1
|
Lynch C, Fleming R. One-step endpoint RT-PCR assays for confirmatory body fluid identification. Forensic Sci Int Genet 2023; 64:102856. [PMID: 36921484 DOI: 10.1016/j.fsigen.2023.102856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/26/2023] [Accepted: 03/07/2023] [Indexed: 03/13/2023]
Abstract
Messenger RNA (mRNA) expression analysis is increasingly used in casework, in the form of multiplex two-step reverse transcriptase PCR (RT-PCR) assays such as CellTyper 2 (CT2), developed by the Institute of Environmental Science and Research (ESR). This paper presents the development of a one-step endpoint RT-PCR workflow to improve the efficiency and precision of confirmatory body fluid identification. A comparative study of commercial one-step RT-PCR kits was undertaken, with the highest performing kit (RNA to CT) retained for further development. Sensitivity, specificity across body fluids, and precision was assessed simultaneously using receiver operating characteristic (ROC) curves. An optimal RFU cut-off value which maximised sensitivity and specificity was determined for each marker. All assays performed significantly better when compared to the equivalent of a completely uninformative test (area under the curve of 0.5) for their target body fluid. Sensitivity varied between different donors, but the limit of detectionss were estimated as follows; saliva markers HTN3: 1 in 100 dilution of a whole buccal swab and FDCSP: 1 in 10 dilution of a whole buccal swab, circulatory blood marker SLC4A1: 0.1 µL blood, menstrual fluid markers STC1, MMP10: 1 in 10 dilution of a whole menstrual swab, spermatozoa markers PRM1, TNP1: 0.1 µL semen, seminal fluid markers KLK2: 0.1 µL semen and MSMB: 0.01 µL semen, and vaginal material marker CYP2B7P: 1 in 1000 dilution of a whole vaginal swab. The method successfully detected most body fluids in a range of simple mixtures with 77 out of 80 markers observed when expected. The developed one-step endpoint RT-PCR assays lack the sensitivity and precision required for forensic casework and provide little benefit when compared with standard two-step endpoint RT-PCR, other than minimal time and cost savings, similar sensitivity, and improved precision for some markers. As both methods utilise endpoint RT-PCR, they have the same narrow linear dynamic range. The novel method is therefore similarly susceptible to varied RNA input, a major disadvantage of this approach. The limited sensitivity and precision consistently encountered with endpoint RT-PCR - regardless of cDNA synthesis strategy - could be addressed by a real-time PCR approach.
Collapse
Affiliation(s)
- Courtney Lynch
- Forensic Science Programme, School of Chemical Sciences, The University of Auckland, Auckland, New Zealand; Forensic Research and Development Team, Institute of Environmental Science and Research Ltd, Auckland, New Zealand
| | - Rachel Fleming
- Forensic Research and Development Team, Institute of Environmental Science and Research Ltd, Auckland, New Zealand.
| |
Collapse
|
2
|
Wakabayashi Y, Harada T, Kawai T, Takahashi Y, Umekawa N, Izumiya H, Kawatsu K. Multilocus Variable-Number Tandem-Repeat Analysis of Enterohemorrhagic Escherichia coli Serogroups O157, O26, and O111 Based on a De Novo Look-Up Table Constructed by Regression Analysis. Foodborne Pathog Dis 2021; 18:647-654. [PMID: 34191598 DOI: 10.1089/fpd.2020.2921] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Multilocus variable-number tandem-repeat analysis (MLVA) is a widely accepted molecular typing tool for enterohemorrhagic Escherichia coli (EHEC). However, ensuring the accuracy of MLVA data among multiple laboratories remains difficult. We developed a method of constructing adjusted look-up tables, which are necessary for MLVA profiling, at each laboratory using a regression analysis based on electrophoresis data from 24 in-house reference strains. On performing MLVA against 51 EHEC O157 isolates, the repeat numbers of 46 isolates were determined accurately using the look-up table with a 99% prediction interval, an outcome superior to that when using a 95% prediction interval. For the remaining five isolates, although the electrophoresis size fell outside the look-up table, we were able to predict the repeat number accurately by extrapolation or the nearest values of the look-up table. Our approach provides more accurate results than a nonadjusted conventional look-up table for calibrating MLVA profiles.
Collapse
Affiliation(s)
- Yuki Wakabayashi
- Bacteriology Section, Division of Microbiology, Osaka Institute of Public Health, Osaka, Japan
| | - Tetsuya Harada
- Bacteriology Section, Division of Microbiology, Osaka Institute of Public Health, Osaka, Japan
| | - Takao Kawai
- Bacteriology Section, Division of Microbiology, Osaka Institute of Public Health, Osaka, Japan
| | - Yusuke Takahashi
- Bacteriology Section, Division of Microbiology, Osaka Institute of Public Health, Osaka, Japan
| | - Nao Umekawa
- Bacteriology Section, Division of Microbiology, Osaka Institute of Public Health, Osaka, Japan
| | - Hidemasa Izumiya
- Department of Bacteriology 1, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kentaro Kawatsu
- Bacteriology Section, Division of Microbiology, Osaka Institute of Public Health, Osaka, Japan
| |
Collapse
|
3
|
Roy D, Lehnert SJ, Venney CJ, Walter R, Heath DD. NGS-μsat: bioinformatics framework supporting high throughput microsatellite genotyping from next generation sequencing platforms. CONSERV GENET RESOUR 2021. [DOI: 10.1007/s12686-020-01186-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
4
|
Trede F, Kil N, Stranks J, Connell AJ, Fischer J, Ostner J, Schülke O, Zinner D, Roos C. A refined panel of 42 microsatellite loci to universally genotype catarrhine primates. Ecol Evol 2021; 11:498-505. [PMID: 33437445 PMCID: PMC7790618 DOI: 10.1002/ece3.7069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/28/2020] [Accepted: 11/03/2020] [Indexed: 11/30/2022] Open
Abstract
Microsatellite genotyping is an important genetic method for a number of research questions in biology. Given that the traditional fragment length analysis using polyacrylamide gel or capillary electrophoresis has several drawbacks, microsatellite genotyping-by-sequencing (GBS) has arisen as a promising alternative. Although GBS mitigates many of the problems of fragment length analysis, issues with allelic dropout and null alleles often remain due to mismatches in primer binding sites and unnecessarily long PCR products. This is also true for GBS in catarrhine primates where cross-species amplification of loci (often human derived) is common.We therefore redesigned primers for 45 microsatellite loci based on 17 available catarrhine reference genomes. Next, we tested them in singleplex and different multiplex settings in a panel of species representing all major lineages of Catarrhini and further validated them in wild Guinea baboons (Papio papio) using fecal samples.The final panel of 42 microsatellite loci can efficiently be amplified with primers distributed into three amplification pools.With our microsatellite panel, we provide a tool to universally genotype catarrhine primates via GBS from different sample sources in a cost- and time-efficient way, with higher resolution, and comparability among laboratories and species.
Collapse
Affiliation(s)
- Franziska Trede
- Cognitive Ethology LaboratoryGerman Primate CenterLeibniz Institute for Primate ResearchGöttingenGermany
- Primate Genetics LaboratoryGerman Primate CenterLeibniz Institute for Primate ResearchGöttingenGermany
| | - Niels Kil
- Primate Genetics LaboratoryGerman Primate CenterLeibniz Institute for Primate ResearchGöttingenGermany
- Department of Behavioral EcologyUniversity of GöttingenGöttingenGermany
- Leibniz ScienceCampus Primate CognitionGöttingenGermany
- Research Group Primate Social EvolutionGerman Primate CenterLeibniz Institute for Primate ResearchGöttingenGermany
| | - James Stranks
- Primate Genetics LaboratoryGerman Primate CenterLeibniz Institute for Primate ResearchGöttingenGermany
- Department of Behavioral EcologyUniversity of GöttingenGöttingenGermany
- Leibniz ScienceCampus Primate CognitionGöttingenGermany
- Research Group Primate Social EvolutionGerman Primate CenterLeibniz Institute for Primate ResearchGöttingenGermany
| | - Andrew Jesse Connell
- Department of MicrobiologyPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Julia Fischer
- Cognitive Ethology LaboratoryGerman Primate CenterLeibniz Institute for Primate ResearchGöttingenGermany
- Leibniz ScienceCampus Primate CognitionGöttingenGermany
- Department of Primate CognitionGeorg‐August‐UniversityGöttingenGermany
| | - Julia Ostner
- Department of Behavioral EcologyUniversity of GöttingenGöttingenGermany
- Leibniz ScienceCampus Primate CognitionGöttingenGermany
- Research Group Primate Social EvolutionGerman Primate CenterLeibniz Institute for Primate ResearchGöttingenGermany
| | - Oliver Schülke
- Department of Behavioral EcologyUniversity of GöttingenGöttingenGermany
- Leibniz ScienceCampus Primate CognitionGöttingenGermany
- Research Group Primate Social EvolutionGerman Primate CenterLeibniz Institute for Primate ResearchGöttingenGermany
| | - Dietmar Zinner
- Cognitive Ethology LaboratoryGerman Primate CenterLeibniz Institute for Primate ResearchGöttingenGermany
- Leibniz ScienceCampus Primate CognitionGöttingenGermany
- Department of Primate CognitionGeorg‐August‐UniversityGöttingenGermany
| | - Christian Roos
- Primate Genetics LaboratoryGerman Primate CenterLeibniz Institute for Primate ResearchGöttingenGermany
- Gene Bank of PrimatesGerman Primate CenterLeibniz Institute for Primate ResearchGöttingenGermany
| |
Collapse
|
5
|
Gits-Muselli M, Campagne P, Desnos-Ollivier M, Le Pape P, Bretagne S, Morio F, Alanio A. Comparison of MultiLocus Sequence Typing (MLST) and Microsatellite Length Polymorphism (MLP) for Pneumocystis jirovecii genotyping. Comput Struct Biotechnol J 2020; 18:2890-2896. [PMID: 33163149 PMCID: PMC7593342 DOI: 10.1016/j.csbj.2020.10.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/28/2020] [Accepted: 10/02/2020] [Indexed: 01/02/2023] Open
Abstract
Pneumocystis jirovecii is an atypical fungus responsible for severe respiratory infections, often reported as local outbreaks in immunocompromised patients. Epidemiology of this infection, and transmission risk emphasises the need for developing genotyping techniques. Currently, two methods have emerged: Multilocus Sequence typing (MLST) and microsatellite length polymorphism (MLP). Here we compare an MLST strategy, including 2 nuclear loci and 2 mitochondrial loci, with an MLP strategy including 6 nuclear markers using 37 clinical PCR-positive respiratory samples from two French hospitals. Pneumocystis jirovecii MLST and MLP provided 30 and 35 different genotypes respectively. A higher number of mixed infections was detected using MLP (48.6% vs. 13.5% respectively; p = 0.002). Only one MLP marker (STR279) was statistically associated with the geographical origin of samples. Haplotype network inferred using the available genotypes yielded expanded network for MLP, characterized by more mutational steps as compared to MLST, suggesting that the MLP approach is more resolutive to separate genotypes. The correlation between genetic distances calculated based on MLST and MLP was modest with a R2 value = 0.32 (p < 0.001). Finally, both genotyping methods fulfilled important criteria: (i) a discriminatory power from 97.5% to 99.5% and (ii) being quick and convenient genotyping tools. While MLP appeared highly resolutive regarding genotypes mixture within samples, using one genotyping method rather than the other may also depend on the context (i.e., MLST for investigation of suspected clonal outbreaks versus MLP for population structure study) as well as local facilities.
