguvaev I, Cohen-Said Z, Matar R, Erster O, Shulman LM, Yishai R, Hecht-Sagie L, Alroy-Preis S, Mendelson E, Lustig Y, Sofer D, Bar-Or I, Weil M. Environmental surveillance of a circulating vaccine-derived poliovirus type 2 outbreak in Israel between 2022 and 2023: a genomic epidemiology study. THE LANCET. MICROBE 2024; 5:100893. [PMID: 39284332 DOI: 10.1016/s2666-5247(24)00116-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 10/14/2024]
Abstract
BACKGROUND Similarly to wild poliovirus, vaccine-derived poliovirus (VDPV) strains can cause acute flaccid paralysis, posing a considerable challenge to public health and the eradication of poliovirus. VDPV outbreaks, particularly VDPV type 2 (VDPV2), are increasing worldwide, including in high-income countries with high vaccine coverage. We aimed to conduct a comprehensive analysis of the molecular epidemiology of a widespread VDPV2 outbreak in Israel in 2022-23 using conventional polio identification techniques and whole-genome sequencing. METHODS In this genomic epidemiology study, we monitored and identified poliovirus type 2 (PV2) through the surveillance of stool samples from individuals with acute flaccid paralysis and related contacts, as well as environmental surveillance of sewage samples. Environmental surveillance involved 15 routine surveillance sites and an additional 30 sites dedicated to monitoring this outbreak, covering approximately 70% of Israel's population between April 1, 2022, and June 30, 2023. Additionally, we performed phylogenetic and mutation analyses using whole-genome, next-generation sequencing of PV2 isolates to identify recombination events, characterise VDPV2 lineages according to the capsid region, and establish the geographical distribution and linkage of PV2 isolates. FINDINGS We detected 256 genetically linked samples from environmental surveillance, as well as one case of acute flaccid paralysis and four positive contacts associated with the Sabin type 2 oral vaccine strain. Most affected locations showed a high-density population of Jewish Ultra-Orthodox communities. Through high-resolution genomic characterisation and phylogenetic analysis of 202 representative sequences with complete capsid coverage, including isolates from both environmental surveillance and the case of acute flaccid paralysis, a conclusive linkage was established among all detections, confirming them to be part of a single VDPV2 outbreak. This strategy enabled the characterisation of three distinct lineages and established connections between different locations in Israel, including linking the case of acute flaccid paralysis and nearby environmental surveillance detections from the northern region with detections in the geographically distant central region. INTERPRETATION This study highlights the role of environmental surveillance in the early detection and monitoring of poliovirus circulation, enabling a prompt public health response involving enhanced surveillance and a catch-up campaign with inactivated polio vaccine. Whole-genome sequencing offered valuable insights into the origins of the outbreak, linkage across detections, and the geographical distribution of the virus, with higher resolution than would have been possible with the standard analysis of the VP1 gene alone. FUNDING None.
Collapse
Affiliation(s)
- Neta S Zuckerman
- Central Virology Laboratory, Public Health Services, Ministry of Health, Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Efrat Bucris
- Central Virology Laboratory, Public Health Services, Ministry of Health, Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Hagar Morad-Eliyahu
- Central Virology Laboratory, Public Health Services, Ministry of Health, Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Leah Weiss
- Central Virology Laboratory, Public Health Services, Ministry of Health, Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Rinat Vasserman
- Central Virology Laboratory, Public Health Services, Ministry of Health, Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Ilana S Fratty
- Central Virology Laboratory, Public Health Services, Ministry of Health, Chaim Sheba Medical Center, Ramat Gan, Israel; The Israel Center for Disease Control, Israel Ministry of Health, Ramat Gan, Israel
| | - Ira Aguvaev
- Central Virology Laboratory, Public Health Services, Ministry of Health, Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Zvi Cohen-Said
- Central Virology Laboratory, Public Health Services, Ministry of Health, Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Rua Matar
- Central Virology Laboratory, Public Health Services, Ministry of Health, Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Oran Erster
- Central Virology Laboratory, Public Health Services, Ministry of Health, Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Lester M Shulman
- Central Virology Laboratory, Public Health Services, Ministry of Health, Chaim Sheba Medical Center, Ramat Gan, Israel; School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ruth Yishai
- Department of Laboratories, Public Health Services, Ministry of Health, Jerusalem, Israel
| | | | | | - Ella Mendelson
- Central Virology Laboratory, Public Health Services, Ministry of Health, Chaim Sheba Medical Center, Ramat Gan, Israel; School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yaniv Lustig
- Central Virology Laboratory, Public Health Services, Ministry of Health, Chaim Sheba Medical Center, Ramat Gan, Israel; School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Danit Sofer
- Central Virology Laboratory, Public Health Services, Ministry of Health, Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Itay Bar-Or
- Central Virology Laboratory, Public Health Services, Ministry of Health, Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Merav Weil
- Central Virology Laboratory, Public Health Services, Ministry of Health, Chaim Sheba Medical Center, Ramat Gan, Israel.
| |
Collapse
|
2
|
Sayyad L, Harrington C, Castro CJ, Belgasmi-Allen H, Jeffries Miles S, Hill J, Mendoza Prillwitz ML, Gobern L, Gaitán E, Delgado AP, Castillo Signor L, Rondy M, Rey-Benito G, Gerloff N. Molecular epidemiology of enteroviruses from Guatemalan wastewater isolated from human lung fibroblasts. PLoS One 2024; 19:e0305108. [PMID: 38959255 PMCID: PMC11221682 DOI: 10.1371/journal.pone.0305108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/24/2024] [Indexed: 07/05/2024] Open
Abstract
The Global Specialized Polio Laboratory at CDC supports the Global Poliovirus Laboratory Network with environmental surveillance (ES) to detect the presence of vaccine strain polioviruses, vaccine-derived polioviruses, and wild polioviruses in high-risk countries. Environmental sampling provides valuable supplementary information, particularly in areas with gaps in surveillance of acute flaccid paralysis (AFP) mainly in children less than 15 years. In collaboration with Guatemala's National Health Laboratory (Laboratorio Nacional de Salud Guatemala), monthly sewage collections allowed screening enterovirus (EV) presence without incurring additional costs for sample collection, transport, or concentration. Murine recombinant fibroblast L-cells (L20B) and human rhabdomyosarcoma (RD) cells are used for the isolation of polioviruses following a standard detection algorithm. Though non-polio-Enteroviruses (NPEV) can be isolated, the algorithm is optimized for the detection of polioviruses. To explore if other EV's are present in sewage not found through standard methods, five additional cell lines were piloted in a small-scale experiment, and next-generation sequencing (NGS) was used for the identification of any EV types. Human lung fibroblast cells (HLF) were selected based on their ability to isolate EV-A genus. Sewage concentrates collected between 2020-2021 were isolated in HLF cells and any cytopathic effect positive isolates used for NGS. A large variety of EVs, including echoviruses 1, 3, 6, 7, 11, 13, 18, 19, 25, 29; coxsackievirus A13, B2, and B5, EV-C99, EVB, and polioviruses (Sabin 1 and 3) were identified through genomic typing in NGS. When the EV genotypes were compared by phylogenetic analysis, it showed many EV's were genomically like viruses previously isolated from ES collected in Haiti. Enterovirus occurrence did not follow a seasonality, but more diverse EV types were found in ES collection sites with lower populations. Using the additional cell line in the existing poliovirus ES algorithm may add value by providing data about EV circulation, without additional sample collection or processing. Next-generation sequencing closed gaps in knowledge providing molecular epidemiological information on multiple EV types and full genome sequences of EVs present in wastewater in Guatemala.
Collapse
Affiliation(s)
- Leanna Sayyad
- Contracting Agency to the Division of Viral Diseases, Cherokee Nation Assurance, Tulsa, Oklahoma, United States of America
| | - Chelsea Harrington
- Division of Viral Diseases, Polio and Picornavirus Branch, U.S. Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Christina J. Castro
- Contracting Agency to the Division of Viral Diseases, Cherokee Nation Assurance, Tulsa, Oklahoma, United States of America
| | - Hanen Belgasmi-Allen
- Division of Viral Diseases, Polio and Picornavirus Branch, U.S. Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Stacey Jeffries Miles
- Division of Viral Diseases, Polio and Picornavirus Branch, U.S. Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Jamaica Hill
- Contracting Agency to the Division of Viral Diseases, IHRC Inc., Atlanta, Georgia, United States of America
| | | | - Lorena Gobern
- Ministerio de Salud Pública y Asistencia Social Guatemala, Guatemala City, Guatemala
| | - Ericka Gaitán
- Ministerio de Salud Pública y Asistencia Social Guatemala, Guatemala City, Guatemala
| | - Andrea Paola Delgado
- Ministerio de Salud Pública y Asistencia Social Guatemala, Guatemala City, Guatemala
| | | | - Marc Rondy
- Pan-American Health Organization/World Health Organization, Guatemala Country Office, Guatemala City, Guatemala
| | - Gloria Rey-Benito
- Pan-American Health Organization, World Health Organization, Washington, DC, United States of America
| | - Nancy Gerloff
- Division of Viral Diseases, Polio and Picornavirus Branch, U.S. Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| |
Collapse
|
3
|
van Ackeren V, Schmutz S, Pichler I, Ziltener G, Zaheri M, Kufner V, Huber M. Retrospective Genotyping of Enteroviruses Using a Diagnostic Nanopore Sequencing Workflow. Pathogens 2024; 13:390. [PMID: 38787241 PMCID: PMC11124337 DOI: 10.3390/pathogens13050390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 05/25/2024] Open
Abstract
Enteroviruses are among the most common viruses pathogenic to humans. They are associated with various forms of disease, ranging from mild respiratory illness to severe neurological diseases. In recent years, an increasing number of isolated cases of children developing meningitis or encephalitis as a result of enterovirus infection have been reported, as well as discrete enterovirus D68 outbreaks in North America in 2014 and 2016. We developed an assay to rapidly genotype enteroviruses by sequencing a region within the VP1 gene using nanopore Flongles. We retrospectively analyzed enterovirus-/rhinovirus-positive clinical samples from the Zurich, Switzerland area mainly collected during two seasons in 2019/2020 and 2021/2022. Respiratory, cerebrospinal fluid, and stool samples were analyzed. Whole-genome sequencing was performed on samples with ambiguous genotyping results and enterovirus D68-positive samples. Out of 255 isolates, a total of 95 different genotypes were found. A difference in the prevalence of enterovirus and rhinovirus infections was observed for both sample type and age group. In particular, children aged 0-4 years showed a higher frequency of enterovirus infections. Comparing the respiratory seasons, a higher prevalence was found, especially for enterovirus A and rhinovirus A after the SARS-CoV-2 pandemic. The enterovirus genotyping workflow provides a rapid diagnostic tool for individual analysis and continuous enterovirus surveillance.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Michael Huber
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland; (V.v.A.); (S.S.); (I.P.); (G.Z.); (M.Z.); (V.K.)
| |
Collapse
|
4
|
Nearly Complete Genome Sequences of Type 2 Sabin-Like Polioviruses from Northern Nigerian Poliovirus Surveillance, 2016 to 2018. Microbiol Resour Announc 2023; 12:e0073522. [PMID: 36507631 PMCID: PMC9872618 DOI: 10.1128/mra.00735-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
We sequenced 109 type 2 Sabin-like poliovirus isolates that had been collected from acute flaccid paralysis patients or healthy children in Nigeria. Understanding the genetic makeup of these viruses may contribute to polio eradication efforts.
