1
|
AlNaser M, AlAteeqi D, Daboul D, Qudeimat Z, Karched M, Qudeimat MA. Hygiene practices and antibiotic resistance among dental and medical students: a comparative study. Infection 2024; 52:1763-1773. [PMID: 38514584 DOI: 10.1007/s15010-024-02203-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 01/29/2024] [Indexed: 03/23/2024]
Abstract
PURPOSE Healthcare students' hand and smartphone hygiene is critical due to potential pathogenic and antibiotic-resistant bacteria transmission. This study evaluates hygiene practices in medical and dental students at Kuwait University, exploring antibiotic resistance gene prevalence. METHODS Swab samples were collected from the hands and smartphones of 32 medical and 30 dental students. These samples were cultured on Columbia Blood Agar and McConkey Agar plates to quantify bacterial colony-forming units (CFUs). The extracted DNA from these colonies underwent RT-PCR to identify antibiotic resistance genes, including tem-1, shv, blaZ, and mecA. Additionally, a questionnaire addressing hygiene practices was distributed post-sample collection. RESULTS Medical students exhibited more frequent hand hygiene compared to dental students (P ≤ 0.0001). Although significantly fewer bacterial CFUs were found on medical students' smartphones (mean = 35 ± 53) than dental students' (mean = 89 ± 129) (P ≤ 0.05), no significant differences were observed in CFU counts on their hands (medical: mean = 17 ± 37; dental: mean = 96 ± 229). Detection of at least one of the targeted antibiotic resistance genes on medical (89% hands, 52% smartphones) and dental students' (79% hands, 63% smartphones) was not statistically significant. However, the prevalence of two genes, tem-1 and shv, was significantly higher on medical students' hands (78% and 65%, respectively) than on dental students' hands (32% and 28%, respectively). CONCLUSION Clinically significant prevalence of antibiotic resistance genes were found on medical and dental students' hands and smartphones, emphasizing the importance of ongoing education regarding hand hygiene and smartphone disinfection. This continuous reinforcement in the curriculum is crucial to minimizing the risk of cross-contamination.
Collapse
Affiliation(s)
| | | | - Dana Daboul
- College of Dentistry, Kuwait University, Safat, Kuwait
| | - Zeid Qudeimat
- Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Maribasappa Karched
- College of Dentistry, Kuwait University, Safat, Kuwait.
- Department of Bioclinical Sciences, College of Dentistry, Kuwait University, 24923, 13110, Safat, Kuwait.
| | - Muawia A Qudeimat
- College of Dentistry, Kuwait University, Safat, Kuwait.
- Department of Developmental and Preventive Sciences, College of Dentistry, Kuwait University, 24923, 13110, Safat, Kuwait.
| |
Collapse
|
2
|
Thakkar N, Gajera G, Mehta D, Kothari V. Silversol ® (a Colloidal Nanosilver Formulation) Inhibits Growth of Antibiotic-Resistant Staphylococcus aureus by Disrupting Its Physiology in Multiple Ways. Pharmaceutics 2024; 16:726. [PMID: 38931848 PMCID: PMC11206351 DOI: 10.3390/pharmaceutics16060726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Antibiotic-resistant strains of Staphylococcus aureus are being viewed as a serious threat by various public health agencies. Identifying novel targets in this important pathogen is crucial to the development of new effective antibacterial formulations. We investigated the antibacterial effect of a colloidal nanosilver formulation, Silversol®, against an antibiotic-resistant strain of S. aureus using appropriate in vitro assays. Moreover, we deciphered the molecular mechanisms underlying this formulation's anti-S. aureus activity using whole transcriptome analysis. Lower concentrations of the test formulation exerted a bacteriostatic effect against this pathogen, and higher concentrations exerted a bactericidal effect. Silversol® at sub-lethal concentration was found to disturb multiple physiological traits of S. aureus such as growth, antibiotic susceptibility, membrane permeability, efflux, protein synthesis and export, biofilm and exopolysaccharide production, etc. Transcriptome data revealed that the genes coding for transcriptional regulators, efflux machinery, transferases, β-lactam resistance, oxidoreductases, metal homeostasis, virulence factors, and arginine biosynthesis are expressed differently under the influence of the test formulation. Genes (argG and argH) involved in arginine biosynthesis emerged among the major targets of Silversol®'s antibacterial activity against S. aureus.
Collapse
Affiliation(s)
- Nidhi Thakkar
- Institute of Science, Nirma University, Ahmedabad 382481, India; (N.T.); (G.G.)
| | - Gemini Gajera
- Institute of Science, Nirma University, Ahmedabad 382481, India; (N.T.); (G.G.)
| | - Dilip Mehta
- Viridis BioPharma Pvt. Ltd., Mumbai 400043, India;
| | - Vijay Kothari
- Institute of Science, Nirma University, Ahmedabad 382481, India; (N.T.); (G.G.)
