1
|
Carey-Ewend K, Popkin-Hall ZR, Simkin A, Muller M, Hennelly C, He W, Moser KA, Gaither C, Niaré K, Aghakanian F, Feleke S, Brhane BG, Phanzu F, Mwandagalirwa K, Aydemir O, Sutherland CJ, Ishengoma DS, Ali IM, Ngasala B, Kalonji A, Tshefu A, Parr JB, Bailey JA, Juliano JJ, Lin JT. Population genomics of Plasmodium ovale species in sub-Saharan Africa. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.10.588912. [PMID: 39345628 PMCID: PMC11429939 DOI: 10.1101/2024.04.10.588912] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Plasmodium ovale curtisi (Poc) and Plasmodium ovale wallikeri (Pow) are relapsing malaria parasites endemic to Africa and Asia that were previously thought to represent a single species. Amid increasing detection of ovale malaria in sub-Saharan Africa, we performed a population genomic study of both species across the continent. We conducted whole-genome sequencing of 25 isolates from Central and East Africa and analyzed them alongside 20 previously published African genomes. Isolates were predominantly monoclonal (43/45), with their genetic similarity aligning with geography. Pow showed lower average nucleotide diversity (1.8×10-4) across the genome compared to Poc (3.0×10-4) (p < 0.0001). Signatures of selective sweeps involving the dihydrofolate reductase gene were found in both species, as were signs of balancing selection at the merozoite surface protein 1 gene. Differences in the nucleotide diversity of Poc and Pow may reflect unique demographic history, even as similar selective forces facilitate their resilience to malaria control interventions.
Collapse
Affiliation(s)
- Kelly Carey-Ewend
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Zachary R Popkin-Hall
- Institute for Global Health and Infectious Diseases, University of North Carolina, Chapel Hill, NC, USA
| | - Alfred Simkin
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - Meredith Muller
- Institute for Global Health and Infectious Diseases, University of North Carolina, Chapel Hill, NC, USA
| | - Chris Hennelly
- Institute for Global Health and Infectious Diseases, University of North Carolina, Chapel Hill, NC, USA
| | - Wenqiao He
- Institute for Global Health and Infectious Diseases, University of North Carolina, Chapel Hill, NC, USA
| | - Kara A Moser
- Institute for Global Health and Infectious Diseases, University of North Carolina, Chapel Hill, NC, USA
| | - Claudia Gaither
- Institute for Global Health and Infectious Diseases, University of North Carolina, Chapel Hill, NC, USA
| | - Karamoko Niaré
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - Farhang Aghakanian
- Institute for Global Health and Infectious Diseases, University of North Carolina, Chapel Hill, NC, USA
| | - Sindew Feleke
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | | | | | | | - Ozkan Aydemir
- Program in Molecular Medicine, Chan Medical School, University of Massachusetts, Worcester, MA, USA
| | | | - Deus S Ishengoma
- National Institute for Medical Research (NIMR), Dar es Salaam, Tanzania
- Department of Biochemistry, Kampala International University in Tanzania, Dar es Salaam, Tanzania
| | - Innocent M Ali
- Department of Biochemistry, Faculty of Science, University of Dschang, Cameroon
| | - Billy Ngasala
- Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | | | | | - Jonathan B Parr
- Institute for Global Health and Infectious Diseases, University of North Carolina, Chapel Hill, NC, USA
- Division of Infectious Diseases, University of North Carolina School of Medicine, University of North Carolina, Chapel Hill, NC, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Jeffrey A Bailey
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - Jonathan J Juliano
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
- Institute for Global Health and Infectious Diseases, University of North Carolina, Chapel Hill, NC, USA
- Division of Infectious Diseases, University of North Carolina School of Medicine, University of North Carolina, Chapel Hill, NC, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Jessica T Lin
- Institute for Global Health and Infectious Diseases, University of North Carolina, Chapel Hill, NC, USA
- Division of Infectious Diseases, University of North Carolina School of Medicine, University of North Carolina, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
2
|
Nieto-Clavijo C, Morales L, Vega APG, Cortés LJC, Chaparro-Olaya J. Challenging diagnosis of Plasmodium ovale malaria in a Colombian traveler: the importance of including P. ovale wallikeri in molecular screening. Rev Inst Med Trop Sao Paulo 2024; 66:e29. [PMID: 38747850 PMCID: PMC11095243 DOI: 10.1590/s1678-9946202466029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/06/2024] [Indexed: 05/19/2024] Open
Abstract
This study reports a challenging diagnosis of Plasmodium ovale malaria in a Colombian citizen returning from Cameroon. Initial microscopy screenings conducted at two private hospitals yielded conflicting results, with the first showing negative smears and the second diagnosing P. vivax. Subsequent microscopy examinations at two government laboratories identified P. ovale, although the routine species-specific PCR strategy was negative. PCR confirmation was finally obtained when P. ovale wallikeri primers were used. Although P. ovale is not frequently found in Colombia, there is a clear need to include both P. ovale curtisi and P. ovale wallikeri in the molecular diagnostic strategy. Such need stems primarily from their extended latency period, which affects travelers, the increasing number of African migrants, and the importance of accurately mapping the distribution of Plasmodium species in Colombia.
Collapse
Affiliation(s)
- Carlos Nieto-Clavijo
- Universidad El Bosque, Vicerrectoría de Investigaciones, Laboratorio de Parasitología Molecular, Bogotá, Colombia
| | - Liliana Morales
- Universidad El Bosque, Vicerrectoría de Investigaciones, Laboratorio de Parasitología Molecular, Bogotá, Colombia
| | | | | | - Jacqueline Chaparro-Olaya
- Universidad El Bosque, Vicerrectoría de Investigaciones, Laboratorio de Parasitología Molecular, Bogotá, Colombia
| |
Collapse
|
3
|
Calderaro A, Piccolo G, Chezzi C. The Laboratory Diagnosis of Malaria: A Focus on the Diagnostic Assays in Non-Endemic Areas. Int J Mol Sci 2024; 25:695. [PMID: 38255768 PMCID: PMC10815132 DOI: 10.3390/ijms25020695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/26/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Even if malaria is rare in Europe, it is a medical emergency and programs for its control should ensure both an early diagnosis and a prompt treatment within 24-48 h from the onset of the symptoms. The increasing number of imported malaria cases as well as the risk of the reintroduction of autochthonous cases encouraged laboratories in non-endemic countries to adopt diagnostic methods/algorithms. Microscopy remains the gold standard, but with limitations. Rapid diagnostic tests have greatly expanded the ability to diagnose malaria for rapid results due to simplicity and low cost, but they lack sensitivity and specificity. PCR-based assays provide more relevant information but need well-trained technicians. As reported in the World Health Organization Global Technical Strategy for Malaria 2016-2030, the development of point-of-care testing is important for the improvement of diagnosis with beneficial consequences for prompt/accurate treatment and for preventing the spread of the disease. Despite their limitations, diagnostic methods contribute to the decline of malaria mortality. Recently, evidence suggested that artificial intelligence could be utilized for assisting pathologists in malaria diagnosis.
Collapse
Affiliation(s)
- Adriana Calderaro
- Department of Medicine and Surgery, University of Parma, Viale A. Gramsci 14, 43126 Parma, Italy; (G.P.); (C.C.)
| | | | | |
Collapse
|
4
|
Potlapalli VR, Muller MS, Ngasala B, Ali IM, Na YB, Williams DR, Kharabora O, Chhetri S, Liu MS, Carey-Ewend K, Lin FC, Mathias D, Tarimo BB, Juliano JJ, Parr JB, Lin JT. Real-time PCR detection of mixed Plasmodium ovale curtisi and wallikeri infections in human and mosquito hosts. PLoS Negl Trop Dis 2023; 17:e0011274. [PMID: 38064489 PMCID: PMC10732364 DOI: 10.1371/journal.pntd.0011274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 12/20/2023] [Accepted: 11/21/2023] [Indexed: 12/19/2023] Open
Abstract
Plasmodium ovale curtisi (Poc) and Plasmodium ovale wallikeri (Pow) represent distinct non-recombining Plasmodium species that are increasing in prevalence in sub-Saharan Africa. Though they circulate sympatrically, co-infection within human and mosquito hosts has rarely been described. Separate 18S rRNA real-time PCR assays that detect Poc and Pow were modified to allow species determination in parallel under identical cycling conditions. The lower limit of detection was 0.6 plasmid copies/μL (95% CI 0.4-1.6) for Poc and 4.5 plasmid copies/μL (95% CI 2.7-18) for Pow, or 0.1 and 0.8 parasites/μL, respectively, assuming 6 copies of 18s rRNA per genome. However, the assays showed cross-reactivity at concentrations greater than 103 plasmid copies/μL (roughly 200 parasites/μL). Mock mixtures were used to establish criteria for classifying mixed Poc/Pow infections that prevented false-positive detection while maintaining sensitive detection of the minority ovale species down to 100 copies/μL (<1 parasite/μL). When the modified real-time PCR assays were applied to field-collected blood samples from Tanzania and Cameroon, species identification by real-time PCR was concordant with nested PCR in 19 samples, but additionally detected two mixed Poc/Pow infections where nested PCR detected a single Po species. When real-time PCR was applied to oocyst-positive Anopheles midguts saved from mosquitoes fed on P. ovale-infected persons, mixed Poc/Pow infections were detected in 11/14 (79%). Based on these results, 8/9 P. ovale carriers transmitted both P. ovale species to mosquitoes, though both Po species could only be detected in the blood of two carriers. The described real-time PCR approach can be used to identify the natural occurrence of mixed Poc/Pow infections in human and mosquito hosts and reveals that such co-infections and co-transmission are likely more common than appreciated.
Collapse
Affiliation(s)
- Varun R. Potlapalli
- Institute of Global Health and Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Meredith S. Muller
- Institute of Global Health and Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Billy Ngasala
- Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Innocent Mbulli Ali
- Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Yu Bin Na
- Institute of Global Health and Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Danielle R. Williams
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Oksana Kharabora
- Institute of Global Health and Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Srijana Chhetri
- Institute of Global Health and Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Mei S. Liu
- Institute of Global Health and Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Kelly Carey-Ewend
- Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Feng-Chang Lin
- Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Derrick Mathias
- Florida Medical Entomology Laboratory, Institute of Food & Agricultural Sciences, University of Florida, Vero Beach, Florida United States of America
| | - Brian B. Tarimo
- Vector Immunity and Transmission Biology Unit, Department of Environmental Health and Ecological Sciences, Ifakara Health Institute-Bagamoyo Office, Bagamoyo, Tanzania
| | - Jonathan J. Juliano
- Institute of Global Health and Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
- Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Jonathan B. Parr
- Institute of Global Health and Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Jessica T. Lin
- Institute of Global Health and Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
5
|
Srisutham S, Rattanakoch P, Kijprasong K, Sugaram R, Kantaratanakul N, Srinulgray T, Dondorp AM, Imwong M. A novel sensitive hexaplex high-resolution melt assay for identification of five human Plasmodium species plus internal control. Acta Trop 2023; 248:107020. [PMID: 37739253 PMCID: PMC10641754 DOI: 10.1016/j.actatropica.2023.107020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/05/2023] [Accepted: 09/11/2023] [Indexed: 09/24/2023]
Abstract
BACKGROUND The diagnosis of malaria infection in humans remains challenging, further complicated by mixed Plasmodium species infections, potentially altering disease severity and morbidity. To facilitate appropriate control measures and treatment, rapid, sensitive, and specific detection assays, including those for the second minor species, would be required. This study aimed to develop a multiplex high-resolution melting (hexaplex PCR-HRM) assay with seven distinct peaks corresponding to five Plasmodium species of the Plasmodium genus, and an internal control to limit false negatives providing quality assurance testing results. METHODS Five species-specific primers for human malaria species were designed targeting on the Plasmodium 18 small subunit ribosomal RNA (18S rRNA) and mitochondrial genes. The hexaplex PCR-HRM was developed for the simultaneous and rapid detection and differentiation of five human Plasmodium spp. The limit of detection (LoD), sensitivity, and specificity of the assay were evaluated. Artificial mixing was used to assess the ability to determine the second minor species. Furthermore, a hexaplex PCR-HRM assay was used to identify 120 Plasmodium-infected clinical isolates from Kanchanaburi, Western Thailand, where malaria is endemic. RESULTS The hexaplex PCR-HRM assay detected the targeted genome of five Plasmodium species at levels as low as 2.354-3.316 copies/uL with 91.76 % sensitivity and 98.04 % specificity. In artificial mixing, the assay could detect minority parasite species at 0.001 % of the predominant parasite population. Plasmodium vivax infections (99 %) accounted for the majority of malaria cases in Kanchanaburi, Thailand. CONCLUSIONS The developed hexaplex PCR-HRM assay we present in this study is a novel approach for multiplexing the Plasmodium genus and detecting five Plasmodium species with the advantage of detecting second minority parasite species. The developed one-step assay without any nesting protocols would reduce the risks of cross-contamination. Moreover, it also provides a simple, sensitive, specific, and low-cost approach for optional molecular detection of malaria.
Collapse
Affiliation(s)
- Suttipat Srisutham
- Department of Clinical Microscopy, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand.
| | - Paweesuda Rattanakoch
- Department of Clinical Microscopy, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | | | - Rungniran Sugaram
- Division of Vector Borne Diseases, Department of Disease Control, Ministry of Public Health, Nonthaburi, Thailand
| | | | | | - Arjen M Dondorp
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, Northern Ireland UK
| | - Mallika Imwong
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
6
|
Potlapalli V, Muller MS, Ngasala B, Ali IM, Na YB, Williams DR, Kharabora O, Chhetri S, Liu MS, Carey-Ewend K, Lin FC, Mathias D, Tarimo BB, Juliano JJ, Parr J, Lin JT. Real-time PCR detection of mixed Plasmodium ovale curtisi and wallikeri species infections in human and mosquito hosts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.31.535020. [PMID: 37034766 PMCID: PMC10081274 DOI: 10.1101/2023.03.31.535020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Plasmodium ovale curtisi (Poc) and Plasmodium ovale wallikeri (Pow) represent distinct non-recombining malaria species that are increasing in prevalence in sub-Saharan Africa. Though they circulate sympatrically, co-infection within human and mosquito hosts has rarely been described. Separate 18S rRNA real-time PCR assays that detect Poc and Pow were modified to allow species determination in parallel under identical cycling conditions. The lower limit of detection was 0.6 plasmid copies/μL (95% CI 0.4-1.6) for Poc and 4.5 plasmid copies/μL (95% CI( 2.7- 18) for Pow, or 0.1 and 0.8 parasites/μL, respectively, assuming 6 copies of 18s rRNA per genome. However, the assays showed cross-reactivity at concentrations greater than 103 plasmid copies/μL (roughly 200 parasites/μL). Mock mixtures were used to establish criteria for classifying mixed Poc/Pow infections that prevented false-positive detection while maintaining sensitive detection of the minority ovale species down to 10° copies/μL (<1 parasite/μL). When the modified real-time PCR assays were applied to field-collected blood samples from Tanzania and Cameroon, species identification by real-time PCR was concordant with nested PCR, but additionally detected two mixed Poc/Pow infections where nested PCR detected a single Po species. When real-time PCR was applied to 14 oocyst-positive Anopheles midguts saved from mosquitoes fed on P. ovate-infected persons, mixed Poc/Pow infections were detected in 11 (79%). Based on these results, 8/9 P. ovate carriers transmitted both P. ovate species to mosquitoes, though both Po species could only be detected in the blood of two carriers. The described real-time PCR approach can be used to identify the natural occurrence of mixed Poc/Pow infections in human and mosquito hosts and reveals that such co-infections and co-transmission are likely more common than appreciated.
