1
|
Wang S, Xie H, Liu L, Du L, Yin F, Chen Y, Liu Z, Sun G, Zhang X, Sun D, Fang M, Cheng L, Chen Y, Kou Z, Zheng B. A rare waterborne outbreak of Bacillus paranthracis in Shandong province, China, 2020: epidemiologic survey, genomic insights, and virulence characteristics. Emerg Microbes Infect 2024; 13:2348498. [PMID: 38686555 PMCID: PMC11149578 DOI: 10.1080/22221751.2024.2348498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 04/23/2024] [Indexed: 05/02/2024]
Abstract
Bacillus paranthracis, a Gram-positive conditional pathogen of Bacillus cereus group species, is capable of causing foodborne and waterborne illnesses, leading to intestinal diseases in humans characterized by diarrhoea and vomiting. However, documented cases of B. paranthracis infection outbreaks are rare in the world, and the genomic background of outbreak strains is seldom characterized. This study retrospectively analyzed strains obtained from an outbreak in schools, as well as from water systems in peri-urban areas, China, in 2020. In total, 28 B. cereus group isolates were retrieved, comprising 6 from stool samples and 22 from water samples. Epidemiological and phylogenetic investigations indicated that the B. paranthracis isolate from drinking water as the causative agent of the outbreak. The genomic comparison revealed a high degree of consistency among 8 outbreak-related strains in terms of antimicrobial resistance gene profiles, virulence gene profiles, genomic content, and multilocus sequence typing (MLST). The strains related to the outbreak show highly similar genomic ring diagrams and close phylogenetic relationships. Additionally, this study shed light on the pathogenic potential and complexity of B. cereus group through its diversity in virulence genes and mice infection model. The findings highlight the usefulness of B. paranthracis genomes in understanding genetic diversity within specific environments and in tracing the source of pathogens during outbreak situations, thereby enabling targeted infection control interventions.
Collapse
Affiliation(s)
- Shuang Wang
- Shandong Center for Disease Control and Prevention, Jinan, People’s Republic of China
| | - Hengjie Xie
- Shandong Institute for Food and Drug Control, Jinan, People’s Republic of China
| | - Lu Liu
- Shandong Center for Disease Control and Prevention, Jinan, People’s Republic of China
| | - Lei Du
- Shandong Public Health Clinical Center Affiliated to Shandong University, Jinan, People’s Republic of China
| | - Fang Yin
- Weifang People's Hospital, Weifang, People’s Republic of China
| | - Yuzhen Chen
- Shandong Center for Disease Control and Prevention, Jinan, People’s Republic of China
| | - Ziqing Liu
- Shandong Center for Disease Control and Prevention, Jinan, People’s Republic of China
| | - Gaoxiang Sun
- Shandong Center for Disease Control and Prevention, Jinan, People’s Republic of China
| | - Xiaomei Zhang
- Shandong Center for Disease Control and Prevention, Jinan, People’s Republic of China
| | - Dapeng Sun
- Shandong Center for Disease Control and Prevention, Jinan, People’s Republic of China
| | - Ming Fang
- Shandong Center for Disease Control and Prevention, Jinan, People’s Republic of China
| | - Lixiao Cheng
- Shandong Center for Disease Control and Prevention, Jinan, People’s Republic of China
| | - Yanru Chen
- Shandong Center for Disease Control and Prevention, Jinan, People’s Republic of China
| | - Zengqiang Kou
- Shandong Center for Disease Control and Prevention, Jinan, People’s Republic of China
| | - Beiwen Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| |
Collapse
|
2
|
Lu CJ, Hung WC, Lan ZH, Lu PL, Lin CY, Chen YH, Chen TC, Huang CH, Chang YT, Lee CY, Tsai YT, Lin SY. Characteristics and Prevalence of Vancomycin-variable Enterococcus faecium bacteremia in southern Taiwan. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2024:S1684-1182(24)00150-6. [PMID: 39232888 DOI: 10.1016/j.jmii.