Collapse
Affiliation(s)
- Maud Gits-Muselli
- Laboratoire de Parasitologie-Mycologie; AP-HP, Groupe Hospitalier Saint-Louis-Lariboisière-Fernand-Widal, Paris, France.,Université de Paris, Sorbonne Paris Cité, Paris, France.,Institut Pasteur, CNRS, unité de Mycologie Moléculaire, Centre National de référence Mycoses invasives et Antifongiques (CNRMA), UMR2000, Paris, France
| | - Pascal Campagne
- Hub of Bioinformatics and Biostatistics - Département Biologie Computationnelle, Institut Pasteur, USR 3756 CNRS, Paris, France
| | - Marie Desnos-Ollivier
- Institut Pasteur, CNRS, unité de Mycologie Moléculaire, Centre National de référence Mycoses invasives et Antifongiques (CNRMA), UMR2000, Paris, France
| | - Patrice Le Pape
- Laboratoire de Parasitologie-Mycologie, Institut de Biologie, CHU Nantes, Nantes, France.,Département de Parasitologie et Mycologie Médicale, EA1155 IICiMed, Institut de Recherche en Santé 2, Université de Nantes, Nantes Atlantique Universités, Nantes, France
| | - Stéphane Bretagne
- Laboratoire de Parasitologie-Mycologie; AP-HP, Groupe Hospitalier Saint-Louis-Lariboisière-Fernand-Widal, Paris, France.,Université de Paris, Sorbonne Paris Cité, Paris, France.,Institut Pasteur, CNRS, unité de Mycologie Moléculaire, Centre National de référence Mycoses invasives et Antifongiques (CNRMA), UMR2000, Paris, France
| | - Florent Morio
- Laboratoire de Parasitologie-Mycologie, Institut de Biologie, CHU Nantes, Nantes, France.,Département de Parasitologie et Mycologie Médicale, EA1155 IICiMed, Institut de Recherche en Santé 2, Université de Nantes, Nantes Atlantique Universités, Nantes, France
| | - Alexandre Alanio
- Laboratoire de Parasitologie-Mycologie; AP-HP, Groupe Hospitalier Saint-Louis-Lariboisière-Fernand-Widal, Paris, France.,Université de Paris, Sorbonne Paris Cité, Paris, France.,Institut Pasteur, CNRS, unité de Mycologie Moléculaire, Centre National de référence Mycoses invasives et Antifongiques (CNRMA), UMR2000, Paris, France
| |
Collapse
|
6
|
Gulla S, Tengs T, Mohammad SN, Gjessing M, Garseth ÅH, Sveinsson K, Moldal T, Petersen PE, Tørud B, Dale OB, Dahle MK. Genotyping of Salmon Gill Poxvirus Reveals One Main Predominant Lineage in Europe, Featuring Fjord- and Fish Farm-Specific Sub-Lineages. Front Microbiol 2020; 11:1071. [PMID: 32547516 PMCID: PMC7272583 DOI: 10.3389/fmicb.2020.01071] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/29/2020] [Indexed: 11/18/2022] Open
Abstract
Salmon gill poxvirus (SGPV) can cause serious gill disease in Atlantic salmon (Salmo salar L.) and represents a significant problem to aquaculture industries in Northern Europe. Here, a single-tube multi-locus variable-number tandem-repeat (VNTR) analysis (MLVA) genotyping assay, targeting eight VNTR loci, was developed for studying the epizootiology of SGPV. Through MLVA typing of SGPV positive samples from 180 farmed and wild Atlantic salmon in Northern Europe, the first molecular population study of this virus was undertaken. Comparison of resulting MLVA profiles by cluster analysis revealed considerable micro-diversity, while only a limited degree of specific clustering by country of origin could be observed, and no clustering relating to the severity of disease outbreaks. Phylogenetic analysis, based on genomic data from six SGPV specimens (three Norwegian, one Scottish, one Faroese and one Canadian), complemented and corroborated MLVA by pointing to a marked transatlantic divide in the species, with one main, relatively conserved, SGPV lineage as predominant in Europe. Within certain fjord systems and individual freshwater salmon smolt farms in Norway, however, discrete MLVA clustering patterns that prevailed over time were observed, likely reflecting local predominance of specific SGPV sub-lineages. MLVA typing was also used to refute two suspected instances of vertical SGPV transmission from salmon broodstock to offspring, and to confirm a failed disinfection attempt in one farm. These novel insights into the previously undocumented population structure of SGPV provide important clues, e.g., regarding the mechanisms underlying spread and recurrence of the virus amongst wild and farmed salmon populations, but so far no indications of more or less virulent SGPV sub-lineages have been found. The MLVA scheme represents a highly sensitive genotyping tool particularly well suited for illuminating SGPV infection routes, and adds to the relatively low number of MLVA protocols that have so far been published for viral species. Typing is reasonably inexpensive, with a moderate technological requirement, and may be completed within a single working day. Resulting MLVA profiles can be readily shared and compared across laboratories, facilitating rapid placement of samples in an international ezpizootiological context.
Collapse
Affiliation(s)
| | - Torstein Tengs
- Department of Molecular Biology, Norwegian Institute of Public Health, Oslo, Norway
| | | | | | | | | | | | | | - Brit Tørud
- Norwegian Veterinary Institute, Oslo, Norway
| | | | - Maria K Dahle
- Norwegian Veterinary Institute, Oslo, Norway.,The Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT - The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
7
|
Meek MH, Larson WA. The future is now: Amplicon sequencing and sequence capture usher in the conservation genomics era. Mol Ecol Resour 2019; 19:795-803. [PMID: 30681776 DOI: 10.1111/1755-0998.12998] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 01/17/2019] [Accepted: 01/18/2019] [Indexed: 01/21/2023]
Abstract
The genomics revolution has initiated a new era of population genetics where genome-wide data are frequently used to understand complex patterns of population structure and selection. However, the application of genomic tools to inform management and conservation has been somewhat rare outside a few well studied species. Fortunately, two recently developed approaches, amplicon sequencing and sequence capture, have the potential to significantly advance the field of conservation genomics. Here, amplicon sequencing refers to highly multiplexed PCR followed by high-throughput sequencing (e.g., GTseq), and sequence capture refers to using capture probes to isolate loci from reduced-representation libraries (e.g., Rapture). Both approaches allow sequencing of thousands of individuals at relatively low costs, do not require any specialized equipment for library preparation, and generate data that can be analyzed without sophisticated computational infrastructure. Here, we discuss the advantages and disadvantages of each method and provide a decision framework for geneticists who are looking to integrate these methods into their research programme. While it will always be important to consider the specifics of the biological question and system, we believe that amplicon sequencing is best suited for projects aiming to genotype <500 loci on many individuals (>1,500) or for species where continued monitoring is anticipated (e.g., long-term pedigrees). Sequence capture, on the other hand, is best applied to projects including fewer individuals or where >500 loci are required. Both of these techniques should smooth the transition from traditional genetic techniques to genomics, helping to usher in the conservation genomics era.
Collapse
Affiliation(s)
- Mariah H Meek
- Department of Integrative Biology and AgBio Research, Michigan State University, East Lansing, Michigan
| | - Wesley A Larson
- U.S. Geological Survey, Wisconsin Cooperative Fishery Research Unit, College of Natural Resources, University of Wisconsin-Stevens Point, Stevens Point, Wisconsin
| |
Collapse
|
8
|
Barbian HJ, Connell AJ, Avitto AN, Russell RM, Smith AG, Gundlapally MS, Shazad AL, Li Y, Bibollet‐Ruche F, Wroblewski EE, Mjungu D, Lonsdorf EV, Stewart FA, Piel AK, Pusey AE, Sharp PM, Hahn BH. CHIIMP: An automated high-throughput microsatellite genotyping platform reveals greater allelic diversity in wild chimpanzees. Ecol Evol 2018; 8:7946-7963. [PMID: 30250675 PMCID: PMC6145012 DOI: 10.1002/ece3.4302] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 05/14/2018] [Accepted: 05/29/2018] [Indexed: 12/29/2022] Open
Abstract
Short tandem repeats (STRs), also known as microsatellites, are commonly used to noninvasively genotype wild-living endangered species, including African apes. Until recently, capillary electrophoresis has been the method of choice to determine the length of polymorphic STR loci. However, this technique is labor intensive, difficult to compare across platforms, and notoriously imprecise. Here we developed a MiSeq-based approach and tested its performance using previously genotyped fecal samples from long-term studied chimpanzees in Gombe National Park, Tanzania. Using data from eight microsatellite loci as a reference, we designed a bioinformatics platform that converts raw MiSeq reads into locus-specific files and automatically calls alleles after filtering stutter sequences and other PCR artifacts. Applying this method to the entire Gombe population, we confirmed previously reported genotypes, but also identified 31 new alleles that had been missed due to sequence differences and size homoplasy. The new genotypes, which increased the allelic diversity and heterozygosity in Gombe by 61% and 8%, respectively, were validated by replicate amplification and pedigree analyses. This demonstrated inheritance and resolved one case of an ambiguous paternity. Using both singleplex and multiplex locus amplification, we also genotyped fecal samples from chimpanzees in the Greater Mahale Ecosystem in Tanzania, demonstrating the utility of the MiSeq-based approach for genotyping nonhabituated populations and performing comparative analyses across field sites. The new automated high-throughput analysis platform (available at https://github.com/ShawHahnLab/chiimp) will allow biologists to more accurately and effectively determine wildlife population size and structure, and thus obtain information critical for conservation efforts.