| |
Collapse
|
3
|
Mok HT, Teng CB, Bergin S, Hon PY, Lye DC, De PP, Vasoo S. Treatment outcomes with benzylpenicillin and non-benzylpenicillin antibiotics, and the performance of the penicillin zone-edge test versus molecular detection of blaZ in penicillin-susceptible Staphylococcus aureus (PSSA) bacteraemia. J Antimicrob Chemother 2023; 78:2515-2523. [PMID: 37596905 DOI: 10.1093/jac/dkad263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/03/2023] [Indexed: 08/21/2023] Open
Abstract
OBJECTIVES The blaZ gene encodes penicillinase, which inactivates penicillin. As there were reports on suboptimal sensitivity for the penicillin zone-edge test, a phenotypic method for blaZ detection, we investigated treatment outcomes in patients with penicillin-susceptible Staphylococcus aureus (PSSA) bacteraemia (phenotypically negative for penicillinase), subjecting isolates to molecular testing for blaZ retrospectively. PATIENTS AND METHODS A retrospective cohort study was conducted on 121 patients with a first episode of PSSA bacteraemia from 1 January 2012 to 31 October 2015 at Tan Tock Seng Hospital (TTSH), Singapore. Patients were grouped into IV benzylpenicillin and non-benzylpenicillin groups. The primary outcome was overall treatment failure, defined as either 30 day all-cause mortality and/or 90 day relapse. The penicillin (P10) zone-edge test was repeated on archived PSSA isolates, concurrently with penicillin MIC determination via gradient diffusion and PCR for blaZ. RESULTS Among 121 patients, 57 patients (47.1%) received IV benzylpenicillin as the predominant antibiotic. There was no significant difference in overall treatment failure between treatment with the benzylpenicillin [7/57 (12.3%)] versus non-benzylpenicillin groups [12/64 (18.8%)] (P = 0.33) or cloxacillin/cefazolin [6/37 (16.2%)] (P = 0.59). For 112 PSSA isolates available for testing, repeat penicillin zone-edge testing was negative for penicillinase production, corroborating previous results. A single PSSA isolate with a negative penicillin zone-edge test was found to be positive for blaZ. CONCLUSIONS We found no differences in overall treatment failure between patients with PSSA bacteraemia treated with benzylpenicillin, anti-staphylococcal β-lactams cefazolin/cloxacillin and other antimicrobials, when using the penicillin zone-edge test as the phenotypic method for blaZ screening.
Collapse
Affiliation(s)
- Hoi Tong Mok
- Department of Pharmacy, Tan Tock Seng Hospital, Singapore, Singapore
| | - Christine B Teng
- Department of Pharmacy, Tan Tock Seng Hospital, Singapore, Singapore
- Department of Pharmacy, The National University of Singapore, Singapore, Singapore
| | - Sarah Bergin
- Department of Laboratory Medicine, Tan Tock Seng Hospital, Singapore, Singapore
- Department of Microbiology, Tallaght University Hospital, Dublin, Ireland
| | - Pei Yun Hon
- Infectious Diseases Research Laboratory, National Centre for Infectious Diseases, Singapore, Singapore
| | - David C Lye
- Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore, Singapore
- Infectious Diseases Research and Training Office, National Centre for Infectious Diseases, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Partha P De
- Department of Laboratory Medicine, Tan Tock Seng Hospital, Singapore, Singapore
| | - Shawn Vasoo
- Infectious Diseases Research Laboratory, National Centre for Infectious Diseases, Singapore, Singapore
- Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore, Singapore
- Infectious Diseases Research and Training Office, National Centre for Infectious Diseases, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
4
|
First Genome-Based Characterisation and Staphylococcal Enterotoxin Production Ability of Methicillin-Susceptible and Methicillin-Resistant Staphylococcus aureus Strains Isolated from Ready-to-Eat Foods in Algiers (Algeria). Toxins (Basel) 2022; 14:toxins14110731. [PMID: 36355981 PMCID: PMC9694651 DOI: 10.3390/toxins14110731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 01/26/2023] Open
Abstract
Staphylococcus aureus is a pathogenic microorganism of humans and animals, able to cause foodborne intoxication due to the production of staphylococcal enterotoxins (SEs) and to resist antibiotic treatment as in the case of methicillin-resistant S. aureus (MRSA). In this study, we performed a genomic characterisation of 12 genetically diverse S. aureus strains isolated from ready-to-eat foods in Algiers (Algeria). Moreover, their ability to produce some classical and new staphylococcal enterotoxins (SEs) was investigated. The 12 S. aureus strains resulted to belong to nine known sequence types (STs) and to the novel ST7199 and ST7200. Furthermore, S. aureus SA46 was assigned to the European clone MRSA-ST80-SCCmec-IV. The 12 strains showed a wide endowment of se and sel (staphylococcal enterotoxin-like toxin) genes (sea, seb, sed, seg, seh, sei, selj, sek, sem, sen, seo, seq, ser, selu2, selw, selx, sey, sel30; ψent1-ψent2), including variants and pseudogenes, and harboured the enterotoxin gene cluster (egc) types 1 and 5. Additionally, they produced various amounts of SEA (64.54-345.02 ng/mL), SEB (2871.28-14739.17 ng/mL), SED (322.70-398.94 ng/mL), SEH (not detectable-239.48 ng/mL), and SER (36,720.10-63,176.06 ng/mL) depending on their genotypes. The genetic determinants related to their phenotypic resistance to β-lactams (blaZ, mecA), ofloxacin (gyrA-S84L), erythromycin (ermB), lincomycin (lmrS), kanamycin (aph(3')-III, ant(6)-I), and tetracyclin (tet(L), tet(38)) were also detected. A plethora of virulence-related genes, including major virulence genes such as the tst gene, determinant for the toxic shock syndrome toxin-1, and the lukF-PV and lukS-PV genes, encoding the panton-valentine leukocidin (PVL), were present in the S. aureus strains, highlighting their pathogenic potential. Furthermore, a phylogenomic reconstruction including worldwide foodborne S. aureus showed a clear clustering based on ST and geographical origin rather than the source of isolation.