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/07/2024] [Accepted: 08/14/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND Vancomycin-variable enterococci (VVE) are vanA-carrying Enterococcus faecium that are phenotypically susceptible to vancomycin and can only be detected using molecular methods, leading to the possibility of treatment failure and posing threats to infection control. This study aimed to determine the prevalence of VVE and its associated clinical risk factors. METHODS This retrospective study was conducted in two hospitals in southern Taiwan. Patients with phenotypically vancomycin-susceptible E. faecium bacteremia were enrolled between 2017 and 2021. VVEs were defined as isolates harboring the vanA gene that were phenotypically susceptible to vancomycin. Vancomycin-susceptible E. faecium (VSE) isolates were phenotypically susceptible to vancomycin and lacked vanA or vanB genes. RESULTS Of the 142 enrolled patients, 121 (85.2%) had VSE and 21 (14.8%) had VVE. Resistance rates to penicillin, tetracycline, and fosfomycin were higher in VVE isolates. Malignancy (adjusted odds ratio [aOR] = 4.87; 95% confidence interval [CI] 1.54-15.41, p = 0.007) and central venous catheter usage (aOR = 4.69; 95% CI 1.49-14.78, p = 0.008) were the independent risk factors associated with VVE bacteremia. Being male (aOR = 0.12, CI 0.03-0.44, p = 0.002) was less likely to be associated with VVE bacteremia. Although VVE was not associated with 30-day mortality (38.1% [VVE] vs. 35.5% [VSE], p = 0.822), one case of subsequent vancomycin-resistant enterococci infection in the VVE group with vancomycin treatment (4.8%, 1/21) was identified, which led to subsequent mortality. CONCLUSIONS The prevalence of VVE was high among E. faecium isolates with vancomycin-susceptible phenotypes in southern Taiwan. Although the current study revealed that VVE bacteremia was not associated with poor clinical outcome, further multicenter surveillance survey is recommended to evaluate the possible impact of VVE on public health in Taiwan.
Collapse
Affiliation(s)
- Chi-Jung Lu
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Wei-Chun Hung
- Department of Microbiology and Immunology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Zi-Han Lan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Po-Liang Lu
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan; School of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chun-Yu Lin
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yen-Hsu Chen
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Tun-Chieh Chen
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Chung-Hao Huang
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Ya-Ting Chang
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Chun-Yuan Lee
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yu-Te Tsai
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Shang-Yi Lin
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| |
Collapse
|
3
|
Coccitto SN, Cinthi M, Simoni S, Pocognoli A, Zeni G, Mazzariol A, Morroni G, Mingoia M, Giovanetti E, Brenciani A, Vignaroli C. Genetic analysis of vancomycin-variable Enterococcus faecium clinical isolates in Italy. Eur J Clin Microbiol Infect Dis 2024; 43:673-682. [PMID: 38296911 DOI: 10.1007/s10096-024-04768-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/24/2024] [Indexed: 02/02/2024]
Abstract
PURPOSE To investigate the occurrence of vancomycin-variable enterococci (VVE) in a hospital in central Italy. METHODS vanA positive but vancomycin-susceptible Enterococcus faecium isolates (VVE-S) were characterized by antibiotic susceptibility tests, molecular typing (PFGE and MLST), and WGS approach. The reversion of VVE-S to a resistant phenotype was assessed by exposure to increasing vancomycin concentrations, and the revertant isolates were used in filter mating experiments. qPCR was used to analyze the plasmid copy number. RESULTS Eleven putative VVE-S were selected. WGS revealed two categories of vanA cluster plasmid located: the first type showed the lack of vanR, the deletion of vanS, and an intact vanH/vanA/vanX cluster; the second type was devoid of both vanR and vanS and showed a deletion of 544-bp at the 5'-end of the vanH. Strains (n = 7) carrying the first type of vanA cluster were considered VVE-S and were able to regain a resistance phenotype (VVE-R) in the presence of vancomycin, due to a 44-bp deletion in the promoter region of vanH/vanA/vanX, causing its constitutive expression. VVE-R strains were not able to transfer resistance by conjugation, and the resistance phenotype was unstable: after 11 days of growth without selective pressure, the revertants were still resistant but showed a lower vancomycin MIC. A higher plasmid copy number in the revertant strains was probably related to the resistance phenotype. CONCLUSION We highlight the importance of VVE transition to VRE under vancomycin therapy resulting in a potential failure treatment. We also report the first-time identification of VVE-S isolates pstS-null belonging to ST1478.