Collapse
Affiliation(s)
- Hannah J. Barbian
- Departments of Microbiology and MedicinePerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvania
| | - Andrew Jesse Connell
- Departments of Microbiology and MedicinePerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvania
| | - Alexa N. Avitto
- Departments of Microbiology and MedicinePerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvania
| | - Ronnie M. Russell
- Departments of Microbiology and MedicinePerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvania
| | - Andrew G. Smith
- Departments of Microbiology and MedicinePerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvania
| | - Madhurima S. Gundlapally
- Departments of Microbiology and MedicinePerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvania
| | - Alexander L. Shazad
- Departments of Microbiology and MedicinePerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvania
| | - Yingying Li
- Departments of Microbiology and MedicinePerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvania
| | - Frederic Bibollet‐Ruche
- Departments of Microbiology and MedicinePerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvania
| | - Emily E. Wroblewski
- Department of AnthropologyWashington University in St. LouisSt. LouisMissouri
| | | | | | - Fiona A. Stewart
- School of Natural Sciences and PsychologyLiverpool John Moores UniversityLiverpoolUK
| | - Alexander K. Piel
- School of Natural Sciences and PsychologyLiverpool John Moores UniversityLiverpoolUK
| | - Anne E. Pusey
- Department of Evolutionary AnthropologyDuke UniversityDurhamNorth Carolina
| | - Paul M. Sharp
- Institute of Evolutionary Biology and Centre for ImmunityInfection and EvolutionUniversity of EdinburghEdinburghUK
| | - Beatrice H. Hahn
- Departments of Microbiology and MedicinePerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvania
| |
Collapse
|
9
|
Multilocus Variable-Number Tandem-Repeat Analysis of Yersinia ruckeri Confirms the Existence of Host Specificity, Geographic Endemism, and Anthropogenic Dissemination of Virulent Clones. Appl Environ Microbiol 2018; 84:AEM.00730-18. [PMID: 29884756 PMCID: PMC6070765 DOI: 10.1128/aem.00730-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 05/31/2018] [Indexed: 01/14/2023] Open
Abstract
This comprehensive population study substantially improves our understanding of the epizootiological history and nature of an internationally important fish-pathogenic bacterium. The MLVA assay developed and presented represents a high-resolution typing tool particularly well suited for Yersinia ruckeri infection tracing, selection of strains for vaccine inclusion, and risk assessment. The ability of the assay to separate isolates into geographically linked and/or possibly host-specific clusters reflects its potential utility for maintenance of national biosecurity. The MLVA is internationally applicable and robust, and it provides clear, unambiguous, and easily interpreted results. Typing is reasonably inexpensive, with a moderate technological requirement, and may be completed from a harvested colony within a single working day. As the resulting MLVA profiles are readily portable, any Y. ruckeri strain may rapidly be placed in a global epizootiological context. A multilocus variable-number tandem-repeat analysis (MLVA) assay was developed for epizootiological study of the internationally significant fish pathogen Yersinia ruckeri, which causes yersiniosis in salmonids. The assay involves amplification of 10 variable-number tandem-repeat (VNTR) loci in two five-plex PCRs, followed by capillary electrophoresis. A collection of 484 Y. ruckeri isolates, originating from various biological sources and collected from four continents over 7 decades, was analyzed. Minimum-spanning-tree cluster analysis of MLVA profiles separated the studied population into nine major clonal complexes and a number of minor clusters and singletons. The major clonal complexes could be associated with host species, geographic origin, and serotype. A single large clonal complex of serotype O1 isolates dominating the yersiniosis situation in international rainbow trout farming suggests anthropogenic spread of this clone, possibly related to transport of fish. Moreover, subclustering within this clonal complex indicates putative transmission routes and multiple biotype shift events. In contrast to the situation in rainbow trout, Y. ruckeri strains associated with disease in Atlantic salmon appear as more or less geographically isolated clonal complexes. A single complex of serotype O1 exclusive to Norway was found to be responsible for almost all major yersiniosis outbreaks in modern Norwegian salmon farming, and site-specific subclustering further indicates persistent colonization of freshwater farms in Norway. Identification of genetically diverse Y. ruckeri isolates from clinically healthy fish and environmental sources also suggests the widespread existence of less-virulent or avirulent strains. IMPORTANCE This comprehensive population study substantially improves our understanding of the epizootiological history and nature of an internationally important fish-pathogenic bacterium. The MLVA assay developed and presented represents a high-resolution typing tool particularly well suited for Yersinia ruckeri infection tracing, selection of strains for vaccine inclusion, and risk assessment. The ability of the assay to separate isolates into geographically linked and/or possibly host-specific clusters reflects its potential utility for maintenance of national biosecurity. The MLVA is internationally applicable and robust, and it provides clear, unambiguous, and easily interpreted results. Typing is reasonably inexpensive, with a moderate technological requirement, and may be completed from a harvested colony within a single working day. As the resulting MLVA profiles are readily portable, any Y. ruckeri strain may rapidly be placed in a global epizootiological context.
Collapse
|
10
|
Pimentel JSM, Carmo AO, Rosse IC, Martins APV, Ludwig S, Facchin S, Pereira AH, Brandão-Dias PFP, Abreu NL, Kalapothakis E. High-Throughput Sequencing Strategy for Microsatellite Genotyping Using Neotropical Fish as a Model. Front Genet 2018; 9:73. [PMID: 29593777 PMCID: PMC5855144 DOI: 10.3389/fgene.2018.00073] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 02/19/2018] [Indexed: 01/15/2023] Open
Abstract
Genetic diversity and population studies are essential for conservation and wildlife management programs. However, monitoring requires the analysis of multiple loci from many samples. These processes can be laborious and expensive. The choice of microsatellites and PCR calibration for genotyping are particularly daunting. Here we optimized a low-cost genotyping method using multiple microsatellite loci for simultaneous genotyping of up to 384 samples using next-generation sequencing (NGS). We designed primers with adapters to the combinatorial barcoding amplicon library and sequenced samples by MiSeq. Next, we adapted a bioinformatics pipeline for genotyping microsatellites based on read-length and sequence content. Using primer pairs for eight microsatellite loci from the fish Prochilodus costatus, we amplified, sequenced, and analyzed the DNA of 96, 288, or 384 individuals for allele detection. The most cost-effective methodology was a pseudo-multiplex reaction using a low-throughput kit of 1 M reads (Nano) for 384 DNA samples. We observed an average of 325 reads per individual per locus when genotyping eight loci. Assuming a minimum requirement of 10 reads per loci, two to four times more loci could be tested in each run, depending on the quality of the PCR reaction of each locus. In conclusion, we present a novel method for microsatellite genotyping using Illumina combinatorial barcoding that dispenses exhaustive PCR calibrations, since non-specific amplicons can be eliminated by bioinformatics analyses. This methodology rapidly provides genotyping data and is therefore a promising development for large-scale conservation-genetics studies.
Collapse
Affiliation(s)
- Juliana S. M. Pimentel
- Laboratory of Biotechnology and Molecular Markers, Department of General Biology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Anderson O. Carmo
- Laboratory of Biotechnology and Molecular Markers, Department of General Biology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Izinara C. Rosse
- Laboratory of Biotechnology and Molecular Markers, Department of General Biology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Ana P. V. Martins
- Laboratory of Biotechnology and Molecular Markers, Department of General Biology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Sandra Ludwig
- Department of Zoology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Susanne Facchin
- Laboratory of Biotechnology and Molecular Markers, Department of General Biology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Adriana H. Pereira
- Laboratory of Biotechnology and Molecular Markers, Department of General Biology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Pedro F. P. Brandão-Dias
- Laboratory of Biotechnology and Molecular Markers, Department of General Biology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Nazaré L. Abreu
- Laboratory of Biotechnology and Molecular Markers, Department of General Biology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Evanguedes Kalapothakis
- Laboratory of Biotechnology and Molecular Markers, Department of General Biology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
11
|
Farrell ED, Carlsson JEL, Carlsson J. Next Gen Pop Gen: implementing a high-throughput approach to population genetics in boarfish ( Capros aper). ROYAL SOCIETY OPEN SCIENCE 2016; 3:160651. [PMID: 28083107 PMCID: PMC5210689 DOI: 10.1098/rsos.160651] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 11/11/2016] [Indexed: 06/06/2023]
Abstract
The recently developed approach for microsatellite genotyping by sequencing (GBS) using individual combinatorial barcoding was further improved and used to assess the genetic population structure of boarfish (Capros aper) across the species' range. Microsatellite loci were developed de novo and genotyped by next-generation sequencing. Genetic analyses of the samples indicated that boarfish can be subdivided into at least seven biological units (populations) across the species' range. Furthermore, the recent apparent increase in abundance in the northeast Atlantic is better explained by demographic changes within this area than by influx from southern or insular populations. This study clearly shows that the microsatellite GBS approach is a generic, cost-effective, rapid and powerful method suitable for full-scale population genetic studies-a crucial element for assessment, sustainable management and conservation of valuable biological resources.
Collapse
Affiliation(s)
- Edward D. Farrell
- Area 52 Research Group, School of Biology and Environmental Science/Earth Institute, University College Dublin, Belfield, Dublin 4, Republic of Ireland
| | | | | |
Collapse
|
12
|
Vincent G, Stenos J, Latham J, Fenwick S, Graves S. Novel genotypes of Coxiella burnetii identified in isolates from Australian Q fever patients. Int J Med Microbiol 2016; 306:463-70. [DOI: 10.1016/j.ijmm.2016.05.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/19/2016] [Accepted: 05/24/2016] [Indexed: 11/24/2022] Open
|
13
|
Stalažs A, Moročko-Bičevska I. Species identification, host range and diversity of Cecidophyopsis mites (Acari: Trombidiformes) infesting Ribes in Latvia. EXPERIMENTAL & APPLIED ACAROLOGY 2016; 69:129-53. [PMID: 26914359 DOI: 10.1007/s10493-016-0024-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 02/19/2016] [Indexed: 05/08/2023]
Abstract
Cecidophyopsis mites are important pests in all cultivation regions of Ribes causing bud galls and sterility. Despite their economic importance, the knowledge on Cecidophyopsis species infesting Ribes in various areas of the world is still deficient. The present study was carried out to identify Cecidophyopsis species occurring in Latvia on cultivated and wild Ribes, to assess their host range and gain insight into the genetic diversity of these insufficiently studied pests by use of multiplex PCR, rDNA sequences and morphological characters. Cecidophyopsis alpina, C. aurea, C. spicata and C. selachodon were detected to occur in all surveyed habitats. For the first time, C. alpina was identified on blackcurrants and redcurrants, and C. aurea on redcurrants, blackcurrants and alpine currants. The presence of C. ribis was not confirmed with molecular tools during this study. Phylogenetic analyses confirmed the presence of four Cecidophyopsis species identified by multiplex PCR. A close phylogenetic relatedness was found for C. aurea and C. alpina, and for C. ribis and C. spicata highlighting the necessity for additional studies. Our findings suggest a need to consider also other Cecidophyopsis species besides C. ribis in breeding programs for host resistance to mites.
Collapse
Affiliation(s)
- Arturs Stalažs
- Institute of Horticulture, Latvia University of Agriculture, Graudu iela 1, Ceriņi, Krimūnu pag., Dobeles nov., LV-3701, Latvia.
| | - Inga Moročko-Bičevska
- Institute of Horticulture, Latvia University of Agriculture, Graudu iela 1, Ceriņi, Krimūnu pag., Dobeles nov., LV-3701, Latvia
| |
Collapse
|
14
|
A novel polymorphic repeat in the upstream regulatory region of the estrogen-induced gene EIG121 is not associated with the risk of developing breast or endometrial cancer. BMC Res Notes 2016; 9:287. [PMID: 27230222 PMCID: PMC4882813 DOI: 10.1186/s13104-016-2086-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 05/11/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The estrogen-induced gene 121 (EIG121) has been associated with breast and endometrial cancers, but its mechanism of action remains unknown. In a genome-wide search for tandem repeats, we found that EIG121 contains a short tandem repeat (STR) in its upstream regulatory region which has the potential to alter gene expression. The presence of this STR has not previously been analysed in relation to breast or endometrial cancer risk. RESULTS In this study, the lengths of this STR were determined by PCR, fragment analysis and sequencing using DNA from 223 breast cancer patients, 204 endometrial cancer patients and 220 healthy controls to determine if they were associated with the risk of developing breast or endometrial cancer. We found this repeat to be highly variable with the number of copies of the AG motif ranging from 27 to 72 and having a bimodal distribution. No statistically significant association was identified between the length of this STR and the risk of developing breast or endometrial cancer or age at diagnosis. CONCLUSIONS The STR in the upstream regulatory region of EIG121 is highly polymorphic, but is not associated with the risk of developing breast or endometrial cancer in the cohorts analysed here. While this polymorphic STR in the regulatory region of EIG121 appears to have no impact on the risk of developing breast or endometrial cancer, its association with disease recurrence or overall survival remains to be determined.
Collapse
|
15
|
Garcia-Hermoso D, Desnos-Ollivier M, Bretagne S. Typing Candida Species Using Microsatellite Length Polymorphism and Multilocus Sequence Typing. Methods Mol Biol 2016; 1356:199-214. [PMID: 26519075 DOI: 10.1007/978-1-4939-3052-4_15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
To gain more insight into the epidemiological relationships between isolates of Candida spp. obtained from various origins, several molecular typing techniques have been developed. Two methods have emerged in the 2000s as soon as enough knowledge of the Candida spp. genomes was available to choose adequate loci and primers, namely microsatellite length polymorphism (MLP) and multilocus sequence typing (MLST). To contrast with previous PCR-based methods, specific amplifications with stringent conditions easily reproducible are the basis of MLP and MLST. MLST relies on Sanger sequencing to detect single-nucleotide polymorphisms within housekeeping genes. MLP needs a first in silico step to select tandemly repeated stretches of two to five nucleotides. One of the two primers used to amplify a microsatellite locus is labeled and fragment sizing is automatically performed using high-resolution electrophoresis platforms. MLST provides results easily comparable between laboratories and active MLST schemes are publicly available for the main Candida species. For comparative studies, MLP needs standards to compensate for the electrophoretic variations depending on the platforms used. Both methods can help us gain insight into the genetic relatedness of fungal isolates, both with advantages and drawbacks, and the choice of one method rather than the other depends on the task in question.