Collapse
|
5
|
Genomics of Staphylococcus aureus and Staphylococcus epidermidis from Periprosthetic Joint Infections and Correlation to Clinical Outcome. Microbiol Spectr 2022; 10:e0218121. [PMID: 35762769 PMCID: PMC9430453 DOI: 10.1128/spectrum.02181-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The approach of sequencing or genotyping to characterize the pathogenic potential of staphylococci from orthopedic device-related infection (ODRI) has been applied in recent studies. These studies described the genomic carriage of virulence in clinical strains and compared it with those in commensal strains. Only a few studies have directly correlated genomic profiles to patient outcome and phenotypic virulence properties in periprosthetic joint infections (PJIs). We investigated the association between genomic variations and virulence-associated phenotypes (biofilm-forming ability and antimicrobial resistance) in 111 staphylococcal strains isolated from patients with PJI and the infection outcome (resolved/unresolved). The presence of a strong biofilm phenotype in Staphylococcus aureus and an antibiotic-resistant phenotype in Staphylococcus epidermidis were both associated with treatment failure of PJI. In S. epidermidis, multidrug resistance (MDR) and resistance to rifampicin were associated with unresolved infection. Sequence type 45 (ST45) and ST2 were particularly enriched in S. aureus and S. epidermidis, respectively. S. epidermidis ST2 caused the majority of relapses and was associated with MDR and strong biofilm production, whereas ST215 correlated with MDR and non/weak biofilm production. S. aureusagr II correlated with resolved infection, while S. epidermidisagr I was associated with strong biofilm production and agr III with non/weak production. Collectively, our results highlight the importance of careful genomic and phenotypic characterization to anticipate the probability of the strain causing treatment failure in PJI. Due to the high rate of resistant S. epidermidis strains identified, this study provides evidence that the current recommended treatment of rifampicin and a fluoroquinolone should not be administered without knowledge of the resistance pattern. IMPORTANCE This study addresses the presence and frequency of particular genetic variants and virulence factors found in staphylococcal bacteria causing periprosthetic joint infection (PJI) of the hip and knee to ascertain their clinical relevance as predictors of treatment failure. We characterized the genetic virulence traits of a large collection of clinical staphylococci isolated from patients with PJI and evaluated their association with the patient’s infection outcome. The results showed that S. aureus strains that produced strong biofilms and S. epidermidis strains with resistance to several antibiotics associated significantly with unresolved infection. Some particular genetic variants associated with biofilm formation and multidrug resistance. These traits should be considered important risk factors for the diagnosis and treatment guidance in PJI.
Collapse
|
6
|
Weis C, Cuénod A, Rieck B, Dubuis O, Graf S, Lang C, Oberle M, Brackmann M, Søgaard KK, Osthoff M, Borgwardt K, Egli A. Direct antimicrobial resistance prediction from clinical MALDI-TOF mass spectra using machine learning. Nat Med 2022; 28:164-174. [PMID: 35013613 DOI: 10.1038/s41591-021-01619-9] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 11/08/2021] [Indexed: 12/20/2022]
Abstract
Early use of effective antimicrobial treatments is critical for the outcome of infections and the prevention of treatment resistance. Antimicrobial resistance testing enables the selection of optimal antibiotic treatments, but current culture-based techniques can take up to 72 hours to generate results. We have developed a novel machine learning approach to predict antimicrobial resistance directly from matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectra profiles of clinical isolates. We trained calibrated classifiers on a newly created publicly available database of mass spectra profiles from the clinically most relevant isolates with linked antimicrobial susceptibility phenotypes. This dataset combines more than 300,000 mass spectra with more than 750,000 antimicrobial resistance phenotypes from four medical institutions. Validation on a panel of clinically important pathogens, including Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae, resulting in areas under the receiver operating characteristic curve of 0.80, 0.74 and 0.74, respectively, demonstrated the potential of using machine learning to substantially accelerate antimicrobial resistance determination and change of clinical management. Furthermore, a retrospective clinical case study of 63 patients found that implementing this approach would have changed the clinical treatment in nine cases, which would have been beneficial in eight cases (89%). MALDI-TOF mass spectra-based machine learning may thus be an important new tool for treatment optimization and antibiotic stewardship.
Collapse
Affiliation(s)
- Caroline Weis
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland. .,SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| | - Aline Cuénod
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland.,Division of Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland
| | - Bastian Rieck
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.,SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | | | - Susanne Graf
- Department for Microbiology, Canton Hospital Basel-Land, Liestal, Switzerland
| | | | - Michael Oberle
- Institute for Laboratory Medicine, Medical Microbiology, Cantonal Hospital Aarau, Aarau, Switzerland
| | - Maximilian Brackmann
- Proteomics, Bioinformatics and Toxins, Spiez Laboratory, Federal Office for Civil Protection, Spiez, Switzerland
| | - Kirstine K Søgaard
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland.,Division of Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland
| | - Michael Osthoff
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Basel and University of Basel, Basel, Switzerland.,Department of Internal Medicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Karsten Borgwardt
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland. .,SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| | - Adrian Egli
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland. .,Division of Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland.
| |
Collapse
|
7
|
Abstract
Evaluation of penicillin and oxacillin susceptibility testing was conducted on two hundred Staphylococcus lugdunensis isolates. Disc diffusion with penicillin 1 IU (P1, EUCAST) and penicillin 10 IU (P10, CLSI) was compared with nitrocefin discs (Cefinase®) and automated broth microdilution (Vitek2®). Oxacillin susceptibility was extrapolated from cefoxitin 30μg disc diffusion (FOX) and compared with Vitek2®. Reference methods were blaZ and mecA PCR. Penicillin zone diameter and zone edge correlated with blaZ in all except two P10 susceptible isolates (VME; very major error) and one P1 resistant isolate (ME). One hundred and forty-eight isolates were blaZ-negative of which one hundred and forty-six and one hundred and forty-nine isolates were susceptible by P1 and P10 respectively. One hundred and twenty-seven isolates were penicillin susceptible by Vitek2®. Vitek2® overcalled resistance in twenty-one blaZ-negative, twenty P1 and twenty-two P10 susceptible isolates (Vitek2® ME rate, 14.2%). Two mecA-positive isolates were oxacillin resistant by FOX and Vitek2® (categorical agreement). However, eighteen FOX susceptible, mecA-negative isolates tested resistant by Vitek2®. In conclusion, Vitek2® over-estimated penicillin and oxacillin resistance compared with disc diffusion and PCR. Disc diffusion with zone edge interpretation was more accurate and specific than automated broth microdilution for S. lugdunensis in our study.