Collapse
Affiliation(s)
- Sonia Nina Coccitto
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Ancona, Italy
| | - Marzia Cinthi
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Serena Simoni
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Antonella Pocognoli
- Clinical Microbiology Laboratory, Azienda Ospedaliero-Universitaria "Ospedali Riuniti", Ancona, Italy
| | - Guido Zeni
- Department of Diagnostics and Public Health, Verona University, Verona, Italy
| | - Annarita Mazzariol
- Department of Diagnostics and Public Health, Verona University, Verona, Italy
| | - Gianluca Morroni
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Ancona, Italy
| | - Marina Mingoia
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Ancona, Italy
| | - Eleonora Giovanetti
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Andrea Brenciani
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Ancona, Italy.
| | - Carla Vignaroli
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|
4
|
Pongchaikul P, Romero R, Mongkolsuk P, Vivithanaporn P, Wongsurawat T, Jenjaroenpun P, Nitayanon P, Thaipisuttikul I, Kamlungkuea T, Singsaneh A, Santanirand P, Chaemsaithong P. Genomic analysis of Enterococcus faecium strain RAOG174 associated with acute chorioamnionitis carried antibiotic resistance gene: is it time for precise microbiological identification for appropriate antibiotic use? BMC Genomics 2023; 24:405. [PMID: 37468842 DOI: 10.1186/s12864-023-09511-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/09/2023] [Indexed: 07/21/2023] Open
Abstract
BACKGROUND Preterm labor syndrome is associated with high perinatal morbidity and mortality, and intra-amniotic infection is a cause of preterm labor. The standard identification of causative microorganisms is based on the use of biochemical phenotypes, together with broth dilution-based antibiotic susceptibility from organisms grown in culture. However, such methods could not provide an accurate epidemiological aspect and a genetic basis of antimicrobial resistance leading to an inappropriate antibiotic administration. Hybrid genome assembly is a combination of short- and long-read sequencing, which provides better genomic resolution and completeness for genotypic identification and characterization. Herein, we performed a hybrid whole genome assembly sequencing of a pathogen associated with acute histologic chorioamnionitis in women presenting with PPROM. RESULTS We identified Enterococcus faecium, namely E. faecium strain RAOG174, with several antibiotic resistance genes, including vancomycin and aminoglycoside. Virulence-associated genes and potential bacteriophage were also identified in this genome. CONCLUSION We report herein the first study demonstrating the use of hybrid genome assembly and genomic analysis to identify E. faecium ST17 as a pathogen associated with acute histologic chorioamnionitis. The analysis provided several antibiotic resistance-associated genes/mutations and mobile genetic elements. The occurrence of E. faecium ST17 raised the awareness of the colonization of clinically relevant E. faecium and the carrying of antibiotic resistance. This finding has brought the advantages of genomic approach in the identification of the bacterial species and antibiotic resistance gene for E. faecium for appropriate antibiotic use to improve maternal and neonatal care.