Collapse
|
5
|
Fernandez-Garcia MD, Faye M, Diez-Fuertes F, Moreno-Docón A, Chirlaque-López MD, Faye O, Cabrerizo M. Metagenomic sequencing, molecular characterization, and Bayesian phylogenetics of imported type 2 vaccine-derived poliovirus, Spain, 2021. Front Cell Infect Microbiol 2023; 13:1168355. [PMID: 37201115 PMCID: PMC10185892 DOI: 10.3389/fcimb.2023.1168355] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/11/2023] [Indexed: 05/20/2023] Open
Abstract
Introduction In 2021, a type 2 vaccine-derived poliovirus (VDPV2) was isolated from the stool of a patient with acute flaccid paralysis (AFP) admitted to Spain from Senegal. A virological investigation was conducted to characterize and trace the origin of VDPV2. Methods We used an unbiased metagenomic approach for the whole-genome sequencing of VDPV2 from the stool (pre-treated with chloroform) and from the poliovirus-positive supernatant. Phylogenetic analyses and molecular epidemiological analyses relying on the Bayesian Markov Chain Monte Carlo methodology were used to determine the geographical origin and estimate the date of the initiating dose of the oral poliovirus vaccine for the imported VDPV2. Results We obtained a high percentage of viral reads per total reads mapped to the poliovirus genome (69.5% for pre-treated stool and 75.8% for isolate) with a great depth of sequencing coverage (5,931 and 11,581, respectively) and complete genome coverage (100%). The two key attenuating mutations in the Sabin 2 strain had reverted (A481G in the 5'UTR and Ile143Thr in VP1). In addition, the genome had a recombinant structure between type-2 poliovirus and an unidentified non-polio enterovirus-C (NPEV-C) strain with a crossover point in the protease-2A genomic region. VP1 phylogenetic analysis revealed that this strain is closely related to VDPV2 strains circulating in Senegal in 2021. According to Bayesian phylogenetics, the most recent common ancestor of the imported VDPV2 could date back 2.6 years (95% HPD: 1.7-3.7) in Senegal. We suggest that all VDPV2s circulating in 2020-21 in Senegal, Guinea, Gambia, and Mauritania have an ancestral origin in Senegal estimated around 2015. All 50 stool samples from healthy case contacts collected in Spain (n = 25) and Senegal (n = 25) and four wastewater samples collected in Spain were poliovirus negative. Discussion By using a whole-genome sequencing protocol with unbiased metagenomics from the clinical sample and viral isolate with high sequence coverage, efficiency, and throughput, we confirmed the classification of VDPV as a circulating type. The close genomic linkage with strains from Senegal was consistent with their classification as imported. Given the scarce number of complete genome sequences for NPEV-C in public databases, this protocol could help expand poliovirus and NPEV-C sequencing capacity worldwide.
Collapse
Affiliation(s)
- Maria Dolores Fernandez-Garcia
- Enterovirus and Viral Gastroenteritis Unit/National Polio Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- Consortium of Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
- *Correspondence: Maria Dolores Fernandez-Garcia,
| | - Martin Faye
- Virology Department, Institut Pasteur de Dakar, Dakar, Senegal
| | - Francisco Diez-Fuertes
- AIDS Immunopathogenesis Unit, Instituto de Salud Carlos III, Madrid, Spain
- Consortium of Infectious Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Moreno-Docón
- Microbiology Department, Hospital U. Virgen de la Arrixaca, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia University, Murcia, Spain
| | - Maria Dolores Chirlaque-López
- Consortium of Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia University, Murcia, Spain
- Department of Epidemiology, Murcia Regional Health Council, Murcia, Spain
| | - Ousmane Faye
- Virology Department, Institut Pasteur de Dakar, Dakar, Senegal
| | - Maria Cabrerizo
- Enterovirus and Viral Gastroenteritis Unit/National Polio Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- Consortium of Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
6
|
Itani T, Chalapa V, Semenov A, Sergeev A. Laboratory diagnosis of nonpolio enteroviruses: A review of the current literature. BIOSAFETY AND HEALTH 2022. [DOI: 10.1016/j.bsheal.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
7
|
Fomsgaard AS, Rasmussen M, Spiess K, Fomsgaard A, Belsham GJ, Fonager J. Improvements in metagenomic virus detection by simple pretreatment methods. JOURNAL OF CLINICAL VIROLOGY PLUS 2022; 2:100120. [PMID: 36945677 PMCID: PMC10024160 DOI: 10.1016/j.jcvp.2022.100120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 09/26/2022] [Accepted: 10/24/2022] [Indexed: 11/21/2022] Open
Abstract
Early detection of pathogens at the point of care helps reduce the threats to human and animal health from emerging pathogens. Initially, the disease-causing agent will be unknown and needs to be identified; this often requires specific laboratory facilities. Here we describe the development of an unbiased detection assay for RNA and DNA viruses using metagenomic Nanopore sequencing and simple methods that can be transferred into a field setting. Human clinical samples containing the RNA virus SARS-CoV-2 or the DNA viruses human papillomavirus (HPV) and molluscum contagiosum virus (MCV) were used as a test of concept. Firstly, the virus detection potential was optimized by investigating different pretreatments for reducing non-viral nucleic acid components. DNase I pretreatment followed by filtration increased the proportion of SARS-CoV-2 sequenced reads > 500-fold compared with no pretreatments. This was sufficient to achieve virus detection with high confidence and allowed variant identification. Next, we tested individual SARS-CoV-2 samples with various viral loads (measured as CT-values determined by RT-qPCR). Lastly, we tested the assay on clinical samples containing the DNA virus HPV and co-infection with MCV to show the assay's detection potential for DNA viruses. This protocol is fast (same day results). We hope to apply this method in other settings for point of care detection of virus pathogens, thus eliminating the need for transport of infectious samples, cold storage and a specialized laboratory.
Collapse
Affiliation(s)
- Anna S. Fomsgaard
- Department of Virus & Microbiological Special Diagnostics, Statens Serum Institut, 5 Artillerivej, DK-2300 Copenhagen, Denmark
- Department of Veterinary and Animal Sciences, University of Copenhagen, 4 Stigboejlen, 1870 Frederiksberg, Denmark
| | - Morten Rasmussen
- Department of Virus & Microbiological Special Diagnostics, Statens Serum Institut, 5 Artillerivej, DK-2300 Copenhagen, Denmark
| | - Katja Spiess
- Department of Virus & Microbiological Special Diagnostics, Statens Serum Institut, 5 Artillerivej, DK-2300 Copenhagen, Denmark
| | - Anders Fomsgaard
- Department of Virus & Microbiological Special Diagnostics, Statens Serum Institut, 5 Artillerivej, DK-2300 Copenhagen, Denmark
| | - Graham J. Belsham
- Department of Veterinary and Animal Sciences, University of Copenhagen, 4 Stigboejlen, 1870 Frederiksberg, Denmark
| | - Jannik Fonager
- Department of Virus & Microbiological Special Diagnostics, Statens Serum Institut, 5 Artillerivej, DK-2300 Copenhagen, Denmark
| |
Collapse
|
8
|
Genome Sequences of 16 Enterovirus Isolates from Environmental Sewage in Guatemala, 2019 to 2021. Microbiol Resour Announc 2022; 11:e0056222. [PMID: 35950869 PMCID: PMC9476903 DOI: 10.1128/mra.00562-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Enteroviruses can cause human infectious disease. We report 16 near-complete genome sequences of enteroviruses that were isolated through environmental surveillance of wastewater in Guatemala.
Collapse
|
9
|
Bujaki E, Farkas Á, Takács M. Echovirus 9 genetic diversity detected in whole-capsid genome sequences obtained directly from clinical specimens using next generation sequencing. Acta Microbiol Immunol Hung 2022; 69:233-240. [PMID: 35895489 DOI: 10.1556/030.2022.01788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/09/2022] [Indexed: 11/19/2022]
Abstract
Abstract
Echovirus 9 (E9) has been detected in an increased number of symptomatic patient samples received by the National Enterovirus Reference Laboratory in Hungary during 2018 compared to previously reported years.
Formerly identified E9 viruses from different specimen types detected from patients of various ages and showing differing clinical signs were chosen for the detailed analysis of genetic relationships and potential variations within the viral populations. We used next generation sequencing (NGS) analysis of 3,900 nucleotide long amplicons covering the entire capsid coding region of the viral genome without isolation, directly from clinical samples.
Compared to the E9 reference strain, the viruses showed about 79% nucleotide and around 93% amino acid sequence similarity. The four new viral genome sequences had 1-20 nucleotide differences between them also resulting in 6 amino acid variances in the coding region, including 3 in the structural VP1 capsid protein. One virus from a patient with hand, foot, and mouth disease had two amino acid changes in the VP1 capsid protein. An amino acid difference was also detected in the non-structural 2C gene of one virus sequenced from a throat swab sample from a patient with meningitis, compared to the faecal specimen taken two days later. Two amino acid changes, one in the capsid protein, were found between faecal samples of meningitis patients of different ages.
Sequencing the whole capsid genome revealed several nucleotide and amino acid differences between E9 virus strains detected in Hungary in 2018.
Collapse
Affiliation(s)
- Erika Bujaki
- National Public Health Center, Department of Virology, Budapest, Hungary
| | - Ágnes Farkas
- National Public Health Center, Department of Virology, Budapest, Hungary
| | - Mária Takács
- National Public Health Center, Department of Virology, Budapest, Hungary
- Semmelweis University, Institute of Medical Microbiology, Budapest, Hungary
| |
Collapse
|
10
|
Martin J, Burns CC, Jorba J, Shulman LM, Macadam A, Klapsa D, Majumdar M, Bullows J, Frolov A, Mate R, Bujaki E, Castro CJ, Bullard K, Konz J, Hawes K, Gauld J, Blake IM, Mercer LD, Kurji F, Voorman A, Diop OM, Oberste MS, Modlin J, Macklin G, Eisenhawer M, Bandyopadhyay AS, Zipursky S. Genetic Characterization of Novel Oral Polio Vaccine Type 2 Viruses During Initial Use Phase Under Emergency Use Listing - Worldwide, March-October 2021. MMWR. MORBIDITY AND MORTALITY WEEKLY REPORT 2022; 71:786-790. [PMID: 35709073 DOI: 10.15585/mmwr.mm7124a2] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The emergence and international spread of neurovirulent circulating vaccine-derived polioviruses (cVDPVs) across multiple countries in Africa and Asia in recent years pose a major challenge to the goal of eradicating all forms of polioviruses. Approximately 90% of all cVDPV outbreaks are caused by the type 2 strain of the Sabin vaccine, an oral live, attenuated vaccine; cVDPV outbreaks typically occur in areas of persistently low immunization coverage (1). A novel type 2 oral poliovirus vaccine (nOPV2), produced by genetic modification of the type 2 Sabin vaccine virus genome (2), was developed and evaluated through phase I and phase II clinical trials during 2017-2019. nOPV2 was demonstrated to be safe and well-tolerated, have noninferior immunogenicity, and have superior genetic stability compared with Sabin monovalent type 2 (as measured by preservation of the primary attenuation site [domain V in the 5' noncoding region] and significantly lower neurovirulence of fecally shed vaccine virus in transgenic mice) (3-5). These findings indicate that nOPV2 could be an important tool in reducing the risk for generating vaccine-derived polioviruses (VDPVs) and the risk for vaccine-associated paralytic poliomyelitis cases. Based on the favorable preclinical and clinical data, and the public health emergency of international concern generated by ongoing endemic wild poliovirus transmission and cVDPV type 2 outbreaks, the World Health Organization authorized nOPV2 for use under the Emergency Use Listing (EUL) pathway in November 2020, allowing for its first use for outbreak response in March 2021 (6). As required by the EUL process, among other EUL obligations, an extensive plan was developed and deployed for obtaining and monitoring nOPV2 isolates detected during acute flaccid paralysis (AFP) surveillance, environmental surveillance, adverse events after immunization surveillance, and targeted surveillance for adverse events of special interest (i.e., prespecified events that have the potential to be causally associated with the vaccine product), during outbreak response, as well as through planned field studies. Under this monitoring framework, data generated from whole-genome sequencing of nOPV2 isolates, alongside other virologic data for isolates from AFP and environmental surveillance systems, are reviewed by the genetic characterization subgroup of an nOPV working group of the Global Polio Eradication Initiative. Global nOPV2 genomic surveillance during March-October 2021 confirmed genetic stability of the primary attenuating site. Sequence data generated through this unprecedented global effort confirm the genetic stability of nOPV2 relative to Sabin 2 and suggest that nOPV2 will be an important tool in the eradication of poliomyelitis. nOPV2 surveillance should continue for the duration of the EUL.