Collapse
|
8
|
Abdou Mohamed MA, Kozlowski HN, Kim J, Zagorovsky K, Kantor M, Feld JJ, Mubareka S, Mazzulli T, Chan WCW. Diagnosing Antibiotic Resistance Using Nucleic Acid Enzymes and Gold Nanoparticles. ACS NANO 2021; 15:9379-9390. [PMID: 33970612 DOI: 10.1021/acsnano.0c09902] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The rapid and accurate detection of antimicrobial resistance is critical to limiting the spread of infections and delivering effective treatments. Here, we developed a rapid, sensitive, and simple colorimetric nanodiagnostic platform to identify disease-causing pathogens and their associated antibiotic resistance genes within 2 h. The platform can detect bacteria from different biological samples (i.e., blood, wound swabs) with or without culturing. We validated the multicomponent nucleic acid enzyme-gold nanoparticle (MNAzyme-GNP) platform by screening patients with central line associated bloodstream infections and achieved a clinical sensitivity and specificity of 86% and 100%, respectively. We detected antibiotic resistance in methicillin-resistant Staphylococcus aureus (MRSA) in patient swabs with 90% clinical sensitivity and 95% clinical specificity. Finally, we identified mecA resistance genes in uncultured nasal, groin, axilla, and wound swabs from patients with 90% clinical sensitivity and 95% clinical specificity. The simplicity and versatility for detecting bacteria and antibiotic resistance markers make our platform attractive for the broad screening of microbial pathogens.
Collapse
Affiliation(s)
- Mohamed A Abdou Mohamed
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
- Terrence Donnelly Centre for Cellular and Bimolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Hannah N Kozlowski
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
- Terrence Donnelly Centre for Cellular and Bimolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Centre for Global Engineering, University of Toronto, Toronto, Ontario M5S 1A4, Canada
| | - Jisung Kim
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
- Terrence Donnelly Centre for Cellular and Bimolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Centre for Global Engineering, University of Toronto, Toronto, Ontario M5S 1A4, Canada
| | - Kyryl Zagorovsky
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
- Terrence Donnelly Centre for Cellular and Bimolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Melinda Kantor
- Department of Microbiology, Mount Sinai Hospital and University Health Network, Toronto, Ontario M5G 1X5, Canada
| | - Jordan J Feld
- Sandra Rotman Centre for Global Health, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Samira Mubareka
- Divisions of Microbiology and Infectious Diseases, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Tony Mazzulli
- Department of Microbiology, Mount Sinai Hospital and University Health Network, Toronto, Ontario M5G 1X5, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Warren C W Chan
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
- Terrence Donnelly Centre for Cellular and Bimolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Centre for Global Engineering, University of Toronto, Toronto, Ontario M5S 1A4, Canada
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Department of Chemical Engineering. University of Toronto, Toronto, Ontario M5S 3E5, Canada
- Department of Materials Science and Engineering, University of Toronto, Toronto, Ontario M5S 3E4, Canada
| |
Collapse
|
9
|
Skov R, Lonsway DR, Larsen J, Larsen AR, Samulioniené J, Limbago BM. Evaluation of methods for detection of β-lactamase production in MSSA. J Antimicrob Chemother 2021; 76:1487-1494. [PMID: 33615356 DOI: 10.1093/jac/dkab032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 01/08/2021] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES Correct determination of penicillin susceptibility is pivotal for using penicillin in the treatment of Staphylococcus aureus infections. This study examines the performance of MIC determination, disc diffusion and a range of confirmatory tests for detection of penicillin susceptibility in S. aureus. METHODS A total of 286 consecutive penicillin-susceptible S. aureus blood culture isolates as well as a challenge set of 62 MSSA isolates were investigated for the presence of the blaZ gene by PCR and subjected to penicillin-susceptibility testing using broth microdilution MIC determination, disc diffusion including reading of the zone edge, two nitrocefin tests and the cloverleaf test. RESULTS Using PCR-based detection of blaZ as the gold standard, both broth microdilution MIC testing and disc diffusion testing resulted in a relatively low accuracy (82%-93%) with a sensitivity ranging from 49%-93%. Among the confirmatory tests, the cloverleaf test performed with 100% accuracy, while zone edge interpretation and nitrocefin-based tests increased the sensitivity of β-lactamase detection to 96%-98% and 82%-96% when using MIC determination or disc diffusion as primary test, respectively. CONCLUSIONS This investigation showed that reliable and accurate detection of β-lactamase production in S. aureus can be obtained by MIC determination or penicillin disc diffusion followed by interpretation of the zone edge as a confirmatory test for apparently penicillin-susceptible isolates. The more cumbersome cloverleaf test can also be used. Nitrocefin-based tests should not be used as the only test for confirmation of a presumptive β-lactamase-negative isolate.
Collapse
Affiliation(s)
- Robert Skov
- Division of Infectious Disease Preparedness, Statens Serum Institut, Copenhagen, Denmark
| | - David R Lonsway
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Jesper Larsen
- Department of Bacteria, Parasites, and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Anders Rhod Larsen
- Department of Bacteria, Parasites, and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Jurgita Samulioniené
- Department of Clinical Microbiology, Aalborg University Hospital, Alborg, Denmark
| | - Brandi M Limbago
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
10
|
Okiki PA, Eromosele ES, Ade-Ojo P, Sobajo OA, Idris OO, Agbana RD. Occurrence of mecA and blaZ genes in methicillin-resistant Staphylococcus aureus associated with vaginitis among pregnant women in Ado-Ekiti, Nigeria. New Microbes New Infect 2020; 38:100772. [PMID: 33133613 PMCID: PMC7585142 DOI: 10.1016/j.nmni.2020.100772] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 08/31/2020] [Accepted: 09/28/2020] [Indexed: 11/24/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is an increasingly prevalent pathogen. We studied the prevalence of MRSA and its association with vaginitis during pregnancy. Bacteriological investigations of high vaginal swabs of 350 healthy pregnant women attending antenatal clinics were carried out. Staphylococci were isolated from high vaginal swabs of 135 of the women. The staphylococcal isolates were resistant to multiple antibiotics. The PCR amplification of DNA of 20 selected isolates yielded six possessing the mecA gene and 13 the blaZ gene. MRSA possessing both the mecA and blaZ genes were isolated from subjects who reported vaginal discharge and itching.