Collapse
Affiliation(s)
- Pisut Pongchaikul
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital Mahidol University, Samut Prakan, Thailand
- Integrative Computational BioScience Center, Mahidol University, Nakhon Pathom, Thailand
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Roberto Romero
- Pregnancy Research Branch (formerly The Perinatology Research Branch, NICHD/NIH/DHHS, in Detroit, Michigan, USA, has been renamed as the Pregnancy Research Branch, NICHD/NIH/DHHS), Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, USA
- Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA
| | - Paninee Mongkolsuk
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital Mahidol University, Samut Prakan, Thailand
| | - Pornpun Vivithanaporn
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital Mahidol University, Samut Prakan, Thailand
| | - Thidathip Wongsurawat
- Division of Medical Bioinformatics, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Piroon Jenjaroenpun
- Division of Medical Bioinformatics, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Perapon Nitayanon
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Iyarit Thaipisuttikul
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Threebhorn Kamlungkuea
- Department of Obstetrics and Gynecology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Arunee Singsaneh
- Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Pitak Santanirand
- Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Piya Chaemsaithong
- Department of Obstetrics and Gynecology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
5
|
Monteiro Marques J, Coelho M, Santana AR, Pinto D, Semedo-Lemsaddek T. Dissemination of Enterococcal Genetic Lineages: A One Health Perspective. Antibiotics (Basel) 2023; 12:1140. [PMID: 37508236 PMCID: PMC10376465 DOI: 10.3390/antibiotics12071140] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/22/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
Enterococcus spp. are commensals of the gastrointestinal tracts of humans and animals and colonize a variety of niches such as water, soil, and food. Over the last three decades, enterococci have evolved as opportunistic pathogens, being considered ESKAPE pathogens responsible for hospital-associated infections. Enterococci's ubiquitous nature, excellent adaptative capacity, and ability to acquire virulence and resistance genes make them excellent sentinel proxies for assessing the presence/spread of pathogenic and virulent clones and hazardous determinants across settings of the human-animal-environment triad, allowing for a more comprehensive analysis of the One Health continuum. This review provides an overview of enterococcal fitness and pathogenic traits; the most common clonal complexes identified in clinical, veterinary, food, and environmental sources; as well as the dissemination of pathogenic genomic traits (virulome, resistome, and mobilome) found in high-risk clones worldwide, across the One Health continuum.
Collapse
Affiliation(s)
- Joana Monteiro Marques
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Av. da Universidade Técnica de Lisboa, 1300-477 Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Mariana Coelho
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Av. da Universidade Técnica de Lisboa, 1300-477 Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Andressa Rodrigues Santana
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Av. da Universidade Técnica de Lisboa, 1300-477 Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Daniel Pinto
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Av. da Universidade Técnica de Lisboa, 1300-477 Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Teresa Semedo-Lemsaddek
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Av. da Universidade Técnica de Lisboa, 1300-477 Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| |
Collapse
|
6
|
Zaidi SEZ, Zaheer R, Poulin-Laprade D, Scott A, Rehman MA, Diarra M, Topp E, Domselaar GV, Zovoilis A, McAllister TA. Comparative Genomic Analysis of Enterococci across Sectors of the One Health Continuum. Microorganisms 2023; 11:microorganisms11030727. [PMID: 36985300 PMCID: PMC10052687 DOI: 10.3390/microorganisms11030727] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
Enterococci are Gram-positive bacteria that can be isolated from a variety of environments including soil, water, plants, and the intestinal tract of humans and animals. Although they are considered commensals in humans, Enterococcus spp. are important opportunistic pathogens. Due to their presence and persistence in diverse environments, Enterococcus spp. are ideal for studying antimicrobial resistance (AMR) from the One Health perspective. We undertook a comparative genomic analysis of the virulome, resistome, mobilome, and the association between the resistome and mobilome of 246 E. faecium and 376 E. faecalis recovered from livestock (swine, beef cattle, poultry, dairy cattle), human clinical samples, municipal wastewater, and environmental sources. Comparative genomics of E. faecium and E. faecalis identified 31 and 34 different antimicrobial resistance genes (ARGs), with 62% and 68% of the isolates having plasmid-associated ARGs, respectively. Across the One Health continuum, tetracycline (tetL and tetM) and macrolide resistance (ermB) were commonly identified in E. faecium and E. faecalis. These ARGs were frequently associated with mobile genetic elements along with other ARGs conferring resistance against aminoglycosides [ant(6)-la, aph(3′)-IIIa], lincosamides [lnuG, lsaE], and streptogramins (sat4). Study of the core E. faecium genome identified two main clades, clade ‘A’ and ‘B’, with clade A isolates primarily originating from humans and municipal wastewater and carrying more virulence genes and ARGs related to category I antimicrobials. Overall, despite differences in antimicrobial usage across the continuum, tetracycline and macrolide resistance genes persisted in all sectors.