Collapse
Affiliation(s)
- Varun Potlapalli
- Institute of Global Health and Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, NC USA
| | - Meredith S Muller
- Institute of Global Health and Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, NC USA
| | - Billy Ngasala
- Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Innocent Mbulli Ali
- Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Yu Bin Na
- Institute of Global Health and Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, NC USA
| | - Danielle R Williams
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC USA
| | - Oksana Kharabora
- Institute of Global Health and Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, NC USA
| | - Srijana Chhetri
- Institute of Global Health and Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, NC USA
| | - Mei S Liu
- Institute of Global Health and Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, NC USA
| | - Kelly Carey-Ewend
- Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC USA
| | - Feng-Chang Lin
- Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC USA
| | - Derrick Mathias
- Florida Medical Entomology Laboratory, Institute of Food & Agricultural Sciences, University of Florida, Vero Beach, FL USA
| | - Brian B Tarimo
- Vector Immunity and Transmission Biology Unit, Department of Environmental Health and Ecological Sciences, Ifakara Health Institute-Bagamoyo Office, Bagamoyo, Tanzania
| | - Jonathan J Juliano
- Institute of Global Health and Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, NC USA
- Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC USA
| | - Jonathan Parr
- Institute of Global Health and Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, NC USA
| | - Jessica T Lin
- Institute of Global Health and Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, NC USA
| |
Collapse
|
7
|
Zhang J, Chen X, Pan M, Qin Y, Zhao H, Yang Q, Li X, Zeng W, Xiang Z, Wu Y, Duan M, Li X, Wang X, Mazier D, Zhang Y, Zhu W, Sun K, Wu Y, Cui L, Huang Y, Yang Z. Application of a low-cost, specific, and sensitive loop-mediated isothermal amplification (LAMP) assay to detect Plasmodium falciparum imported from Africa. Mol Biochem Parasitol 2022; 252:111529. [PMID: 36374724 PMCID: PMC9890345 DOI: 10.1016/j.molbiopara.2022.111529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 08/12/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Chinese citizens traveling abroad bring back imported malaria cases to China. Current malaria diagnostic tests, including microscopy and antigen-detecting rapid tests, cannot reliably detect low-density infections. To complement existing diagnostic methods, we aimed to develop a new loop-mediated isothermal amplification (LAMP) assay to detect and identify Plasmodium falciparum in Chinese travelers returning from Africa. METHODS We developed a miniaturized LAMP assay to amplify the actin I gene of P. falciparum. Each reaction consumed only 25% of the reagents used in a conventional LAMP assay and the same amount of DNA templates used in nested PCR. We evaluated this LAMP assay's performance and compared it to microscopy and a nested PCR assay using 466 suspected malaria cases imported from Africa. We assessed the sensitivity of the new LAMP assay using cultured P. falciparum, clinical samples, and a plasmid construct, allowing unprecedented precision when quantifying the limit of detection. RESULTS The new LAMP assay was highly sensitive and detected two more malaria cases than nested PCR. Compared to nested PCR, the sensitivity and specificity of the novel LAMP assay were 100% [95% confidence interval (CI) 98.5-100%] and 99.1% (95% CI 96.7-99.9%), respectively. When evaluated using serial dilutions of the plasmid construct, the detection limit of the new LAMP was as low as 102 copies/μL, 10-fold lower than PCR. The LAMP assay detected 0.01 parasites/μL of blood (equal to 0.04 parasites/μL of DNA) using cultured P. falciparum and 1-7 parasites/μL of blood (4-28 parasites/μL of DNA) in clinical samples, which is as good as or better than previously reported and commercially licensed assays. CONCLUSION The novel LAMP assay based on the P. falciparum actin I gene was specific, sensitive, and cost-effective, as it consumes 1/4 of the reagents in a typical LAMP reaction.
Collapse
Affiliation(s)
- Jiaqi Zhang
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, Yunnan, 650500, China,Zhejiang Provincial Center for Disease Control and Prevention, No.3399 BinSheng Road, Binjiang District, Hangzhou, Zhejiang Province, 310051, China
| | - Xi Chen
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Maohua Pan
- Shanglin County People’s Hospital, Shanglin, Guangxi, 530500, China
| | - Yucheng Qin
- Shanglin County People’s Hospital, Shanglin, Guangxi, 530500, China
| | - Hui Zhao
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Qi Yang
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Xinxin Li
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Weilin Zeng
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Zheng Xiang
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Yanrui Wu
- Department of Cell Biology & Genetics, Kunming Medical University, Kunming, Yunnan,China
| | - Mengxi Duan
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Xiaosong Li
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Xun Wang
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Dominique Mazier
- Sorbonne Université, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, CIMI, Paris, France
| | - Yanmei Zhang
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Wenya Zhu
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Kemin Sun
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Yiman Wu
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Liwang Cui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 3720 Spectrum Boulevard, Suite 304, MDC84, Tampa, FL 33612, USA
| | - Yaming Huang
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, Yunnan, 650500, China,Guangxi Zhuang Autonomous Region Center for Disease Prevention and Control, Nanning, Guangxi, 530021, China,Correspondence:
| | - Zhaoqing Yang
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, Yunnan, 650500, China,Correspondence:
| |
Collapse
|
8
|
Frickmann H, Weinreich F, Loderstädt U, Poppert S, Tannich E, Bull J, Kreikemeyer B, Barrantes I. Metagenomic Sequencing for the Diagnosis of Plasmodium spp. with Different Levels of Parasitemia in EDTA Blood of Malaria Patients-A Proof-of-Principle Assessment. Int J Mol Sci 2022; 23:11150. [PMID: 36232449 PMCID: PMC9569645 DOI: 10.3390/ijms231911150] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/17/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Molecular diagnostic approaches are increasingly included in the diagnostic workup and even in the primary diagnosis of malaria in non-endemic settings, where it is difficult to maintain skillful microscopic malaria detection due to the rarity of the disease. Pathogen-specific nucleic acid amplification, however, bears the risk of overlooking other pathogens associated with febrile illness in returnees from the tropics. Here, we assessed the discriminatory potential of metagenomic sequencing for the identification of different Plasmodium species with various parasitemia in EDTA blood of malaria patients. Overall, the proportion of Plasmodium spp.-specific sequence reads in the assessed samples showed a robust positive correlation with parasitemia (Spearman r = 0.7307, p = 0.0001) and a robust negative correlation with cycle threshold (Ct) values of genus-specific real-time PCR (Spearman r = -0.8626, p ≤ 0.0001). Depending on the applied bioinformatic algorithm, discrimination on species level was successful in 50% (11/22) to 63.6% (14/22) instances. Limiting factors for the discrimination on species level were very low parasitemia, species-depending lacking availability of reliable reference genomes, and mixed infections with high variance of the proportion of the infecting species. In summary, metagenomic sequencing as performed in this study is suitable for the detection of malaria in human blood samples, but the diagnostic detection limit for a reliable discrimination on species level remains higher than for competing diagnostic approaches like microscopy and PCR.
Collapse
Affiliation(s)
- Hagen Frickmann
- Department of Microbiology and Hospital Hygiene, Bundeswehr Hospital Hamburg, 20359 Hamburg, Germany
- Institute for Medical Microbiology, Virology and Hygiene, University Medicine Rostock, 18057 Rostock, Germany
| | - Felix Weinreich
- Department of Microbiology and Hospital Hygiene, Bundeswehr Hospital Hamburg, 20359 Hamburg, Germany
| | - Ulrike Loderstädt
- Department of Hospital Hygiene & Infectious Diseases, University Medicine Göttingen, 37075 Goettingen, Germany
| | - Sven Poppert
- Bernhard Nocht Institute for Tropical Medicine Hamburg, 20359 Hamburg, Germany
| | - Egbert Tannich
- Bernhard Nocht Institute for Tropical Medicine Hamburg, 20359 Hamburg, Germany
| | - Jana Bull
- Institute for Medical Microbiology, Virology and Hygiene, University Medicine Rostock, 18057 Rostock, Germany
| | - Bernd Kreikemeyer
- Institute for Medical Microbiology, Virology and Hygiene, University Medicine Rostock, 18057 Rostock, Germany
| | - Israel Barrantes
- Research Group Translational Bioinformatics, Institute for Biostatistics and Informatics in Medicine und Aging Research, University Medicine Rostock, 18057 Rostock, Germany
| |
Collapse
|
9
|
Fuehrer HP, Campino S, Sutherland CJ. The primate malaria parasites Plasmodium malariae, Plasmodium brasilianum and Plasmodium ovale spp.: genomic insights into distribution, dispersal and host transitions. Malar J 2022; 21:138. [PMID: 35505317 PMCID: PMC9066925 DOI: 10.1186/s12936-022-04151-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/05/2022] [Indexed: 01/04/2023] Open
Abstract
During the twentieth century, there was an explosion in understanding of the malaria parasites infecting humans and wild primates. This was built on three main data sources: from detailed descriptive morphology, from observational histories of induced infections in captive primates, syphilis patients, prison inmates and volunteers, and from clinical and epidemiological studies in the field. All three were wholly dependent on parasitological information from blood-film microscopy, and The Primate Malarias” by Coatney and colleagues (1971) provides an overview of this knowledge available at that time. Here, 50 years on, a perspective from the third decade of the twenty-first century is presented on two pairs of primate malaria parasite species. Included is a near-exhaustive summary of the recent and current geographical distribution for each of these four species, and of the underlying molecular and genomic evidence for each. The important role of host transitions in the radiation of Plasmodium spp. is discussed, as are any implications for the desired elimination of all malaria species in human populations. Two important questions are posed, requiring further work on these often ignored taxa. Is Plasmodium brasilianum, circulating among wild simian hosts in the Americas, a distinct species from Plasmodium malariae? Can new insights into the genomic differences between Plasmodium ovale curtisi and Plasmodium ovale wallikeri be linked to any important differences in parasite morphology, cell biology or clinical and epidemiological features?
Collapse
Affiliation(s)
- Hans-Peter Fuehrer
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria
| | - Susana Campino
- Department of Infection Biology, Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Colin J Sutherland
- Department of Infection Biology, Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK.
| |
Collapse
|
10
|
Limited Reliability of the Molecular Detection of Plasmodium spp. from Incubated Blood Culture Samples for Forensic Purposes. Microorganisms 2022; 10:microorganisms10020406. [PMID: 35208861 PMCID: PMC8879611 DOI: 10.3390/microorganisms10020406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/06/2022] [Accepted: 02/08/2022] [Indexed: 12/10/2022] Open
Abstract
The suitability of incubated blood culture material for forensic molecular malaria diagnosis was assessed for non-endemic settings for cases in which the differential diagnosis malaria was initially overlooked. For the proof-of-principle assessment, residual blood culture materials from febrile patients from tropical Ghana were investigated by real-time PCR and compared with available historic microscopic results. In 2114 samples, for which microscopical results and real-time PCR results were available, microscopical results comprised 711 P. falciparum detections, 7 P. malariae detections, 1 microscopically not-further-discriminable Plasmodium spp. detection as well as 13 detections of mixed infections comprising 12 cases of P. falciparum/P. malariae co-infections and 1 case of a P. falciparum/P. ovale complex co-infection, while real-PCR indicated 558 P. falciparum detections, 95 P. malariae detections, 10 P. ovale complex detections, 1 P. vivax detection and 4 detected P. falciparum/P. malariae co-infections. Concordance of routine microscopy and real-time PCR was imperfect. Using routine microscopy as reference was associated with a seemingly low agreement of positive real-time PCR results of 90.9%. However, if positive samples, either by routine microscopy or real-time PCR or both, were applied as a combined reference, the agreement of positive results obtained with real-time PCR was increased from 74.0% to 77.9%, while the agreement of positive results obtained with routine microscopy was decreased from 100% to 85.3%. The predictive value of routine microscopy for negative results in the reference was slightly better with 90.9% compared to real-time PCR with 86.9%; the concordance between routine microscopy and real-time PCR was imperfect. In conclusion, even suboptimal sample materials such as incubated blood culture materials can be applied for forensic malaria diagnosis, if more suitable sample materials are not available, but the molecular detection rate of positive results in routine microscopy is much lower than previously reported for non-incubated blood.
Collapse
|
11
|
Putaporntip C, Kuamsab N, Seethamchai S, Pattanawong U, Rojrung R, Yanmanee S, Cheng CW, Jongwutiwes S. Cryptic Plasmodium inui and P. fieldi infections among symptomatic malaria patients in Thailand. Clin Infect Dis 2021; 75:805-812. [PMID: 34971372 DOI: 10.1093/cid/ciab1060] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Some nonhuman primate Plasmodium species including P. knowlesi and P. cynomolgi can cross-transmit from macaque natural hosts to humans under natural infection. This study aims to retrospectively explore other simian Plasmodium species in the blood samples of symptomatic malaria patients in Thailand. METHODS A total of 5271 blood samples from acute febrile patients from 5 malaria endemic provinces and 1015 blood samples from long-tailed and pig-tailed macaques from 3 locations were examined for Plasmodium species by microscopy and species-specific polymerase chain reaction. The Plasmodium mitochondrial cytochrome oxidase 1 (COX1) gene was analyzed by amplicon deep sequencing as well as Sanger sequencing from recombinant plasmid clones to reaffirm and characterize P. inui and P. fieldi. RESULTS Besides human malaria, P. knowlesi, P. cynomolgi, P. inui and P. fieldi infections were diagnosed in 15, 21, 19 and 3 patients, respectively. Most P. inui and all P. fieldi infected patients had simultaneous infections with other Plasmodium species, and seemed to be responsive to chloroquine or artemisinin-mefloquine. P. inui was the most prevalent species among macaque populations. Phylogenetic analysis of the COX1 sequences from human and macaque isolates reveals the genetic diversity of P. inui and suggests that multiple parasite strains have been incriminated in human infections. CONCLUSIONS Both P. inui and P. fieldi could establish infection in humans under natural transmission. Despite occurring at a low prevalence and mostly co-existing with other Plasmodium species, P. inui infections in humans have a wide distribution in Thailand.
Collapse
Affiliation(s)
- Chaturong Putaporntip
- Molecular Biology of Malaria and Opportunistic Parasites Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Napaporn Kuamsab
- Molecular Biology of Malaria and Opportunistic Parasites Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sunee Seethamchai
- Department of Biology, Faculty of Science, Naresuan University, Pitsanulok, Thailand
| | - Urassaya Pattanawong
- Molecular Biology of Malaria and Opportunistic Parasites Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Rattanaporn Rojrung
- Molecular Biology of Malaria and Opportunistic Parasites Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Surasuk Yanmanee
- Molecular Biology of Malaria and Opportunistic Parasites Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Chew Weng Cheng
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Somchai Jongwutiwes
- Molecular Biology of Malaria and Opportunistic Parasites Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
12
|
Calderaro A, Montecchini S, Buttrini M, Piccolo G, Rossi S, Arcangeletti MC, Farina B, De Conto F, Chezzi C. Malaria Diagnosis in Non-Endemic Settings: The European Experience in the Last 22 Years. Microorganisms 2021; 9:microorganisms9112265. [PMID: 34835391 PMCID: PMC8620059 DOI: 10.3390/microorganisms9112265] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 11/16/2022] Open
Abstract
Accurate, prompt, and reliable tools for the diagnosis of malaria are crucial for tracking the successes or drawbacks of control and elimination efforts, and for future programs aimed at global malaria eradication. Although microscopy remains the gold standard method, the number of imported malaria cases and the risk of reappearance of autochthonous cases stimulated several laboratories located in European countries to evaluate methods and algorithms suited to non-endemic settings, where skilled microscopists are not always available. In this review, an overview of the field evaluation and a comparison of the methods used for the diagnosis of malaria by European laboratories is reported, showing that the development of numerous innovations is continuous. In particular, the combination of rapid diagnostic tests and molecular assays with microscopy represents a reliable system for the early diagnosis of malaria in non-endemic settings.
Collapse
Affiliation(s)
- Adriana Calderaro
- Department of Medicine and Surgery, University of Parma, Viale A. Gramsci 14, 43126 Parma, Italy; (S.M.); (M.B.); (G.P.); (M.C.A.); (B.F.); (F.D.C.); (C.C.)