Collapse
|
11
|
Genetic characterization of upper respiratory tract virome from nonvaccinated Egyptian cow-calf operations. PLoS One 2022; 17:e0267036. [PMID: 35511760 PMCID: PMC9070947 DOI: 10.1371/journal.pone.0267036] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 03/31/2022] [Indexed: 11/19/2022] Open
Abstract
Bovine respiratory disease (BRD) is the costliest complex disease affecting the cattle industry worldwide, with significant economic losses. BRD pathogenesis involves several interactions between microorganisms, such as bacteria and viruses, and management factors. The present study aimed to characterize the nasal virome from 43 pooled nasal swab samples collected from Egyptian nonvaccinated cow-calf operations with acute BRD from January to February 2020 using metagenomic sequencing. Bovine herpesvirus-1 (BHV-1), first detection of bovine herpesvirus-5 (BHV-5), and first detection of bovine parvovirus-3 (BPV-3) were the most commonly identified in Egyptian cattle. Moreover, phylogenetic analysis of glycoprotein B revealed that the BHV-1 isolate is closely related to the Cooper reference strain (genotype 1.1), whereas the BHV-5 isolate is closely related to the reference virus GenBank NP_954920.1. In addition, the whole-genome sequence of BPV-3 showed 93.02% nucleotide identity with the reference virus GenBank AF406967.1. In this study, several DNA viruses, such as BHV-1 and first detection BHV-5, and BPV-3, were detected and may have an association with the BRD in Egyptian cattle. Therefore, further research, including investigating more samples from different locations to determine the prevalence of detected viruses and their contributions to BRD in cattle in Egypt, is needed.
Collapse
|
12
|
Xiao T, Leng H, Zhang Q, Chen Q, Guo H, Qi Y. Isolation and characterization of a Sabin 3/Sabin 1 recombinant vaccine-derived poliovirus from a child with severe combined immunodeficiency. Virus Res 2021; 308:198633. [PMID: 34793871 DOI: 10.1016/j.virusres.2021.198633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 10/19/2022]
Abstract
An 8-month-old child diagnosed with severe combined immunodeficiency (SCID) was found to be excreting vaccine-derived poliovirus (VDPVs). Five stool samples from the child and stool samples from 24 contacts were collected during the following 7 months. Complete genome sequence by next generation sequencing (NGS) identified 0.7 to 1.4% nucleotide substitutions in the capsid P1 region of the first and the last isolates compared with Sabin 3 strain. Simplot analysis revealed that all isolates were Sabin 3/Sabin 1 recombinants, sharing a single recombination breakpoint in the 2C region. Multiple nucleotide variants were identified in the 5'UTR (T472→C and G395→A); amino acid mutations were identified in residues at VP1-6 (Thr to Ile), VP1-105 (Met to Thr), VP1-286 (Arg to Lys), VP2-155 (Lys to Glu), VP3-59 (Ser to Asn) and VP3-91 (Phe to Ser). These variants were commonly observed in other PV strains, which may contribute to attenuation and temperature sensitivity. None of the 24 tested contacts of the patient and related transmits was found to be infected with poliovirus. Our study provides a rapid and reliable method for the characterization of VDPV research in Poliovirus infection. In post-OPV era, immunodeficient people with persistent and chronic infection remain a major challenge for polio eradication in China.
Collapse
Affiliation(s)
- Tianhe Xiao
- Key Laboratory of Enteric Pathogenic Microbiology, Ministry of Health, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China; Department of Bioengineering, University of California, San Diego, CA 92093, USA
| | - Hongying Leng
- Key Laboratory of Enteric Pathogenic Microbiology, Ministry of Health, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China
| | - Qian Zhang
- College of pharmacy, Nankai University, Tianjin 300353, China
| | - Qiang Chen
- Key Laboratory of Enteric Pathogenic Microbiology, Ministry of Health, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China
| | - Hongxiong Guo
- Key Laboratory of Enteric Pathogenic Microbiology, Ministry of Health, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China
| | - Yuhua Qi
- Key Laboratory of Enteric Pathogenic Microbiology, Ministry of Health, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China.
| |
Collapse
|
13
|
Next-generation sequencing of human respiratory syncytial virus subgroups A and B genomes. J Virol Methods 2021; 299:114335. [PMID: 34673119 DOI: 10.1016/j.jviromet.2021.114335] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/17/2021] [Accepted: 10/11/2021] [Indexed: 11/20/2022]
Abstract
Human respiratory syncytial virus (HRSV) is a leading cause of acute respiratory illness in young children worldwide. Whole genome sequencing of HRSV offers enhanced resolution of strain variability for epidemiological surveillance and provides genomic information essential for antiviral and vaccine development. A 10-amplicon one-step RT-PCR assay and a 20-amplicon nested RT-PCR assay with enhanced sensitivity were developed to amplify whole HRSV genomes from samples containing high and low viral loads, respectively. Ninety-six HRSV-positive samples comprised of 58 clinical specimens and 38 virus isolates with Ct values ≤ 24 were amplified successfully using the 10-amplicon one-step RT-PCR method and multiplexed in a single MiSeq run. Genome coverage exceeded 99.3% for all 96 samples. The 20-amplicon nested RT-PCR NGS method was used to generate >99.6% HRSV full-length genome for 72 clinical specimens with Ct values ranging from 24 to 33. Phylogenetic analysis of the genome sequences obtained from the 130 clinical specimens revealed a wide diversity of HRSV genotypes demonstrating methodologic robustness.
Collapse
|
14
|
Whole-Genome Sequences of Enteroviruses D94 and D111 Isolated from Stool Specimens in Angola. Microbiol Resour Announc 2021; 10:e0072821. [PMID: 34617779 PMCID: PMC8496355 DOI: 10.1128/mra.00728-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report the whole-genome sequences of new enterovirus D94 and D111 strains, isolated from cultures from stool specimens collected from acute flaccid paralysis (AFP) cases for poliovirus surveillance in Angola during 2010.
Collapse
|
15
|
Kitamura K, Takagi H, Oka T, Kataoka M, Ueki Y, Sakagami A. Intertypic reassortment of mammalian orthoreovirus identified in wastewater in Japan. Sci Rep 2021; 11:12583. [PMID: 34131201 PMCID: PMC8206364 DOI: 10.1038/s41598-021-92019-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/04/2021] [Indexed: 11/29/2022] Open
Abstract
Mammalian orthoreovirus (MRV), a non-enveloped virus with a ten-segmented double-stranded RNA genome, infects virtually all mammals, including humans. Human infection with MRV seems to be common in early childhood, but is rarely symptomatic. Despite the ubiquitous presence of MRV in mammals as well as in environmental waters, the molecular characterisation of the MRV genome remains to be fully elucidated. In this study, two novel strains, MRV-2 THK0325 and MRV-1 THK0617, were unintentionally isolated from wastewater in Japan via an environmental surveillance of enteric viruses. Homology and phylogenetic analysis demonstrated that all the segments of THK0325 were closely related to the MRV-2 Osaka strains, which were recently proposed to have existed for at least two decades in Japan. Most of the segments in THK0617 also showed a close relationship with the MRV-2 Osaka strains, but the M2, S1, and S3 segments belong to another MRV cluster. According to the S1 sequence, the determinant of serotype THK0617 was classified as MRV-1, and both the M2 and S3 segments were closely related to MRV-1 and -3 from the tree shrew in China. These results suggest that the MRV-2 Osaka-like strain spread widely throughout Japan, accompanied by intertypic reassortment occurring in East Asia.
Collapse
Affiliation(s)
- Kouichi Kitamura
- Department of Virology II, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi-murayama, Tokyo, 208-0011, Japan.
| | - Hirotaka Takagi
- Management Department of Biosafety and Laboratory Animal, National Institute of Infectious Diseases, Tokyo, 208-0011, Japan
| | - Tomoichiro Oka
- Department of Virology II, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi-murayama, Tokyo, 208-0011, Japan
| | - Michiyo Kataoka
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, 208-0011, Japan
| | - Yo Ueki
- Miyagi Prefectural Institute of Public Health and Environment, Sendai, 983-0836, Japan
| | - Akie Sakagami
- Miyagi Prefectural Institute of Public Health and Environment, Sendai, 983-0836, Japan
| |
Collapse
|
16
|
Song K, Lin X, Liu Y, Ji F, Zhang L, Chen P, Zhao C, Song Y, Tao Z, Xu A. Detection of Human Sapoviruses in Sewage in China by Next Generation Sequencing. FOOD AND ENVIRONMENTAL VIROLOGY 2021; 13:270-280. [PMID: 33755873 PMCID: PMC7985922 DOI: 10.1007/s12560-021-09469-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 02/25/2021] [Indexed: 06/12/2023]
Abstract
Human sapovirus (SaV) is an important causative agent of nonbacterial gastroenteritis in humans. However, little is known about its circulation in China. To study the prevalence and diversity of human SaV genotypes circulating in eastern China, a 3-year environmental surveillance combined with next generation sequencing (NGS) technology was conducted. A total of 36 raw sewage samples were collected from January 2017 to December 2019 in Jinan and processed. Thirty-five (97.22%) samples were positive for human SaV genome in quantitative RT-PCR assay; 33 (91.67%) samples were positive in nested RT-PCR assay on partial capsid VP1 sequence and all amplicons were further analyzed separately by NGS. Among those, ten genotypes belonging to the genogroups of GI, GII, GIV, and GV were identified by NGS, including 4 major genotypes (GI.2, GI.1, GV.1 and GI.3) and 6 uncommon genotypes (GII.5, GII.1, GII.NA1, GII.3, GI.6 and GIV.1). A temporal switch of predominant genotype was observed from GI.2 to GI.1 around June 2019. Local and foreign sequences clustered together in some branches according to phylogenetic analysis, indicating frequent transmission of various lineages in different regions of the world. Environmental surveillance provides a comprehensive picture of human SaV in China. NGS-based environmental surveillance improves our knowledge on human SaV circulating in communities greatly and should be encouraged as a sensitive surveillance tool.
Collapse
Affiliation(s)
- Ke Song
- Department of Microbiology, School of Public Health, Cheeloo College of Medicine, Shandong University, No. 44 Wenhuaxi Road, Jinan, 250012, People's Republic of China
| | - Xiaojuan Lin
- Shandong Provincial Key Laboratory of Infectious Disease Control and Prevention, Shandong Center for Disease Control and Prevention, No. 16992 Jingshi Road, Jinan, 250014, People's Republic of China
| | - Yao Liu
- Shandong Provincial Key Laboratory of Infectious Disease Control and Prevention, Shandong Center for Disease Control and Prevention, No. 16992 Jingshi Road, Jinan, 250014, People's Republic of China
| | - Feng Ji
- Shandong Provincial Key Laboratory of Infectious Disease Control and Prevention, Shandong Center for Disease Control and Prevention, No. 16992 Jingshi Road, Jinan, 250014, People's Republic of China
| | - Li Zhang
- Shandong Provincial Key Laboratory of Infectious Disease Control and Prevention, Shandong Center for Disease Control and Prevention, No. 16992 Jingshi Road, Jinan, 250014, People's Republic of China
| | - Peng Chen
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, 44-1 Wenhuaxi Road, Jinan, 250012, People's Republic of China
| | - Chenxu Zhao
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, No. 44 Wenhuaxi Road, Jinan, 250012, People's Republic of China
| | - Yanyan Song
- Department of Microbiology, School of Public Health, Cheeloo College of Medicine, Shandong University, No. 44 Wenhuaxi Road, Jinan, 250012, People's Republic of China.
| | - Zexin Tao
- Shandong Provincial Key Laboratory of Infectious Disease Control and Prevention, Shandong Center for Disease Control and Prevention, No. 16992 Jingshi Road, Jinan, 250014, People's Republic of China.
| | - Aiqiang Xu
- Shandong Provincial Key Laboratory of Infectious Disease Control and Prevention, Shandong Center for Disease Control and Prevention, No. 16992 Jingshi Road, Jinan, 250014, People's Republic of China
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, No. 44 Wenhuaxi Road, Jinan, 250012, People's Republic of China
| |
Collapse
|
17
|
Abstract
The world of vaccines has changed tremendously since the time of Louis Pasteur. In the present day, it is regarded as vaccinology, a discipline which includes not only the knowledge of vaccine production, strategies for its delivery and influence on the clinical course of disease and the response of the host immune system but also regulatory, ethical, economic and ecological aspects of their use. A hundred years after Pasteur created the first vaccine, there was another scientific breakthrough of great importance in this field, i. e. Sanger sequencing. Progress in genome sequencing and other molecular techniques over the intervening 40 years has been enormous. High-throughput sequencing (HTS) platforms and bioinformatics tools are becoming widely available, falling in cost, and results are achieved very quickly. They enable the construction of modern vaccines, as well as the assessment of their safety, effectiveness and impact on the host organism and the environment. These techniques can also provide a tool for quality control of vaccines. Unprecedented possibilities are opened up by the HTS technique, but limiting factors on its implementation have to be contended with such as lack of reference materials and problems with method optimisation or validation. In the face of the current COVID-19 pandemic, a significant role is allotted to this sequencing technique while an effective vaccine against the disease caused by SARS-CoV-2 is sough.