Collapse
Affiliation(s)
- Dea Garcia-Hermoso
- Institut Pasteur, Unité de Mycologie Moléculaire, Centre National de Référence Mycoses Invasives et Antifongiques, 25 rue du Dr. Roux, 75724, Paris cedex 15, France.,CNRS URA3012, Paris, France
| | - Marie Desnos-Ollivier
- Institut Pasteur, Unité de Mycologie Moléculaire, Centre National de Référence Mycoses Invasives et Antifongiques, 25 rue du Dr. Roux, 75724, Paris cedex 15, France.,CNRS URA3012, Paris, France
| | - Stéphane Bretagne
- Institut Pasteur, Unité de Mycologie Moléculaire, Centre National de Référence Mycoses Invasives et Antifongiques, 25 rue du Dr. Roux, 75724, Paris cedex 15, France. .,CNRS URA3012, Paris, France. .,Laboratoire de Parasitologie-Mycologie, Groupe hospitalier Lariboisière-Saint Louis, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France.
| |
Collapse
|
16
|
Bolton KA, Avery-Kiejda KA, Holliday EG, Attia J, Bowden NA, Scott RJ. A polymorphic repeat in the IGF1 promoter influences the risk of endometrial cancer. Endocr Connect 2016; 5:115-22. [PMID: 27090263 PMCID: PMC5002956 DOI: 10.1530/ec-16-0003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 04/18/2016] [Indexed: 01/22/2023]
Abstract
Due to the lack of high-throughput genetic assays for tandem repeats, there is a paucity of knowledge about the role they may play in disease. A polymorphic CA repeat in the promoter region of the insulin-like growth factor 1 gene (IGF1 has been studied extensively over the past 10 years for association with the risk of developing breast cancer, among other cancers, with variable results. The aim of this study was to determine if this CA repeat is associated with the risk of developing breast cancer and endometrial cancer. Using a case-control design, we analysed the length of this CA repeat in a series of breast cancer and endometrial cancer cases and compared this with a control population. Our results showed an association when both alleles were considered in breast and endometrial cancers (P=0.029 and 0.011, respectively), but this did not pass our corrected threshold for significance due to multiple testing. When the allele lengths were analysed categorically against the most common allele length of 19 CA repeats, an association was observed with the risk of endometrial cancer due to a reduction in the number of long alleles (P=0.013). This was confirmed in an analysis of the long alleles separately for endometrial cancer risk (P=0.0012). Our study found no association between the length of this polymorphic CA repeat and breast cancer risk. The significant association observed between the CA repeat length and the risk of developing endometrial cancer has not been previously reported.
Collapse
Affiliation(s)
- Katherine A Bolton
- Centre for BioinformaticsBiomarker Discovery and Information-Based Medicine, Hunter Medical Research Institute, Newcastle, New South Wales, Australia Priority Research Centre for CancerSchool of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Newcastle, New South Wales, Australia
| | - Kelly A Avery-Kiejda
- Centre for BioinformaticsBiomarker Discovery and Information-Based Medicine, Hunter Medical Research Institute, Newcastle, New South Wales, Australia Priority Research Centre for CancerSchool of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Newcastle, New South Wales, Australia
| | - Elizabeth G Holliday
- Centre for Clinical Epidemiology and BiostatisticsSchool of Medicine and Public Health, Faculty of Health and Medicine, University of Newcastle, Newcastle, New South Wales, Australia Clinical Research DesignIT and Statistical Support Unit, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - John Attia
- Centre for Clinical Epidemiology and BiostatisticsSchool of Medicine and Public Health, Faculty of Health and Medicine, University of Newcastle, Newcastle, New South Wales, Australia Clinical Research DesignIT and Statistical Support Unit, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Nikola A Bowden
- Centre for BioinformaticsBiomarker Discovery and Information-Based Medicine, Hunter Medical Research Institute, Newcastle, New South Wales, Australia Priority Research Centre for CancerSchool of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Newcastle, New South Wales, Australia
| | - Rodney J Scott
- Centre for BioinformaticsBiomarker Discovery and Information-Based Medicine, Hunter Medical Research Institute, Newcastle, New South Wales, Australia Priority Research Centre for CancerSchool of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Newcastle, New South Wales, Australia Molecular MedicinePathology North, John Hunter Hospital, Newcastle, New South Wales, Australia Discipline of Medical GeneticsSchool of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, University Drive, Newcastle, New South Wales, Australia
| |
Collapse
|
17
|
Suitability of loci for multiple-locus variable-number of tandem-repeats analysis of Cryptosporidium parvum for inter-laboratory surveillance and outbreak investigations. Parasitology 2016; 144:37-47. [PMID: 26831252 DOI: 10.1017/s0031182015001766] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Cryptosporidium parvum is the major cause of livestock and zoonotically-acquired human cryptosporidiosis. The ability to track sources of contamination and routes of transmission by further differentiation of isolates would assist risk assessment and outbreak investigations. Multiple-locus variable-number of tandem-repeats (VNTR) analysis provides a means for rapid characterization by fragment sizing and estimation of copy numbers, but structured, harmonized development has been lacking for Cryptosporidium spp. To investigate potential for application in C. parvum surveillance and outbreak investigations, we studied nine commonly used VNTR loci (MSA, MSD, MSF, MM5, MM18, MM19, MS9-Mallon, GP60 and TP14) for chromosome distribution, repeat unit length and heterogeneity, and flanking region proximity and conservation. To investigate performance in vitro, we compared these loci in 14 C. parvum samples by capillary electrophoresis in three laboratories. We found that many loci did not contain simple repeat units but were more complex, hindering calculations of repeat unit copy number for standardized reporting nomenclature. However, sequenced reference DNA enabled reproducible fragment sizing and inter-laboratory allele assignation based on size normalized to that of the sequenced fragments by both single round and nested polymerase chain reactions. Additional Cryptosporidium loci need to be identified and validated for robust inter-laboratory surveillance and outbreak investigations.
Collapse
|
18
|
Vartia S, Villanueva-Cañas JL, Finarelli J, Farrell ED, Collins PC, Hughes GM, Carlsson JEL, Gauthier DT, McGinnity P, Cross TF, FitzGerald RD, Mirimin L, Crispie F, Cotter PD, Carlsson J. A novel method of microsatellite genotyping-by-sequencing using individual combinatorial barcoding. ROYAL SOCIETY OPEN SCIENCE 2016; 3:150565. [PMID: 26909185 PMCID: PMC4736940 DOI: 10.1098/rsos.150565] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 12/10/2015] [Indexed: 05/14/2023]
Abstract
This study examines the potential of next-generation sequencing based 'genotyping-by-sequencing' (GBS) of microsatellite loci for rapid and cost-effective genotyping in large-scale population genetic studies. The recovery of individual genotypes from large sequence pools was achieved by PCR-incorporated combinatorial barcoding using universal primers. Three experimental conditions were employed to explore the possibility of using this approach with existing and novel multiplex marker panels and weighted amplicon mixture. The GBS approach was validated against microsatellite data generated by capillary electrophoresis. GBS allows access to the underlying nucleotide sequences that can reveal homoplasy, even in large datasets and facilitates cross laboratory transfer. GBS of microsatellites, using individual combinatorial barcoding, is potentially faster and cheaper than current microsatellite approaches and offers better and more data.
Collapse
Affiliation(s)
- Salla Vartia
- Area 52 Research Group, University College Dublin, Belfield, Dublin, Republic of Ireland
- Earth Institute, University College Dublin, Belfield, Dublin, Republic of Ireland
- Carna Research Station, Ryan Institute, National University of Ireland, Galway, Carna, Connemara, Republic of Ireland
| | - José L. Villanueva-Cañas
- Evolutionary Genomics Group, Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Research Institute (IMIM), Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain
| | - John Finarelli
- School of Biology and Environment Science, University College Dublin, Belfield, Dublin, Republic of Ireland
- Earth Institute, University College Dublin, Belfield, Dublin, Republic of Ireland
| | - Edward D. Farrell
- Area 52 Research Group, University College Dublin, Belfield, Dublin, Republic of Ireland
- Earth Institute, University College Dublin, Belfield, Dublin, Republic of Ireland
| | - Patrick C. Collins
- School of Biological Sciences, Queen’s University Belfast, Medical Biology Centre, Lisburn Road, Belfast, UK
| | - Graham M. Hughes
- School of Biology and Environment Science, University College Dublin, Belfield, Dublin, Republic of Ireland
- Earth Institute, University College Dublin, Belfield, Dublin, Republic of Ireland
| | - Jeanette E. L. Carlsson
- Area 52 Research Group, University College Dublin, Belfield, Dublin, Republic of Ireland
- Earth Institute, University College Dublin, Belfield, Dublin, Republic of Ireland
| | - David T. Gauthier
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA
| | - Philip McGinnity
- Beaufort Fish Genetics Programme, School of Biological, Earth and Environmental Sciences/Aquaculture and Fisheries Development Centre, University College Cork, Distillery Fields, North Mall, Cork, Republic of Ireland
| | - Thomas F. Cross
- Beaufort Fish Genetics Programme, School of Biological, Earth and Environmental Sciences/Aquaculture and Fisheries Development Centre, University College Cork, Distillery Fields, North Mall, Cork, Republic of Ireland
| | - Richard D. FitzGerald
- Carna Research Station, Ryan Institute, National University of Ireland, Galway, Carna, Connemara, Republic of Ireland
| | - Luca Mirimin
- Marine and Freshwater Research Centre, Galway-Mayo Institute of Technology, Dublin Road, Galway, Republic of Ireland
| | - Fiona Crispie
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Republic of Ireland
- Alimentary Pharmabiotic Centre, Cork, Republic of Ireland
| | - Paul D. Cotter
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Republic of Ireland
- Alimentary Pharmabiotic Centre, Cork, Republic of Ireland
| | - Jens Carlsson
- Area 52 Research Group, University College Dublin, Belfield, Dublin, Republic of Ireland
- Earth Institute, University College Dublin, Belfield, Dublin, Republic of Ireland
| |
Collapse
|
19
|
Stephens D, Wilton AN, Fleming PJS, Berry O. Death by sex in an Australian icon: a continent-wide survey reveals extensive hybridization between dingoes and domestic dogs. Mol Ecol 2015; 24:5643-56. [PMID: 26514639 DOI: 10.1111/mec.13416] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 09/25/2015] [Accepted: 10/05/2015] [Indexed: 11/29/2022]
Abstract
Hybridization between domesticated animals and their wild counterparts can disrupt adaptive gene combinations, reduce genetic diversity, extinguish wild populations and change ecosystem function. The dingo is a free-ranging dog that is an iconic apex predator and distributed throughout most of mainland Australia. Dingoes readily hybridize with domestic dogs, and in many Australian jurisdictions, distinct management strategies are dictated by hybrid status. Yet, the magnitude and spatial extent of domestic dog-dingo hybridization is poorly characterized. To address this, we performed a continent-wide analysis of hybridization throughout Australia based on 24 locus microsatellite DNA genotypes from 3637 free-ranging dogs. Although 46% of all free-ranging dogs were classified as pure dingoes, all regions exhibited some hybridization, and the magnitude varied substantially. The southeast of Australia was highly admixed, with 99% of animals being hybrids or feral domestic dogs, whereas only 13% of the animals from remote central Australia were hybrids. Almost all free-ranging dogs had some dingo ancestry, indicating that domestic dogs could have poor survivorship in nonurban Australian environments. Overall, wild pure dingoes remain the dominant predator over most of Australia, but the speed and extent to which hybridization has occurred in the approximately 220 years since the first introduction of domestic dogs indicate that the process may soon threaten the persistence of pure dingoes.