Collapse
Affiliation(s)
- P A Okiki
- Department of Biological Sciences, College of Sciences, Nigeria
| | - E S Eromosele
- Department of Biological Sciences, College of Sciences, Nigeria
| | - P Ade-Ojo
- Department of Obstetrics and Gynaecology, Ekiti State University Teaching Hospital, Ado-Ekiti, Nigeria
| | - O A Sobajo
- Department of Biological Sciences, College of Sciences, Nigeria
| | - O O Idris
- Department of Biological Sciences, College of Sciences, Nigeria
| | - R D Agbana
- Department of Community Medicine, College of Medicine and Health Sciences, Afe Babalola University, Nigeria
| |
Collapse
|
11
|
Chen X, Ma K, Yi X, Xiong L, Wang Y, Li S. The rapid and visual detection of methicillin-susceptible and methicillin-resistant Staphylococcus aureus using multiplex loop-mediated isothermal amplification linked to a nanoparticle-based lateral flow biosensor. Antimicrob Resist Infect Control 2020; 9:111. [PMID: 32680560 PMCID: PMC7366892 DOI: 10.1186/s13756-020-00774-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 07/09/2020] [Indexed: 12/16/2022] Open
Abstract
Background Staphylococcus aureus (S. aureus), including methicillin-susceptible S. aureus (MSSA) and methicillin-resistant S. aureus (MRSA), is an eminent human pathogen that can colonize the human host and cause severe life-threatening infections. The development of a reliable, simple and rapid assay for detecting S. aureus and identifying MRSA is important for diagnosis and follow-up treatment. Methods A novel molecular diagnosis technique, named multiplex loop-mediated isothermal amplification linked to a nanoparticle-based lateral flow biosensor (m-LAMP-LFB), was applied to detect all S. aureus species and identify MRSA. Two sets of primers were designed based on the femA gene (S. aureus-specific gene) and the mecA gene (encoding penicillin-binding protein 2a), and the multiple-LAMP products were analyzed using LFB. The m-LAMP-LFB amplification conditions, including the target DNA concentration, reaction temperature and time, were optimized. The sensitivity and specificity of the m-LAMP-LFB method were tested in the current study, and the multiple-LAMP-LFB technology was applied to detect the MSSA and MRSA strains from clinical samples. Results The S. aureus- and MRSA-specific primers based on the femA and mecA genes allowed the multiple-LAMP technology to detect S. aureus and MRSA, respectively. The multiple-LAMP conditions were optimized at 63 °C for 40 min. The full process, including genomic DNA template preparation, LAMP, and product identification, could be achieved in 80 min. The limit of detection (LoD) of the multiple-LAMP assay for femA and mecA detection was 100 fg of genomic DNA template per reaction. The specificity of m-LAMP-LFB detection was 100 %, and no cross-reactions to non-S. aureus strains were observed. Conclusion The multiple-LAMP-LFB technique developed in the current study is a reliable, simple, rapid, specific and sensitive method to identify MSSA and MRSA infections for appropriate antibiotic therapy.
Collapse
Affiliation(s)
- Xu Chen
- Central Laboratory of the Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, 550003, P.R. China.,The Second Clinical College, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, 550003, P.R. China.,Laboratory of Bacterial Infectious Disease of Experimental Center, Guizhou Provincial Centre for Disease Control and Prevention, 73 Bageyan Road, Guiyang, Guizhou, 550004, P.R. China
| | - Kai Ma
- The Second Clinical College, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, 550003, P.R. China
| | - Xu Yi
- Central Laboratory of the Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, 550003, P.R. China
| | - Lijuan Xiong
- The Second Clinical College, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, 550003, P.R. China
| | - Yu Wang
- Department of Clinical Laboratory Centre, The First People's Hospital of Guiyang, Guiyang, Guizhou, 55004, P.R. China
| | - Shijun Li
- Laboratory of Bacterial Infectious Disease of Experimental Center, Guizhou Provincial Centre for Disease Control and Prevention, 73 Bageyan Road, Guiyang, Guizhou, 550004, P.R. China.
| |
Collapse
|
12
|
Sun Z, Zhou D, Zhang X, Li Q, Lin H, Lu W, Liu H, Lu J, Lin X, Li K, Xu T, Bao Q, Zhang H. Determining the Genetic Characteristics of Resistance and Virulence of the "Epidermidis Cluster Group" Through Pan-Genome Analysis. Front Cell Infect Microbiol 2020; 10:274. [PMID: 32596166 PMCID: PMC7303328 DOI: 10.3389/fcimb.2020.00274] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/07/2020] [Indexed: 12/28/2022] Open
Abstract
Staphylococcus caprae, Staphylococcus capitis, and Staphylococcus epidermidis belong to the “Epidermidis Cluster Group” (ECG) and are generally opportunistic pathogens. In this work, whole genome sequencing, molecular cloning and pan-genome analysis were performed to investigate the genetic characteristics of the resistance, virulence and genome structures of 69 ECG strains, including a clinical isolate (S. caprae SY333) obtained in this work. Two resistance genes (blaZ and aadD2) encoded on the plasmids pSY333-41 and pSY333-45 of S. caprae SY333 were confirmed to be functional. The bla region in ECG exhibited three distinct structures, and these chromosome- and plasmid-encoded bla operons seemed to follow two different evolutionary paths. Pan-genome analysis revealed their pan-genomes tend to be “open.” For the virulence-related factors, the genes involved in primary attachment were observed almost exclusively in S. epidermidis, while the genes associated with intercellular aggregation were observed more frequently in S. caprae and S. capitis. The type VII secretion system was present in all strains of S. caprae and some of S. epidermidis but not in S. capitis. Moreover, the isd locus (iron regulated surface determinant) was first found to be encoded on the genomes of S. caprae and S. capitis. These findings suggested that the plasmid and chromosome encoded bla operons of ECG species underwent different evolution paths, as well as they differed in the abundance of virulence genes associated with adherence, invasion, secretion system and immune evasion. Identification of isd loci in S. caprae and S. capitis indicated their ability to acquire heme as nutrient iron during infection.