Collapse
|
18
|
Rose EB, Washington EJ, Wang L, Benowitz I, Thornburg NJ, Gerber SI, Peret TCT, Langley GE. Multiple Respiratory Syncytial Virus Introductions Into a Neonatal Intensive Care Unit. J Pediatric Infect Dis Soc 2021; 10:118-124. [PMID: 32249314 DOI: 10.1093/jpids/piaa026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 03/06/2020] [Indexed: 02/02/2023]
Abstract
BACKGROUND Outbreaks of respiratory syncytial virus (RSV) in neonatal intensive care units (NICUs) are of concern because of the risk of severe disease in young infants. We describe an outbreak of RSV in a NICU and use whole genome sequencing (WGS) to better understand the relatedness of viruses among patients. METHODS An investigation was conducted to identify patients and describe their clinical course. Infection control measures were implemented to prevent further spread. Respiratory specimens from outbreak-related patients and the community were tested using WGS. Phylogenetic trees were constructed to understand relatedness of the viruses. RESULTS Seven patients developed respiratory symptoms within an 11-day span in December 2017 and were diagnosed with RSV; 6 patients (86%) were preterm and 1 had chronic lung disease. Three patients required additional respiratory support after symptom onset, and none died. Six of 7 patients were part of the same cluster based on > 99.99% nucleotide agreement with each other and 3 unique single-nucleotide polymorphisms were identified in viruses sequenced from those patients. The seventh patient was admitted from the community with respiratory symptoms and had a genetically distinct virus that was not related to the other 6. Implementation of enhanced infection control measures likely limited the spread. CONCLUSIONS Using WGS, we found 2 distinct introductions of RSV into a NICU, highlighting the risk of healthcare-associated infections during RSV season. Early recognition and infection control measures likely limited spread, emphasizing the importance of considering RSV in the differential diagnosis of respiratory infections in healthcare settings.
Collapse
Affiliation(s)
- Erica Billig Rose
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA.,Epidemic Intelligence Service, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Erica J Washington
- Louisiana Department of Health, Office of Public Health, Infectious Disease Epidemiology Section, New Orleans, Louisiana, USA
| | - Lijuan Wang
- IHRC Inc, contracting agency to the Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Isaac Benowitz
- Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Natalie J Thornburg
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Susan I Gerber
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Teresa C T Peret
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Gayle E Langley
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
19
|
Hull JJA, Qi M, Montmayeur AM, Kumar D, Velasquez DE, Moon SS, Magaña LC, Betrapally N, Ng TFF, Jiang B, Marthaler D. Metagenomic sequencing generates the whole genomes of porcine rotavirus A, C, and H from the United States. PLoS One 2020; 15:e0244498. [PMID: 33373390 PMCID: PMC7771860 DOI: 10.1371/journal.pone.0244498] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023] Open
Abstract
The genus Rotavirus comprises eight species, designated A to H, and two recently identified tentative species I in dogs and J in bats. Species Rotavirus A, B, C and H (RVA, RVB, RVC and RVH) have been detected in humans and animals. While human and animal RVA are well characterized and defined, complete porcine genome sequences in the GenBank are limited compared to human strains. Here, we used a metagenomic approach to sequence the 11 segments of RVA, RVC and RVH strains from piglets in the United States (US) and explore the evolutionary relations of these RV species. Metagenomics identified Astroviridae, Picornaviridae, Caliciviridae, Coronoviridae in samples MN9.65 and OK5.68 while Picobirnaviridae and Arteriviridae were only identified in sample OK5.68. Whole genome sequencing and phylogenetic analyses identified multiple genotypes with the RVA of strain MN9.65 and OK5.68, with the genome constellation of G5/G9-P[7]/P[13]-I5/I5- R1/R1-C1-M1-A8-N1-T7-E1/E1-H1 and G5/G9-P[6]/P[7]-I5-R1/R1-C1-M1-A8-N1-T1/T7-E1/E1-H1, respectively. The RVA strains had a complex evolutionary relationship with other mammalian strains. The RVC strain OK5.68 had a genome constellation of G9-P[6]-I1-R1-C5-M6-A5-N1-T1-E1-H1, and shared an evolutionary relationship with porcine strains from the US. The RVH strains MN9.65 and OK5.68 had the genome constellation of G5-P1-I1-R1-C1-M1-A5-N1-T1-E4-H1 and G5-P1-I1-R1-C1-M1-A5-N1-T1-E1-H1, indicating multiple RVH genome constellations are circulating in the US. These findings allow us to understand the complexity of the enteric virome, develop improved screening methods for RVC and RVH strains, facilitate expanded rotavirus surveillance in pigs, and increase our understanding of the origin and evolution of rotavirus species.
Collapse
Affiliation(s)
- Jennifer J. A. Hull
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Mingpu Qi
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, Kansas, United States of America
| | - Anna M. Montmayeur
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Deepak Kumar
- Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, Kansas, United States of America
| | - Daniel E. Velasquez
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Sung-Sil Moon
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Laura Cristal Magaña
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, United States of America
| | - Naga Betrapally
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, United States of America
| | - Terry Fei Fan Ng
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Baoming Jiang
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- * E-mail:
| | - Douglas Marthaler
- Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, Kansas, United States of America
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota, United States of America
| |
Collapse
|
20
|
The Early Evolution of Oral Poliovirus Vaccine Is Shaped by Strong Positive Selection and Tight Transmission Bottlenecks. Cell Host Microbe 2020; 29:32-43.e4. [PMID: 33212020 PMCID: PMC7815045 DOI: 10.1016/j.chom.2020.10.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/12/2020] [Accepted: 10/26/2020] [Indexed: 01/06/2023]
Abstract
The emergence of circulating vaccine-derived polioviruses through evolution of the oral polio vaccine (OPV) poses a significant obstacle to polio eradication. Understanding the early genetic changes that occur as OPV evolves and transmits is important for preventing future outbreaks. Here, we use deep sequencing to define the evolutionary trajectories of type 2 OPV in a vaccine trial. By sequencing 497 longitudinal stool samples from 271 OPV2 recipients and household contacts, we were able to examine the extent of convergent evolution in vaccinated individuals and the amount of viral diversity that is transmitted. In addition to rapid reversion of key attenuating mutations, we identify strong selection at 19 sites across the genome. We find that a tight transmission bottleneck limits the onward transmission of these early adaptive mutations. Our results highlight the distinct evolutionary dynamics of live attenuated virus vaccines and have important implications for the success of next-generation OPV.
Collapse
|
21
|
Chen X. Potential neuroinvasive and neurotrophic properties of SARS-CoV-2 in pediatric patients: comparison of SARS-CoV-2 with non-segmented RNA viruses. J Neurovirol 2020; 26:929-940. [PMID: 33057966 PMCID: PMC7556565 DOI: 10.1007/s13365-020-00913-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/20/2020] [Accepted: 09/21/2020] [Indexed: 01/02/2023]
Abstract
The emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is causing global health crises. Children can be infected, but are less likely to develop severe neurological abnormalities compared with adults. However, whether SARS-CoV-2 can directly cause neurological impairments in pediatric patients is not known. The possible evolutionary and molecular relationship between SARS-CoV-2 and non-segmented RNA viruses were examined with reference to neurological disorders in pediatric patients. SARS-CoV-2 shares similar functional domains with neuroinvasive and neurotropic RNA viruses. The Spike 1 (S1) receptor binding domain and the cleavage sites at S1/S2 boundary are less conserved compared with the S2 among coronaviruses.
Collapse
Affiliation(s)
- Xiaodi Chen
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, The Alpert Medical School of Brown University, 101 Dudley Street, Providence, RI, 02905-2499, USA.
| |
Collapse
|
22
|
Castro CJ, Marine RL, Ramos E, Ng TFF. The effect of variant interference on de novo assembly for viral deep sequencing. BMC Genomics 2020; 21:421. [PMID: 32571214 PMCID: PMC7306937 DOI: 10.1186/s12864-020-06801-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/02/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Viruses have high mutation rates and generally exist as a mixture of variants in biological samples. Next-generation sequencing (NGS) approaches have surpassed Sanger for generating long viral sequences, yet how variants affect NGS de novo assembly remains largely unexplored. RESULTS Our results from > 15,000 simulated experiments showed that presence of variants can turn an assembly of one genome into tens to thousands of contigs. This "variant interference" (VI) is highly consistent and reproducible by ten commonly-used de novo assemblers, and occurs over a range of genome length, read length, and GC content. The main driver of VI is pairwise identities between viral variants. These findings were further supported by in silico simulations, where selective removal of minor variant reads from clinical datasets allow the "rescue" of full viral genomes from fragmented contigs. CONCLUSIONS These results call for careful interpretation of contigs and contig numbers from de novo assembly in viral deep sequencing.
Collapse
Affiliation(s)
- Christina J Castro
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - Rachel L Marine
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
| | - Edward Ramos
- General Dynamics Information Technology, Inc., contracting agency to the Office of Informatics, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Falls Church, VA, USA
| | - Terry Fei Fan Ng
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA.
| |
Collapse
|
23
|
Park GW, Ng TFF, Freeland AL, Marconi VC, Boom JA, Staat MA, Montmayeur AM, Browne H, Narayanan J, Payne DC, Cardemil CV, Treffiletti A, Vinjé J. CrAssphage as a Novel Tool to Detect Human Fecal Contamination on Environmental Surfaces and Hands. Emerg Infect Dis 2020; 26:1731-1739. [PMID: 32511090 PMCID: PMC7392416 DOI: 10.3201/eid2608.200346] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
CrAssphage is a recently discovered human gut–associated bacteriophage. To validate the potential use of crAssphage for detecting human fecal contamination on environmental surfaces and hands, we tested stool samples (n = 60), hand samples (n = 30), and environmental swab samples (n = 201) from 17 norovirus outbreaks for crAssphage by real-time PCR. In addition, we tested stool samples from healthy persons (n = 173), respiratory samples (n = 113), and animal fecal specimens (n = 68) and further sequenced positive samples. Overall, we detected crAssphage in 71.4% of outbreak stool samples, 48%–68.5% of stool samples from healthy persons, 56.2% of environmental swabs, and 60% of hand rinse samples, but not in human respiratory samples or animal fecal samples. CrAssphage sequences could be grouped into 2 major genetic clusters. Our data suggest that crAssphage could be used to detect human fecal contamination on environmental surfaces and hands.