Collapse
Affiliation(s)
- Danielle Stephens
- School of Animal Biology and Invasive Animals Cooperative Research Centre, M092, The University of Western Australia, Crawley, Western Australia, 6009, Australia
| | - Alan N Wilton
- School of Biotechnology and Biomolecular Sciences, Clive and Vera Ramaciotti Centre for Gene Function Analysis, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Peter J S Fleming
- Vertebrate Pest Research Unit, Biosecurity NSW, NSW Department of Primary Industries, Orange Agricultural Institute, Orange, New South Wales, 2800, Australia.,School of Environmental and Rural Sciences, University of New England, Armidale, New South Wales, 2351, Australia
| | - Oliver Berry
- School of Animal Biology and Invasive Animals Cooperative Research Centre, M092, The University of Western Australia, Crawley, Western Australia, 6009, Australia
| |
Collapse
|
20
|
Hotchkiss EJ, Gilray JA, Brennan ML, Christley RM, Morrison LJ, Jonsson NN, Innes EA, Katzer F. Development of a framework for genotyping bovine-derived Cryptosporidium parvum, using a multilocus fragment typing tool. Parasit Vectors 2015; 8:500. [PMID: 26427625 PMCID: PMC4591062 DOI: 10.1186/s13071-015-1107-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 09/22/2015] [Indexed: 11/23/2022] Open
Abstract
Background There is a need for an integrated genotyping approach for C. parvum; no sufficiently discriminatory scheme to date has been fully validated or widely adopted by veterinary or public health researchers. Multilocus fragment typing (MLFT) can provide good differentiation and is relatively quick and cheap to perform. A MLFT tool was assessed in terms of its typeability, specificity, precision (repeatability and reproducibility), accuracy and ability to genotypically discriminate bovine-derived Cryptosporidium parvum. Methods With the aim of working towards a consensus, six markers were selected for inclusion based on their successful application in previous studies: MM5, MM18, MM19, TP14, MS1 and MS9. Alleles were assigned according to the fragment sizes of repeat regions amplified, as determined by capillary electrophoresis. In addition, a region of the GP60 gene was amplified and sequenced to determine gp60 subtype and this was added to the allelic profiles of the 6 markers to determine the multilocus genotype (MLG). The MLFT tool was applied to 140 C. parvum samples collected in two cross-sectional studies of UK calves, conducted in Cheshire in 2004 (principally dairy animals) and Aberdeenshire/Caithness in 2011 (beef animals). Results Typeability was 84 %. The primers did not amplify tested non-parvum species frequently detected in cattle. In terms of repeatability, within- and between-run fragment sizes showed little variability. Between laboratories, fragment sizes differed but allele calling was reproducible. The MLFT had good discriminatory ability (Simpson’s Index of Diversity, SID, was 0.92), compared to gp60 sequencing alone (SID 0.44). Some markers were more informative than others, with MS1 and MS9 proving monoallelic in tested samples. Conclusions Further inter-laboratory trials are now warranted with the inclusion of human-derived C. parvum samples, allowing progress towards an integrated, standardised typing scheme to enable source attribution and to determine the role of livestock in future outbreaks of human C. parvum.
Collapse
Affiliation(s)
- Emily J Hotchkiss
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Edinburgh, EH26 0PZ, UK.
| | - Janice A Gilray
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Edinburgh, EH26 0PZ, UK.
| | - Marnie L Brennan
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK.
| | - Robert M Christley
- Institute of Infection and Global Health, University of Liverpool, NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Leahurst Campus CH64 7TE, Liverpool, L69 7BE, UK.
| | - Liam J Morrison
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK.
| | - Nicholas N Jonsson
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Bearsden Road, Glasgow, G61 1QH, UK.
| | - Elizabeth A Innes
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Edinburgh, EH26 0PZ, UK.
| | - Frank Katzer
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Edinburgh, EH26 0PZ, UK.
| |
Collapse
|
21
|
Development of Multiple-Locus Variable-Number Tandem-Repeat Analysis for Molecular Subtyping of Campylobacter jejuni by Using Capillary Electrophoresis. Appl Environ Microbiol 2015; 81:5318-25. [PMID: 26025899 DOI: 10.1128/aem.01151-15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 05/21/2015] [Indexed: 12/28/2022] Open
Abstract
Campylobacter jejuni is a common cause of the frequently reported food-borne diseases in developed and developing nations. This study describes the development of multiple-locus variable-number tandem-repeat (VNTR) analysis (MLVA) using capillary electrophoresis as a novel typing method for microbial source tracking and epidemiological investigation of C. jejuni. Among 36 tandem repeat loci detected by the Tandem Repeat Finder program, 7 VNTR loci were selected and used for characterizing 60 isolates recovered from chicken meat samples from retail shops, samples from chicken meat processing factory, and stool samples. The discrimination ability of MLVA was compared with that of multilocus sequence typing (MLST). MLVA (diversity index of 0.97 with 31 MLVA types) provided slightly higher discrimination than MLST (diversity index of 0.95 with 25 MLST types). The overall concordance between MLVA and MLST was estimated at 63% by adjusted Rand coefficient. MLVA predicted MLST type better than MLST predicted MLVA type, as reflected by Wallace coefficient (Wallace coefficient for MLVA to MLST versus MLST to MLVA, 86% versus 51%). MLVA is a useful tool and can be used for effective monitoring of C. jejuni and investigation of epidemics caused by C. jejuni.
Collapse
|
22
|
Short DPG, Gurung S, Gladieux P, Inderbitzin P, Atallah ZK, Nigro F, Li G, Benlioglu S, Subbarao KV. Globally invading populations of the fungal plant pathogen Verticillium dahliae are dominated by multiple divergent lineages. Environ Microbiol 2015; 17:2824-40. [PMID: 25630463 DOI: 10.1111/1462-2920.12789] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 12/16/2014] [Accepted: 12/17/2014] [Indexed: 11/28/2022]
Abstract
The spread of aggressive fungal pathogens into previously non-endemic regions is a major threat to plant health and food security. Analyses of the spatial and genetic structure of plant pathogens offer valuable insights into their origin, dispersal mechanisms and evolution, and have been useful to develop successful disease management strategies. Here, we elucidated the genetic diversity, population structure and demographic history of worldwide invasion of the ascomycete Verticillium dahliae, a soil-borne pathogen, using a global collection of 1100 isolates from multiple plant hosts and countries. Seven well-differentiated genetic clusters were revealed through discriminant analysis of principal components (DAPC), but no strong associations between these clusters and host/geographic origin of isolates were found. Analyses of clonal evolutionary relationships among multilocus genotypes with the eBURST algorithm and analyses of genetic distances revealed that genetic clusters represented several ancient evolutionary lineages with broad geographic distribution and wide host range. Comparison of different scenarios of demographic history using approximate Bayesian computations revealed the branching order among the different genetic clusters and lineages. The different lineages may represent incipient species, and this raises questions with respect to their evolutionary origin and the factors allowing their maintenance in the same areas and same hosts without evidence of admixture between them. Based on the above findings and the biology of V. dahliae, we conclude that anthropogenic movement has played an important role in spreading V. dahliae lineages. Our findings have implications for the development of management strategies such as quarantine measures and crop resistance breeding.
Collapse
Affiliation(s)
- Dylan P G Short
- Department of Plant Pathology, University of California, Davis, CA, 95616, USA
| | - Suraj Gurung
- Department of Plant Pathology, University of California, Davis, CA, 95616, USA
| | - Pierre Gladieux
- Ecologie Systematique Evolution, CNRS, Université Paris Sud, Orsay, F-91405, France
| | - Patrik Inderbitzin
- Department of Plant Pathology, University of California, Davis, CA, 95616, USA
| | - Zahi K Atallah
- Department of Advanced Technology, Hartnell College, Salinas, CA, 93905, USA
| | - Franco Nigro
- Department of Soil, Plant, and Food Sciences, University of Bari 'Aldo Moro', Bari, 70126, Italy
| | - Guoqing Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | | | - Krishna V Subbarao
- Department of Plant Pathology, University of California, Davis, CA, 95616, USA
| |
Collapse
|
23
|
A Multipurpose, High-Throughput Single-Nucleotide Polymorphism Chip for the Dengue and Yellow Fever Mosquito, Aedes aegypti. G3-GENES GENOMES GENETICS 2015; 5:711-8. [PMID: 25721127 PMCID: PMC4426360 DOI: 10.1534/g3.114.016196] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The dengue and yellow fever mosquito, Aedes aegypti, contributes significantly to global disease burden. Genetic study of Aedes aegypti is essential to understanding its evolutionary history, competence as a disease vector, and the effects and efficacy of vector control methods. The prevalence of repeats and transposable elements in the Aedes aegypti genome complicates marker development and makes genome-wide genetic study challenging. To overcome these challenges, we developed a high-throughput genotyping chip, Axiom_aegypti1. This chip screens for 50,000 single-nucleotide polymorphisms present in Aedes aegypti populations from around the world. The array currently used genotypes 96 samples simultaneously. To ensure that these markers satisfy assumptions commonly made in many genetic analyses, we tested for Mendelian inheritance and linkage disequilibrium in laboratory crosses and a wild population, respectively. We have validated more than 25,000 of these markers to date, and expect this number to increase with more sampling. We also present evidence of the chip’s efficacy in distinguishing populations throughout the world. The markers on this chip are ideal for applications ranging from population genetics to genome-wide association studies. This tool makes rapid, cost-effective, and comparable genotype data attainable to diverse sets of Aedes aegypti researchers, from those interested in potential range shifts due to climate change to those characterizing the genetic underpinnings of its competence to transmit disease.
Collapse
|
24
|
The population genetics of wild chimpanzees in Cameroon and Nigeria suggests a positive role for selection in the evolution of chimpanzee subspecies. BMC Evol Biol 2015; 15:3. [PMID: 25608610 PMCID: PMC4314757 DOI: 10.1186/s12862-014-0276-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 12/15/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chimpanzees (Pan troglodytes) can be divided into four subspecies. Substantial phylogenetic evidence suggests that these subspecies can be grouped into two distinct lineages: a western African group that includes P. t. verus and P. t. ellioti and a central/eastern African group that includes P. t. troglodytes and P. t. schweinfurthii. The geographic division of these two lineages occurs in Cameroon, where the rages of P. t. ellioti and P. t. troglodytes appear to converge at the Sanaga River. Remarkably, few population genetic studies have included wild chimpanzees from this region. RESULTS We analyzed microsatellite genotypes of 187 wild, unrelated chimpanzees, and mitochondrial control region sequencing data from 604 chimpanzees. We found that chimpanzees in Cameroon and eastern Nigeria comprise at least two, and likely three populations. Both the mtDNA and microsatellite data suggest that there is a primary separation of P. t. troglodytes in southern Cameroon from P. t. ellioti north and west of the Sanaga River. These two populations split ~200-250 thousand years ago (kya), but have exchanged one migrant per generation since separating. In addition, P. t. ellioti consists of two populations that split from one another ~4 kya. One population is located in the rainforests of western Cameroon and eastern Nigeria, whereas the second population appears to be confined to a savannah-woodland mosaic in central Cameroon. CONCLUSIONS Our findings suggest that there are as many as three genetically distinct populations of chimpanzees in Cameroon and eastern Nigeria. P. t. troglodytes in southern Cameroon comprises one population that is separated from two populations of P. t. ellioti in western and central Cameroon, respectively. P. t. ellioti and P. t. troglodytes appear to be characterized by a pattern of isolation-with-migration, and thus, we propose that neutral processes alone can not explain the differentiation of P. t. ellioti and P. t. troglodytes.