Collapse
Affiliation(s)
- Zhewei Sun
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou, China
| | - Danying Zhou
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou, China
| | - Xueya Zhang
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou, China
| | - Qiaoling Li
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou, China
| | - Hailong Lin
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou, China
| | - Wei Lu
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou, China
| | - Hongmao Liu
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou, China
| | - Junwan Lu
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou, China
| | - Xi Lin
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou, China
| | - Kewei Li
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou, China
| | - Teng Xu
- Institute of Translational Medicine, Baotou Central Hospital, Baotou, China
| | - Qiyu Bao
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou, China
| | - Hailin Zhang
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
13
|
Gonçalves E, Carvalhal R, Mesquita R, Azevedo J, Coelho MJ, Magalhães R, Ferraz MP, Manso MC, Gavinha S, Pina C, Lopes Cardoso I. Detection of Staphylococcus aureus (MRSA/MSSA) in surfaces of dental medicine equipment. Saudi J Biol Sci 2019; 27:1003-1008. [PMID: 32256160 PMCID: PMC7105652 DOI: 10.1016/j.sjbs.2019.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/26/2019] [Accepted: 12/02/2019] [Indexed: 11/25/2022] Open
Abstract
Methicillin-Resistant Staphylococcus aureus (MRSA) represents one of the major causes of nosocomial infections, leading to high mortality. Surfaces in clinics, as well as the attending uniform and the hands of the dental doctor can be MRSA reservoirs. Having this in mind, the purpose of this study was to evaluate the presence of Methicillin-Sensitive Staphylococcus aureus (MSSA) and MRSA on dental medicine equipment surfaces. 354 Samples were collected from six equipment surfaces in six attendance areas before and after patient consultation and cultured in a selective medium. Polymerase Chain Reaction (PCR) was used to confirm the identity of bacterial strains as MRSA or MSSA. Data analysis was performed with chi-square tests with Bonferroni correction. It was observed 55.6% of uncontaminated samples. Contamination was: 17.5% MRSA (5.9% of samples collected before patient attendance and 11.6% after); 39.3% MSSA (14.1% collected before and 25.2% after). The prevalence of MRSA and MSSA was significantly higher after patient care. Integrated Clinic represented the most contaminated attendance area (MRSA − 41.7%, MSSA − 51.2%), the chair arm rest was the most contaminated surface for MRSA (29.7%) and the dental spittoon the most contaminated surface for MSSA (23.5%). Although a low level of contamination was observed, dental clinics, through patients possibly carrying bacteria, may be reservoirs for MRSA and MSSA transmission, and might contribute to potential nosocomial infections.
Collapse
Affiliation(s)
- Eva Gonçalves
- Health Sciences Faculty, University Fernando Pessoa, Porto, Portugal
| | - Rui Carvalhal
- Health Sciences Faculty, University Fernando Pessoa, Porto, Portugal
| | - Rita Mesquita
- Health Sciences Faculty, University Fernando Pessoa, Porto, Portugal
| | - Joana Azevedo
- Health Sciences Faculty, University Fernando Pessoa, Porto, Portugal
| | - Maria João Coelho
- Health Sciences Faculty, University Fernando Pessoa, Porto, Portugal.,FP-ENAS - UFP Energy, Environment and Health Research Unit, University Fernando Pessoa, Porto, Portugal
| | - Ricardo Magalhães
- Health Sciences Faculty, University Fernando Pessoa, Porto, Portugal.,FP-ENAS - UFP Energy, Environment and Health Research Unit, University Fernando Pessoa, Porto, Portugal
| | - Maria Pia Ferraz
- Health Sciences Faculty, University Fernando Pessoa, Porto, Portugal.,FP-ENAS - UFP Energy, Environment and Health Research Unit, University Fernando Pessoa, Porto, Portugal
| | - Maria Conceição Manso
- Health Sciences Faculty, University Fernando Pessoa, Porto, Portugal.,FP-ENAS - UFP Energy, Environment and Health Research Unit, University Fernando Pessoa, Porto, Portugal.,LAQV, REQUIMTE, University of Porto, Porto, Portugal
| | - Sandra Gavinha
- Health Sciences Faculty, University Fernando Pessoa, Porto, Portugal
| | - Cristina Pina
- Health Sciences Faculty, University Fernando Pessoa, Porto, Portugal.,FP-ENAS - UFP Energy, Environment and Health Research Unit, University Fernando Pessoa, Porto, Portugal
| | - Inês Lopes Cardoso
- Health Sciences Faculty, University Fernando Pessoa, Porto, Portugal.,FP-ENAS - UFP Energy, Environment and Health Research Unit, University Fernando Pessoa, Porto, Portugal
| |
Collapse
|
14
|
Henderson A, Harris P, Hartel G, Paterson D, Turnidge J, Davis JS, Tong SYC. Benzylpenicillin versus flucloxacillin for penicillin-susceptible Staphylococcus aureus bloodstream infections from a large retrospective cohort study. Int J Antimicrob Agents 2019; 54:491-495. [PMID: 31181352 DOI: 10.1016/j.ijantimicag.2019.05.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/14/2019] [Accepted: 05/25/2019] [Indexed: 10/26/2022]
Abstract
In clinical practice, differing opinions exists regarding the optimal management of patients with penicillin-susceptible Staphylococcus aureus (PSSA) bloodstream infection (BSI). The aim of this study was to compare the 30-day mortality of patients treated with benzylpenicillin or flucloxacillin for PSSA BSI from a large prospectively collected data set from Australia and New Zealand. A logistic regression model and propensity score treatment analysis using inverse probability of treatment weighting were used. A total of 915 patients were included in the study, with an overall mortality rate of 12.9% (118/915) [benzylpenicillin 10.5% (33/315) and flucloxacillin 14.2% (85/600)]. Endocarditis was associated with benzylpenicillin treatment choice, whereas skin and soft-tissue infection was associated with flucloxacillin treatment choice. In the multivariate analysis, increased 30-day mortality was associated with flucloxacillin compared with benzylpenicillin [odds ratio (OR) = 1.6, 95% confidence interval (CI) 1.0-2.5; P = 0.05). When adjusted for treatment choice in the propensity score analysis, flucloxacillin was again associated with increased 30-day mortality (OR = 1.06, 95% CI 1.01-1.1; P = 0.03). An increase in 30-day mortality associated with flucloxacillin use suggests a potential benefit for benzylpenicillin therapy in patients with PSSA BSI.