Collapse
|
24
|
Marine RL, Magaña LC, Castro CJ, Zhao K, Montmayeur AM, Schmidt A, Diez-Valcarce M, Ng TFF, Vinjé J, Burns CC, Nix WA, Rota PA, Oberste MS. Comparison of Illumina MiSeq and the Ion Torrent PGM and S5 platforms for whole-genome sequencing of picornaviruses and caliciviruses. J Virol Methods 2020; 280:113865. [PMID: 32302601 PMCID: PMC9119587 DOI: 10.1016/j.jviromet.2020.113865] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 02/04/2020] [Accepted: 04/06/2020] [Indexed: 02/06/2023]
Abstract
Next-generation sequencing is a powerful tool for virological surveillance. While Illumina® and Ion Torrent® sequencing platforms are used extensively for generating viral RNA genome sequences, there is limited data comparing different platforms. The Illumina MiSeq, Ion Torrent PGM and Ion Torrent S5 platforms were evaluated using a panel of sixteen specimens containing picornaviruses and human caliciviruses (noroviruses and sapoviruses). The specimens were processed, using combinations of three library preparation and five sequencing kits, to assess the quality and completeness of assembled viral genomes, and an estimation of cost per sample to generate the data was calculated. The choice of library preparation kit and sequencing platform was found to impact the breadth of genome coverage and accuracy of consensus viral genomes. The Ion Torrent S5 510 chip runs produced more reads at a lower cost per sample than the highest output Ion Torrent PGM 318 chip run, and generated the highest proportion of reads for enterovirus D68 samples. However, indels at homopolymer regions impacted the accuracy of consensus genome sequences. For lower throughput sequencing runs (i.e., Ion Torrent 510 and Illumina MiSeq Nano V2), the cost per sample was lower on the MiSeq platform, whereas with higher throughput runs (Ion Torrent 530 and Illumina MiSeq V2) there is less of a difference in the cost per sample between the two sequencing platforms ($5.47-$10.25 more per sample for an Ion Torrent 530 chip run when multiplexing 24 samples). These findings suggest that the Ion Torrent S5 and Illumina MiSeq platforms are both viable options for genomic sequencing of RNA viruses, each with specific advantages and tradeoffs.
Collapse
Affiliation(s)
- Rachel L Marine
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - Laura C Magaña
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA; Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, USA
| | - Christina J Castro
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA; Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, USA
| | - Kun Zhao
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | | | - Marta Diez-Valcarce
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA; Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, USA
| | - Terry Fei Fan Ng
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Jan Vinjé
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Cara C Burns
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - W Allan Nix
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Paul A Rota
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - M Steven Oberste
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
25
|
Coulliette-Salmond AD, Alleman MM, Wilnique P, Rey-Benito G, Wright HB, Hecker JW, Miles S, Peñaranda S, Lafontant D, Corvil S, Francois J, Rossignol E, Stanislas M, Gue E, Faye PC, Castro CJ, Schmidt A, Ng TFF, Burns CC, Vega E. Haiti Poliovirus Environmental Surveillance. Am J Trop Med Hyg 2020; 101:1240-1248. [PMID: 31701857 DOI: 10.4269/ajtmh.19-0469] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Poliovirus (PV) environmental surveillance was established in Haiti in three sites each in Port-au-Prince and Gonaïves, where sewage and fecal-influenced environmental open water channel samples were collected monthly from March 2016 to February 2017. The primary objective was to monitor for the emergence of vaccine-derived polioviruses (VDPVs) and the importation and transmission of wild polioviruses (WPVs). A secondary objective was to compare two environmental sample processing methods, the gold standard two-phase separation method and a filter method (bag-mediated filtration system [BMFS]). In addition, non-polio enteroviruses (NPEVs) were characterized by next-generation sequencing using Illumina MiSeq to provide insight on surrogates for PVs. No WPVs or VDPVs were detected at any site with either concentration method. Sabin (vaccine) strain PV type 2 and Sabin strain PV type 1 were found in Port-au-Prince, in March and April samples, respectively. Non-polio enteroviruses were isolated in 75-100% and 0-58% of samples, by either processing method during the reporting period in Port-au-Prince and Gonaïves, respectively. Further analysis of 24 paired Port-au-Prince samples confirmed the detection of a human NPEV and echovirus types E-3, E-6, E-7, E-11, E-19, E-20, and E-29. The comparison of the BMFS filtration method to the two-phase separation method found no significant difference in sensitivity between the two methods (mid-P-value = 0.55). The experience of one calendar year of sampling has informed the appropriateness of the initially chosen sampling sites, importance of an adequate PV surrogate, and robustness of two processing methods.
Collapse
Affiliation(s)
- Angela D Coulliette-Salmond
- Polio and Picornavirus Laboratory Branch, Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Mary M Alleman
- Polio Eradication Branch, Global Immunization Division, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Pierre Wilnique
- Division of Epidemiology, Laboratory and Research, Ministry of Public Health and Population, Port-au-Prince, Haiti
| | - Gloria Rey-Benito
- Pan American Health Organization, World Health Organization, Washington, District of Columbia
| | | | | | | | - Silvia Peñaranda
- Polio and Picornavirus Laboratory Branch, Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Donald Lafontant
- Division of Epidemiology, Laboratory and Research, Ministry of Public Health and Population, Port-au-Prince, Haiti
| | - Salomon Corvil
- Division of Epidemiology, Laboratory and Research, Ministry of Public Health and Population, Port-au-Prince, Haiti
| | - Jeannot Francois
- Expanded Programme on Immunization, Ministry of Public Health and Population, Port-au-Prince, Haiti
| | - Emmanuel Rossignol
- National Public Health Laboratory, Ministry of Public Health and Population, Port-au-Prince, Haiti
| | - Magalie Stanislas
- National Public Health Laboratory, Ministry of Public Health and Population, Port-au-Prince, Haiti
| | - Edmond Gue
- Pan American Health Organization, World Health Organization Region of the Americas, Port-au-Prince, Haiti
| | - Papa C Faye
- Pan American Health Organization, World Health Organization Region of the Americas, Port-au-Prince, Haiti
| | - Christina J Castro
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee.,Polio and Picornavirus Laboratory Branch, Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | | | - Terry Fei Fan Ng
- Polio and Picornavirus Laboratory Branch, Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Cara C Burns
- Polio and Picornavirus Laboratory Branch, Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Everardo Vega
- Polio and Picornavirus Laboratory Branch, Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
26
|
Armién AG, Wolf TM, Mor SK, Ng TFF, Bracht AJ, Goyal SM, Rasmussen JM. Molecular and Biological Characterization of a Cervidpoxvirus Isolated From Moose with Necrotizing Dermatitis. Vet Pathol 2020; 57:296-310. [PMID: 32096438 DOI: 10.1177/0300985819891240] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Cervidpoxvirus is one of the more recently designated genera within the subfamily Chordopoxvirinae, with Deerpox virus (DPV) as the only recognized species to date. In this study, the authors describe spontaneous disease and infection in the North American moose (Alces americanus) by a novel Cervidpoxvirus, here named Moosepox virus (MPV). Three 4-month-old moose calves developed a multifocal subacute-to-chronic, necrotizing, suppurative-to-granulomatous dermatitis that affected the face and the extremities. Ultrastructurally, all stages of MPV morphogenesis-that is, crescents, spherical immature particles, mature particles, and enveloped mature virus-were observed in skin tissue. In vitro infection with MPV confirmed that its morphogenesis was similar to that of the prototype vaccinia virus. The entire coding region, including 170 putative genes of this MPV, was sequenced and annotated. The sequence length was 164,258 bp with 98.5% nucleotide identity with DPV (strain W-1170-84) based on the whole genome. The genome of the study virus was distinct from that of the reference strain (W-1170-84) in certain genes, including the CD30-like protein (83.9% nucleotide, 81.6% amino acid), the endothelin precursor (73.2% nucleotide including some indels, 51.4% amino acid), and major histocompatibility class (MHC) class I-like protein (81.0% nucleotide, 68.2% amino acid). This study provides biological characterization of a new Cervidpoxvirus attained through in vivo and in vitro ultrastructural analyses. It also demonstrates the importance of whole-genome sequencing in the molecular characterization of poxviruses identified in taxonomically related hosts.
Collapse
Affiliation(s)
- Anibal G Armién
- Veterinary Diagnostic Laboratory, University of Minnesota, St. Paul, MN, USA.,Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, USA
| | - Tiffany M Wolf
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, USA.,Minnesota Zoological Garden, Apple Valley, MN, USA
| | - Sunil Kumar Mor
- Veterinary Diagnostic Laboratory, University of Minnesota, St. Paul, MN, USA.,Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, USA
| | - Terry Fei Fan Ng
- College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Alexa J Bracht
- United State Department of Agriculture, Animal and Plant Health Inspection Service, National Veterinary Services Laboratory, Foreign Animal Disease Diagnostic Laboratory, Greenport, NY, USA
| | - Sagar M Goyal
- Veterinary Diagnostic Laboratory, University of Minnesota, St. Paul, MN, USA.,Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, USA
| | | |
Collapse
|
27
|
Antifungal Triazole Posaconazole Targets an Early Stage of the Parechovirus A3 Life Cycle. Antimicrob Agents Chemother 2020; 64:AAC.02372-19. [PMID: 31818821 DOI: 10.1128/aac.02372-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 12/18/2022] Open
Abstract
Viruses in species Parechovirus A (Picornaviridae) are associated with a wide variety of clinical manifestations. Parechovirus A3 (PeV-A3) is known to cause sepsis-like illness, meningitis, and encephalitis in infants and young children. To date, no specific therapies are available to treat PeV-A3-infected children. We had previously identified two FDA-cleared antifungal drugs, itraconazole (ITC) and posaconazole (POS), with potent and specific antiviral activity against PeV-A3. Time-of-addition and synchronized infection assays revealed that POS targets an early stage of the PeV-A3 life cycle. POS exerts an antiviral effect, evidenced by a reduction in viral titer following the addition of POS to Vero-P cells before infection, coaddition of POS and PeV-A3 to Vero-P cells, incubation of POS and PeV-A3 prior to Vero-P infection, and at attachment. POS exerts less of an effect on virus entry. A PeV-A3 enzyme-linked immunosorbent assay inhibition experiment, using an anti-PeV-A3 monoclonal antibody, suggested that POS binds directly to the PeV-A3 capsid. POS-resistant PeV-A3 strains developed by serial passage in the presence of POS acquired substitutions in multiple regions of the genome, including the capsid. Reverse genetics confirmed substitutions in capsid proteins VP0, VP3, and VP1 and nonstructural proteins 2A and 3A. Single mutants VP0_K66R, VP0_A124T, VP3_N88S, VP1_Y224C, 2A_S78L, and 3A_T1I were 4-, 9-, 12-, 34-, 51-, and 119-fold more resistant to POS, respectively, than the susceptible prototype strain. Our studies demonstrate that POS may be a valuable tool in developing an antiviral therapy for PeV-A3.
Collapse
|
28
|
A new solid matrix for preservation of viral nucleic acid from clinical specimens at ambient temperature. J Virol Methods 2019; 274:113732. [DOI: 10.1016/j.jviromet.2019.113732] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 01/08/2023]
|
29
|
Nearly Complete Genome Sequence of an Echovirus 30 Strain from a Cluster of Aseptic Meningitis Cases in California, September 2017. Microbiol Resour Announc 2019; 8:8/44/e01085-19. [PMID: 31672747 PMCID: PMC6953510 DOI: 10.1128/mra.01085-19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report the nearly complete genome sequence of a human enterovirus, a strain of echovirus 30, obtained from a cerebrospinal fluid specimen from a teenaged patient with aseptic meningitis in September 2017. We report the nearly complete genome sequence of a human enterovirus, a strain of echovirus 30, obtained from a cerebrospinal fluid specimen from a teenaged patient with aseptic meningitis in September 2017.
Collapse
|
30
|
Genomic Characterization of a Coxsackievirus A20 Strain Recovered from a Child with Acute Flaccid Paralysis in Nigeria. Microbiol Resour Announc 2019; 8:8/42/e00849-19. [PMID: 31624161 PMCID: PMC6797526 DOI: 10.1128/mra.00849-19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
In light of recurrent outbreaks of circulating vaccine-derived poliovirus 2 (cVDPV2) in Nigeria, we describe the genome sequence of a coxsackievirus A20 strain (CVA20). In light of recurrent outbreaks of circulating vaccine-derived poliovirus 2 (cVDPV2) in Nigeria, we describe the genome sequence of a coxsackievirus A20 strain (CVA20). The nonstructural region (NSR) of this CVA20 genome showed that the enigmatic NSRs in recombinant cVDPV2s (GenBank accession numbers JX275140 and KX162716) found in Nigeria were from indigenous enterovirus species Cs (EV-Cs).