Collapse
Affiliation(s)
- Sani-e-Zehra Zaidi
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
| | - Rahat Zaheer
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
| | - Dominic Poulin-Laprade
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC J1M 1Z3, Canada
| | - Andrew Scott
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON N5V 4T3, Canada
| | - Muhammad Attiq Rehman
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada
| | - Moussa Diarra
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada
| | - Edward Topp
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON N5V 4T3, Canada
| | - Gary Van Domselaar
- National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB R3E 3R2, Canada
| | - Athanasios Zovoilis
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
| | - Tim A. McAllister
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
- Correspondence:
| |
Collapse
|
7
|
Wagner TM, Howden BP, Sundsfjord A, Hegstad K. Transiently silent acquired antimicrobial resistance: an emerging challenge in susceptibility testing. J Antimicrob Chemother 2023; 78:586-598. [PMID: 36719135 PMCID: PMC9978586 DOI: 10.1093/jac/dkad024] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Acquisition and expression of antimicrobial resistance (AMR) mechanisms in bacteria are often associated with a fitness cost. Thus, evolutionary adaptation and fitness cost compensation may support the advance of subpopulations with a silent resistance phenotype when the antibiotic selection pressure is absent. However, reports are emerging on the transient nature of silent acquired AMR, describing genetic alterations that can change the expression of these determinants to a clinically relevant level of resistance, and the association with breakthrough infections causing treatment failures. This phenomenon of transiently silent acquired AMR (tsaAMR) is likely to increase, considering the overall expansion of acquired AMR in bacterial pathogens. Moreover, the augmented use of genotypic methods in combination with conventional phenotypic antimicrobial susceptibility testing (AST) will increasingly enable the detection of genotype and phenotype discrepancy. This review defines tsaAMR as acquired antimicrobial resistance genes with a corresponding phenotype within the wild-type distribution or below the clinical breakpoint for susceptibility for which genetic alterations can mediate expression to a clinically relevant level of resistance. References to in vivo resistance development and therapeutic failures caused by selected resistant subpopulations of tsaAMR in Gram-positive and Gram-negative pathogens are given. We also describe the underlying molecular mechanisms, including alterations in the expression, reading frame or copy number of AMR determinants, and discuss the clinical relevance concerning challenges for conventional AST.