Collapse
Affiliation(s)
- A Henderson
- Infection Management Services, Building 17, Princess Alexandra Hospital, Brisbane, QLD 4102, Australia; Centre for Clinical Research, Faculty of Medicine, University of Queensland, Royal Brisbane and Women's Hospital, Brisbane, QLD 4006, Australia; School of Chemistry and Molecular Sciences, University of Queensland, Brisbane, QLD 4072, Australia.
| | - P Harris
- Infection Management Services, Building 17, Princess Alexandra Hospital, Brisbane, QLD 4102, Australia; Centre for Clinical Research, Faculty of Medicine, University of Queensland, Royal Brisbane and Women's Hospital, Brisbane, QLD 4006, Australia; Pathology Queensland, Royal Brisbane and Women's Hospital, Brisbane, QLD 4006, Australia
| | - G Hartel
- Department of Statistics, QIMR Berghofer Institute of Medical Research, Herston, QLD 4006, Australia; School of Population Health, University of Queensland, Royal Brisbane and Women's Hospital, Herston, QLD 4006, Australia
| | - D Paterson
- Centre for Clinical Research, Faculty of Medicine, University of Queensland, Royal Brisbane and Women's Hospital, Brisbane, QLD 4006, Australia
| | - J Turnidge
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia
| | - J S Davis
- Global and Tropical Health Division, Menzies School of Health Research, Darwin, NT 0811, Australia; Department of Infectious Diseases, John Hunter Hospital, Newcastle, NSW 2305, Australia
| | - S Y C Tong
- Global and Tropical Health Division, Menzies School of Health Research, Darwin, NT 0811, Australia; Victorian Infectious Disease Service, The Royal Melbourne Hospital, Melbourne, VIC 3050, Australia; Doherty Department, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne, VIC 3000, Australia
| |
Collapse
|
15
|
Koeck M, Como-Sabetti K, Boxrud D, Dobbins G, Glennen A, Anacker M, Jawahir S, See I, Lynfield R. Burdens of Invasive Methicillin-Susceptible and Methicillin-Resistant Staphylococcus aureus Disease, Minnesota, USA. Emerg Infect Dis 2019; 25:171-174. [PMID: 30561319 PMCID: PMC6302582 DOI: 10.3201/eid2501.181146] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
During August 1, 2014-July 31, 2015, in 2 counties in Minnesota, USA, incidence of invasive methicillin-susceptible Staphylococcus aureus (MSSA) (27.1 cases/100,000 persons) was twice that of invasive methicillin-resistant S. aureus (13.1 cases/100,000 persons). MSSA isolates were more genetically diverse and susceptible to more antimicrobial drugs than methicillin-resistant S. aureus isolates.
Collapse
|
16
|
Osimani A, Garofalo C, Aquilanti L, Milanović V, Cardinali F, Taccari M, Pasquini M, Tavoletti S, Clementi F. Transferable Antibiotic Resistances in Marketed Edible Grasshoppers (Locusta migratoria migratorioides). J Food Sci 2017; 82:1184-1192. [PMID: 28339104 DOI: 10.1111/1750-3841.13700] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 02/14/2017] [Accepted: 02/25/2017] [Indexed: 11/30/2022]
Abstract
Grasshoppers are the most commonly eaten insects by humans worldwide, as they are rich in proteins and micronutrients. This study aimed to assess the occurrence of transferable antibiotic resistance genes in commercialized edible grasshoppers. To this end, the prevalence of 12 selected genes [aac(6')-Ie aph(2″)-Ia, blaZ, erm(A), erm(B), erm(C), mecA, tet(M), tet(O), tet(S), tet(K), vanA, vanB] coding for resistance to antibiotics conventionally used in clinical practice was determined. The majority of samples were positive for tet(M) (70.0%), tet(K) (83.3%) and blaZ (83.3%). A low percentage of samples were positive for erm(B) (16.7%), erm(C) (26.7%), and aac(6')-Ie aph(2″)-Ia (13.3%), whereas no samples were positive for erm(A), vanA, vanB, tet(O), and mecA. Cluster analysis identified 4 main clusters, allowing a separation of samples on the basis of their country of origin.
Collapse
Affiliation(s)
- Andrea Osimani
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131, Ancona, Italy
| | - Cristiana Garofalo
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131, Ancona, Italy
| | - Lucia Aquilanti
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131, Ancona, Italy
| | - Vesna Milanović
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131, Ancona, Italy
| | - Federica Cardinali
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131, Ancona, Italy
| | - Manuela Taccari
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131, Ancona, Italy
| | - Marina Pasquini
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131, Ancona, Italy
| | - Stefano Tavoletti
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131, Ancona, Italy
| | - Francesca Clementi
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131, Ancona, Italy
| |
Collapse
|
17
|
Cheng MP, René P, Cheng AP, Lee TC. Back to the Future: Penicillin-Susceptible Staphylococcus aureus. Am J Med 2016; 129:1331-1333. [PMID: 26924388 DOI: 10.1016/j.amjmed.2016.01.048] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 01/28/2016] [Accepted: 01/28/2016] [Indexed: 11/17/2022]
Abstract
BACKGROUND Widespread penicillin usage rapidly resulted in the emergence of penicillin resistance in Staphylococcus aureus. However, new data suggest that penicillin susceptibility may be in a period of renaissance. The objective of our study was to quantify penicillin resistance in methicillin-susceptible Staphylococcus aureus (MSSA) bacteremia. METHODS We retrospectively reviewed all adult MSSA bacteremia from April 2010 to April 2015 at the McGill University Health Centre (Montreal, QC, Canada). Susceptibility to penicillin, erythromycin, clindamycin, and trimethoprim-sulfamethoxazole (TMP-SMX) was determined in accordance with the Clinical & Laboratory Standards Institute guidelines. RESULTS There were 324 unique episodes of MSSA bacteremia. Ninety (28%) isolates were susceptible to penicillin, 229 (71%) to erythromycin, 239 (74%) to clindamycin, and 317 (98%) to TMP-SMX. Isolates that were penicillin resistant were more likely to also be resistant to other antibiotics, but a statistically significant association was apparent only for erythromycin resistance (76/234, 32.2% vs 19/90, 21.1%, P = .04). The median age of patients was 67.5 years (interquartile range 52-78) and overall in-hospital 30-day mortality was 16.3% (53 deaths). After adjustment for patient age, there was no association between penicillin resistance and either intensive care unit admission or death. CONCLUSION More than one-quarter of patients with MSSA bacteremia potentially could be treated with parenteral penicillin, which may offer pharmacokinetic advantages over other beta-lactam drugs and potentially improved outcomes.