Collapse
|
25
|
Short DPG, Gurung S, Hu X, Inderbitzin P, Subbarao KV. Maintenance of sex-related genes and the co-occurrence of both mating types in Verticillium dahliae. PLoS One 2014; 9:e112145. [PMID: 25383550 PMCID: PMC4226480 DOI: 10.1371/journal.pone.0112145] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 10/13/2014] [Indexed: 01/13/2023] Open
Abstract
Verticillium dahliae is a cosmopolitan, soilborne fungus that causes a significant wilt disease on a wide variety of plant hosts including economically important crops, ornamentals, and timber species. Clonal expansion through asexual reproduction plays a vital role in recurring plant epidemics caused by this pathogen. The recent discovery of recombination between clonal lineages and preliminary investigations of the meiotic gene inventory of V. dahliae suggest that cryptic sex appears to be rare in this species. Here we expanded on previous findings on the sexual nature of V. dahliae. Only 1% of isolates in a global collection of 1120 phytopathogenic V. dahliae isolates contained the MAT1-1 idiomorph, whereas 99% contained MAT1-2. Nine unique multilocus microsatellite types comprised isolates of both mating types, eight of which were collected from the same substrate at the same time. Orthologs of 88 previously characterized sex-related genes from fungal model systems in the Ascoymycota were identified in the genome of V. dahliae, out of 93 genes investigated. Results of RT-PCR experiments using both mating types revealed that 10 arbitrarily chosen sex-related genes, including MAT1-1-1 and MAT1-2-1, were constitutively expressed in V. dahliae cultures grown under laboratory conditions. Ratios of non-synonymous (amino-acid altering) to synonymous (silent) substitutions in V. dahliae MAT1-1-1 and MAT1-2-1 sequences were indistinguishable from the ratios observed in the MAT genes of sexual fungi in the Pezizomycotina. Patterns consistent with strong purifying selection were also observed in 18 other arbitrarily chosen V. dahliae sex-related genes, relative to the patterns in orthologs from fungi with known sexual stages. This study builds upon recent findings from other laboratories and mounts further evidence for an ancestral or cryptic sexual stage in V. dahliae.
Collapse
Affiliation(s)
- Dylan P. G. Short
- Department of Plant Pathology, University of California Davis, Salinas, CA, United States of America
| | - Suraj Gurung
- Department of Plant Pathology, University of California Davis, Salinas, CA, United States of America
| | - Xiaoping Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Patrik Inderbitzin
- Department of Plant Pathology, University of California Davis, Salinas, CA, United States of America
| | - Krishna V. Subbarao
- Department of Plant Pathology, University of California Davis, Salinas, CA, United States of America
| |
Collapse
|
26
|
|
27
|
Validation of fragment analysis by capillary electrophoresis to resolve mixed infections by Cryptosporidium parvum subpopulations. Parasitol Res 2014; 113:1821-5. [PMID: 24609235 DOI: 10.1007/s00436-014-3828-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 02/21/2014] [Indexed: 10/25/2022]
Abstract
The potential of capillary electrophoresis (CE)-based DNA fragment analysis to identify mixed infections by Cryptosporidium parvum subpopulations was validated using high-resolution slab-gel electrophoresis. A selection of genomic DNA samples from C. parvum isolates with CE electropherogram profiles indicative of two concurrent alleles at one or more of six mini and microsatellite loci (MSB, MS5, ML1, ML2, TP14, 5B12) were analysed. These loci were PCR-amplified and products separated on precast Spreadex EL600 slab gels. ML1 PCR products differing by as little as 3 bp in length were visible after Spreadex gel electrophoresis and fragments were clearly separated for all but the ML2 and 5B12 loci, which generated stutter bands. No stuttering was seen for the remaining markers, having three or more nucleotide motifs in the repeat region. For each sample, the two bands of interest were excised separately, DNA extracted and re-amplified by PCR. Sequencing of these PCR products revealed the expected sequences for both alleles at most samples, except for the longest ML2 and 5B12 alleles which generated indeterminate sequences. Two novel MS5 alleles were successfully sequenced after PCR re-amplification. These findings demonstrate the utility of high-resolution Spreadex gels for analysing the polymorphism of satellite markers of Cryptosporidium isolates and support the validity of CE as a reliable and sensitive tool for detecting mixed Cryptosporidium subpopulations in a single-host infection.
Collapse
|
28
|
Duodu S, Wan X, Tandstad NM, Larsson P, Myrtennäs K, Sjödin A, Forsman M, Colquhoun DJ. An improved multiple-locus variable-number of tandem repeat analysis (MLVA) for the fish pathogen Francisella noatunensis using capillary electrophoresis. BMC Vet Res 2013; 9:252. [PMID: 24330665 PMCID: PMC3878797 DOI: 10.1186/1746-6148-9-252] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 12/02/2013] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Francisellosis, caused by the bacterium Francisella noatunensis subsp. noatunensis, remains a serious threat to Atlantic cod (Gadhus morhua) farming in Norway and potentially in other countries. As outbreak strains appear clonal in population structure, access to highly discriminatory typing tools is critical for understanding the epidemiology of francisellosis infections in aquaculture. In this study, a simplified multiple-locus variable-number of tandem repeat analysis (MLVA) targeting five highly polymorphic variable number of tandem repeat (VNTR) loci in a single multiplex PCR was developed to rapidly discriminate between outbreak strains. RESULTS The assay resulted in identification of at least 13 different allelic profiles or subpopulations among 91 F. noatunensis isolates from farmed cod in Norway. The VNTR loci appear relatively stable, with isolates originating from individual outbreaks showing identical MLVA profiles following repeated passage. MLVA displayed greater discriminatory power than pulse-field gel electrophoresis (PFGE). Both MLVA and PFGE show good epidemiological concordance by their abilities to separate outbreak strains from epidemiologically unrelated isolates. CONCLUSIONS The MLVA method presented here is robust, easy to perform and provides a good alternative to other typing systems for F. noatunensis subsp. noatunensis and epidemiological study of francisellosis in cod.
Collapse
|
29
|
Olsen JS, Scholz H, Fillo S, Ramisse V, Lista F, Trømborg AK, Aarskaug T, Thrane I, Blatny JM. Analysis of the genetic distribution among members of Clostridium botulinum group I using a novel multilocus sequence typing (MLST) assay. J Microbiol Methods 2013; 96:84-91. [PMID: 24246230 DOI: 10.1016/j.mimet.2013.11.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 11/01/2013] [Accepted: 11/05/2013] [Indexed: 10/26/2022]
Abstract
Clostridium botulinum is the etiological agent of botulism. Due to food-borne poisoning and the potential use of the extremely toxic botulinum neurotoxin (BoNT) from C. botulinum in bioterror or biocrime related actions, reliable high resolution typing methods for discriminating C. botulinum strains are needed. Partial sequencing of the adk, atpH, gyrB, proC, rpoD and spo0A genes from 51 various C. botulinum/sporogenes isolates was performed, resulting in 37 different sequence types (STs). Analysis of the sequence data revealed a genetic distribution in five larger clusters with a loose correlation to the BoNT serotypes. The developed MLST assay had a slightly lower resolution ability when compared to the MLVA (multilocus variable number of tandem repeat analysis), but the two methods resulted in similar subclusters of the strains possessing the BoNT serotypes A, B and F. The current work presents the development of a novel MLST assay useful for genotyping C. botulinum related to basic phylogenetic research and trace-back analysis in microbial forensic studies.
Collapse
Affiliation(s)
- Jaran S Olsen
- Norwegian Defence Research Establishment, P.O. Box 25, N-2027 Kjeller, Norway.
| | - Holger Scholz
- German Armed Forces, Institute of Microbiology, Munich, Germany
| | - Silvia Fillo
- Army Medical and Veterinary Research Center, Via Santo Stefano Rotondo 4, I-00184 Rome, Italy
| | - Vincent Ramisse
- Division of Analytical Microbiology, DGA CBRN Defence, BP3, 91710 Vert le Petit, France
| | - Florigio Lista
- Army Medical and Veterinary Research Center, Via Santo Stefano Rotondo 4, I-00184 Rome, Italy
| | - Anette K Trømborg
- Norwegian Defence Research Establishment, P.O. Box 25, N-2027 Kjeller, Norway
| | - Tone Aarskaug
- Norwegian Defence Research Establishment, P.O. Box 25, N-2027 Kjeller, Norway
| | - Ingjerd Thrane
- Norwegian Defence Research Establishment, P.O. Box 25, N-2027 Kjeller, Norway
| | - Janet M Blatny
- Norwegian Defence Research Establishment, P.O. Box 25, N-2027 Kjeller, Norway
| |
Collapse
|
30
|
Larsson JT, Torpdahl M, Møller Nielsen E. Proof-of-concept study for successful inter-laboratory comparison of MLVA results. ACTA ACUST UNITED AC 2013; 18:20566. [PMID: 24008232 DOI: 10.2807/1560-7917.es2013.18.35.20566] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Multiple-locus variable-number of tandem repeats analysis (MLVA) is widely used for typing of pathogens. Methods such as MLVA based on determining DNA fragment size by the use of capillary electrophoresis have an inherent problem as a considerable offset between measured and real (sequenced) lengths is commonly observed. This discrepancy arises from variation within the laboratory set-up used for fragment analysis. To obtain comparable results between laboratories using different set-ups, some form of calibration is a necessity. A simple approach is to use a set of calibration strains with known allele sizes and determine what compensation factors need to be applied under the chosen set-up conditions in order to obtain the correct allele sizes. We present here a proof-of-concept study showing that using such a set of calibration strains makes inter-laboratory comparison possible. In this study, 20 international laboratories analysed 15 test strains using a five-locus Salmonella enterica serovar Typhimurium MLVA scheme. When using compensation factors derived from a calibration set of 33 isolates, 99.4% (1,461/1,470) of the MLVA alleles of the test strains were assigned correctly, compared with 64.8% (952/1,470) without any compensation. After final analysis, 97.3% (286/294) of the test strains were assigned correct MLVA profiles. We therefore recommend this concept for obtaining comparable MLVA results.
Collapse
|
31
|
Täubert H, Bradley DG. combi.pl: a computer program to combine data sets with inconsistent microsatellite marker allele size information. Mol Ecol Resour 2013; 8:572-4. [PMID: 21585835 DOI: 10.1111/j.1471-8286.2007.02011.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Combining two data sets with allele information from overlapping microsatellite markers is often desirable, particularly in population genetic studies where a substantial body of published data exists. When genotyping is performed in different laboratories, allele size calling may not be presumed to be consistent. Our approach solves this problem by assigning allele sizes across studies using maximum-likelihood theory. Using data overlaps in samples and markers, allele shifts between two studies are calculated for each overlapping marker and a single file containing allele frequencies of consistent alleles is produced. The program (combi.pl) is written in PERL and available at http://data40.uni-tz.gwdg.de/~htaeube.