Collapse
|
31
|
Cardona-Ospina JA, Villalba-Miranda MF, Palechor-Ocampo LA, Mancilla LI, Sepúlveda-Arias JC. A systematic review of FTA cards® as a tool for viral RNA preservation in fieldwork: Are they safe and effective? Prev Vet Med 2019; 172:104772. [PMID: 31607414 PMCID: PMC7126379 DOI: 10.1016/j.prevetmed.2019.104772] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 09/08/2019] [Accepted: 09/08/2019] [Indexed: 01/06/2023]
Abstract
BackgroundDetection and characterization of viral RNA pathogens from fieldwork are challenging due to the instability of the RNA molecule. FTA cards® have proved useful for sample storage and latter identification of pathogens with importance for agricultural, animal and human health: however, for optimal handling, processing, and biosafety measures are not well-established. ObjectiveThis systematic review aims to summarize the reported effectiveness of FTA cards® for storage and transport of viral RNA, as well as the conditions for their handling and use in downstream processes. Finally, the biosafety measures required to protect researchers and clinical lab workers are considered. MethodsWe performed a systematic review following the PRISMA statement. We searched MEDLINE (PubMed), Scopus and Web of Science using the keywords “FTA cards” AND “RNA”. Articles were screened by title and abstract, and after examination of inclusion and exclusion criteria, relevant information was extracted. The quality of the studies was assessed, and the evidence was qualitatively summarized. ResultsA total of 175 records were retrieved, and 11 additional documents were found by checking references of the eligible articles. A total of 47 articles were included. Samples from animals accounted for 38.3% of the publications, which identified viruses that cause disease in poultry, wild birds, suids, or bovids. Three different methods for RNA extraction were reported. Other factors that vary across reports include the size of RNA amplicon, storage temperature, and duration of storage. Only fourteen articles tested the inactivation of the virus on the FTA card®, and in one case, the virus remained infective. ConclusionFTA cards® could be a suitable option for RNA virus storage and transport for fieldwork in areas where proper conditions for RNA preservation are difficult to achieve. Three different protocols have been used for RNA detection from this matrix. Biospecimens in the form of dried blood spots should be considered potentially infectious unless specifically treated to inactivate viral pathogens.
Collapse
Affiliation(s)
- Jaime A Cardona-Ospina
- Grupo de Investigación Infección e Inmunidad, Faculty of Health Sciences, Universidad Tecnológica de Pereira, Building 14, Carrera 27 #10-02, Barrio Álamos, Pereira, Risaralda, 660003, Colombia; Public Health and Infection Research Group, Faculty of Health Sciences, Universidad Tecnológica de Pereira, Building 14, Carrera 27 #10-02, Barrio Álamos, Pereira, Risaralda, 660003, Colombia; Grupo de Investigación Biomedicina, Faculty of Medicine, Fundación Universitaria Autónoma de las Américas, Av. Las Américas #98-56, Pereira, Risaralda, 660001, Colombia; Emerging Infectious Diseases and Tropical Medicine Research Group, Instituto para la Investigación en Ciencias Biomédicas - Sci-Help, Cra 37B #36-05, Pereira, Risaralda, 660009, Colombia.
| | - Manuel F Villalba-Miranda
- Grupo de Investigación Infección e Inmunidad, Faculty of Health Sciences, Universidad Tecnológica de Pereira, Building 14, Carrera 27 #10-02, Barrio Álamos, Pereira, Risaralda, 660003, Colombia
| | - Leidy A Palechor-Ocampo
- Grupo de Investigación Infección e Inmunidad, Faculty of Health Sciences, Universidad Tecnológica de Pereira, Building 14, Carrera 27 #10-02, Barrio Álamos, Pereira, Risaralda, 660003, Colombia
| | - Lida I Mancilla
- Grupo de Investigación Infección e Inmunidad, Faculty of Health Sciences, Universidad Tecnológica de Pereira, Building 14, Carrera 27 #10-02, Barrio Álamos, Pereira, Risaralda, 660003, Colombia
| | - Juan C Sepúlveda-Arias
- Grupo de Investigación Infección e Inmunidad, Faculty of Health Sciences, Universidad Tecnológica de Pereira, Building 14, Carrera 27 #10-02, Barrio Álamos, Pereira, Risaralda, 660003, Colombia
| |
Collapse
|
32
|
Zainutdinov SS, Kochneva GV, Netesov SV, Chumakov PM, Matveeva OV. Directed evolution as a tool for the selection of oncolytic RNA viruses with desired phenotypes. Oncolytic Virother 2019; 8:9-26. [PMID: 31372363 PMCID: PMC6636189 DOI: 10.2147/ov.s176523] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 06/07/2019] [Indexed: 12/23/2022] Open
Abstract
Viruses have some characteristics in common with cell-based life. They can evolve and adapt to environmental conditions. Directed evolution can be used by researchers to produce viral strains with desirable phenotypes. Through bioselection, improved strains of oncolytic viruses can be obtained that have better safety profiles, increased specificity for malignant cells, and more efficient spread among tumor cells. It is also possible to select strains capable of killing a broader spectrum of cancer cell variants, so as to achieve a higher frequency of therapeutic responses. This review describes and analyses virus adaptation studies performed with members of four RNA virus families that are used for viral oncolysis: reoviruses, paramyxoviruses, enteroviruses, and rhabdoviruses.
Collapse
Affiliation(s)
- Sergei S Zainutdinov
- State Research Center of Virology and Biotechnology “Vector”
, Koltsovo630559, Russia
| | - Galina V Kochneva
- State Research Center of Virology and Biotechnology “Vector”
, Koltsovo630559, Russia
| | - Sergei V Netesov
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk630090, Russia
| | - Peter M Chumakov
- Engelhardt Institute of Molecular Biology
, Moscow119991, Russia
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products
, Moscow108819, Russia
| | | |
Collapse
|
33
|
Majumdar M, Klapsa D, Wilton T, Akello J, Anscombe C, Allen D, Mee ET, Minor PD, Martin J. Isolation of Vaccine-Like Poliovirus Strains in Sewage Samples From the United Kingdom. J Infect Dis 2019; 217:1222-1230. [PMID: 29309594 DOI: 10.1093/infdis/jix667] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 12/20/2017] [Indexed: 12/25/2022] Open
Abstract
Background Environmental surveillance (ES) is a sensitive method for detecting human enterovirus (HEV) circulation, and it is used worldwide to support global polio eradication. We describe a novel ES approach using next-generation sequencing (NGS) to identify HEVs in sewage samples collected in London, United Kingdom, from June 2016 to May 2017. Methods Two different methods were used to process raw sewage specimens: a 2-phase aqueous separation system and size exclusion by filtration and centrifugation. HEVs were isolated using cell cultures and analyzed using NGS. Results Type 1 and 3 vaccine-like poliovirus (PV) strains were detected in samples collected from September 2016 through January 2017. NGS analysis allowed us to rapidly obtain whole-genome sequences of PV and non-PV HEV strains. As many as 6 virus strains from different HEV serotypes were identified in a single cell culture flask. PV isolates contained only a small number of mutations from vaccine strains commonly seen in early isolates from vaccinees. Conclusions Our ES setup has high sensitivity for polio and non-PV HEV detection, generating nearly whole-genome sequence information. Such ES systems provide critical information to assist the polio eradication endgame and contribute to the improvement of our understanding of HEV circulation patterns in humans.
Collapse
Affiliation(s)
- Manasi Majumdar
- Division of Virology, National Institute for Biological Standards and Control, South Mimms
| | - Dimitra Klapsa
- Division of Virology, National Institute for Biological Standards and Control, South Mimms
| | - Thomas Wilton
- Division of Virology, National Institute for Biological Standards and Control, South Mimms
| | - Joyce Akello
- Enterovirus Unit, Public Health England, London, United Kingdom
| | | | - David Allen
- Enterovirus Unit, Public Health England, London, United Kingdom
| | - Edward T Mee
- Division of Virology, National Institute for Biological Standards and Control, South Mimms
| | - Philip D Minor
- Division of Virology, National Institute for Biological Standards and Control, South Mimms
| | - Javier Martin
- Division of Virology, National Institute for Biological Standards and Control, South Mimms
| |
Collapse
|
34
|
Characterization of Novel Reoviruses Wad Medani Virus (Orbivirus) and Kundal Virus (Coltivirus) Collected from Hyalomma anatolicum Ticks in India during Surveillance for Crimean Congo Hemorrhagic Fever. J Virol 2019; 93:JVI.00106-19. [PMID: 30971476 DOI: 10.1128/jvi.00106-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 03/20/2019] [Indexed: 11/20/2022] Open
Abstract
In 2011, ticks were collected from livestock following an outbreak of Crimean Congo hemorrhagic fever (CCHF) in Gujarat state, India. CCHF-negative Hyalomma anatolicum tick pools were passaged for virus isolation, and two virus isolates were obtained, designated Karyana virus (KARYV) and Kundal virus (KUNDV), respectively. Traditional reverse transcription-PCR (RT-PCR) identification of known viruses was unsuccessful, but a next-generation sequencing (NGS) approach identified KARYV and KUNDV as viruses in the Reoviridae family, Orbivirus and Coltivirus genera, respectively. Viral genomes were de novo assembled, yielding 10 complete segments of KARYV and 12 nearly complete segments of KUNDV. The VP1 gene of KARYV shared a most recent common ancestor with Wad Medani virus (WMV), strain Ar495, and based on nucleotide identity we demonstrate that it is a novel WMV strain. The VP1 segment of KUNDV shares a common ancestor with Colorado tick fever virus, Eyach virus, Tai Forest reovirus, and Tarumizu tick virus from the Coltivirus genus. Based on VP1, VP6, VP7, and VP12 nucleotide and amino acid identities, KUNDV is proposed to be a new species of Coltivirus Electron microscopy supported the classification of KARYV and KUNDV as reoviruses and identified replication morphology consistent with other orbi- and coltiviruses. The identification of novel tick-borne viruses carried by the CCHF vector is an important step in the characterization of their potential role in human and animal pathogenesis.IMPORTANCE Ticks and mosquitoes, as well Culicoides, can transmit viruses in the Reoviridae family. With the help of next-generation sequencing (NGS), previously unreported reoviruses such as equine encephalosis virus, Wad Medani virus (WMV), Kammavanpettai virus (KVPTV), and, with this report, KARYV and KUNDV have been discovered and characterized in India. The isolation of KUNDV and KARYV from Hyalomma anatolicum, which is a known vector for zoonotic pathogens, such as Crimean Congo hemorrhagic fever virus, Babesia, Theileria, and Anaplasma species, identifies arboviruses with the potential to transmit to humans. Characterization of KUNDV and KARYV isolated from Hyalomma ticks is critical for the development of specific serological and molecular assays that can be used to determine the association of these viruses with disease in humans and livestock.
Collapse
|
35
|
Emerging Novel GII.P16 Noroviruses Associated with Multiple Capsid Genotypes. Viruses 2019; 11:v11060535. [PMID: 31181749 PMCID: PMC6631344 DOI: 10.3390/v11060535] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/31/2019] [Accepted: 06/05/2019] [Indexed: 02/01/2023] Open
Abstract
Noroviruses evolve by antigenic drift and recombination, which occurs most frequently at the junction between the non-structural and structural protein coding genomic regions. In 2015, a novel GII.P16-GII.4 Sydney recombinant strain emerged, replacing the predominance of GII.Pe-GII.4 Sydney among US outbreaks. Distinct from GII.P16 polymerases detected since 2010, this novel GII.P16 was subsequently detected among GII.1, GII.2, GII.3, GII.10 and GII.12 viruses, prompting an investigation on the unique characteristics of these viruses. Norovirus positive samples (n = 1807) were dual-typed, of which a subset (n = 124) was sequenced to yield near-complete genomes. CaliciNet and National Outbreak Reporting System (NORS) records were matched to link outbreak characteristics and case outcomes to molecular data and GenBank was mined for contextualization. Recombination with the novel GII.P16 polymerase extended GII.4 Sydney predominance and increased the number of GII.2 outbreaks in the US. Introduction of the novel GII.P16 noroviruses occurred without unique amino acid changes in VP1, more severe case outcomes, or differences in affected population. However, unique changes were found among NS1/2, NS4 and VP2 proteins, which have immune antagonistic functions, and the RdRp. Multiple polymerase-capsid combinations were detected among GII viruses including 11 involving GII.P16. Molecular surveillance of protein sequences from norovirus genomes can inform the functional importance of amino acid changes in emerging recombinant viruses and aid in vaccine and antiviral formulation.