Collapse
Affiliation(s)
- Theresa Maria Wagner
- Research Group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT the Arctic University of Norway, Tromsø, Norway
| | - Benjamin Peter Howden
- Microbiological Diagnostic Unit Public Health Laboratory, The Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | | | | |
Collapse
|
8
|
Limayem A, Mehta M, Kondos N, Kaushal D, Azam FB, Chellappan S, Qin N, Zhou Q. Evaluation of bactericidal effects of silver hydrosol nanotherapeutics against Enterococcus faecium 1449 drug resistant biofilms. Front Cell Infect Microbiol 2023; 12:1095156. [PMID: 36710982 PMCID: PMC9875038 DOI: 10.3389/fcimb.2022.1095156] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 12/20/2022] [Indexed: 01/13/2023] Open
Abstract
Introduction Silver (Ag) nanoparticles (NPs) are well documented for their broad-spectrum bactericidal effects. This study aimed to test the effect of bioactive Ag-hydrosol NPs on drug-resistant E. faecium 1449 strain and explore the use of artificial intelligence (AI) for automated detection of the bacteria. Methods The formation of E. faecium 1449 biofilms in the absence and presence of Ag-hydrosol NPs at different concentrations ranging from 12.4 mg/L to 123 mg/L was evaluated using a 3-dimentional culture system. The biofilm reduction was evaluated using the confocal microscopy in addition to the Transmission Electronic Microscopy (TEM) visualization and spectrofluorimetric quantification using a Biotek Synergy Neo2 microplate reader. The cytotoxicity of the NPs was evaluated in human nasal epithelial cells using the MTT assay. The AI technique based on Fast Regional Convolutional Neural Network architecture was used for the automated detection of the bacteria. Results Treatment with Ag-hydrosol NPs at concentrations ranging from 12.4 mg/L to 123 mg/L resulted in 78.09% to 95.20% of biofilm reduction. No statistically significant difference in biofilm reduction was found among different batches of Ag-hydrosol NPs. Quantitative concentration-response relationship analysis indicated that Ag-hydrosol NPs exhibited a relative high anti-biofilm activity and low cytotoxicity with an average EC50 and TC50 values of 0.0333 and 6.55 mg/L, respectively, yielding an average therapeutic index value of 197. The AI-assisted TEM image analysis allowed automated detection of E. faecium 1449 with 97% ~ 99% accuracy. Discussion Conclusively, the bioactive Ag-hydrosol NP is a promising nanotherapeutic agent against drug-resistant pathogens. The AI-assisted TEM image analysis was developed with the potential to assess its treatment effect.
Collapse
Affiliation(s)
- Alya Limayem
- Department of Biology, College of Arts & Sciences, University of North Florida, Jacksonville, FL, United States,Department of Pharmaceutical Sciences, Graduate Program, Taneja College of Pharmacy, University of South Florida, Tampa, FL, United States,*Correspondence: Alya Limayem, ; Qingyu Zhou,
| | - Mausam Mehta
- Department of Pharmaceutical Sciences, Graduate Program, Taneja College of Pharmacy, University of South Florida, Tampa, FL, United States,Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Natalie Kondos
- Department of Pharmaceutical Sciences, Graduate Program, Taneja College of Pharmacy, University of South Florida, Tampa, FL, United States,Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Divya Kaushal
- Department of Pharmaceutical Sciences, Graduate Program, Taneja College of Pharmacy, University of South Florida, Tampa, FL, United States
| | - Farhat Binte Azam
- Department of Computer Science & Engineering, College of Engineering, University of South Florida, Tampa, FL, United States
| | - Sriram Chellappan
- Department of Computer Science & Engineering, College of Engineering, University of South Florida, Tampa, FL, United States
| | - Nan Qin
- Department of R&D and Analytical Services, Natural Immunogenics Corporation, Sarasota, FL, United States
| | - Qingyu Zhou
- Department of Pharmaceutical Sciences, Graduate Program, Taneja College of Pharmacy, University of South Florida, Tampa, FL, United States,*Correspondence: Alya Limayem, ; Qingyu Zhou,
| |
Collapse
|
9
|
Abdullah HM, Marbjerg LH, Andersen L, Hoegh SV, Kemp M. A Simple and Rapid Low-Cost Procedure for Detection of Vancomycin-Resistance Genes in Enterococci Reveals an Outbreak of Vancomycin-Variable Enterococcus faecium. Diagnostics (Basel) 2022; 12:diagnostics12092120. [PMID: 36140520 PMCID: PMC9497569 DOI: 10.3390/diagnostics12092120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/11/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
The detection of resistance to vancomycin in enterococci cultured from patients is important for the treatment of individual patients and for the prevention of hospital transmission. Phenotypic antimicrobial resistance tests may fail to detect potential vancomycin-resistant enterococci. We have developed and tested a PCR based procedure for routine screening for vancomycin-resistance genes in clinical samples with enterococci. Primary cultures from diagnostic samples reported with growth of Enterococcus faecium or E. facalis were tested for vanA and vanB genes by real-time PCR without the isolation of specific bacteria. Up to ten samples were pooled and tested in each real-time PCR reaction, with subsequent individual testing of cultures from positive pools. In a one-month test period in 2017 vanA gene was detected in one out of 340 urine samples with vancomycin-susceptible enterococci reported from diagnostic culture. A second test period in 2018 included 357 urine samples, and vanA gene was detected in samples from eight patients. Subsequently, all urine samples reported with growth of E. faecium during a period of one year were tested. Fifty-eight individuals were identified with enterococci, carrying the vanA gene not previously detected. Routine molecular testing of primary culture material from patient samples may improve the detection of hospitalized patients carrying E. faecium with resistance genes to vancomycin.