- Correspondence: ; Tel.: +39-0521-033499; Fax: +39-0521-993620
| | - Sara Montecchini
- Department of Medicine and Surgery, University of Parma, Viale A. Gramsci 14, 43126 Parma, Italy; (S.M.); (M.B.); (G.P.); (M.C.A.); (B.F.); (F.D.C.); (C.C.)
| | - Mirko Buttrini
- Department of Medicine and Surgery, University of Parma, Viale A. Gramsci 14, 43126 Parma, Italy; (S.M.); (M.B.); (G.P.); (M.C.A.); (B.F.); (F.D.C.); (C.C.)
| | - Giovanna Piccolo
- Department of Medicine and Surgery, University of Parma, Viale A. Gramsci 14, 43126 Parma, Italy; (S.M.); (M.B.); (G.P.); (M.C.A.); (B.F.); (F.D.C.); (C.C.)
| | - Sabina Rossi
- Unit of Clinical Microbiology, University Hospital of Parma, Viale A. Gramsci 14, 43126 Parma, Italy;
| | - Maria Cristina Arcangeletti
- Department of Medicine and Surgery, University of Parma, Viale A. Gramsci 14, 43126 Parma, Italy; (S.M.); (M.B.); (G.P.); (M.C.A.); (B.F.); (F.D.C.); (C.C.)
| | - Benedetta Farina
- Department of Medicine and Surgery, University of Parma, Viale A. Gramsci 14, 43126 Parma, Italy; (S.M.); (M.B.); (G.P.); (M.C.A.); (B.F.); (F.D.C.); (C.C.)
| | - Flora De Conto
- Department of Medicine and Surgery, University of Parma, Viale A. Gramsci 14, 43126 Parma, Italy; (S.M.); (M.B.); (G.P.); (M.C.A.); (B.F.); (F.D.C.); (C.C.)
| | - Carlo Chezzi
- Department of Medicine and Surgery, University of Parma, Viale A. Gramsci 14, 43126 Parma, Italy; (S.M.); (M.B.); (G.P.); (M.C.A.); (B.F.); (F.D.C.); (C.C.)
| |
Collapse
|
13
|
Epidemiological, Physiological and Diagnostic Comparison of Plasmodium ovale curtisi and Plasmodium ovale wallikeri. Diagnostics (Basel) 2021; 11:diagnostics11101900. [PMID: 34679597 PMCID: PMC8534334 DOI: 10.3390/diagnostics11101900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 11/17/2022] Open
Abstract
Nowadays, Plasmodium ovale is divided into two non-recombinant sympatric species: Plasmodium ovale wallikeri and Plasmodium ovale curtisi. In this mini review, we summarize the available knowledge on the clinical/biological aspects of P. ovale spp. malaria and current techniques for the diagnosis/characterisation of P. ovale curtisi and P. ovale wallikeri. P. ovale wallikeri infections are characterized by a deeper thrombocytopenia and shorter latency compared to P. ovale curtisi infections, indicating that P. ovale wallikeri is more pathogenic than P. ovale curtisi. Rapid diagnosis for effective management is difficult for P. ovale spp., since specific rapid diagnostic tests are not available and microscopic diagnosis, which is recognized as the gold standard, requires expert microscopists to differentiate P. ovale spp. from other Plasmodium species. Neglect in addressing these issues in the prevalence of P. ovale spp. represents the existing gap in the fight against malaria.
Collapse
|
14
|
Subpatent Plasmodium with mutant pfmdr1, pfcrt, and pvmdr1 alleles from endemic provinces in Mindanao, the Philippines: implications for local malaria elimination. Int J Infect Dis 2021; 110:45-53. [PMID: 34157387 DOI: 10.1016/j.ijid.2021.06.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVES This study was performed to identify and characterize circulating Plasmodium species in three provinces of Mindanao approaching malaria elimination. METHODS Rapid diagnostic tests (RDT), microscopic examination, and PCR were used to detect malaria parasites. PCR-positive isolates were genotyped for polymorphisms in loci of interest. RESULTS A total of 2639 participants were surveyed in Mindanao between 2010 and 2013. Malaria prevalence by PCR was 3.8% (95% confidence interval (CI): 2.7-5.2%) in Sarangani, 10% (95% CI: 7.7-12.7%) in South Cotabato, and 4.2% (95% CI: 3.2-5.6%) in Tawi-Tawi. P. falciparum and P. vivax were identified in all three provinces, and there was one case of P. malariae in South Cotabato. RDT was inferior to PCR for detecting asymptomatic P. falciparum and P. vivax. In Tawi-Tawi, microscopy failed to identify 46 PCR-positive malaria infections. The presence of pfcrt haplotypes CVMNK, CVIET, and SMNT (codons 72-76), pfmdr1 haplotype NFSND (codons 86, 184, 1034, 1042, 1246), and pvmdr1 haplotype NFL (codons 91, 976, 1076) was confirmed in Mindanao. CONCLUSIONS Asymptomatic Plasmodium infections persisted in local communities between 2010 and 2013. PCR successfully identified subpatent malaria infections, and can better characterize malaria epidemiology in communities seeking malaria control and elimination at the local level.
Collapse
|
15
|
Oyedeji SI, Awobode HO, Ojurongbe O, Anumudu C, Bassi PU. Molecular Identification and Characterization of Plasmodium ovale curtisi in Field Isolates from Symptomatic Children in North-Central Nigeria. Acta Parasitol 2021; 66:915-924. [PMID: 33710479 DOI: 10.1007/s11686-021-00350-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 02/10/2021] [Indexed: 11/30/2022]
Abstract
PURPOSE Plasmodium ovale is not usually the focus of most malaria research or intervention programmes and has lately been termed the neglected human malaria parasites. The parasite exists as two genetically distinct sympatric species namely P. ovale curtisi and P. ovale wallikeri but information on the distribution of P. ovale sub-species is lacking in Nigeria. The objective of this study, therefore, was aimed at characterizing the P. ovale sub-species in isolates from symptomatic individuals in North-central Nigeria. METHODS Parasites were identified by light microscopy of Giemsa stained thick and thin blood films. Molecular characterization and confirmation of P. ovale sub-species were done by species-specific nested PCR and sequencing of the small subunit ribosomal RNA (SSUrRNA) gene. RESULTS A total of 412 children were enrolled into this study of which 88.6% (n = 365) were positive for Plasmodium species by nested PCR and P. falciparum was predominant. Of the 365 isolates, 4 (1.1%) had P. ovale infections and of these, 3 (0.8%) were mixed species infections of P. ovale with P. falciparum. DNA sequence analysis confirmed that all the four P. ovale parasites were P. ovale curtisi as their sequences were 99-100% identical to previously published P. ovale curtisi sequences in the GenBank and they cluster with the P. ovale curtisi sequences by phylogeny. CONCLUSION Our findings demonstrate the occurrence of P. ovale curtisi in the study area. This has implications for public health and malaria elimination programmes, since they also serve as potential risk to travellers from malaria-free regions.
Collapse
Affiliation(s)
- Segun Isaac Oyedeji
- Molecular Parasitology and Genetics Unit, Department of Animal and Environmental Biology, Federal University Oye-Ekiti, Oye-Ekiti, Nigeria.
| | | | - Olusola Ojurongbe
- Department of Medical Microbiology and Parasitology, Ladoke Akintola University of Technology, Osogbo, Nigeria
| | - Chiaka Anumudu
- Parasitology Unit, Department of Zoology, University of Ibadan, Ibadan, Nigeria
| | - Peter Usman Bassi
- Department of Clinical Pharmacology and Therapeutics, University of Abuja, Abuja, Nigeria
| |
Collapse
|
16
|
Liu P, Shen L, Wang S, Qin P, Si Y, Pan M, Zeng W, Qin Y, Chen X, Zhang Y, Li C, Xiang Z, Menezes L, Huang Y, Cui L, Yang Z. Increasing proportions of relapsing parasite species among imported malaria in China's Guangxi Province from Western and Central Africa. Travel Med Infect Dis 2021; 43:102130. [PMID: 34166802 DOI: 10.1016/j.tmaid.2021.102130] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Travel-related malaria in non-endemic areas returning from endemic areas presents important challenges to diagnosis and treatment. Imported malaria to newly malaria-free countries poses further threats of malaria re-introduction and potential resurgence. For those traveling to places with high Plasmodium falciparum prevalence, prophylaxis against this parasite is recommended, whereas causal prophylaxis against relapsing malaria is often overlooked. METHODS We analyzed a cluster of imported malaria among febrile patients in Shanglin County, Guangxi Province, China, who had recent travel histories to Western and Central Africa. Malaria was diagnosed by microscopy and subsequently confirmed by species- and subspecies-specific PCR. Plasmodium vivax was genotyped using a barcode consisting of 42 single nucleotide polymorphisms. RESULTS Investigations of 344 PCR-confirmed malaria cases revealed that in addition to Plasmodium falciparum being the major parasite species, the relapsing parasites Plasmodium ovale and P. vivax accounted for ~40% of these imported cases. Of the 114 P. ovale infections, 65.8% and 34.2% were P. ovale curtisi and P. ovale wallikeri, respectively, with the two subspecies having a ~2:1 ratio in both Western and Central Africa. Phylogenetic analysis of 14 P. vivax isolates using a genetic barcode demonstrated that 11 formed a distinct clade from P. vivax populations from Eastern Africa. CONCLUSION This study provides support for active P. vivax transmission in areas with the predominant Duffy-negative blood group. With relapsing malaria making a substantial proportion of the imported malaria, causal prophylaxis should be advocated to travelers with a travel destination to Western and Central Africa.
Collapse
Affiliation(s)
- Penglu Liu
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, Yunnan Province, 650500, China
| | - Lijie Shen
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, Yunnan Province, 650500, China
| | - Siqi Wang
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, Yunnan Province, 650500, China
| | - Pien Qin
- Shanglin County People's Hospital, Shanglin, Guangxi, 530500, China
| | - Yu Si
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, Yunnan Province, 650500, China
| | - Maohua Pan
- Shanglin County People's Hospital, Shanglin, Guangxi, 530500, China
| | - Weilin Zeng
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, Yunnan Province, 650500, China
| | - Yucheng Qin
- Shanglin County People's Hospital, Shanglin, Guangxi, 530500, China
| | - Xi Chen
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, Yunnan Province, 650500, China
| | - Yanmei Zhang
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, Yunnan Province, 650500, China
| | - Cuiying Li
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, Yunnan Province, 650500, China
| | - Zheng Xiang
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, Yunnan Province, 650500, China
| | - Lynette Menezes
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 3720 Spectrum Boulevard, Suite 304, MDC84, Tampa, FL, 33612, USA
| | - Yaming Huang
- Guangxi Center for Disease Prevention and Control, Nanning, Guangxi, 530021, China
| | - Liwang Cui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 3720 Spectrum Boulevard, Suite 304, MDC84, Tampa, FL, 33612, USA.
| | - Zhaoqing Yang
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, Yunnan Province, 650500, China.
| |
Collapse
|
17
|
Joste V, Bailly J, Hubert V, Pauc C, Gendrot M, Guillochon E, Madamet M, Thellier M, Kendjo E, Argy N, Pradines B, Houzé S. Plasmodium ovale wallikeri and P. ovale curtisi Infections and Diagnostic Approaches to Imported Malaria, France, 2013-2018. Emerg Infect Dis 2021; 27. [PMID: 33496652 PMCID: PMC7853592 DOI: 10.3201/eid2702.202143] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Patients infected with P. ovale wallikeri displayed deeper thrombocytopenia and a shorter latency period. We retrospectively analyzed epidemiologic, clinical, and biologic characteristics of 368 Plasmodium ovale wallikeri and 309 P. ovale curtisi infections treated in France during January 2013–December 2018. P. ovale wallikeri infections displayed deeper thrombocytopenia and shorter latency periods. Despite similar clinical manifestations, P. ovale wallikeri–infected patients were more frequently treated with artemisinin-based combination therapy. Although the difference was not statistically significant, P. ovale wallikeri–infected patients were 5 times more frequently hospitalized in intensive care or intermediate care and had a higher proportion of severe thrombocytopenia than P. ovale curtisi–infected patients. Rapid diagnostic tests that detect aldolase were more efficient than those detecting Plasmodium lactate dehydrogenase. Sequence analysis of the potra gene from 90 P. ovale isolates reveals an insufficient polymorphism for relapse typing.
Collapse
|
18
|
Nolder D, Stewart L, Tucker J, Ibrahim A, Gray A, Corrah T, Gallagher C, John L, O'Brien E, Aggarwal D, Benavente ED, van Schalkwyk D, Henriques G, Sepúlveda N, Campino S, Chiodini P, Sutherland C, Beshir KB. Failure of rapid diagnostic tests in Plasmodium falciparum malaria cases among travelers to the UK and Ireland: Identification and characterisation of the parasites. Int J Infect Dis 2021; 108:137-144. [PMID: 33991679 PMCID: PMC8295040 DOI: 10.1016/j.ijid.2021.05.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVES Our objective was to systematically investigate false-negative histidine-rich protein 2 rapid diagnostic tests (HRP2-RDT) in imported Plasmodium falciparum malaria cases from travelers to the UK and the Republic of Ireland (RoI). METHODS Five imported malaria cases in travellers returning to the UK and RoI from East Africa were reported to the PHE Malaria Reference Laboratory as negative according to histidine-rich protein (HRP2)-RDT. The cases were systematically investigated using microscopic, RDT, molecular, genomic, and in in vitro approaches. RESULTS In each case, HRP2-RDT was negative, whereas microscopy confirmed the presence of P. falciparum. Further analysis revealed that the genes encoding HRP2 and HRP3 were deleted in three of the five cases. Whole-genome sequencing in one of these isolates confirmed deletions in P. falciparum chromosomes 8 and 13. Our study produced evidence that the fourth case, which had high parasitemia at clinical presentation, was a rare example of antigen saturation ('prozone-like effect'), leading to a false negative in the HRP2-RDT, while the fifth case was due to low parasitemia. CONCLUSIONS False-negative HRP2-RDT results with P. falciparum are concerning. Our findings emphasise the necessity of supporting the interpretation of RDT results with microscopy, in conjunction with clinical observations, and sets out a systematic approach to identifying parasites carrying pfhrp2 and pfhrp3 deletions.
Collapse
Affiliation(s)
- Debbie Nolder
- PHE Malaria Reference Laboratory, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Lindsay Stewart
- PHE Malaria Reference Laboratory, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK; Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Julie Tucker
- PHE Malaria Reference Laboratory, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Amy Ibrahim
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Adam Gray
- Department of Infectious Diseases, Northwick Park Hospital, London North West University Healthcare NHS Trust, London HA1 3UJ, UK
| | - Tumena Corrah
- Department of Infectious Diseases, Northwick Park Hospital, London North West University Healthcare NHS Trust, London HA1 3UJ, UK
| | - Carmel Gallagher
- Department of Infectious Diseases, Northwick Park Hospital, London North West University Healthcare NHS Trust, London HA1 3UJ, UK
| | - Laurence John
- Department of Infectious Diseases, Northwick Park Hospital, London North West University Healthcare NHS Trust, London HA1 3UJ, UK
| | - Edel O'Brien
- Haematology Lab, University Hospital Limerick, Ireland
| | - Dinesh Aggarwal
- Department of Clinical Parasitology, Hospital for Tropical Diseases, University College London Hospitals NHS Foundation Trust, London, UK
| | - Ernest Diez Benavente
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Donelly van Schalkwyk
- PHE Malaria Reference Laboratory, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK; Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Gisela Henriques
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Nuno Sepúlveda
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK; CEAUL - Centro de Estatística e Aplicações da Universidade de Lisboa, Lisbon, Portugal
| | - Susana Campino
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Peter Chiodini
- PHE Malaria Reference Laboratory, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK; Department of Clinical Parasitology, Hospital for Tropical Diseases, University College London Hospitals NHS Foundation Trust, London, UK
| | - Colin Sutherland
- PHE Malaria Reference Laboratory, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK; Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Khalid B Beshir
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK.
| |
Collapse
|
19
|
Molecular diagnosis and therapy for Plasmodium ovale infection of a returned traveler from East Africa. J Formos Med Assoc 2021; 121:434-438. [PMID: 33966940 DOI: 10.1016/j.jfma.2021.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 11/22/2022] Open
Abstract
Malaria is an infectious disease caused by Plasmodium parasites that are mainly transmitted through the bites of infected female Anopheles mosquitoes. The average annual number of malaria cases was less than ten in Taiwan in the last five years. Most of the cases were caused by Plasmodium vivax and Plasmodium falciparum, and were primarily diagnosed in travelers who returned from Southeast Asia and Africa. Here, we report the first case of Plasmodium ovale infection within five years that was confirmed by peripheral blood smear examination and molecular identification in a 25-year-old Asian female patient who returned from Uganda.