Collapse
|
36
|
Lizarazo E, Couto N, Vincenti-Gonzalez M, Raangs EC, Velasco Z, Bethencourt S, Jaenisch T, Friedrich AW, Tami A, Rossen JW. Applied shotgun metagenomics approach for the genetic characterization of dengue viruses. J Biotechnol 2019; 306S:100009. [PMID: 34112375 DOI: 10.1016/j.btecx.2019.100009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 05/05/2019] [Accepted: 05/06/2019] [Indexed: 12/19/2022]
Abstract
Dengue virus (DENV), an arthropod-borne virus, has rapidly spread in recent years. DENV diagnosis is performed through virus serology, isolation or molecular detection, while genotyping is usually done through Sanger sequencing of the envelope gene. This study aimed to optimize the use of shotgun metagenomics and subsequent bioinformatics analysis to detect and type DENV directly from clinical samples without targeted amplification. Additionally, presence of DENV quasispecies (intra-host variation) was revealed by detecting single nucleotide variants. Viral RNA was isolated with or without DNase-I treatment from 17 DENV (1-4) positive blood samples. cDNA libraries were generated using either a combination of the NEBNext® RNA to synthesize cDNA followed by Nextera XT DNA library preparation, or the TruSeq RNA V2 (TS) library preparation kit. Libraries were sequenced using both the MiSeq and NextSeq. Bioinformatic analysis showed complete ORFs for all samples by all approaches, but longer contigs and higher sequencing depths were obtained with the TS kit. No differences were observed between MiSeq and NextSeq sequencing. Detection of multiple DENV serotypes in a single sample was feasible. Finally, results were obtained within three days with associated reagents costs between €130-170/sample. Therefore, shotgun metagenomics is suitable for identification and typing of DENV in a clinical setting.
Collapse
Affiliation(s)
- Erley Lizarazo
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Groningen, the Netherlands
| | - Natacha Couto
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Groningen, the Netherlands
| | - Maria Vincenti-Gonzalez
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Groningen, the Netherlands
| | - Erwin C Raangs
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Groningen, the Netherlands
| | - Zoraida Velasco
- Universidad de Carabobo, Facultad Experimental de Ciencias y Tecnología, Departamento de Biología, Valencia, Venezuela
| | - Sarah Bethencourt
- Universidad de Carabobo, Facultad de Ciencias de la Salud. Departamento de Ciencias Fisiológicas, Unidad de Investigación en Inmunología, Valencia, Venezuela
| | - Thomas Jaenisch
- University of Heidelberg, Heidelberg University Hospital, Department of Infectious Diseases, Section of Clinical Tropical Medicine, Heidelberg, Germany
| | - Alexander W Friedrich
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Groningen, the Netherlands
| | - Adriana Tami
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Groningen, the Netherlands; Universidad de Carabobo, Facultad de Ciencias de la Salud, Departamento de Parasitología, Valencia, Venezuela
| | - John W Rossen
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Groningen, the Netherlands.
| |
Collapse
|
37
|
Near-Complete Human Sapovirus Genome Sequences from Kenya. Microbiol Resour Announc 2019; 8:MRA01602-18. [PMID: 30801066 PMCID: PMC6376425 DOI: 10.1128/mra.01602-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 01/21/2019] [Indexed: 01/21/2023] Open
Abstract
We report five near-complete sapovirus genome sequences, including GI.3, GII.2, and GII.6 and two novel GII.NA (not assigned) strains. These new sequences expand the collection of human sapoviruses, allowing for a more accurate phylogenetic analysis of circulating strains and for designing broadly reactive primers for their detection and typing. We report five near-complete sapovirus genome sequences, including GI.3, GII.2, and GII.6 and two novel GII.NA (not assigned) strains. These new sequences expand the collection of human sapoviruses, allowing for a more accurate phylogenetic analysis of circulating strains and for designing broadly reactive primers for their detection and typing.
Collapse
|
38
|
Complete Genome Sequences of Human Astrovirus Prototype Strains (Types 1 to 8). Microbiol Resour Announc 2019; 8:MRA01611-18. [PMID: 30801067 PMCID: PMC6376426 DOI: 10.1128/mra.01611-18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 01/21/2019] [Indexed: 11/28/2022] Open
Abstract
We report the complete genome sequences of the eight human astrovirus Oxford prototype strains. These sequences share 94.9% to 99.9% nucleotide identity with open reading frame 2 (ORF2) genes of astrovirus genomes previously deposited in GenBank and include the first complete genome of human astrovirus type 7. We report the complete genome sequences of the eight human astrovirus Oxford prototype strains. These sequences share 94.9% to 99.9% nucleotide identity with open reading frame 2 (ORF2) genes of astrovirus genomes previously deposited in GenBank and include the first complete genome of human astrovirus type 7.
Collapse
|
39
|
Joffret ML, Polston PM, Razafindratsimandresy R, Bessaud M, Heraud JM, Delpeyroux F. Whole Genome Sequencing of Enteroviruses Species A to D by High-Throughput Sequencing: Application for Viral Mixtures. Front Microbiol 2018; 9:2339. [PMID: 30323802 PMCID: PMC6172331 DOI: 10.3389/fmicb.2018.02339] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/12/2018] [Indexed: 01/06/2023] Open
Abstract
Human enteroviruses (EV) consist of more than 100 serotypes classified within four species for enteroviruses (EV-A to -D) and three species for rhinoviruses, which have been implicated in a variety of human illnesses. Being able to simultaneously amplify the whole genome and identify enteroviruses in samples is important for studying the viral diversity in different geographical regions and populations. It also provides knowledge about the evolution of these viruses. Therefore, we developed a rapid, sensitive method to detect and genetically classify all human enteroviruses in mixtures. Strains of EV-A (15), EV-B (40), EV-C (20), and EV-D (2) viruses were used in addition to 20 supernatants from RD cells infected with stool extracts or sewage concentrates. Two overlapping fragments were produced using a newly designed degenerated primer targeting the conserved CRE region for enteroviruses A-D and one degenerated primer set designed to specifically target the conserved region for each enterovirus species (EV-A to -D). This method was capable of sequencing the full genome for all viruses except two, for which nearly 90% of the genome was sequenced. This method also demonstrated the ability to discriminate, in both spiked and unspiked mixtures, the different enterovirus types present.
Collapse
Affiliation(s)
- Marie-Line Joffret
- Unité de Biologie des Virus Entériques, Institut Pasteur, Paris, France
- Institut National de la Santé et de la Recherche Médicale, Paris, France
- WHO Collaborating Center for Research on Enteroviruses and Viral Vaccines, Institut Pasteur, Paris, France
| | - Patsy M. Polston
- Unité de Biologie des Virus Entériques, Institut Pasteur, Paris, France
- Institut National de la Santé et de la Recherche Médicale, Paris, France
| | | | - Maël Bessaud
- Unité de Biologie des Virus Entériques, Institut Pasteur, Paris, France
- Institut National de la Santé et de la Recherche Médicale, Paris, France
- WHO Collaborating Center for Research on Enteroviruses and Viral Vaccines, Institut Pasteur, Paris, France
| | - Jean-Michel Heraud
- Unité de Virologie, Institut Pasteur de Madagascar, Antananarivo, Madagascar
| | - Francis Delpeyroux
- Unité de Biologie des Virus Entériques, Institut Pasteur, Paris, France
- Institut National de la Santé et de la Recherche Médicale, Paris, France
- WHO Collaborating Center for Research on Enteroviruses and Viral Vaccines, Institut Pasteur, Paris, France
| |
Collapse
|
40
|
Genome Sequences of Rhinovirus Genotype C56 Detected in Three Patients with Acute Respiratory Illness, California, 2016 to 2017. Microbiol Resour Announc 2018; 7. [PMID: 30320303 PMCID: PMC6180327 DOI: 10.1128/mra.00982-18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
We report here two genome sequences of a newly designated rhinovirus genotype, RV-C56, which were obtained from respiratory specimens of three patients with acute respiratory illness in 2016 and 2017. To our knowledge, these sequences represent the first near-complete genomes for RV-C56 strains.
Collapse
|
41
|
Majumdar M, Martin J. Detection by Direct Next Generation Sequencing Analysis of Emerging Enterovirus D68 and C109 Strains in an Environmental Sample From Scotland. Front Microbiol 2018; 9:1956. [PMID: 30186268 PMCID: PMC6110882 DOI: 10.3389/fmicb.2018.01956] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 08/02/2018] [Indexed: 12/15/2022] Open
Abstract
Background: Human enteroviruses (EVs) have been linked with severe disease and syndromes as varied as acute respiratory illness, myocarditis, and flaccid paralysis. With global polio eradication on sight the focus of clinical investigations has expanded to the identification of other EV serotypes associated with severe neurological conditions such as EV-D68, responsible for large outbreaks in 2014 and 2016 that spread worldwide and were related with severe respiratory disease leading to acute myelitis in some cases. New EV serotypes with epidemic potential continue to emerge such as EV-C104, EV-C105, EV-C109, and EV-C117 identified in respiratory samples in recent years. Methods: We used a next generation sequencing (NGS) approach to detect multiple EV serotypes directly in a sewage concentrate from Glasgow (Scotland, United Kingdom) generating whole-capsid nucleotide sequences that were compared to sequences of cell culture isolates from this sewage sample and clinical EV isolates from GenBank. Results: Thirteen different serotypes belonging to all four A, B, C, and D EV species were identified in the sewage concentrate. EV strains closely related to EV-D68 epidemic isolates of B3 lineage reported in the United States and Europe in 2016 and to EV-C109 respiratory isolates found in Denmark and Netherlands in 2015 were identified. Conclusion: Environmental surveillance (ES) can effectively detect EV circulation in human populations. The use of NGS for ES can help overcoming the limitations of traditional cell culture and sequencing methods, which are selective and biased, and can contribute to the early detection and assessment of spread of emerging EV pathogens.
Collapse
Affiliation(s)
- Manasi Majumdar
- Division of Virology, National Institute for Biological Standards and Control, Hertfordshire, United Kingdom
| | - Javier Martin
- Division of Virology, National Institute for Biological Standards and Control, Hertfordshire, United Kingdom
| |
Collapse
|
42
|
Characterization of the Genome Sequences of Enterovirus C109 from Two Respiratory Disease Cases in Florida, 2016. Microbiol Resour Announc 2018; 7:MRA00803-18. [PMID: 30533870 PMCID: PMC6211354 DOI: 10.1128/mra.00803-18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 06/26/2018] [Indexed: 12/05/2022] Open
Abstract
The genomic sequences of two enterovirus C109 isolates (EV-C109 USA/FL/2016-21003 and EV-C109 USA/FL/2016-21002) were obtained during two separate case investigations of respiratory disease in two children. This marks the first description of EV-C109 genomes in the United States. The genomic sequences of two enterovirus C109 isolates (EV-C109 USA/FL/2016-21003 and EV-C109 USA/FL/2016-21002) were obtained during two separate case investigations of respiratory disease in two children. This marks the first description of EV-C109 genomes in the United States.