Collapse
Affiliation(s)
| | - Lis Høy Marbjerg
- Department of Clinical Microbiology, Odense University Hospital, 5000 Odense, Denmark
| | - Lise Andersen
- Department of Clinical Microbiology, Odense University Hospital, 5000 Odense, Denmark
| | - Silje Vermedal Hoegh
- Department of Clinical Microbiology, Odense University Hospital, 5000 Odense, Denmark
| | - Michael Kemp
- Regional Department of Clinical Microbiology, Zealand University Hospital, 4600 Koege, Denmark
- Department of Regional Health Research, University of Southern Denmark, 5000 Odense, Denmark
- Correspondence:
| |
Collapse
|
10
|
Samad MA, Sagor MS, Hossain MS, Karim MR, Mahmud MA, Sarker MS, Shownaw FA, Mia Z, Card RM, Agunos A, Johanna L. High prevalence of vancomycin non-susceptible and multi-drug resistant enterococci in farmed animals and fresh retail meats in Bangladesh. Vet Res Commun 2022; 46:811-822. [PMID: 35338457 DOI: 10.1007/s11259-022-09906-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 02/16/2022] [Indexed: 01/02/2023]
Abstract
The emergence of antimicrobial resistant Enterococcus spp., a main cause of untreatable nosocomial infection, in food animals and dissemination to humans is a public health risk. The study was performed to determine the prevalence and antimicrobial resistance, and virulence characteristics of Enterococcus faecalis and Enterococcus faecium in food animals and meats in Bangladesh. Enterococcus spp., were confirmed using sodA gene specific PCR, and antimicrobial resistance and virulence properties were characterized by PCR. Enterococcus spp. were recovered from 57% of the collected samples (n = 201/352). Farm samples yielded significantly higher (p ≤ 0.05) prevalence (62%) than that of retail meat samples (41%). E. faecalis (52%) is most frequently isolated species. Greater proportions of isolates exhibited resistance to tetracycline (74%), erythromycin (65%) and ciprofloxacin (34%). Fifty-one isolates are vancomycin non-susceptible enterococci (VNSE), of which forty-seven are MDR and twenty are linezolid resistant, a last line drug for VNSE. Virulence factors such as gelatinase (gelE), aggregation factor (asa1) and sex pheromone (cpd) are detected along with vancomycin resistance gene (vanA, vanB and vanC2/C3) in VNSE isolates. The high prevalence of MDR enterococci in food animals and retail meats may cause consumers infections with concomitant reduction of available therapeutic options.
Collapse
Affiliation(s)
- Mohammed A Samad
- Antimicrobial Resistance Action Centre (ARAC), Animal Health Research Division (AHRD), Bangladesh Livestock Research Institute (BLRI), Savar, 1341, Dhaka, Bangladesh.