Collapse
|
20
|
Mahittikorn A, Masangkay FR, Kotepui KU, Milanez GDJ, Kotepui M. Comparison of Plasmodium ovale curtisi and Plasmodium ovale wallikeri infections by a meta-analysis approach. Sci Rep 2021; 11:6409. [PMID: 33742015 PMCID: PMC7979700 DOI: 10.1038/s41598-021-85398-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 03/02/2021] [Indexed: 12/12/2022] Open
Abstract
Malaria caused by Plasmodium ovale species is considered a neglected tropical disease with limited information about its characteristics. It also remains unclear whether the two distinct species P. ovale curtisi and P. ovale wallikeri exhibit differences in their prevalence, geographic distribution, clinical characteristics, or laboratory parameters. Therefore, this study was conducted to clarify these differences to support global malaria control and eradication programs. Studies reporting the occurrence of P. ovale curtisi and P. ovale wallikeri were explored in databases. Differences in proportion, clinical data, and laboratory parameters between the two species were estimated using a random-effects model and expressed as pooled odds ratios (ORs), mean difference (MD), or standardized MD depending on the types of extracted data. The difference in geographical distribution was visualized by mapping the origin of the two species. A total of 1453 P. ovale cases extracted from 35 studies were included in the meta-analysis. The p-value in the meta-analyses provided evidence favoring a real difference between P. ovale curtisi malaria cases (809/1453, 55.7%) and P. ovale wallikeri malaria cases (644/1453, 44.3%) (p: 0.01, OR 1.61, 95% CI 0.71-3.63, I2: 77%). Subgroup analyses established evidence favoring a real difference between P. ovale curtisi and P. ovale wallikeri malaria cases among the imported cases (p: 0.02, 1135 cases). The p value in the meta-analyses provided evidence favoring a real difference in the mean latency period between P. ovale curtisi (289 cases) and P. ovale wallikeri malaria (266 cases) (p: 0.03, MD: 27.59, 95% CI 1.99-53.2, I2: 94%), total leukocyte count (p < 0.0001, MD: 840, 95% CI 610-1070, I2: 0%, two studies) and platelet count (p < 0.0001, MD: 44,750, 95% CI 2900-60,500, I2: 32%, three studies). Four continents were found to have reports of P. ovale spp., among which Africa had the highest number of reports for both P. ovale spp. in its 37 countries, with a global proportion of 94.46%, and an almost equal distribution of both P. ovale spp., where P. ovale curtisi and P. ovale wallikeri reflected 53.09% and 46.90% of the continent's proportion, respectively. This is the first systematic review and meta-analysis to demonstrate the differences in the characteristics of the two distinct P. ovale species. Malaria caused by P. ovale curtisi was found in higher proportions among imported cases and had longer latency periods, higher platelet counts, and higher total leukocyte counts than malaria caused by P. ovale wallikeri. Further studies with a larger sample size are required to confirm the differences or similarities between these two species to promote malaria control and effective eradication programs.
Collapse
Affiliation(s)
- Aongart Mahittikorn
- Department of Protozoology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Frederick Ramirez Masangkay
- Department of Medical Technology, Institute of Arts and Sciences, Far Eastern University-Manila, Manila, Philippines
| | - Kwuntida Uthaisar Kotepui
- Medical Technology, School of Allied Health Sciences, Walailak University, Tha Sala, Nakhon Si Thammarat, Thailand
| | - Giovanni De Jesus Milanez
- Department of Medical Technology, Institute of Arts and Sciences, Far Eastern University-Manila, Manila, Philippines
| | - Manas Kotepui
- Medical Technology, School of Allied Health Sciences, Walailak University, Tha Sala, Nakhon Si Thammarat, Thailand.
| |
Collapse
|
21
|
Reyes RA, Fornace KM, Macalinao MLM, Boncayao BL, De La Fuente ES, Sabanal HM, Bareng APN, Medado IAP, Mercado ES, Baquilod MS, Luchavez JS, Hafalla JCR, Drakeley CJ, Espino FEJ. Enhanced Health Facility Surveys to Support Malaria Control and Elimination across Different Transmission Settings in the Philippines. Am J Trop Med Hyg 2021; 104:968-978. [PMID: 33534761 PMCID: PMC7941801 DOI: 10.4269/ajtmh.20-0814] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/15/2020] [Indexed: 12/12/2022] Open
Abstract
Following substantial progress in malaria control in the Philippines, new surveillance approaches are needed to identify and target residual malaria transmission. This study evaluated an enhanced surveillance approach using rolling cross-sectional surveys of all health facility attendees augmented with molecular diagnostics and geolocation. Facility surveys were carried out in three sites representing different transmission intensities: Morong, Bataan (pre-elimination), Abra de Ilog, Occidental Mindoro (stable medium risk), and Rizal, Palawan (high risk, control). Only one rapid diagnostic test (RDT)–positive infection and no PCR confirmed infections were found in Bataan and Occidental Mindoro, suggesting the absence of transmission. In Palawan, the inclusion of all health facility attendees, regardless of symptoms, and use of molecular diagnostics identified 313 infected individuals in addition to 300 cases identified by routine screening of febrile patients with the RDT or microscopy. Of these, the majority (313/613) were subpatent infections and only detected using molecular methods. Simultaneous collection of GPS coordinates on tablet-based applications allowed real-time mapping of malaria infections. Risk factor analysis showed higher risks in children and indigenous groups, with bed net use having a protective effect. Subpatent infections were more common in men and older age-groups. Overall, malaria risks were not associated with participants’ classification, and some of the non-patient clinic attendees reported febrile illnesses (1.9%, 26/1,369), despite not seeking treatment, highlighting the widespread distribution of infection in communities. Together, these data illustrate the utility of health facility–based surveys to augment surveillance data to increase the probability of detecting infections in the wider community.
Collapse
Affiliation(s)
- Ralph A Reyes
- 1Department of Parasitology, Research Institute for Tropical Medicine, Muntinlupa, Philippines
| | - Kimberly M Fornace
- 2Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | | - Beaulah L Boncayao
- 1Department of Parasitology, Research Institute for Tropical Medicine, Muntinlupa, Philippines
| | - Ellaine S De La Fuente
- 1Department of Parasitology, Research Institute for Tropical Medicine, Muntinlupa, Philippines
| | - Hennessey M Sabanal
- 1Department of Parasitology, Research Institute for Tropical Medicine, Muntinlupa, Philippines
| | - Alison Paolo N Bareng
- 1Department of Parasitology, Research Institute for Tropical Medicine, Muntinlupa, Philippines
| | - Inez Andrea P Medado
- 3Molecular Biology Laboratory, Research Institute for Tropical Medicine, Muntinlupa, Philippines
| | - Edelwisa S Mercado
- 3Molecular Biology Laboratory, Research Institute for Tropical Medicine, Muntinlupa, Philippines
| | - Mario S Baquilod
- 4Department of Health, MIMAROPA Center for Health Development, Quirino Memorial Medical Center Compound, Quezon, Philippines
| | - Jennifer S Luchavez
- 1Department of Parasitology, Research Institute for Tropical Medicine, Muntinlupa, Philippines
| | - Julius Clemence R Hafalla
- 2Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Chris J Drakeley
- 2Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Fe Esperanza J Espino
- 1Department of Parasitology, Research Institute for Tropical Medicine, Muntinlupa, Philippines
| |
Collapse
|
22
|
Kotepui M, Masangkay FR, Kotepui KU, De Jesus Milanez G. Misidentification of Plasmodium ovale as Plasmodium vivax malaria by a microscopic method: a meta-analysis of confirmed P. ovale cases. Sci Rep 2020; 10:21807. [PMID: 33311528 PMCID: PMC7733466 DOI: 10.1038/s41598-020-78691-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/27/2020] [Indexed: 12/22/2022] Open
Abstract
Plasmodium ovale is a benign tertian malaria parasite that morphologically resembles Plasmodium vivax. P. ovale also shares similar tertian periodicity and can cause relapse in patients without a radical cure, making it easily misidentified as P. vivax in routine diagnosis. Therefore, its prevalence might be underreported worldwide. The present study aimed to quantify the prevalence of P. ovale misidentified as P. vivax malaria using data from studies reporting confirmed P. ovale cases by molecular methods. Studies reporting the misidentification of P. ovale as P. vivax malaria were identified from three databases, MEDLINE, Web of Science, and Scopus, without language restrictions, but the publication date was restricted to 1993 and 2020. The quality of the included studies was assessed using the Quality Assessment of Diagnostic Accuracy Studies (QUADAS). The random-effects model was used to estimate the pooled prevalence of the misidentification of P. ovale as P. vivax malaria by the microscopic method when compared to those with the reference polymerase chain reaction method. Subgroup analysis of participants was also performed to demonstrate the difference between imported and indigenous P. ovale cases. The heterogeneity of the included studies was assessed using Cochran's Q and I2 statistics. Publication bias across the included studies was assessed using the funnel plot and Egger’s test, and if required, contour-enhanced funnel plots were used to identify the source(s) of funnel plot asymmetry. Of 641 articles retrieved from databases, 22 articles met the eligibility criteria and were included in the present study. Of the 8,297 malaria-positive cases identified by the PCR method, 453 P. ovale cases were confirmed. The pooled prevalence of misidentification of P. ovale as P. vivax malaria by the microscopic method was 11% (95% CI: 7–14%, I2: 25.46%). Subgroup analysis of the participants demonstrated a higher prevalence of misidentification in indigenous cases (13%, 95% CI: 6–21%, I2: 27.8%) than in imported cases (10%, 95% CI: 6–14%, I2: 24.1%). The pooled prevalence of misidentification of P. vivax as P. ovale malaria by the microscopic method was 1%, without heterogeneity (95% CI: 0–3%, I2: 16.8%). PCR was more sensitive in identifying P. ovale cases than the microscopic method (p < 0.00001, OR: 2.76, 95% CI: 1.83–4.15, I2: 65%). Subgroup analysis of participants demonstrated the better performance of PCR in detecting P. ovale malaria in indigenous cases (p: 0.0009, OR: 6.92, 95% CI: 2.21–21.7%, I2: 68%) than in imported cases (p: 0.0004, OR: 2.15, 95% CI: 1.41–3.29%, I2: 63%). P. ovale infections misidentified as P. vivax malaria by the microscopic method were frequent and led to underreported P. ovale cases. The molecular identification of P. ovale malaria in endemic areas is needed because a higher rate of P. ovale misidentification was found in endemic or indigenous cases than in imported cases. In addition, updated courses, enhanced training, and refreshers for microscopic examinations, particularly for P. ovale identification, are necessary to improve the microscopic identification of Plasmodium species in rural health centres where PCR is unavailable.
Collapse
Affiliation(s)
- Manas Kotepui
- Medical Technology, School of Allied Health Sciences, Walailak University, Tha Sala, Nakhon Si Thammarat, Thailand.
| | - Frederick Ramirez Masangkay
- Department of Medical Technology, Institute of Arts and Sciences, Far Eastern University-Manila, Manila, Philippines
| | - Kwuntida Uthaisar Kotepui
- Medical Technology, School of Allied Health Sciences, Walailak University, Tha Sala, Nakhon Si Thammarat, Thailand
| | - Giovanni De Jesus Milanez
- Department of Medical Technology, Institute of Arts and Sciences, Far Eastern University-Manila, Manila, Philippines
| |
Collapse
|
23
|
Groger M, Veletzky L, Lalremruata A, Cattaneo C, Mischlinger J, Manego Zoleko R, Kim J, Klicpera A, Meyer EL, Blessborn D, Winterberg M, Adegnika AA, Agnandji ST, Kremsner PG, Mordmüller B, Mombo-Ngoma G, Fuehrer HP, Ramharter M. Prospective Clinical and Molecular Evaluation of Potential Plasmodium ovale curtisi and wallikeri Relapses in a High-transmission Setting. Clin Infect Dis 2020; 69:2119-2126. [PMID: 31066448 PMCID: PMC6880329 DOI: 10.1093/cid/ciz131] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Indexed: 01/02/2023] Open
Abstract
Background Plasmodium ovale curtisi and wallikeri are perceived as relapsing malarial parasites. Contrary to Plasmodium vivax, direct evidence for this hypothesis is scarce. The aim of this prospective study was to characterize the reappearance patterns of ovale parasites. Methods P. ovale spp. infected patients were treated with artemether-lumefantrine and followed biweekly for up to 1 year for the detection of reappearing parasitemia. Molecular analysis of reappearing isolates was performed to identify homologous isolates by genotyping and to define cases of relapse following predefined criteria. Results At inclusion, 26 participants were positive for P. ovale curtisi and/or P. ovale wallikeri. The median duration of follow-up was 35 weeks. Reappearance of the same P. ovale species was observed in 46% of participants; 61% of P. ovale curtisi and 19% of P. ovale wallikeri infection-free intervals were estimated to end with reappearance by week 32. Based on the predefined criteria, 23% of participants were identified with 1 or 2 relapses, all induced by P. ovale curtisi. Conclusion These findings are in line with the currently accepted relapse theory inasmuch as the reappearance of P. ovale curtisi strains following initial blood clearance was conclusively demonstrated. Interestingly, no relapse of P. ovale wallikeri was observed.
Collapse
Affiliation(s)
- Mirjam Groger
- Department of Tropical Medicine, Bernhard Nocht Institute for Tropical Medicine and I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Germany.,Centre de Recherches Médicales de Lambaréné, Gabon.,Institut für Tropenmedizin, Universität Tübingen, Germany
| | - Luzia Veletzky
- Department of Tropical Medicine, Bernhard Nocht Institute for Tropical Medicine and I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Germany.,Centre de Recherches Médicales de Lambaréné, Gabon
| | | | | | - Johannes Mischlinger
- Department of Tropical Medicine, Bernhard Nocht Institute for Tropical Medicine and I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Germany.,Centre de Recherches Médicales de Lambaréné, Gabon.,Institut für Tropenmedizin, Universität Tübingen, Germany
| | - Rella Manego Zoleko
- Department of Tropical Medicine, Bernhard Nocht Institute for Tropical Medicine and I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Germany.,Centre de Recherches Médicales de Lambaréné, Gabon
| | - Johanna Kim
- Centre de Recherches Médicales de Lambaréné, Gabon
| | | | - Elias L Meyer
- Center for Medical Statistics, Informatics, and Intelligent Systems, Section for Medical Statistics, Medical University of Vienna, Austria
| | - Daniel Blessborn
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom.,Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Markus Winterberg
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom.,Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Ayola A Adegnika
- Centre de Recherches Médicales de Lambaréné, Gabon.,Institut für Tropenmedizin, Universität Tübingen, Germany.,German Center for Infection Research (DZIF), partner site Tübingen, Germany
| | | | - Peter G Kremsner
- Centre de Recherches Médicales de Lambaréné, Gabon.,Institut für Tropenmedizin, Universität Tübingen, Germany.,German Center for Infection Research (DZIF), partner site Tübingen, Germany
| | - Benjamin Mordmüller
- Centre de Recherches Médicales de Lambaréné, Gabon.,Institut für Tropenmedizin, Universität Tübingen, Germany.,German Center for Infection Research (DZIF), partner site Tübingen, Germany
| | - Ghyslain Mombo-Ngoma
- Department of Tropical Medicine, Bernhard Nocht Institute for Tropical Medicine and I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Germany.,Centre de Recherches Médicales de Lambaréné, Gabon
| | - Hans-Peter Fuehrer
- Institute of Parasitology, University of Veterinary Medicine Vienna, Austria
| | - Michael Ramharter
- Department of Tropical Medicine, Bernhard Nocht Institute for Tropical Medicine and I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Germany.,Centre de Recherches Médicales de Lambaréné, Gabon.,German Center for Infection Research (DZIF), partner site Hamburg-Luebeck-Borstel, Hamburg, Germany
| |
Collapse
|
24
|
Characteristics of imported Plasmodium ovale spp. and Plasmodium malariae in Hubei Province, China, 2014-2018. Malar J 2020; 19:264. [PMID: 32698906 PMCID: PMC7374957 DOI: 10.1186/s12936-020-03337-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 07/14/2020] [Indexed: 01/19/2023] Open
Abstract
Background There have been an increasing number of imported cases of malaria in Hubei Province in recent years. In particular, the number of cases of Plasmodium ovale spp. and Plasmodium malariae significantly increased, which resulted in increased risks during the malaria elimination phase. The purpose of this study was to acquire a better understanding of the epidemiological characteristics of P. ovale spp. and P. malariae imported to Hubei Province, China, so as to improve case management. Methods Data on all malaria cases from January 2014 to December 2018 in Hubei Province were extracted from the China national diseases surveillance information system (CNDSIS). This descriptive study was conducted to analyse the prevalence trends, latency periods, interval from onset of illness to diagnosis, and misdiagnosis of cases of P. ovale spp. and P. malariae malaria. Results During this period, 634 imported malaria cases were reported, of which 87 P. ovale spp. (61 P. ovale curtisi and 26 P. ovale wallikeri) and 18 P. malariae cases were confirmed. The latency periods of P. ovale spp., P. malariae, Plasmodium vivax, and Plasmodium falciparum differed significantly, whereas those of P. ovale curtisi and P. ovale wallikeri were no significant difference. The proportion of correct diagnosis of P. ovale spp. and P. malariae malaria cases were 48.3% and 44.4%, respectively, in the hospital or lower-level Centers for Disease Control and Prevention (CDC). In the Provincial Reference Laboratory, the sensitivity of microscopy and rapid diagnostic tests was 94.3% and 70.1%, respectively, for detecting P. ovale spp., and 88.9% and 38.9%, respectively, for detecting P. malariae. Overall, 97.7% (85/87) of P. ovale spp. cases and 94.4% (17/18) of P. malariae cases originated from Africa. Conclusion The increase in the number of imported P. ovale spp. and P. malariae cases, long latency periods, and misdiagnosis pose a challenge to this region. Therefore, more attention should be paid to surveillance of imported cases of P. ovale spp. and P. malariae infection to reduce the burden of public health and potential risk of malaria.