Collapse
Affiliation(s)
- Helge Täubert
- Insitute of Animal Breeding and Genetics, University of Göttingen, Albrecht-Thaer-Weg 3, 37075 Göttingen, Germany, Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | | |
Collapse
|
32
|
Howard SJ, Pasqualotto AC, Anderson MJ, Leatherbarrow H, Albarrag AM, Harrison E, Gregson L, Bowyer P, Denning DW. Major variations inAspergillus fumigatusarising within aspergillomas in chronic pulmonary aspergillosis. Mycoses 2013; 56:434-41. [DOI: 10.1111/myc.12047] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
Alasaad S, Fickel J, Rossi L, Sarasa M, BenÃ-tez-Camacho B, Granados JE, Soriguer RC. Applicability of major histocompatibility complex DRB1 alleles as markers to detect vertebrate hybridization: a case study from Iberian ibex × domestic goat in southern Spain. Acta Vet Scand 2012; 54:56. [PMID: 23006678 PMCID: PMC3511808 DOI: 10.1186/1751-0147-54-56] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 09/18/2012] [Indexed: 11/16/2022] Open
Abstract
Background Hybridization between closely related wild and domestic species is of great concern because it can alter the evolutionary integrity of the affected populations. The high allelic variability of Major Histocompatibility Complex (MHC) loci usually excludes them from being used in studies to detect hybridization events. However, if a) the parental species don’t share alleles, and b) one of the parental species possesses an exceptionally low number of alleles (to facilitate analysis), then even MHC loci have the potential to detect hybrids. Results By genotyping the exon2 of the MHC class II DRB1 locus, we were able to detect hybridization between domestic goats (Capra hircus) and free-ranging Iberian ibex (Capra pyrenaica hispanica) by molecular means. Conclusions This is the first documentation of a Capra pyrenaica × Capra hircus hybridization, which presented us the opportunity to test the applicability of MHC loci as new, simple, cost-effective, and time-saving approach to detect hybridization between wild species and their domesticated relatives, thus adding value to MHC genes role in animal conservation and management.
Collapse
|
34
|
Robinson G, Chalmers RM. Assessment of polymorphic genetic markers for multi-locus typing of Cryptosporidium parvum and Cryptosporidium hominis. Exp Parasitol 2012; 132:200-15. [PMID: 22781277 DOI: 10.1016/j.exppara.2012.06.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 06/26/2012] [Accepted: 06/29/2012] [Indexed: 11/29/2022]
Abstract
The use of high resolution molecular tools to study Cryptosporidium parvum and Cryptosporidium hominis intra-species variation is becoming common practice, but there is currently no consensus in the methods used. The most commonly applied tool is partial gp60 gene sequence analysis. However, multi-locus schemes are acknowledged to improve resolution over analysis of a single locus, which neglects potential re-assortment of genes during the sexual phase of the Cryptosporidium life-cycle. Multi-locus markers have been investigated in isolates from a variety of sampling frames, in varying combinations and using different assays and methods of analysis. To identify the most informative markers as candidates for the development of a standardised multi-locus fragment size-based typing (MLFT) scheme to integrate with epidemiological analyses, we examined the published literature. A total of 31 MLFT studies were found, employing 55 markers of which 45 were applied to both C. parvum and C. hominis. Of the studies, 11 had sufficient raw data, from three or more markers, and a sampling frame containing at least 50 samples, for meaningful in-depth analysis using assessment criteria based on the sampling frame, study size, number of markers investigated in each study, marker characteristics (>2 nucleotide repeats) and the combinations of markers generating all possible multi-locus genotypes. Markers investigated differed between C. hominis and C. parvum. When each scheme was analysed for the fewest markers required to identify 95% of all MLFTs, some redundancy was identified in all schemes; an average redundancy of 40% for C. hominis and 27% for C. parvum. Ranking markers, based on the most productive combinations, identified two different sets of potentially most informative candidate markers, one for each species. These will be subjected to technical evaluation including typability (percentage of samples generating a complete multi-locus type) and discriminatory power by direct fragment size analysis and analysed for correlation with epidemiological data in suitable sampling frames. The establishment of a group of users and agreed subtyping scheme for improved epidemiological and public health investigations of C. parvum and C. hominis will facilitate further developments and consideration of technological advances in a harmonised manner.
Collapse
Affiliation(s)
- Guy Robinson
- Cryptosporidium Reference Unit, Public Health Wales Microbiology, Singleton Hospital, Swansea SA2 8QA, UK
| | | |
Collapse
|
35
|
Etienne K, Subudhi C, Chadwick P, Settle P, Moise J, Magill S, Chiller T, Balajee S. Investigation of a cluster of cutaneous aspergillosis in a neonatal intensive care unit. J Hosp Infect 2011; 79:344-8. [DOI: 10.1016/j.jhin.2011.06.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Accepted: 06/21/2011] [Indexed: 11/29/2022]
|
36
|
Díaz P, Hadfield SJ, Quílez J, Soilán M, López C, Panadero R, Díez-Baños P, Morrondo P, Chalmers RM. Assessment of three methods for multilocus fragment typing of Cryptosporidium parvum from domestic ruminants in north west Spain. Vet Parasitol 2011; 186:188-95. [PMID: 22154970 DOI: 10.1016/j.vetpar.2011.11.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 11/09/2011] [Accepted: 11/14/2011] [Indexed: 10/15/2022]
Abstract
The performance of three different methods, capillary electrophoresis (CE), high resolution slab-gel electrophoresis and sequencing, for PCR fragment size analysis of two Cryptosporidium parvum microsatellite regions, ML1 and ML2, was investigated by analysing 27 isolates from calves and 14 from lambs. To assess genetic variability of this protozoan in domestic ruminants in north west Spain, results were combined with sequence analysis of the 60 kDa glycoprotein (GP60) gene creating a multilocus type and analysed by farm and host species. CE showed greater overall typability (T), discriminatory power and ease of use than slab-gel electrophoresis and sequencing which were both affected by PCR stutter, especially at ML2. CE fragment sizes were consistently 4 bp longer compared to sequencing which is considered the gold standard for allele sizing but which gave the lowest typability; CE sizes were therefore adjusted. Only three alleles were identified at the ML1 locus (ML1-238, ML1-229 and ML1-226). The ML2 locus was more polymorphic and eight alleles were found (ML2-235, ML2-233, ML2-231, ML2-229, ML2-227, ML2-225, ML2-201 and ML2-176). Adjusted ML1 and ML2 CE fragment sizes were combined with GP60 subtype for 37 of the 41 C. parvum isolates which were typable at all three loci (T=0.90): nine multilocus types (MLTs) were identified. The discriminatory power of the 3-locus typing method was 0.83. Greater genetic variability was observed in calf isolates (7 MLTs) than in those from lambs (4 MLTs) although more calf isolates were studied. The most common MLT in cattle was MLT1 (ML1-238, ML2-231, GP60 subtype IIaA15G2R1), while MLT3 (ML1-238, ML2-227, GP60 IIaA16G3R1) was predominant in lambs. Our findings demonstrate that high discrimination can be achieved by means of multilocus typing. CE appears to be an economic and rapid option for performing microsatellite fragment size analysis offering good typability, discrimination and ease of use but may require calibration to sequenced standards.
Collapse
Affiliation(s)
- P Díaz
- Department of Animal Pathology, Faculty of Veterinary Sciences, University of Santiago de Compostela, 27002 Lugo, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
|
38
|
Phenotypic and genetic analyses of 111 clinical and environmental O1, O139, and non-O1/O139 Vibrio cholerae strains from different geographical areas. Epidemiol Infect 2011; 140:1389-99. [PMID: 22074599 DOI: 10.1017/s0950268811002147] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
A total of 111 clinical and environmental O1, O139 and non-O1/O139 Vibrio cholerae strains isolated between 1978 and 2008 from different geographical areas were typed using a combination of methods: antibiotic susceptibility, biochemical test, serogroup, serotype, biotype, sequences containing variable numbers of tandem repeats (VNTRs) and virulence genes ctxA and tcpA amplification. As a result of the performed typing work, the strains were organized into four clusters: cluster A1 included clinical O1 Ogawa and O139 serogroup strains (ctxA(+) and tcpA(+)); cluster A2 included clinical non-O1/O139 strains (ctxA(-) and tcpA(-)), as well as environmental O1 Inaba and non-O1/O139 strains (ctxA(-) and tcpA(-)/tcpA(+)); cluster B1 contained two clinical O1 strains and environmental non-O1/O139 strains (ctxA(-) and tcpA(+)/tcpA(-)); cluster B2 contained clinical O1 Inaba and Ogawa strains (ctxA(+) and tcpA(+)). The results of this work illustrate the advantage of combining several typing methods to discriminate between clinical and environmental V. cholerae strains.
Collapse
|
39
|
Multilocus fragment typing and genetic structure of Cryptosporidium parvum Isolates from diarrheic preweaned calves in Spain. Appl Environ Microbiol 2011; 77:7779-86. [PMID: 21908632 DOI: 10.1128/aem.00751-11] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A collection of 140 Cryptosporidium parvum isolates previously analyzed by PCR-restriction fragment length polymorphism (PCR-RFLP) and sequence analyses of the small-subunit (SSU) rRNA and 60-kDa glycoprotein (GP60) genes was further characterized by multilocus fragment typing of six minisatellite (MSB and MS5) and microsatellite (ML1, ML2, TP14, and 5B12) loci. Isolates were collected from diarrheic preweaned calves originating from 61 dairy cattle farms in northern Spain. A capillary electrophoresis-based tool combining three different fluorescent tags was used to analyze all six satellites in one capillary. Fragment sizes were adjusted after comparison with sizes obtained by sequence analysis of a selection of isolates for every allele. Size discrepancies at all but the 5B12 locus were found for those isolates that were typed by both techniques, although identical size differences were reported for every allele within each locus. A total of eight alleles were seen at the ML2 marker, which contributed the most to the discriminatory power of the multilocus approach. Multilocus fragment typing clearly improved the discriminatory power of GP60 sequencing, since a total of 59 multilocus subtypes were identified based on the combination of alleles at the six satellite loci, in contrast to the 7 GP60 subtypes previously reported. The majority of farms (38) displayed a unique multilocus subtype, and individual isolates with mixed multilocus subtypes were seen at 22 farms. Bayesian structure analysis based on combined data for both satellite and GP60 loci suggested the presence of two major clusters among the C. parvum isolates from cattle farms in this geographical area.
Collapse
|
40
|
|
41
|
Haaland ØA, Glover KA, Seliussen BB, Skaug HJ. Genotyping errors in a calibrated DNA register: implications for identification of individuals. BMC Genet 2011; 12:36. [PMID: 21507252 PMCID: PMC3112247 DOI: 10.1186/1471-2156-12-36] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 04/20/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The use of DNA methods for the identification and management of natural resources is gaining importance. In the future, it is likely that DNA registers will play an increasing role in this development. Microsatellite markers have been the primary tool in ecological, medical and forensic genetics for the past two decades. However, these markers are characterized by genotyping errors, and display challenges with calibration between laboratories and genotyping platforms. The Norwegian minke whale DNA register (NMDR) contains individual genetic profiles at ten microsatellite loci for 6737 individuals captured in the period 1997-2008. These analyses have been conducted in four separate laboratories for nearly a decade, and offer a unique opportunity to examine genotyping errors and their consequences in an individual based DNA register. We re-genotyped 240 samples, and, for the first time, applied a mixed regression model to look at potentially confounding effects on genotyping errors. RESULTS The average genotyping error rate for the whole dataset was 0.013 per locus and 0.008 per allele. Errors were, however, not evenly distributed. A decreasing trend across time was apparent, along with a strong within-sample correlation, suggesting that error rates heavily depend on sample quality. In addition, some loci were more error prone than others. False allele size constituted 18 of 31 observed errors, and the remaining errors were ten false homozygotes (i.e., the true genotype was a heterozygote) and three false heterozygotes (i.e., the true genotype was a homozygote). CONCLUSIONS To our knowledge, this study represents the first investigation of genotyping error rates in a wildlife DNA register, and the first application of mixed models to examine multiple effects of different factors influencing the genotyping quality. It was demonstrated that DNA registers accumulating data over time have the ability to maintain calibration and genotyping consistency, despite analyses being conducted on different genotyping platforms and in different laboratories. Although errors were detected, it is demonstrated that if the re-genotyping of individual samples is possible, these will have a minimal effect on the database's primary purpose, i.e., to perform individual identification.