Collapse
Affiliation(s)
- Matthew P Cheng
- Division of Infectious Diseases and Department of Medical Microbiology, McGill University Health Centre, Montréal, Quebec, Canada.
| | - Pierre René
- Division of Infectious Diseases and Department of Medical Microbiology, McGill University Health Centre, Montréal, Quebec, Canada
| | | | - Todd C Lee
- Division of Infectious Diseases and Department of Medical Microbiology, McGill University Health Centre, Montréal, Quebec, Canada; Division of General Internal Medicine and Department of Medicine, McGill University Health Centre, Montréal, Quebec, Canada
| |
Collapse
|
18
|
Mottola C, Matias CS, Mendes JJ, Melo-Cristino J, Tavares L, Cavaco-Silva P, Oliveira M. Susceptibility patterns of Staphylococcus aureus biofilms in diabetic foot infections. BMC Microbiol 2016; 16:119. [PMID: 27339028 PMCID: PMC4918071 DOI: 10.1186/s12866-016-0737-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Accepted: 06/08/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Foot infections are a major cause of morbidity in people with diabetes and the most common cause of diabetes-related hospitalization and lower extremity amputation. Staphylococcus aureus is by far the most frequent species isolated from these infections. In particular, methicillin-resistant S. aureus (MRSA) has emerged as a major clinical and epidemiological problem in hospitals. MRSA strains have the ability to be resistant to most β-lactam antibiotics, but also to a wide range of other antimicrobials, making infections difficult to manage and very costly to treat. To date, there are two fifth-generation cephalosporins generally efficacious against MRSA, ceftaroline and ceftobripole, sharing a similar spectrum. Biofilm formation is one of the most important virulence traits of S. aureus. Biofilm growth plays an important role during infection by providing defence against several antagonistic mechanisms. In this study, we analysed the antimicrobial susceptibility patterns of biofilm-producing S. aureus strains isolated from diabetic foot infections. The antibiotic minimum inhibitory concentration (MIC) was determined for ten antimicrobial compounds, along with the minimum biofilm inhibitory concentration (MBIC) and minimum biofilm eradication concentration (MBEC), followed by PCR identification of genetic determinants of biofilm production and antimicrobial resistance. RESULTS Results demonstrate that very high concentrations of the most used antibiotics in treating diabetic foot infections (DFI) are required to inhibit S. aureus biofilms in vitro, which may explain why monotherapy with these agents frequently fails to eradicate biofilm infections. In fact, biofilms were resistant to antibiotics at concentrations 10-1000 times greater than the ones required to kill free-living or planktonic cells. The only antibiotics able to inhibit biofilm eradication on 50 % of isolates were ceftaroline and gentamicin. CONCLUSIONS The results suggest that the antibiotic susceptibility patterns cannot be applied to biofilm established infections. Selection of antimicrobial therapy is a critical step in DFI and should aim at overcoming biofilm disease in order to optimize the outcomes of this complex pathology.
Collapse
Affiliation(s)
- Carla Mottola
- />Centro de Investigação Interdisciplinar em Sanidade Animal (CIISA), Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal
| | - Carina S. Matias
- />Centro de Investigação Interdisciplinar em Sanidade Animal (CIISA), Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal
| | - João J. Mendes
- />Departamento de Medicina Interna, Hospital de Santa Marta/Centro Hospitalar de Lisboa Central, EPE, Lisbon, Portugal
| | - José Melo-Cristino
- />Faculdade de Medicina, Universidade de Lisboa, Instituto de Microbiologia, Lisbon, Portugal
| | - Luís Tavares
- />Centro de Investigação Interdisciplinar em Sanidade Animal (CIISA), Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal
| | - Patrícia Cavaco-Silva
- />TechnoPhage, S.A., Lisbon, Portugal
- />Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Instituto Superior de Ciências da Saúde Egas Moniz, Monte de Caparica, Portugal
| | - Manuela Oliveira
- />Centro de Investigação Interdisciplinar em Sanidade Animal (CIISA), Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal
| |
Collapse
|
19
|
Detection and Prevalence of Penicillin-Susceptible Staphylococcus aureus in the United States in 2013. J Clin Microbiol 2016; 54:812-4. [PMID: 26763960 DOI: 10.1128/jcm.03109-15] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 01/05/2016] [Indexed: 11/20/2022] Open
Abstract
Using blaZ PCR as the "gold standard," the sensitivities of CLSI penicillin zone edge and nitrocefin-based tests for β-lactamase production in Staphylococcus aureus were 64.5% and 35.5%, respectively, with specificity of 99.8% for both methods. In 2013, 13.5% of 3,083 S. aureus isolates from 31 U.S. centers were penicillin susceptible.
Collapse
|
20
|
Characterisation of β-lactam resistance mediated by blaZ in staphylococci recovered from captive and free-ranging wallabies. J Glob Antimicrob Resist 2015; 3:184-189. [DOI: 10.1016/j.jgar.2015.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 04/23/2015] [Accepted: 05/06/2015] [Indexed: 11/19/2022] Open
|