Collapse
|
25
|
Chen M, Dong Y, Deng Y, Xu Y, Liu Y, Zhang C, Huang H. Polymorphism analysis of propeller domain of k13 gene in Plasmodium ovale curtisi and Plasmodium ovale wallikeri isolates original infection from Myanmar and Africa in Yunnan Province, China. Malar J 2020; 19:246. [PMID: 32660505 PMCID: PMC7359257 DOI: 10.1186/s12936-020-03317-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 07/04/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Eighteen imported ovale malaria cases imported from Myanmar and various African countries have been reported in Yunnan Province, China from 2013 to 2018. All of them have been confirmed by morphological examination and 18S small subunit ribosomal RNA gene (18S rRNA) based PCR in YNRL. Nevertheless, the subtypes of Plasmodium ovale could not be identified based on 18S rRNA gene test, thus posing challenges on its accurate diagnosis. To help establish a more sensitive and specific method for the detection of P. ovale genes, this study performs sequence analysis on k13-propeller polymorphisms in P. ovale. METHODS Dried blood spots (DBS) from ovale malaria cases were collected from January 2013 to December 2018, and the infection sources were confirmed according to epidemiological investigation. DNA was extracted, and the coding region (from 206th aa to 725th aa) in k13 gene propeller domain was amplified using nested PCR. Subsequently, the amplified products were sequenced and compared with reference sequence to obtain CDS. The haplotypes and mutation loci of the CDS were analysed, and the spatial structure of the amino acid peptide chain of k13 gene propeller domain was predicted by SWISS-MODEL. RESULTS The coding region from 224th aa to 725th aa of k13 gene from P. ovale in 83.3% of collected samples (15/18) were amplified. Three haplotypes were observed in 15 samples, and the values of Ka/Ks, nucleic acid diversity index (π) and expected heterozygosity (He) were 3.784, 0.0095, and 0.4250. Curtisi haplotype, Wallikeri haplotype, and mutant type accounted for 73.3% (11/15), 20.0% (3/15), and 6.7% (1/15). The predominant haplotypes of P. ovale curtisi were determined in all five Myanmar isolates. Of the ten African isolates, six were identified as P. o. curtisi, three were P. o. wallikeri and one was mutant type. Base substitutions between the sequences of P. o. curtisi and P. o. wallikeri were determined at 38 loci, such as c.711. Moreover, the A > T base substitution at c.1428 was a nonsynonymous mutation, resulting in amino acid variation of T476S in the 476th position. Compared with sequence of P. o. wallikeri, the double nonsynonymous mutations of G > A and A > T at the sites of c.1186 and c.1428 leads to the variations of D396N and T476S for the 396th and 476th amino acids positions. For P. o. curtisi and P. o. wallikeri, the peptide chains in the coding region from 224th aa to 725th aa of k13 gene merely formed a monomeric spatial model, whereas the double-variant peptide chains of D396N and T476S formed homodimeric spatial model. CONCLUSION The propeller domain of k13 gene in the P. ovale isolates imported into Yunnan Province from Myanmar and Africa showed high differentiation. The sequences of Myanmar-imported isolates belong to P. o. curtisi, while the sequences of African isolates showed the sympatric distribution from P. o. curtisi, P. o. wallikeri and mutant isolates. The CDS with a double base substitution formed a dimeric spatial model to encode the peptide chain, which is completely different from the monomeric spatial structure to encode the peptide chain from P. o. curtisi and P. o. wallikeri.
Collapse
Affiliation(s)
- Mengni Chen
- Yunnan Institute of Parasitic Diseases, Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Yunnan Centre of Malaria Research, Academician Workstation of Professor Jin Ningyi, Expert Workstation of Professor Jiang Lubin, Pu'er, 665000, China
| | - Ying Dong
- Yunnan Institute of Parasitic Diseases, Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Yunnan Centre of Malaria Research, Academician Workstation of Professor Jin Ningyi, Expert Workstation of Professor Jiang Lubin, Pu'er, 665000, China.
| | - Yan Deng
- Yunnan Institute of Parasitic Diseases, Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Yunnan Centre of Malaria Research, Academician Workstation of Professor Jin Ningyi, Expert Workstation of Professor Jiang Lubin, Pu'er, 665000, China
| | - Yanchun Xu
- Yunnan Institute of Parasitic Diseases, Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Yunnan Centre of Malaria Research, Academician Workstation of Professor Jin Ningyi, Expert Workstation of Professor Jiang Lubin, Pu'er, 665000, China
| | - Yan Liu
- Yunnan Institute of Parasitic Diseases, Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Yunnan Centre of Malaria Research, Academician Workstation of Professor Jin Ningyi, Expert Workstation of Professor Jiang Lubin, Pu'er, 665000, China
| | - Canglin Zhang
- Yunnan Institute of Parasitic Diseases, Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Yunnan Centre of Malaria Research, Academician Workstation of Professor Jin Ningyi, Expert Workstation of Professor Jiang Lubin, Pu'er, 665000, China
| | - Herong Huang
- Yunnan Institute of Parasitic Diseases, Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Yunnan Centre of Malaria Research, Academician Workstation of Professor Jin Ningyi, Expert Workstation of Professor Jiang Lubin, Pu'er, 665000, China
- School of Basic Medical Sciences, Dali University, Dali, 667000, China
| |
Collapse
|
26
|
Severity and mortality of severe Plasmodium ovale infection: A systematic review and meta-analysis. PLoS One 2020; 15:e0235014. [PMID: 32559238 PMCID: PMC7304606 DOI: 10.1371/journal.pone.0235014] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/05/2020] [Indexed: 12/26/2022] Open
Abstract
Plasmodium ovale can infect humans, causing malaria disease. We aimed to investigate the severity and mortality of severe P. ovale infection to increase the awareness of physicians regarding the prognosis of this severe disease and outcome-related deaths in countries in which this disease is endemic. Articles that were published in the PubMed, Scopus, and ISI Web of Science databases prior to January 5, 2020 and reported the prevalence of severe P. ovale infection were systematically searched and reviewed. Studies that mainly reported severe P. ovale infection according to the 2014 WHO criteria for the treatment of malaria were included. Two reviewers selected, identified, assessed, and extracted data from studies independently. The pooled prevalence of severe P. ovale mono-infections was estimated using the command “metaprop case population, random/fixed”, which yielded the pooled estimate, 95% confidence interval (CI) and the I2 value, indicating the level of heterogeneity. Meta-analyses of the proportions were performed using a random-effects model to explore the different proportions of severity between patients with P. ovale and those with other Plasmodium species infections. Among the eight studies that were included and had a total of 1,365 ovale malaria cases, the pooled prevalence of severe P. ovale was 0.03 (95% CI = 0.03–0.05%, I2 = 54.4%). Jaundice (1.1%), severe anemia (0.88%), and pulmonary impairments (0.59%) were the most common severe complications found in patients infected with P. ovale. The meta-analysis demonstrated that a smaller proportion of patients with P. ovale than of patients with P. falciparum had severe infections (P-value = 0.01, OR = 0.36, 95% CI = 0.16–0.81, I2 = 72%). The mortality rate of severe P. ovale infections was 0.15% (2/1,365 cases). Although severe complications of P. ovale infections in patients are rare, it is very important to increase the awareness of physicians regarding the prognosis of severe P. ovale infections in patients, especially in a high-risk population.
Collapse
|
27
|
Liew JWK, Ooi CH, Snounou G, Lau YL. Case Report: Two Cases of Recurring Ovale Malaria in Sarawak, Malaysia, after Successful Treatment of Imported Plasmodium falciparum Infection. Am J Trop Med Hyg 2020; 101:1402-1404. [PMID: 31595863 DOI: 10.4269/ajtmh.19-0305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Here are two cases of recurring ovale malaria in Sarawak, Malaysia, that are likely relapses that occurred 1-2 months after successful treatment of the initial imported falciparum malaria with artemisinin-based combined therapy. The patients have no history or recollection of previous malaria episodes. These cases add to the limited evidence on the relapsing nature of Plasmodium ovale, after a febrile episode. In regions where P. ovale is not known to be autochthonous, active follow-up of treated imported malaria patients is highly recommended following their return, particularly to areas nearing or having achieved elimination.
Collapse
Affiliation(s)
- Jonathan Wee Kent Liew
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Choo Huck Ooi
- Vector Borne Diseases Section, Sarawak Health Department, Kuching, Malaysia
| | - Georges Snounou
- CEA-Université Paris Sud 11-INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA), Infectious Disease Models and Innovative Therapies (IDMIT) Department, Institut de Biologie François Jacob (IBFJ), Direction de la Recherche Fondamentale (DRF), Fontenay-aux-Roses, France
| | - Yee Ling Lau
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
28
|
Altangerel E, Frickmann H. Meta-analysis of the diagnostic performance characteristics of three commercial and one in-house nucleic acid amplification tests for malaria screening. J LAB MED 2020. [DOI: 10.1515/labmed-2019-0174] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Abstract
Background
A meta-analysis of previously performed evaluation studies of nucleic acid amplification testing (NAT) approaches for the screening for and differentiation of Plasmodium spp. using identical samples was performed to comparatively assess their suitability for the routine diagnostic setting.
Methods
Three commercial NATs for malaria (one loop-mediated isothermal amplification [LAMP] assay, two real-time polymerase chain reactions [PCRs]) and one in-house real-time PCR were comparatively assessed with a collection of 1020 well-characterized ethylenediaminetetraacetic acid (EDTA) blood samples from patients with suspected or confirmed malaria.
Results
Altogether 765 (75%) concordantly negative and 223 (21.9%) concordantly positive results of the four molecular tests were obtained, while discordant results were seen in 32 (3.1%) instances. For genus-specific assays, the observed sensitivity and specificity ranges were 96.4%–98.4% and 99.6%–99.9%, and for species-specific assays, 94.0%–97.6% and 99.6%–100%, respectively. Falsely negative molecular test results comprised microscopically negative samples, samples at the microscopic detection threshold and quantitatively less abundant species in mixed infections.
Conclusions
Excellent test characteristics of all assessed assays with only minor differences encourage molecular malaria screening with genus- and species-specific NAT with discrepancies only within the borderline range of their detection thresholds.
Collapse
Affiliation(s)
- Enkhtsetseg Altangerel
- Department of Microbiology and Hospital Hygiene , Bundeswehr Hospital of Hamburg , Hamburg , Germany
| | - Hagen Frickmann
- Department of Microbiology and Hospital Hygiene , Bundeswehr Hospital of Hamburg , Hamburg , Germany
- Institute for Medical Microbiology, Virology and Hygiene , University Medicine Rostock , Rostock , Germany
| |
Collapse
|
29
|
Frickmann H, Wegner C, Ruben S, Loderstädt U, Tannich E. A comparison of two PCR protocols for the differentiation of Plasmodium ovale species and implications for clinical management in travellers returning to Germany: a 10-year cross-sectional study. Malar J 2019; 18:272. [PMID: 31399031 PMCID: PMC6688346 DOI: 10.1186/s12936-019-2901-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 08/02/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND To assess the occurrence of Plasmodium ovale wallikeri and Plasmodium ovale curtisi species in travellers returning to Germany, two real-time PCR protocols for the detection and differentiation of the two P. ovale species were compared. Results of parasite differentiation were correlated with patient data. METHODS Residual nucleic acid extractions from EDTA blood samples of patients with P. ovale spp. malaria, collected between 2010 and 2019 at the National Reference Centre for Tropical Pathogens in Germany, were subjected to further parasite discrimination in a retrospective assessment. All samples had been analysed by microscopy and by P. ovale spp.-specific real-time PCR without discrimination on species level. Two different real-time PCR protocols for species discrimination of P. o. curtisi and P. o. wallikeri were carried out. Results were correlated with patient data on gender, age, travel destination, thrombocyte count, and duration of parasite latency. RESULTS Samples from 77 P. ovale spp. malaria patients were assessed, with a male:female ratio of about 2:1 and a median age of 30 years. Parasitaemia was low, ranging from few visible parasites up to 1% infected erythrocytes. Discriminative real-time PCRs revealed 41 cases of P. o. curtisi and 36 cases of P. o. wallikeri infections. Concordance of results by the two PCR approaches was 100%. Assessment of travel destinations confirmed co-existence of P. o. curtisi and P. o. wallikeri over a wide range of countries in sub-Saharan Africa. Latency periods for the two P. ovale species were similar, with median values of 56.0 days for P. o. curtisi and 58.0 days for P. o. wallikeri; likewise, there was no statistically significant difference in thrombocyte count with median values of 138.5/µL for patients with P. o. curtisi and 152.0/µL for P. o. wallikeri-infected patients. CONCLUSIONS Two different real-time PCR protocols were found to be suitable for the discrimination of P. o. curtisi and P. o. wallikeri with only minor differences in sensitivity. Due to the overall low parasitaemia and the lack of differences in severity-related aspects like parasite latency periods or thrombocyte counts, this study supports the use of P. ovale spp. PCR without discrimination on species level to confirm the diagnosis and to inform clinical management of malaria in these patients.
Collapse
Affiliation(s)
- Hagen Frickmann
- Department of Microbiology and Hospital Hygiene, External Site at the Bernhard Nocht Institute, Tropical Microbiology and Entomology, Bundeswehr Hospital Hamburg, Bernhard Nocht Str. 74, 20359, Hamburg, Germany. .,Institute for Medical Microbiology, Virology and Hygiene, University Medicine Rostock, Rostock, Germany.
| | - Christine Wegner
- Bernhard Nocht Institute for Tropical Medicine, National Reference Center for Tropical Pathogens, Hamburg, Germany
| | - Stefanie Ruben
- Bernhard Nocht Institute for Tropical Medicine, National Reference Center for Tropical Pathogens, Hamburg, Germany
| | - Ulrike Loderstädt
- Bernhard Nocht Institute for Tropical Medicine, National Reference Center for Tropical Pathogens, Hamburg, Germany
| | - Egbert Tannich
- Bernhard Nocht Institute for Tropical Medicine, National Reference Center for Tropical Pathogens, Hamburg, Germany
| |
Collapse
|
30
|
Genetic dissociation of three antigenic genes in Plasmodium ovale curtisi and Plasmodium ovale wallikeri. PLoS One 2019; 14:e0217795. [PMID: 31170213 PMCID: PMC6553752 DOI: 10.1371/journal.pone.0217795] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/17/2019] [Indexed: 01/15/2023] Open
Abstract
Plasmodium ovale curtisi and Plasmodium ovale wallikeri are two sympatric human malaria species prevalent in Africa, Asia and Oceania. The reported prevalence of both P. ovale spp. was relatively low compared to other malaria species, but more sensitive molecular detection techniques have shown that asymptomatic low-density infections are more common than previously thought. Whole genome sequencing of both P. ovale spp. revealed genetic dissociation between P. ovale curtisi and P. ovale wallikeri suggesting a species barrier. In this study we further evaluate such a barrier by assessing polymorphisms in the genes of three vaccine candidate surface protein: circumsporozoite protein/ thrombospondin-related anonymous-related protein (ctrp), circumsporozoite surface protein (csp) and merozoite surface protein 1 (msp1). The complete coding sequence of ctrp and csp, and a partial fragment of msp1 were isolated from 25 P. ovale isolates and compared to previously reported reference sequences. A low level of nucleotide diversity (Pi = 0.02–0.10) was observed in all three genes. Various sizes of tandem repeats were observed in all ctrp, csp and msp1 genes. Both tandem repeat unit and nucleotide polymorphism in all three genes exhibited clear dimorphism between P. ovale curtisi and P. ovale wallikeri, supporting evidence of non-recombination between these two species.