Collapse
Affiliation(s)
- Øystein A Haaland
- Department of Mathematics, University of Bergen, Johannes Brunsgate 12, 5008 Bergen, Norway
| | | | | | | |
Collapse
|
42
|
Christiansson M, Melin S, Matussek A, Löfgren S, Söderman J. MLVA is a valuable tool in epidemiological investigations of Escherichia coli and for disclosing multiple carriage. ACTA ACUST UNITED AC 2011; 43:579-86. [DOI: 10.3109/00365548.2011.568953] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
43
|
Eckert C, Vromman F, Halkovich A, Barbut F. Multilocus variable-number tandem repeat analysis: a helpful tool for subtyping French Clostridium difficile PCR ribotype 027 isolates. J Med Microbiol 2011; 60:1088-1094. [PMID: 21330414 DOI: 10.1099/jmm.0.029009-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The objective of this study was to evaluate the usefulness of multilocus variable-number tandem repeat analysis (MLVA) for typing and subtyping of Clostridium difficile. Sixty-eight strains were studied, including strains from PCR ribotypes 027, 078/126, 014/020/077, 017 and 023. The stability of variable-number tandem repeat (VNTR) loci was tested by comparing the MLVA results of two strains subcultured 11 times. After DNA extraction, seven tandem repeat loci (A6, B7, C6, E7, F3, G8, H9) from published MLVA schemes were amplified by PCR and sequenced. The distance between two strains was determined by calculating the summed tandem repeat difference. Genomic diversity was evaluated by using the minimum spanning tree (Bionumerics 5.1 software program; Applied Maths). Among the 68 C. difficile isolates examined, 65 unique MLVA types were identified, suggesting a high discriminatory power. An overall good agreement was observed between MLVA types and PCR ribotypes. The stability of VNTR loci was good. MLVA could separate isolates of the hypervirulent PCR ribotype 027 clone in several clusters; all 027 strains isolated within a hospital were grouped in a specific cluster or were placed very close to each other. Results of MLVA confirmed that strains from PCR ribotypes 078 and 126 were closely related although some were located in different branches of the tree. Similar results were observed for most strains from PCR ribotypes 014, 020 and 077. This highly discriminatory method is time-consuming and expensive, but is a valuable tool for subtyping of C. difficile, especially of 027 strains.
Collapse
Affiliation(s)
- Catherine Eckert
- ER8, Université Pierre et Marie Curie, Paris, France.,National Reference Laboratory for C. difficile, Hôpital Saint-Antoine, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - François Vromman
- ER8, Université Pierre et Marie Curie, Paris, France.,National Reference Laboratory for C. difficile, Hôpital Saint-Antoine, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Aurore Halkovich
- ER8, Université Pierre et Marie Curie, Paris, France.,National Reference Laboratory for C. difficile, Hôpital Saint-Antoine, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Frederic Barbut
- ER8, Université Pierre et Marie Curie, Paris, France.,National Reference Laboratory for C. difficile, Hôpital Saint-Antoine, Assistance Publique-Hôpitaux de Paris, Paris, France
| |
Collapse
|
44
|
Microsatellite standardization and evaluation of genotyping error in a large multi-partner research programme for conservation of Atlantic salmon (Salmo salar L.). Genetica 2011; 139:353-67. [PMID: 21279823 PMCID: PMC3059809 DOI: 10.1007/s10709-011-9554-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Accepted: 01/19/2011] [Indexed: 11/10/2022]
Abstract
Microsatellite genotyping is a common DNA characterization technique in population, ecological and evolutionary genetics research. Since different alleles are sized relative to internal size-standards, different laboratories must calibrate and standardize allelic designations when exchanging data. This interchange of microsatellite data can often prove problematic. Here, 16 microsatellite loci were calibrated and standardized for the Atlantic salmon, Salmo salar, across 12 laboratories. Although inconsistencies were observed, particularly due to differences between migration of DNA fragments and actual allelic size (‘size shifts’), inter-laboratory calibration was successful. Standardization also allowed an assessment of the degree and partitioning of genotyping error. Notably, the global allelic error rate was reduced from 0.05 ± 0.01 prior to calibration to 0.01 ± 0.002 post-calibration. Most errors were found to occur during analysis (i.e. when size-calling alleles; the mean proportion of all errors that were analytical errors across loci was 0.58 after calibration). No evidence was found of an association between the degree of error and allelic size range of a locus, number of alleles, nor repeat type, nor was there evidence that genotyping errors were more prevalent when a laboratory analyzed samples outside of the usual geographic area they encounter. The microsatellite calibration between laboratories presented here will be especially important for genetic assignment of marine-caught Atlantic salmon, enabling analysis of marine mortality, a major factor in the observed declines of this highly valued species.
Collapse
|
45
|
Van Waeyenberghe L, Pasmans F, Beernaert LA, Haesebrouck F, Vercammen F, Verstappen F, Dorrestein GM, Klaassen CHW, Martel A. Microsatellite typing of avian clinical and environmental isolates ofAspergillus fumigatus. Avian Pathol 2011; 40:73-7. [DOI: 10.1080/03079457.2010.540229] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
46
|
A fluorescence-based polymerase chain reaction-linked single-strand conformation polymorphism (F-PCR-SSCP) assay for the identification of Fasciola spp. Parasitol Res 2010; 108:1513-7. [PMID: 21170657 DOI: 10.1007/s00436-010-2209-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 11/30/2010] [Indexed: 12/22/2022]
Abstract
The present study aimed to establish a fluorescence-based polymerase chain reaction-linked single-strand conformation polymorphism (F-PCR-SSCP) assay for the identification of Fasciola spp. Based on the sequences of the second internal transcribed spacer (ITS-2) of the nuclear ribosomal DNA, we designed a set of genus-specific primers for the amplification of Fasciola ITS-2, with an estimated size of 140 bp. These primers were labelled by fluorescence dyes, and the PCR products were analyzed by capillary electrophoresis under non-denaturing conditions (F-PCR-SSCP). Capillary electrophoresis analysis of the fluorescence-labelled DNA fragments displayed three different peak profiles that allowed the accurate identification of Fasciola species: one single peak specific for either Fasciola hepatica or Fasciola gigantica and a doublet peak corresponding to the "intermediate" Fasciola. Validation of our novel method was performed using Fasciola specimens from different host animals from China, Spain, Nigeria, and Egypt. This F-PCR-SSCP assay provides a rapid, simple, and robust tool for the identification and differentiation between Fasciola spp.
Collapse
|
47
|
Multiple-locus variable-number tandem-repeat analysis of the swine dysentery pathogen, Brachyspira hyodysenteriae. J Clin Microbiol 2010; 48:2859-65. [PMID: 20554811 DOI: 10.1128/jcm.00348-10] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The spirochete Brachyspira hyodysenteriae is the causative agent of swine dysentery, a severe colonic infection of pigs that has a considerable economic impact in many swine-producing countries. In spite of its importance, knowledge about the global epidemiology and population structure of B. hyodysenteriae is limited. Progress in this area has been hampered by the lack of a low-cost, portable, and discriminatory method for strain typing. The aim of the current study was to develop and test a multiple-locus variable-number tandem-repeat analysis (MLVA) method that could be used in basic veterinary diagnostic microbiology laboratories equipped with PCR technology or in more advanced laboratories with access to capillary electrophoresis. Based on eight loci, and when performed on isolates from different farms in different countries, as well as type and reference strains, the MLVA technique developed was highly discriminatory (Hunter and Gaston discriminatory index, 0.938 [95% confidence interval, 0.9175 to 0.9584]) while retaining a high phylogenetic value. Using the technique, the species was shown to be diverse (44 MLVA types from 172 isolates and strains), although isolates were stable in herds over time. The population structure appeared to be clonal. The finding of B. hyodysenteriae MLVA type 3 in piggeries in three European countries, as well as other, related, strains in different countries, suggests that spreading of the pathogen via carrier pigs is likely. MLVA overcame drawbacks associated with previous typing techniques for B. hyodysenteriae and was a powerful method for epidemiologic and population structure studies on this important pathogenic spirochete.
Collapse
|
48
|
Howard S, Pasqualotto A, Denning D. Azole resistance in allergic bronchopulmonary aspergillosis and Aspergillus bronchitis. Clin Microbiol Infect 2010; 16:683-8. [DOI: 10.1111/j.1469-0691.2009.02911.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
49
|
Characterization of Escherichia coli O157:H7 in New Zealand using multiple-locus variable-number tandem-repeat analysis. Epidemiol Infect 2010; 139:464-71. [PMID: 20478087 DOI: 10.1017/s0950268810001068] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Recently, multiple-locus variable-number tandem-repeat analysis (MLVA) has been proposed as an alternative to pulsed-field gel electrophoresis (PFGE) for characterization of Escherichia coli O157:H7. In this study we characterized 118 E. coli O157:H7 isolates from cases of gastrointestinal disease in New Zealand using XbaI PFGE profiles and a MLVA scheme that assessed variability in eight polymorphic loci. The 118 isolates characterized included all 80 E. coli O157:H7 referred to New Zealand's Enteric Reference Laboratory in 2006 and 29 phage-type 2 isolates from 2005. When applied to these isolates the discriminatory power of PFGE and MLVA was not significantly different. However, MLVA data may be more epidemiologically relevant as isolates from family clusters of disease had identical MLVA profiles, even when the XbaI PFGE profiles differed slightly. Furthermore, most isolates with indistinguishable XbaI PFGE profiles that did not appear to be epidemiologically related had distinct MLVA profiles.
Collapse
|
50
|
Alvarez-Perez S, Garcia ME, Bouza E, Pelaez T, Blanco JL. Characterization of multiple isolates of Aspergillus fumigatus from patients: genotype, mating type and invasiveness. Med Mycol 2010; 47:601-8. [PMID: 18798050 DOI: 10.1080/13693780802380537] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The possible co-existence of different genotypes of Aspergillus fumigatus in the same case was studied in five patients colonized or infected by this opportunistic mould. A total of 22 isolates were typed by random amplified polymorphic DNA (RAPD) and microsatellite analysis. Differences in the mating type and invasiveness of the isolates were also considered. The combination of four arbitrary primers used in RAPD typing differentiated all the isolates. In microsatellite analysis, at least two different genotypes were identified in four of the five patients. The 22 isolates showed elastase activity after 10 days of incubation at 37 degrees C in an elastin-containing medium. The presence of strains of compatible mating type was observed in one of the colonized patients and one of the individuals with invasive aspergillosis. Some isolates that belonged to the same genotype in microsatellite analysis were of a different mating type. Taken together, our results suggest that multiple isolates of A. fumigatus obtained from colonized or infected patients may differ not only in their genotypes, but also in their invasiveness and mating types. Furthermore, mating type determination may be of great assistance in differentiating some isolates, as two isolates of different mating type cannot be genotypically identical.
Collapse
|