Collapse
|
43
|
Diez-Valcarce M, Castro CJ, Marine RL, Halasa N, Mayta H, Saito M, Tsaknaridis L, Pan CY, Bucardo F, Becker-Dreps S, Lopez MR, Magaña LC, Ng TFF, Vinjé J. Genetic diversity of human sapovirus across the Americas. J Clin Virol 2018; 104:65-72. [PMID: 29753103 DOI: 10.1016/j.jcv.2018.05.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/24/2018] [Accepted: 05/04/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND Sapoviruses are responsible for sporadic and epidemic acute gastroenteritis worldwide. Sapovirus typing protocols have a success rate as low as 43% and relatively few complete sapovirus genome sequences are available to improve current typing protocols. OBJECTIVE/STUDY DESIGN To increase the number of complete sapovirus genomes to better understand the molecular epidemiology of human sapovirus and to improve the success rate of current sapovirus typing methods, we used deep metagenomics shotgun sequencing to obtain the complete genomes of 68 sapovirus samples from four different countries across the Americas (Guatemala, Nicaragua, Peru and the US). RESULTS VP1 genotyping showed that all sapovirus sequences could be grouped in the four established genogroups (GI (n = 13), GII (n = 30), GIV (n = 23), GV (n = 2)) that infect humans. They include the near-complete genome of a GI.6 virus and a recently reported novel GII.8 virus. Sequences of the complete RNA-dependent RNA polymerase gene could be grouped into three major genetic clusters or polymerase (P) types (GI.P, GII.P and GV.P) with all GIV viruses harboring a GII polymerase. One (GII.P-GII.4) of the new 68 sequences was a recombinant virus with the hotspot between the NS7 and VP1 regions. CONCLUSIONS Analyses of this expanded database of near-complete sapovirus sequences showed several mismatches in the genotyping primers, suggesting opportunities to revisit and update current sapovirus typing methods.
Collapse
Affiliation(s)
| | | | - Rachel L Marine
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | - Holger Mayta
- Department of Cellular and Molecular Sciences, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Mayuko Saito
- Department of Cellular and Molecular Sciences, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru; Department of Virology, Tohoku University, Graduate School of Medicine, Sendai, Japan
| | | | - Chao-Yang Pan
- California Department of Public Health, Richmond, CA, USA
| | - Filemon Bucardo
- Department of Microbiology, University of Leon, Leon, Nicaragua
| | - Sylvia Becker-Dreps
- Department of Family Medicine and Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | | | | | - Terry Fei Fan Ng
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Jan Vinjé
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| |
Collapse
|
44
|
Whole-Genome Sequence of Human Rhinovirus C47, Isolated from an Adult Respiratory Illness Outbreak in Butte County, California, 2017. GENOME ANNOUNCEMENTS 2018; 6:6/5/e01579-17. [PMID: 29437112 PMCID: PMC5794959 DOI: 10.1128/genomea.01579-17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Here, we report the full coding sequence of rhinovirus C47 (RV-C47), obtained from a patient respiratory sample collected during an acute respiratory illness investigation in Butte County, California, in January 2017. This is the first whole-genome sequence of RV-C47 to be reported.
Collapse
|
45
|
Identification and whole-genome characterization of a recombinant Enterovirus B69 isolated from a patient with Acute Flaccid Paralysis in Niger, 2015. Sci Rep 2018; 8:2181. [PMID: 29391547 PMCID: PMC5795009 DOI: 10.1038/s41598-018-20346-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 01/10/2018] [Indexed: 11/08/2022] Open
Abstract
Enterovirus B69 (EV-B69) is a rarely reported type and till date, only the full-length genome sequence of the prototype strain is available. Besides the prototype strain, only limited VP1 sequences of this virus from Africa and India are available in GenBank. In this study, we analyzed the full-length genome sequence of an EV-B69 strain recovered from a patient with acute flaccid paralysis in Niger. Compared with the EV-B69 prototype strain, it had 79.6% and 76.3% nucleotide identity in the complete genome and VP1 coding region, respectively. VP1 sequence analyses revealed also high variation in nucleotide similarity (68.9%-82.8%) with previously isolated EV-B69 strains in India and Africa. The great genetic divergence among EV-B69 strains indicates that this type is not a newly emergent virus, but has circulated for many years at low epidemic strength. Phylogenetic incongruity between structural and non-structural regions and similarity plot analyses revealed that multiple recombination events occurred during its evolution. This study expands the number of EV-B69 whole genome sequences which would help genomic comparison for future studies to understand the biological and pathogenic properties of this virus, assess its potential public health impact and comprehend the role of recombination in the evolution of enteroviruses.
Collapse
|
46
|
Faleye TOC, Adewumi MO, Ozegbe NP, Ogunsakin OE, Ariyo G, Adeshina FW, Ogunga OS, Oluwadare SD, Adeniji JA. Extending the utility of the WHO recommended assay for direct detection of enteroviruses from clinical specimen for resolving poliovirus co-infection. BMC Res Notes 2018; 11:47. [PMID: 29347972 PMCID: PMC5774100 DOI: 10.1186/s13104-018-3155-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 01/09/2018] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVES In a polio-free world there might be reduced funding for poliovirus surveillance. There is therefore the need to ensure that enterovirologist globally, especially those outside the global polio laboratory network, can participate in poliovirus surveillance without neglecting their enterovirus type of interest. To accomplish this, assays are needed that allow such active participation. RESULTS In this study we describes a sensitive and specific utility extension of the recently recommended WHO RT-snPCR assay that enables independent detection of the three poliovirus types especially in cases of co-infection. More importantly, it piggy-backs on the first round PCR product of the WHO recommended assay and consequently ensures that enterovirologists interested in nonpolio enteroviruses can continue their investigations, and contribute significantly and specifically to poliovirus surveillance, by using the excess of their first round PCR product.
Collapse
Affiliation(s)
- Temitope Oluwasegun Cephas Faleye
- Department of Virology, College of Medicine, University of Ibadan, Ibadan, Oyo State Nigeria
- Department of Microbiology, Faculty of Science, Ekiti State University, Ado Ekiti, Ekiti State Nigeria
| | - Moses Olubusuyi Adewumi
- Department of Virology, College of Medicine, University of Ibadan, Ibadan, Oyo State Nigeria
| | - Naomi Princess Ozegbe
- Department of Microbiology, Faculty of Science, Ekiti State University, Ado Ekiti, Ekiti State Nigeria
| | | | - Grace Ariyo
- Department of Microbiology, Faculty of Science, Ekiti State University, Ado Ekiti, Ekiti State Nigeria
| | - Faith Wuraola Adeshina
- Department of Microbiology, Faculty of Science, Ekiti State University, Ado Ekiti, Ekiti State Nigeria
| | - Oluwaseun Sarah Ogunga
- Department of Microbiology, Faculty of Science, Ekiti State University, Ado Ekiti, Ekiti State Nigeria
| | | | - Johnson Adekunle Adeniji
- Department of Virology, College of Medicine, University of Ibadan, Ibadan, Oyo State Nigeria
- WHO National Polio Laboratory, University of Ibadan, Ibadan, Oyo State Nigeria
| |
Collapse
|
47
|
Comparison of Algorithms for the Detection of Enteroviruses in Stool Specimens from Children Diagnosed with Acute Flaccid Paralysis. J Pathog 2017; 2017:9256056. [PMID: 29445548 PMCID: PMC5763071 DOI: 10.1155/2017/9256056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 12/10/2017] [Indexed: 12/04/2022] Open
Abstract
This study was designed to compare both the cell culture dependent and independent enterovirus detection algorithms recommended by the WHO and assess how either might impact our perception of the diversity of enterovirus types present in a sample. Sixteen paired samples (16 isolates from RD cell culture and their corresponding stool suspension, i.e., 32 samples) from AFP cases in Nigeria were analyzed in this study. All the samples were subjected to RNA extraction, cDNA synthesis, the WHO recommended RT-snPCR, and its modification. Amplicons were sequenced and strains identified. Enterovirus diversity was the same between the isolates and fecal suspension for the control and five of the samples. It was, however, different for the remaining 10 (62.5%) samples. Nine (CV-B4, E6, E7, E13, E14, E19, E29, EV-B75, and EV-B77) and five (CV-A1, CV-A11, CV-A13, EV-C99, and PV2) EV-B and EV-C types, respectively, were detected. Particularly, E19 and EV-B75 were only recovered from the isolates while E14, EV-B77, CV-A11, and CV-A13 were only recovered from fecal suspension. Both the cell culture dependent and independent protocols bias our perception of the diversity of enterovirus types present in a sample. Hence, effort should be directed at harmonizing both for increased sensitivity.
Collapse
|
48
|
Ramamurthy M, Sankar S, Kannangai R, Nandagopal B, Sridharan G. Application of viromics: a new approach to the understanding of viral infections in humans. Virusdisease 2017; 28:349-359. [PMID: 29291225 DOI: 10.1007/s13337-017-0415-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 11/17/2017] [Indexed: 12/19/2022] Open
Abstract
This review is focused at exploring the strengths of modern technology driven data compiled in the areas of virus gene sequencing, virus protein structures and their implication to viral diagnosis and therapy. The information for virome analysis (viromics) is generated by the study of viral genomes (entire nucleotide sequence) and viral genes (coding for protein). Presently, the study of viral infectious diseases in terms of etiopathogenesis and development of newer therapeutics is undergoing rapid changes. Currently, viromics relies on deep sequencing, next generation sequencing (NGS) data and public domain databases like GenBank and unique virus specific databases. Two commonly used NGS platforms: Illumina and Ion Torrent, recommend maximum fragment lengths of about 300 and 400 nucleotides for analysis respectively. Direct detection of viruses in clinical samples is now evolving using these methods. Presently, there are a considerable number of good treatment options for HBV/HIV/HCV. These viruses however show development of drug resistance. The drug susceptibility regions of the genomes are sequenced and the prediction of drug resistance is now possible from 3 public domains available on the web. This has been made possible through advances in the technology with the advent of high throughput sequencing and meta-analysis through sophisticated and easy to use software and the use of high speed computers for bioinformatics. More recently NGS technology has been improved with single-molecule real-time sequencing. Here complete long reads can be obtained with less error overcoming a limitation of the NGS which is inherently prone to software anomalies that arise in the hands of personnel without adequate training. The development in understanding the viruses in terms of their genome, pathobiology, transcriptomics and molecular epidemiology constitutes viromics. It could be stated that these developments will bring about radical changes and advancement especially in the field of antiviral therapy and diagnostic virology.
Collapse
Affiliation(s)
- Mageshbabu Ramamurthy
- Sri Sakthi Amma Institute of Biomedical Research, Sri Narayani Hospital and Research Centre, Sripuram, Vellore, Tamil Nadu 632 055 India
| | - Sathish Sankar
- Sri Sakthi Amma Institute of Biomedical Research, Sri Narayani Hospital and Research Centre, Sripuram, Vellore, Tamil Nadu 632 055 India
| | - Rajesh Kannangai
- Department of Clinical Virology, Christian Medical College and Hospital, Vellore, Tamil Nadu 632 004 India
| | - Balaji Nandagopal
- Sri Sakthi Amma Institute of Biomedical Research, Sri Narayani Hospital and Research Centre, Sripuram, Vellore, Tamil Nadu 632 055 India
| | - Gopalan Sridharan
- Sri Sakthi Amma Institute of Biomedical Research, Sri Narayani Hospital and Research Centre, Sripuram, Vellore, Tamil Nadu 632 055 India
| |
Collapse
|
49
|
Complete Genome Sequences of Mumps and Measles Virus Isolates from Three States in the United States. GENOME ANNOUNCEMENTS 2017; 5:5/33/e00748-17. [PMID: 28818890 PMCID: PMC5604763 DOI: 10.1128/genomea.00748-17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We report here the full coding sequence of nine paramyxovirus genomes, including two full-length mumps virus genomes (genotypes G and H) and seven measles virus genomes (genotypes B3 and D4, D8, and D9), from respiratory samples of patients from California, Virginia, and Alabama obtained between 2010 and 2014.
Collapse
|
50
|
First Complete Genomic Sequence of a Rabies Virus from the Republic of Tajikistan Obtained Directly from a Flinders Technology Associates Card. GENOME ANNOUNCEMENTS 2017; 5:5/27/e00515-17. [PMID: 28684566 PMCID: PMC5502847 DOI: 10.1128/genomea.00515-17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A brain homogenate derived from a rabid dog in the district of Tojikobod, Republic of Tajikistan, was applied to a Flinders Technology Associates (FTA) card. A full-genome sequence of rabies virus (RABV) was generated from the FTA card directly without extraction, demonstrating the utility of these cards for readily obtaining genetic data.
Collapse
|