Collapse
|
31
|
Fulakeza J, McNitt S, Vareta J, Saidi A, Mvula G, Taylor T, Mathanga DP, Small DS, Skarbinski J, Gutman JR, Seydel K. Comparison of msp genotyping and a 24 SNP molecular assay for differentiating Plasmodium falciparum recrudescence from reinfection. Malar J 2019; 18:84. [PMID: 30885193 PMCID: PMC6423793 DOI: 10.1186/s12936-019-2695-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 03/01/2019] [Indexed: 08/23/2023] Open
Abstract
Background Current World Health Organization guidelines for conducting anti-malarial drug efficacy clinical trials recommend genotyping Plasmodium falciparum genes msp1 and msp2 to distinguish recrudescence from reinfection. A more recently developed potential alternative to this method is a molecular genotyping assay based on a panel of 24 single nucleotide polymorphism (SNP) markers. Methods Performance parameters of these two genotyping methods were compared using data from two recently completed drug efficacy trials. Blood samples from two anti-malarial therapeutic trials were analysed by both msp genotyping and the 24 SNP assay. Additionally, to conserve time and resources, the statistical program R was used to select the most informative SNPs for a set of unrelated Malawian samples to develop a truncated SNP-based assay for the region surrounding Blantyre, Malawi. The ability of this truncated assay to distinguish reinfection from recrudescence when compared to the full 24 SNP assay was then analysed using data from the therapeutic trials. Results A total of 360 samples were analysed; 66 for concordance of msp and SNP barcoding methodologies, and 294 for assessing the most informative of the 24 SNP markers. SNP genotyping performed comparably to msp genotyping, with only one case of disagreement among the 50 interpretable results, where the SNP assay identified the sample as reinfection and the msp typing as recrudescence. Furthermore, SNP typing was more robust; only 6% of samples were uninterpretable by SNP typing, compared to 19.7% when msp genotyping was used. For discriminating reinfection from recrudescence, a truncated 6 SNP assay was found to perform at 95.1% the accuracy of the full 24 SNP bar code. Conclusions The use of SNP analysis has similar sensitivity to the standard msp genotyping in determining recrudescence from reinfection. Although more expensive, SNP typing is faster and less work intensive. Limiting the assay to those SNPs most informative in the geographical region of interest may further decrease the workload and the cost, making this technique a feasible and affordable alternative in drug efficacy trials. Electronic supplementary material The online version of this article (10.1186/s12936-019-2695-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Joseph Fulakeza
- Department of Biomedical Sciences, University of Malawi, College of Medicine, P/Bag 360, Chichiri, Blantyre 3, Malawi
| | - Sarah McNitt
- Department of Cell and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Jimmy Vareta
- Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre, Malawi
| | - Alex Saidi
- Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre, Malawi
| | - Godfrey Mvula
- Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre, Malawi
| | - Terrie Taylor
- Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre, Malawi.,Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Don P Mathanga
- Department of Biomedical Sciences, University of Malawi, College of Medicine, P/Bag 360, Chichiri, Blantyre 3, Malawi
| | - Dylan S Small
- Department of Statistics, The Wharton School, University of Pennsylvania, Philadelphia, USA
| | | | - Julie R Gutman
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, US Center for Disease Control and Prevention, Atlanta, USA
| | - Karl Seydel
- Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre, Malawi. .,Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
32
|
Sun H, Li J, Xu C, Xiao T, Wang L, Kong X, Wang Y, Zhang B, Zhao C, Huang B, Wei Q. Increasing number of imported Plasmodium ovale wallikeri malaria in Shandong Province, China, 2015-2017. Acta Trop 2019; 191:248-251. [PMID: 30659805 DOI: 10.1016/j.actatropica.2019.01.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/15/2019] [Accepted: 01/15/2019] [Indexed: 10/27/2022]
Abstract
Since 2012, no indigenous malaria case have been reported in Shandong Province, China, whereas the number of imported cases and the genetic diversity of Plasmodium spp. have increased. Beginning in 2015, the number of Plasmodium ovale cases were increased and the P. ovale wallikeri malaria case began to arise. From 2015 to 2017, a total of 676 imported malaria cases were detected and 76 P. ovale spp. isolates were identified, of which 48 were P. ovale curtisi and 28 P. ovale wallikeri. The number of P. ovale wallikeri malaria cases increased yearly, six were identified in 2015, eight were identified in 2016, and 14 were identified in 2017. All cases with an attached travel history from Africa, with represented source countries of Equatorial Guinea (n = 9), Republic of the Congo (n = 4), and Democratic Republic of the Congo (n = 3). P. ovale wallikeri is increasing among travelers returning to Shandong Province from Africa. Although the P. ovale spp. infection rarely progressed to severity, this species is suspected to generate hypnozoites which have the potential to relapse. The ability to cause relapse is the threat to public health and should be concerned.
Collapse
|
33
|
Characterization of Plasmodium ovale spp. imported from Africa to Henan Province, China. Sci Rep 2019; 9:2191. [PMID: 30778106 PMCID: PMC6379410 DOI: 10.1038/s41598-019-38629-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 01/04/2019] [Indexed: 01/19/2023] Open
Abstract
As indigenous malaria has decreased over recent decades, the increasing number of imported malaria cases has provided a new challenge for China. The proportion of imported cases due to Plasmodium ovale has increased during this time, and the difference between P. ovale curtisi and P. ovale wallikeri is of importance. To better understand P. ovale epidemiology and the differences between the two subspecies, information on imported malaria in Henan Province was collected during 2010–2017. We carried out a descriptive study to analyze the prevalence, proportion, distribution, and origin of P. o. curtisi and P. o. wallikeri. It showed that imported P. ovale spp. accounts for a large proportion of total malaria cases in Henan Province, even more than that of P. vivax. This suggests that the proportion of P. ovale cases is underestimated in Africa. Among these cases, the latency period of P. o. curtisi was significantly longer than that of P. o. wallikeri. More attention should be paid to imported ovale malaria to avoid the reintroduction of these two subspecies into China.
Collapse
|
34
|
Nabarro LEB, Nolder D, Broderick C, Nadjm B, Smith V, Blaze M, Checkley AM, Chiodini PL, Sutherland CJ, Whitty CJM. Geographical and temporal trends and seasonal relapse in Plasmodium ovale spp. and Plasmodium malariae infections imported to the UK between 1987 and 2015. BMC Med 2018; 16:218. [PMID: 30477484 PMCID: PMC6260574 DOI: 10.1186/s12916-018-1204-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 10/31/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Plasmodium ovale spp. and P. malariae cause illness in endemic regions and returning travellers. Far less is known about these species than P. falciparum and P. vivax. METHODS The UK national surveillance data, collected 1987 to 2015, were collated with the International Passenger Survey and climatic data to determine geographical, temporal and seasonal trends of imported P. ovale spp. and P. malariae infection. RESULTS Of 52,242 notified cases of malaria, 6.04% (3157) were caused by P. ovale spp. and 1.61% (841) by P. malariae; mortality was 0.03% (1) and 0.12% (1), respectively. Almost all travellers acquired infection in West or East Africa. Infection rate per travel episode fell fivefold during the study period. The median latency of P. malariae and P. ovale spp. was 18 and 76 days, respectively; delayed presentation occurred with both species. The latency of P. ovale spp. infection imported from West Africa was significantly shorter in those arriving in the UK during the West African peak malarial season compared to those arriving outside it (44 days vs 94 days, p < 0.0001), implying that relapse synchronises with the period of high malarial transmission. This trend was not seen in P. ovale spp. imported from East Africa nor in P. malariae. CONCLUSION In West Africa, where malaria transmission is highly seasonal, P. ovale spp. may have evolved to relapse during the malarial high transmission season. This has public health implications. Deaths are very rare, supporting current guidelines emphasising outpatient treatment. However, late presentations do occur.
Collapse
Affiliation(s)
- Laura E B Nabarro
- Public Health England Malaria Reference Laboratory, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK.
| | - Debbie Nolder
- Public Health England Malaria Reference Laboratory, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Claire Broderick
- The Hospital for Tropical Diseases, Mortimer Market Capper Street, London, WC1E 6JD, UK
| | - Behzad Nadjm
- The Hospital for Tropical Diseases, Mortimer Market Capper Street, London, WC1E 6JD, UK.,Oxford University Clinical Research Unit, Hanoi, Vietnam
| | - Valerie Smith
- Public Health England Malaria Reference Laboratory, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Marie Blaze
- Public Health England Malaria Reference Laboratory, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Anna M Checkley
- The Hospital for Tropical Diseases, Mortimer Market Capper Street, London, WC1E 6JD, UK
| | - Peter L Chiodini
- Public Health England Malaria Reference Laboratory, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK.,The Hospital for Tropical Diseases, Mortimer Market Capper Street, London, WC1E 6JD, UK
| | - Colin J Sutherland
- Public Health England Malaria Reference Laboratory, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Christopher J M Whitty
- Public Health England Malaria Reference Laboratory, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK.,The Hospital for Tropical Diseases, Mortimer Market Capper Street, London, WC1E 6JD, UK
| |
Collapse
|
35
|
Bareng AP, Espino FE, Chaijaroenkul W, Na-Bangchang K. Molecular monitoring of dihydrofolatereductase (dhfr) and dihydropteroatesynthetase (dhps) associated with sulfadoxine-pyrimethamine resistance in Plasmodium vivax isolates of Palawan, Philippines. Acta Trop 2018; 180:81-87. [PMID: 29352991 DOI: 10.1016/j.actatropica.2018.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 12/27/2017] [Accepted: 01/15/2018] [Indexed: 01/01/2023]
Abstract
The emergence of drug-resistant Plasmodium vivax poses problems for malaria control and elimination in some parts of the world, especially in developing countries where individuals are routinely exposed to the infection. The aim of this study was to determine the single nucleotide polymorphisms (SNPs) in dihydropteroate synthase (pvdhps) and dihydrofolate reductase (pvdhfr) genes associated with sulfadoxine-pyrimethamine (SP) drug resistance among P. vivax isolates collected in Palawan, Philippines. Genetic polymorphisms of pvdhps and pvdhfr were analysed by nested PCR. Analysis at specific codons I13P33F57S58T61S117I173 associated with pyrimethamine resistance in the pvdhfr gene revealed that most of the samples (66/87, 75.9%) carried double mutation at positions I13P33F57R58T61N117I173, while only 18.4% (16/87) of the isolates carried the wild-type haplotype (I13P33F57S58T61S117I173). For the pvdhps gene, the codons involved in sulfadoxine resistance S382A383K512A553V585 were investigated. Single mutation at position S382G383K512A553V585 was most observed in 68.0% (68/100) of the samples, whereas wild-type haplotype was found in 26.0% (26/100) of samples. The pvdhps and pvdhfr combination S382A383K512A553V585/I13P33F57S58T61S117I173 (wild-type), S382G383K512A553V585/I13P33F57R58T61N117I173, and S382A383K512A553V585-I13P33F57R58T61N117I173 were the most frequently observed combination haplotypes from the three study sites. The information on molecular markers associated with antifolate drug-resistance could help better understanding ofthe molecular epidemiology and situation of SP resistant P. vivax malaria in the country. Continuous surveillance of these genetic markers is necessary to monitor the evolution of SP resistance in the Philippines.
Collapse
|
36
|
Zhou R, Liu Y, Li S, Zhao Y, Huang F, Yang C, Qian D, Lu D, Deng Y, Zhang H, Xu B. Polymorphisms analysis of the Plasmodium ovale tryptophan-rich antigen gene (potra) from imported malaria cases in Henan Province. Malar J 2018; 17:127. [PMID: 29566685 PMCID: PMC5865371 DOI: 10.1186/s12936-018-2261-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 03/08/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Plasmodium ovale has two different subspecies: P. ovale curtisi and P. ovale wallikeri, which may be distinguished by the gene potra encoding P. ovale tryptophan-rich antigen. The sequence and size of potra gene was variable between the two P. ovale spp., and more fragment sizes were found compared to previous studies. Further information about the diversity of potra genes in these two P. ovale spp. will be needed. METHODS A total of 110 dried blood samples were collected from the clinical patients infected with P. ovale, who all returned from Africa in Henan Province in 2011-2016. The fragments of potra were amplified by nested PCR. The sizes and species of potra gene were analysed after sequencing, and the difference between the isolates were analysed with the alignment of the amino acid sequences. The phylogenetic tree was constructed by neighbour-joining to determine the genetic relationship among all the isolates. The distribution of the isolates was analysed based on the origin country. RESULTS Totally 67 samples infected with P. o. wallikeri, which included 8 genotypes of potra, while 43 samples infected with P. o. curtisi including 3 genotypes of potra. Combination with the previous studies, P. o. wallikeri had six sizes, 227, 245, 263, 281, 299 and 335 bp, and P. o. curtisi had four sizes, 299, 317, 335 and 353 bp, the fragment sizes of 299 and 335 bp were the overlaps between the two species. Six amino acid as one unit was firstly used to analyse the amino acid sequence of potra. Amino acid sequence alignment revealed that potra of P. o. wallikeri differed in two amino acid units, MANPIN and AITPIN, while potra of P. o. curtisi differed in amino acid units TINPIN and TITPIS. Combination with the previous studies, there were ten subtypes of potra exiting for P. o. wallikeri and four subtypes for P. o. curtisi. The phylogenetic tree showed that 11 isolates were divided into two clusters, P. o. wallikeri which was then divided into five sub-clusters, and P. o. curtisi which also formed two sub-clusters with their respective reference sequences. The genetic relationship of the P. ovale spp. mainly based on the number of the dominant amino acid repeats, the number of MANPIN, AITPIN, TINPIN or TITPIS. The genotype of the 245 bp size for P. o. wallikeri and that of the 299 and 317 bp size for P. o. curtisi were commonly exiting in Africa. CONCLUSION This study further proved that more fragment sizes were found, P. o. wallikeri had six sizes, P. o. curtisi had four sizes. There were ten subtypes of potra exiting for P. o. wallikeri and four subtypes for P. o. curtisi. The genetic polymorphisms of potra provided complementary information for the gene tracing of P. ovale spp. in the malaria elimination era.
Collapse
Affiliation(s)
- Ruimin Zhou
- Department of Parasite Disease Control and Prevention, Henan Province Center for Disease Control and Prevention, Zhengzhou, 450016, People's Republic of China
| | - Ying Liu
- Department of Parasite Disease Control and Prevention, Henan Province Center for Disease Control and Prevention, Zhengzhou, 450016, People's Republic of China
| | - Suhua Li
- Department of Parasite Disease Control and Prevention, Henan Province Center for Disease Control and Prevention, Zhengzhou, 450016, People's Republic of China
| | - Yuling Zhao
- Department of Parasite Disease Control and Prevention, Henan Province Center for Disease Control and Prevention, Zhengzhou, 450016, People's Republic of China
| | - Fang Huang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, 200025, People's Republic of China
| | - Chengyun Yang
- Department of Parasite Disease Control and Prevention, Henan Province Center for Disease Control and Prevention, Zhengzhou, 450016, People's Republic of China
| | - Dan Qian
- Department of Parasite Disease Control and Prevention, Henan Province Center for Disease Control and Prevention, Zhengzhou, 450016, People's Republic of China
| | - Deling Lu
- Department of Parasite Disease Control and Prevention, Henan Province Center for Disease Control and Prevention, Zhengzhou, 450016, People's Republic of China
| | - Yan Deng
- Department of Parasite Disease Control and Prevention, Henan Province Center for Disease Control and Prevention, Zhengzhou, 450016, People's Republic of China
| | - Hongwei Zhang
- Department of Parasite Disease Control and Prevention, Henan Province Center for Disease Control and Prevention, Zhengzhou, 450016, People's Republic of China.
| | - Bianli Xu
- Department of Parasite Disease Control and Prevention, Henan Province Center for Disease Control and Prevention, Zhengzhou, 450016, People's Republic of China.
| |
Collapse
|
37
|
Veletzky L, Groger M, Lagler H, Walochnik J, Auer H, Fuehrer HP, Ramharter M. Molecular evidence for relapse of an imported Plasmodium ovale wallikeri infection. Malar J 2018; 17:78. [PMID: 29426330 PMCID: PMC5807828 DOI: 10.1186/s12936-018-2226-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 02/07/2018] [Indexed: 11/12/2022] Open
Abstract
Background Malaria caused by Plasmodium ovale spp. has been neglected by and large from research and has received only little scientific attention during the past decades. Ovale malaria is considered to feature relapses by liver hypnozoites although scientific evidence for this paradigm is scarce. Case presentation Here, the case of a 16-year-old male, who presented with fevers to the outpatient department in Vienna, Austria, after travelling to Uganda and Papua New Guinea is described. Infection with Plasmodium malariae was diagnosed by microscopy and the patient was treated accordingly with a full course of supervised artemether–lumefantrine. He was discharged in good clinical condition with a negative blood smear. One month after initial diagnosis, he returned complaining of fever. Thick blood smear was positive again for malaria parasites, which were confirmed as P. ovale wallikeri by PCR. Retrospective analysis revealed the identical Plasmodium spp. in the initial blood samples. Molecular analysis of various gene loci (nuclear porbp2, 18S rRNA and potra genes) gave identical results providing further evidence for relapse by an identical parasite genotype. Consecutively, the patient was retreated with artemether–lumefantrine and received a regimen of primaquine according to WHO guidelines. Conclusion Conclusive evidence for relapses with P. ovale spp. is rare. The presented case provides convincing confirmation for the relapse paradigm based on re-appearing parasitaemia following supervised treatment in a non-endemic region with a parasite strain of identical genotype.
Collapse
Affiliation(s)
- Luzia Veletzky
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine I, Medical University of Vienna, Vienna, Austria.,Institut für Tropenmedizin, Universität Tübingen, Tübingen, Germany
| | - Mirjam Groger
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Heimo Lagler
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Julia Walochnik
- Institute for Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| | - Herbert Auer
- Institute for Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| | - Hans-Peter Fuehrer
- Department of Pathobiology, Institute of Parasitology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Michael Ramharter
- Institut für Tropenmedizin, Universität Tübingen, Tübingen, Germany. .,Bernhard Nocht Hospital for Tropical Diseases, Bernhard Nocht Institute for Tropical Medicine and University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
38
|
Joste V, Kamaliddin C, Kendjo E, Hubert V, Argy N, Houzé S. Distinction of Plasmodium ovale wallikeri and Plasmodium ovale curtisi using quantitative Polymerase Chain Reaction with High Resolution Melting revelation. Sci Rep 2018; 8:300. [PMID: 29321578 PMCID: PMC5762660 DOI: 10.1038/s41598-017-18026-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 11/28/2017] [Indexed: 11/22/2022] Open
Abstract
Plasmodium ovale curtisi (Poc) and Plasmodium ovale wallikeri (Pow) have been described as two distinct species, only distinguishable by molecular methods such as PCR. Because of no well-defined endemic area and a variable clinical presentation as higher thrombocytopenia and nausea associated with Pow infection and asymptomatic forms of the pathology with Poc infection, rapid and specific identification of Plasmodium ovale curtisi and Plasmodium ovale wallikeri are needed. The aim of the study was to evaluate a new quantitative real-time PCR coupled with high resolution melting revelation (qPCR-HRM) for identification of both species. Results were compared with a nested-PCR, considered as a gold standard for Pow and Poc distinction. 356 samples including all human Plasmodium species at various parasitaemia were tested. The qPCR-HRM assay allowed Poc and Pow discrimination in 66 samples tested with a limit of detection evaluated at 1 parasite/µL. All these results were concordant with nested-PCR. Cross-reaction was absent with others blood parasites. The qPCR-HRM is a rapid and convenient technique to Poc and Pow distinction.
Collapse
Affiliation(s)
- V Joste
- National French Malaria Reference Center, Bichat-Claude Bernard Hospital, 75018, Paris, France.
- Parasitology and Mycology Laboratory, Bichat-Claude Bernard Hospital, APHP, 75018, Paris, France.
| | - C Kamaliddin
- National French Malaria Reference Center, Bichat-Claude Bernard Hospital, 75018, Paris, France
- UMR216- MERIT, COMUE Sorbonne Paris Cité, Faculté de Pharmacie de Paris, Paris Descartes University, Paris, 75006, France
| | - E Kendjo
- National French Malaria Reference Center, Bichat-Claude Bernard Hospital, 75018, Paris, France
- National French Malaria Reference Center, Pitié Salpetrière hospital, 75013, Paris, France
| | - V Hubert
- National French Malaria Reference Center, Bichat-Claude Bernard Hospital, 75018, Paris, France
- UMR216- MERIT, COMUE Sorbonne Paris Cité, Faculté de Pharmacie de Paris, Paris Descartes University, Paris, 75006, France
| | - N Argy
- National French Malaria Reference Center, Bichat-Claude Bernard Hospital, 75018, Paris, France
- Parasitology and Mycology Laboratory, Bichat-Claude Bernard Hospital, APHP, 75018, Paris, France
- UMR216- MERIT, COMUE Sorbonne Paris Cité, Faculté de Pharmacie de Paris, Paris Descartes University, Paris, 75006, France
| | - S Houzé
- National French Malaria Reference Center, Bichat-Claude Bernard Hospital, 75018, Paris, France
- Parasitology and Mycology Laboratory, Bichat-Claude Bernard Hospital, APHP, 75018, Paris, France
- UMR216- MERIT, COMUE Sorbonne Paris Cité, Faculté de Pharmacie de Paris, Paris Descartes University, Paris, 75006, France
| |
Collapse
|
39
|
Lim C, Dankwa S, Paul AS, Duraisingh MT. Host Cell Tropism and Adaptation of Blood-Stage Malaria Parasites: Challenges for Malaria Elimination. Cold Spring Harb Perspect Med 2017; 7:a025494. [PMID: 28213436 PMCID: PMC5666624 DOI: 10.1101/cshperspect.a025494] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Plasmodium falciparum and Plasmodium vivax account for most of the mortality and morbidity associated with malaria in humans. Research and control efforts have focused on infections caused by P. falciparum and P. vivax, but have neglected other malaria parasite species that infect humans. Additionally, many related malaria parasite species infect nonhuman primates (NHPs), and have the potential for transmission to humans. For malaria elimination, the varied and specific challenges of all of these Plasmodium species will need to be considered. Recent advances in molecular genetics and genomics have increased our knowledge of the prevalence and existing diversity of the human and NHP Plasmodium species. We are beginning to identify the extent of the reservoirs of each parasite species in humans and NHPs, revealing their origins as well as potential for adaptation in humans. Here, we focus on the red blood cell stage of human infection and the host cell tropism of each human Plasmodium species. Determinants of tropism are unique among malaria parasite species, presenting a complex challenge for malaria elimination.
Collapse
Affiliation(s)
- Caeul Lim
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115
| | - Selasi Dankwa
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115
| | - Aditya S Paul
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115
| | | |
Collapse
|
40
|
The Incidence of Current Infection with Different Human Malaria Species by Polymerase Chain Reaction for Diagnosis of Suspicious Malaria Patients on Elimination Region Sistan and Baluchistan Province, Southeast of Iran. Jundishapur J Microbiol 2017. [DOI: 10.5812/jjm.58254] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
41
|
Kwenti TE, Njunda LA, Tsamul B, Nsagha SD, Assob NJC, Tufon KA, Meriki DH, Orock EG. Comparative evaluation of a rapid diagnostic test, an antibody ELISA, and a pLDH ELISA in detecting asymptomatic malaria parasitaemia in blood donors in Buea, Cameroon. Infect Dis Poverty 2017; 6:103. [PMID: 28760158 PMCID: PMC5537946 DOI: 10.1186/s40249-017-0314-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 05/10/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In malaria endemic areas, infected blood donors serve as a source of infection to blood recipients, which may adversely affect their prognosis. This necessitates the proper screening of blood to be used for transfusion in these areas. The purpose of this study was to determine the prevalence of malaria parasitaemia in blood donors in Buea, Cameroon, and to evaluate the performance of a rapid diagnostic test (RDT), a malaria antibody enzyme-linked immunosorbent assay (ELISA), and a Plasmodium lactate dehydrogenase (pLDH) ELISA in the detection of asymptomatic malaria parasitaemia in the target population. METHODS In a prospective study conducted between September 2015 and June 2016, 1 240 potential blood donors were enrolled. The donors were screened for malaria parasites using Giemsa microscopy (GM) and a RDT. A sub-sample of 184 samples, comprising 88 positive and 96 negative samples, were selected for the evaluation of the pLDH ELISA and the antibody ELISA. The chi-square test and correlation analysis were performed as part of the statistical analyses. The statistical significance cut-off was set at P < 0.05. RESULTS The prevalence of malaria parasitaemia in this study was found to be 8.1% (95% CI: 6.6 - 9.7). The prevalence was not observed to be dependent on the age or sex of the participants. The RDT had a sensitivity (88.0%), specificity (99.1%), and negative predictive value (99.0%) higher than the ELISAs. The performance of the pLDH ELISA, which demonstrated the highest positive predictive value (91.6%), was generally comparable to the RDT. The sensitivity was lowest with the antibody ELISA (69.9%), which also demonstrated the highest false positive and false negative rates. The detection threshold for the pLDH (three parasites/μl) was lower compared to the RDT (50 - 60 parasites/μl). Non-significant positive correlations were observed between the parasite density and the pLDH titers and malaria antibody titers. CONCLUSIONS Overall, the RDT and the pLDH ELISA demonstrated a perfectly correlated agreement with GM, meanwhile the antibody ELISA demonstrated a substantially correlated agreement with GM. The pLDH is therefore recommended for mass screening of blood (to detect malaria parasitaemia) for transfusions in the study area. However, where this is not feasible, an RDT will suffice.
Collapse
Affiliation(s)
- Tebit Emmanuel Kwenti
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, University of Buea, P.B. 63, Buea, Southwest Region, Cameroon. .,Department of Public Health and Hygiene, Faculty of Health Sciences, University of Buea, P.B. 63, Buea, Southwest Region, Cameroon. .,Blood Bank, Regional Hospital Buea, P.B. 32, Buea, Southwest Region, Cameroon.
| | - Longdoh Anna Njunda
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, University of Buea, P.B. 63, Buea, Southwest Region, Cameroon
| | - Beltine Tsamul
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, University of Buea, P.B. 63, Buea, Southwest Region, Cameroon.,Blood Bank, Regional Hospital Buea, P.B. 32, Buea, Southwest Region, Cameroon
| | - Shey Dickson Nsagha
- Department of Public Health and Hygiene, Faculty of Health Sciences, University of Buea, P.B. 63, Buea, Southwest Region, Cameroon
| | - Nguedia Jules-Clement Assob
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, University of Buea, P.B. 63, Buea, Southwest Region, Cameroon
| | | | - Dilonga Henry Meriki
- Department of Public Health and Hygiene, Faculty of Health Sciences, University of Buea, P.B. 63, Buea, Southwest Region, Cameroon.,Blood Bank, Regional Hospital Buea, P.B. 32, Buea, Southwest Region, Cameroon
| | - Enow George Orock
- Programme in Medicine, Faculty of Health Sciences, University of Buea, Buea, Southwest Region, Cameroon
| |
Collapse
|
42
|
Akerele D, Ljolje D, Talundzic E, Udhayakumar V, Lucchi NW. Molecular diagnosis of Plasmodium ovale by photo-induced electron transfer fluorogenic primers: PET-PCR. PLoS One 2017. [PMID: 28640824 PMCID: PMC5480860 DOI: 10.1371/journal.pone.0179178] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Accurate diagnosis of malaria infections continues to be challenging and elusive, especially in the detection of submicroscopic infections. Developing new malaria diagnostic tools that are sensitive enough to detect low-level infections, user friendly, cost effective and capable of performing large scale diagnosis, remains critical. We have designed novel self-quenching photo-induced electron transfer (PET) fluorogenic primers for the detection of P. ovale by real-time PCR. In our study, a total of 173 clinical samples, consisting of different malaria species, were utilized to test this novel PET-PCR primer. The sensitivity and specificity were calculated using nested-PCR as the reference test. The novel primer set demonstrated a sensitivity of 97.5% and a specificity of 99.2% (95% CI 85.2–99.8% and 95.2–99.9% respectively). Furthermore, the limit of detection for P. ovale was found to be 1 parasite/μl. The PET-PCR assay is a new molecular diagnostic tool with comparable performance to other commonly used PCR methods. It is relatively easy to perform, and amiable to large scale malaria surveillance studies and malaria control and elimination programs. Further field validation of this novel primer will be helpful to ascertain the utility for large scale malaria screening programs.
Collapse
Affiliation(s)
- David Akerele
- Division of Pediatric Infectious Diseases, Emory Medical Center, Atlanta, Georgia, United States of America
| | - Dragan Ljolje
- Atlanta Research and Education Foundation, Decatur, Georgia, United States of America
| | - Eldin Talundzic
- Atlanta Research and Education Foundation, Decatur, Georgia, United States of America
| | - Venkatachalam Udhayakumar
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Naomi W. Lucchi
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
43
|
Adomako-Ankomah Y, Chenoweth MS, Durfee K, Doumbia S, Konate D, Doumbouya M, Keita AS, Nikolaeva D, Tullo GS, Anderson JM, Fairhurst RM, Daniels R, Volkman SK, Diakite M, Miura K, Long CA. High Plasmodium falciparum longitudinal prevalence is associated with high multiclonality and reduced clinical malaria risk in a seasonal transmission area of Mali. PLoS One 2017; 12:e0170948. [PMID: 28158202 PMCID: PMC5291380 DOI: 10.1371/journal.pone.0170948] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 01/12/2017] [Indexed: 11/19/2022] Open
Abstract
The effects of persistent Plasmodium falciparum (Pf) infection and multiclonality on subsequent risk of clinical malaria have been reported, but the relationship between these 2 parameters and their relative impacts on the clinical outcome of infection are not understood. A longitudinal cohort study was conducted in a seasonal and high-transmission area of Mali, in which 500 subjects aged 1-65 years were followed for 1 year. Blood samples were collected every 2 weeks, and incident malaria cases were diagnosed and treated. Pf infection in each individual at each time point was assessed by species-specific nested-PCR, and Pf longitudinal prevalence per person (PfLP, proportion of Pf-positive samples over 1 year) was calculated. Multiclonality of Pf infection was measured using a 24-SNP DNA barcoding assay at 4 time-points (two in wet season, and two in dry season) over one year. PfLP was positively correlated with multiclonality at each time point (all r≥0.36; all P≤0.011). When host factors (e.g., age, gender), PfLP, and multiclonality (at the beginning of the transmission season) were analyzed together, only increasing age and high PfLP were associated with reduced clinical malaria occurrence or reduced number of malaria episodes (for both outcomes, P<0.001 for age, and P = 0.005 for PfLP). When age, PfLP and baseline Pf positivity were analyzed together, the effect of high PfLP remained significant even after adjusting for the other two factors (P = 0.001 for malaria occurrence and P<0.001 for number of episodes). In addition to host age and baseline Pf positivity, both of which have been reported as important modifiers of clinical malaria risk, our results demonstrate that persistent parasite carriage, but not baseline multiclonality, is associated with reduced risk of clinical disease in this population. Our study emphasizes the importance of considering repeated parasite exposure in future studies that evaluate clinical malaria risk.
Collapse
Affiliation(s)
- Yaw Adomako-Ankomah
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Matthew S. Chenoweth
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Katelyn Durfee
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Saibou Doumbia
- Malaria Research and Training Center, Faculty of Medicine, Pharmacy, and Odontostomatology, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Drissa Konate
- Malaria Research and Training Center, Faculty of Medicine, Pharmacy, and Odontostomatology, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Mory Doumbouya
- Malaria Research and Training Center, Faculty of Medicine, Pharmacy, and Odontostomatology, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Abdoul S. Keita
- Malaria Research and Training Center, Faculty of Medicine, Pharmacy, and Odontostomatology, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Daria Nikolaeva
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Gregory S. Tullo
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Jennifer M. Anderson
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Rick M. Fairhurst
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Rachel Daniels
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
- Infectious Disease Program, The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Sarah K. Volkman
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Infectious Disease Program, The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- School of Nursing and Health Sciences, Simmons College, Boston, Massachusetts, United States of America
| | - Mahamadou Diakite
- Malaria Research and Training Center, Faculty of Medicine, Pharmacy, and Odontostomatology, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
- * E-mail:
| | - Carole A. Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| |
Collapse
|
44
|
The hide and seek of Plasmodium vivax in West Africa: report from a large-scale study in Beninese asymptomatic subjects. Malar J 2016; 15:570. [PMID: 27887647 PMCID: PMC5123334 DOI: 10.1186/s12936-016-1620-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 11/15/2016] [Indexed: 11/30/2022] Open
Abstract
Background Plasmodium vivax is considered to be absent from western Africa, where the prevalence of Duffy-negative red blood cell phenotype proves to be high. Several studies have, however, detected P. vivax infection cases in this part of Africa, raising the question of what is the actual prevalence of P. vivax in local populations.
Methods The presence of P. vivax was investigated in a large population of healthy blood donors in Benin using microscopy, serology and molecular detection. The seroprevalence was measured with species-specific ELISA using two recombinant P. vivax proteins, namely rPvMSP1 and rPvCSP1. Specific molecular diagnosis of P. vivax infection was carried out using nested-PCR. The performances and cut-off values of both rPvCSP1 and rPvMSP1 ELISA were first assessed using sera from P. vivax-infected patients and from non-exposed subjects. Results Among 1234 Beninese blood donors, no parasites were detected when using microscopy, whereas 28.7% (354/1234) of patients exhibited had antibodies against rPvMSP1, 21.6% (266/1234) against rPvCSP1, and 15.2% (187/1234) against both. Eighty-four samples were selected for nested-PCR analyses, of which 13 were positive for P. vivax nested-PCR and all Duffy negative.
Conclusion The results of the present study highlight an unexpectedly high exposure of Beninese subjects to P. vivax, resulting in sub-microscopic infections. This suggests a probably underestimated and insidious parasite presence in western Africa. While the vaccination campaigns and therapeutic efforts are all focused on Plasmodium falciparum, it is also essential to consider the epidemiological impact of P. vivax. Electronic supplementary material The online version of this article (doi:10.1186/s12936-016-1620-z) contains supplementary material, which is available to authorized users.
Collapse
|
45
|
Dengue infection as a potential trigger of an imported Plasmodium ovale malaria relapse or a long incubation period in a non-endemic malaria region. Int J Infect Dis 2016; 44:20-4. [PMID: 26809125 DOI: 10.1016/j.ijid.2016.01.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 01/11/2016] [Accepted: 01/15/2016] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVES To report that dengue fever (DF) could have triggered Plasmodium ovale wallikeri malaria. METHODS A retrospective case report of P. ovale malaria and DF in a single patient in Rio de Janeiro, Brazil, who had lived in Angola, is presented. RESULTS On the second week of illness, the patient was referred to our research service. As symptoms had persisted up to day 14, malaria was also considered, based on the patient's long-standing epidemiological history. On day 16 of illness, a thick blood smear was positive for P. ovale (3480 parasites/mm(3)), PCR for malaria was positive for P. ovale wallikeri, and the kinetics of dengue virus (DENV) antibodies suggested a recent primary dengue infection. CONCLUSIONS Concurrent infections of DENV and malaria have rarely been reported; the actual impact of these sequential or simultaneous infections remains unknown. Therefore, DF must be considered as a potential co-morbidity for malaria, because of its influence on fluid electrolyte management. The case presented showed consistent temporal, clinical, and laboratory evidence that the relapse or the long incubation period of P. ovale malaria may have been triggered by a recent DF episode. To the authors' knowledge, this is the first report of DENV and P. ovale co-infection.
Collapse
|
46
|
Liew JWK, Mahmud R, Tan LH, Lau YL. Diagnosis of an imported Plasmodium ovale wallikeri infection in Malaysia. Malar J 2016; 15:8. [PMID: 26738724 PMCID: PMC4704402 DOI: 10.1186/s12936-015-1070-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 12/23/2015] [Indexed: 11/10/2022] Open
Abstract
Plasmodium ovale is rare and not exactly known to be autochthonous in Malaysia. There are two distinct forms of the parasite, namely P. ovale curtisi (classic form) and P. ovale wallikeri (variant form). Here, the first sequence confirmed case of an imported P. ovale wallikeri infection in Malaysia is presented. Microscopy found Plasmodium parasites with morphology similar to P. ovale or Plasmodium vivax in the blood films. Further confirmation using polymerase chain reaction (PCR) targeting the small-subunit rRNA gene of the parasite was unsuccessful. Genus-specific PCR was then performed and the product was sequenced and analysed. Sequence analyses confirmed the aetiological agent as P. ovale wallikeri. New species-specific primers (rOVA1v and rOVA2v) were employed and P. ovale wallikeri was finally confirmed. The findings highlight the need to look out for imported malaria infections in Malaysia and the importance of a constantly updated and validated diagnostic technique.
Collapse
Affiliation(s)
- Jonathan Wee Kent Liew
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Rohela Mahmud
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Lian Huat Tan
- Sunway Medical Centre, Bandar Sunway, 46150, Petaling Jaya, Selangor, Malaysia.
| | - Yee Ling Lau
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
47
|
Chavatte JM, Tan SBH, Snounou G, Lin RTPV. Molecular characterization of misidentified Plasmodium ovale imported cases in Singapore. Malar J 2015; 14:454. [PMID: 26577930 PMCID: PMC4650842 DOI: 10.1186/s12936-015-0985-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 11/03/2015] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Plasmodium ovale, considered the rarest of the malaria parasites of humans, consists of two morphologically identical but genetically distinct sympatric species, Plasmodium ovale curtisi and Plasmodium ovale wallikeri. These parasites resemble morphologically to Plasmodium vivax with which they also share a tertian periodicity and the ability to cause relapses, making them easily misidentified as P. vivax. Plasmodium ovale infections are rarely reported, but given the likelihood of misidentification, their prevalence might be underestimated. METHODS Morphological and molecular analysis of confirmed malaria cases admitted in Singapore in 2012-2014 detected nine imported P. ovale cases that had been misidentified as P. vivax. Since P. ovale had not been previously officially reported in Singapore, a retrospective analysis of available, frozen, archival blood samples was performed and returned two additional misidentified P. ovale cases in 2003 and 2006. These eleven P. ovale samples were characterized with respect to seven molecular markers (ssrRNA, Potra, Porbp2, Pog3p, dhfr-ts, cytb, cox1) used in recent studies to distinguish between the two sympatric species, and to a further three genes (tufa, clpC and asl). RESULTS The morphological features of P. ovale and the differential diagnosis with P. vivax were reviewed and illustrated by microphotographs. The genetic dimorphism between P. ovale curtisi and P. ovale wallikeri was assessed by ten molecular markers distributed across the three genomes of the parasite (Genbank KP050361-KP050470). The data obtained for seven of these markers were compared with those published and confirmed that both P. ovale species were present. This dimorphism was also confirmed for the first time on: (1) two genes from the apicoplast genome (tufA and clpC genes); and, (2) the asl gene that was used for phylogenetic analyses of other Plasmodium species, and that was found to harbour the highest number of dimorphic loci between the two P. ovale species. CONCLUSION Misidentified P. ovale infections are reported for the first time among imported malaria cases in Singapore. Genetic dimorphism between P. ovale curtisi and P. ovale wallikeri was confirmed using markers from the parasites' three genomes. The apparent increase of imported P. ovale since 2012 (with yearly detection of cases) is puzzling. Given decrease in the overall number of malaria cases recorded in Singapore since 2010 the 'resurgence' of this neglected species raises public health concerns.
Collapse
Affiliation(s)
- Jean-Marc Chavatte
- Malaria Reference Centre - National Public Health Laboratory, Ministry of Health, Singapore, 3 Biopolis Drive, Synapse #05-14/16, 138623, Singapore, Singapore.
| | - Sarah Bee Hui Tan
- Malaria Reference Centre - National Public Health Laboratory, Ministry of Health, Singapore, 3 Biopolis Drive, Synapse #05-14/16, 138623, Singapore, Singapore.
| | - Georges Snounou
- Sorbonne Universités, UPMC Université Paris 06, UPMC UMRS CR7, 75005, Paris, France.
- Centre d'Immunologie et de Maladies Infectieuses (CIMI) Paris, Institut National de la Santé et de la Recherche Médicale (Inserm) U1135, Centre National de la Recherche Scientifique (CNRS) ERL 8255, 75013, Paris, France.
| | - Raymond Tzer Pin Valentine Lin
- Malaria Reference Centre - National Public Health Laboratory, Ministry of Health, Singapore, 3 Biopolis Drive, Synapse #05-14/16, 138623, Singapore, Singapore.
- Department of Laboratory Medicine, National University Hospital, 5 Lower Kent Ridge Road, 119074, Singapore, Singapore.
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Block MD4, Level 3, 117545, Singapore, Singapore.
| |
Collapse
|
48
|
Costa DC, Madureira AP, Amaral LC, Sanchez BAM, Gomes LT, Fontes CJF, Limongi JE, Brito CFAD, Carvalho LH. Submicroscopic malaria parasite carriage: how reproducible are polymerase chain reaction-based methods? Mem Inst Oswaldo Cruz 2015; 109:21-8. [PMID: 24626306 PMCID: PMC4005536 DOI: 10.1590/0074-0276140102] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 09/26/2013] [Indexed: 02/01/2023] Open
Abstract
The polymerase chain reaction (PCR)-based methods for the diagnosis of malaria infection are expected to accurately identify submicroscopic parasite carriers. Although a significant number of PCR protocols have been described, few studies have addressed the performance of PCR amplification in cases of field samples with submicroscopic malaria infection. Here, the reproducibility of two well-established PCR protocols (nested-PCR and real-time PCR for the Plasmodium 18 small subunit rRNA gene) were evaluated in a panel of 34 blood field samples from individuals that are potential reservoirs of malaria infection, but were negative for malaria by optical microscopy. Regardless of the PCR protocol, a large variation between the PCR replicates was observed, leading to alternating positive and negative results in 38% (13 out of 34) of the samples. These findings were quite different from those obtained from the microscopy-positive patients or the unexposed individuals; the diagnosis of these individuals could be confirmed based on the high reproducibility and specificity of the PCR-based protocols. The limitation of PCR amplification was restricted to the field samples with very low levels of parasitaemia because titrations of the DNA templates were able to detect < 3 parasites/µL in the blood. In conclusion, conventional PCR protocols require careful interpretation in cases of submicroscopic malaria infection, as inconsistent and false-negative results can occur.
Collapse
Affiliation(s)
- Daniela Camargos Costa
- Centro de Pesquisas René Rachou, Fiocruz, Belo HorizonteMG, Brasil, Centro de Pesquisas René Rachou - Fiocruz , Belo Horizonte , MG , Brasil
| | - Ana Paula Madureira
- Departamento de Bioengenharia, Universidade Federal de São João Del Rei, São João Del ReyMG, Brasil, Departamento de Bioengenharia , Universidade Federal de São João Del Rei , São João Del Rey , MG , Brasil
| | - Lara Cotta Amaral
- Centro de Pesquisas René Rachou, Fiocruz, Belo HorizonteMG, Brasil, Centro de Pesquisas René Rachou - Fiocruz , Belo Horizonte , MG , Brasil
| | | | - Luciano Teixeira Gomes
- Universidade Federal de Mato Grosso, CuiabáMT, Brasil, Universidade Federal de Mato Grosso , Cuiabá , MT , Brasil
| | - Cor Jésus Fernandes Fontes
- Universidade Federal de Mato Grosso, CuiabáMT, Brasil, Universidade Federal de Mato Grosso , Cuiabá , MT , Brasil
| | - Jean Ezequiel Limongi
- Centro de Controle de Zoonoses de Uberlândia, UberlândiaMG, Brasil, Centro de Controle de Zoonoses de Uberlândia , Uberlândia , MG , Brasil
| | - Cristiana Ferreira Alves de Brito
- Centro de Pesquisas René Rachou, Fiocruz, Belo HorizonteMG, Brasil, Centro de Pesquisas René Rachou - Fiocruz , Belo Horizonte , MG , Brasil
| | - Luzia Helena Carvalho
- Centro de Pesquisas René Rachou, Fiocruz, Belo HorizonteMG, Brasil, Centro de Pesquisas René Rachou - Fiocruz , Belo Horizonte , MG , Brasil
| |
Collapse
|
49
|
Rojo-Marcos G, Rubio-Muñoz JM, Ramírez-Olivencia G, García-Bujalance S, Elcuaz-Romano R, Díaz-Menéndez M, Calderón M, García-Bermejo I, Ruiz-Giardín JM, Merino-Fernández FJ, Torrús-Tendero D, Delgado-Iribarren A, Ribell-Bachs M, Arévalo-Serrano J, Cuadros-González J. Comparison of imported Plasmodium ovale curtisi and P. ovale wallikeri infections among patients in Spain, 2005-2011. Emerg Infect Dis 2015; 20:409-16. [PMID: 24572501 PMCID: PMC3944870 DOI: 10.3201/eid2003.130745] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Sequencing data from Plasmodium ovale genotypes co-circulating in multiple countries support the hypothesis that P. ovale curtisi and P. ovale wallikeri are 2 separate species. We conducted a multicenter, retrospective, comparative study in Spain of 21 patients who had imported P. ovale curtisi infections and 14 who had imported P. ovale wallikeri infections confirmed by PCR and gene sequencing during June 2005–December 2011. The only significant finding was more severe thrombocytopenia among patients with P. ovale wallikeri infection than among those with P. ovale curtisi infection (p = 0.031). However, we also found nonsignificant trends showing that patients with P. ovale wallikeri infection had shorter time from arrival in Spain to onset of symptoms, lower level of albumin, higher median maximum core temperature, and more markers of hemolysis than did those with P. ovale curtisi infection. Larger, prospective studies are needed to confirm these findings.
Collapse
|
50
|
Characterization of Plasmodium ovale curtisi and P. ovale wallikeri in Western Kenya utilizing a novel species-specific real-time PCR assay. PLoS Negl Trop Dis 2015; 9:e0003469. [PMID: 25590587 PMCID: PMC4295880 DOI: 10.1371/journal.pntd.0003469] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 12/11/2014] [Indexed: 11/19/2022] Open
Abstract
Background Plasmodium ovale is comprised of two genetically distinct subspecies, P. ovale curtisi and P. ovale wallikeri. Although P. ovale subspecies are similar based on morphology and geographical distribution, allelic differences indicate that P. ovale curtisi and P. ovale wallikeri are genetically divergent. Additionally, potential clinical and latency duration differences between P. ovale curtisi and P. ovale wallikeri demonstrate the need for investigation into the contribution of this neglected malaria parasite to the global malaria burden. Methods In order to detect all P. ovale subspecies simultaneously, we developed an inclusive P. ovale-specific real-time PCR assay based on conserved regions between P. ovale curtisi and P. ovale wallikeri in the reticulocyte binding protein 2 (rbp2) gene. Additionally, we characterized the P. ovale subspecies prevalence from 22 asymptomatic malaria infections using multilocus genotyping to discriminate P. ovale curtisi and P. ovale wallikeri. Results Our P. ovale rbp2 qPCR assay validation experiments demonstrated a linear dynamic range from 6.25 rbp2 plasmid copies/microliter to 100,000 rbp2 plasmid copies/microliter and a limit of detection of 1.5 rbp2 plasmid copies/microliter. Specificity experiments showed the ability of the rbp2 qPCR assay to detect low-levels of P. ovale in the presence of additional malaria parasite species, including P. falciparum, P. vivax, and P. malariae. We identified P. ovale curtisi and P. ovale wallikeri in Western Kenya by DNA sequencing of the tryptophan-rich antigen gene, the small subunit ribosomal RNA gene, and the rbp2 gene. Conclusions Our novel P. ovale rbp2 qPCR assay detects P. ovale curtisi and P. ovale wallikeri simultaneously and can be utilized to characterize the prevalence, distribution, and burden of P. ovale in malaria endemic regions. Using multilocus genotyping, we also provided the first description of the prevalence of P. ovale curtisi and P. ovale wallikeri in Western Kenya, a region holoendemic for malaria transmission. Humans can be infected with five malaria parasite species: Plasmodium falciparum, P. vivax, P. malariae, P. knowlesi, and P. ovale. Although the vast majority of malaria morbidity and mortality worldwide can be attributed to P. falciparum, non-falciparum malaria parasites can also cause clinical disease. Researchers use nucleic acid based detection methods, such a polymerase chain reaction (PCR), to detect low-density malaria parasitemias that can evade microscopic detection. P. ovale was recently identified to exist as two subspecies, P. ovale curtisi and P. ovale wallikeri, that look identical but differ genetically. In this study, we developed a novel real-time PCR (qPCR) assay to detect all P. ovale parasites, based on a conserved gene between P. ovale curtisi and P. ovale wallikeri. We also used DNA sequencing to differentiate between P. ovale curtisi and P. ovale wallikeri from a small sample of P. ovale asymptomatic infections in Western Kenya. Through the use of our novel rbp2 qPCR assay, we aim to characterize the prevalence of P. ovale in future epidemiological studies in order to better understand this neglected malaria parasite species.
Collapse
|