| | - Md Shahjalal Sagor
- Antimicrobial Resistance Action Centre (ARAC), Animal Health Research Division (AHRD), Bangladesh Livestock Research Institute (BLRI), Savar, 1341, Dhaka, Bangladesh.,Department of Microbiology, Jagannath University, 1100, Dhaka, Bangladesh
| | - Muhammad Sazzad Hossain
- Antimicrobial Resistance Action Centre (ARAC), Animal Health Research Division (AHRD), Bangladesh Livestock Research Institute (BLRI), Savar, 1341, Dhaka, Bangladesh
| | - Md Rezaul Karim
- Antimicrobial Resistance Action Centre (ARAC), Animal Health Research Division (AHRD), Bangladesh Livestock Research Institute (BLRI), Savar, 1341, Dhaka, Bangladesh
| | - Mohammad Asheak Mahmud
- Antimicrobial Resistance Action Centre (ARAC), Animal Health Research Division (AHRD), Bangladesh Livestock Research Institute (BLRI), Savar, 1341, Dhaka, Bangladesh
| | - Md Samun Sarker
- Antimicrobial Resistance Action Centre (ARAC), Animal Health Research Division (AHRD), Bangladesh Livestock Research Institute (BLRI), Savar, 1341, Dhaka, Bangladesh
| | - Fahria A Shownaw
- Antimicrobial Resistance Action Centre (ARAC), Animal Health Research Division (AHRD), Bangladesh Livestock Research Institute (BLRI), Savar, 1341, Dhaka, Bangladesh
| | - Zakaria Mia
- Department of Microbiology, Jagannath University, 1100, Dhaka, Bangladesh
| | - Roderick M Card
- Animal and Plant Health Agency (APHA), Weybridge, KT15 3NB, UK
| | - Agnes Agunos
- FAO Regional Office for Asia and the Pacific, Bangkok, Thailand.,Center for Foodborne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - Lindahl Johanna
- International Livestock Research Institute (ILRI), Nairobi, 00100, Kenya.,Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.,Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
11
|
Conwell M, Dooley J, Naughton PJ. Enterococcal biofilm - a nidus for antibiotic resistance transfer? J Appl Microbiol 2022; 132:3444-3460. [PMID: 34990042 PMCID: PMC9306868 DOI: 10.1111/jam.15441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 08/03/2021] [Accepted: 01/03/2022] [Indexed: 11/30/2022]
Abstract
Enterococci, important agents of hospital acquired infection, are listed on the WHO list of multi-drug resistant pathogens commonly encountered in hospital acquired infections are now of increasing importance, due to the development of strains resistant to multiple antibiotics. Enterococci are also important microorganisms in the environment and their presence is frequently used as an indicator of faecal pollution. Their success is related to their ability to survive within a broad range of habitats and the ease by which they acquire mobile genetic elements, including plasmids, from other bacteria. The enterococci are frequently present within a bacterial biofilm which provides stability and protection to the bacterial population along with an opportunity for a variety of bacterial interactions. Enterococci can accept extrachromosomal DNA both from within its own species and from other bacterial species and this is enhanced by the proximity of the donor and recipient strains. It is this exchange of genetic material that makes the role of biofilm such an important aspect of the success of enterococci. There remain many questions regarding the most suitable model systems to study enterococci in biofilm and regarding the transfer of genetic material including antibiotic resistance in these biofilms. This review focuses on some important aspects of biofilm in the context of horizontal gene transfer (HGT) in enterococci.
Collapse
Affiliation(s)
- M Conwell
- The Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, Co. Londonderry, BT52 1SA
| | - Jsg Dooley
- The Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, Co. Londonderry, BT52 1SA
| | - P J Naughton
- The Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, Co. Londonderry, BT52 1SA
| |
Collapse
|
12
|
Viswanath LS, Sugumar M, Chandra Murthy Peela S, Walia K, Sistla S. Detection of vancomycin variable enterococci (VVE) among clinical isolates of Enterococcus faecium collected across India-first report from the subcontinent. Indian J Med Microbiol 2022; 40:285-288. [PMID: 34996658 DOI: 10.1016/j.ijmmb.2021.12.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/11/2021] [Accepted: 12/20/2021] [Indexed: 01/28/2023]
Abstract
PURPOSE Emergence of vancomycin variable enterococci (VVE) poses a challenge to empiric vancomycin therapy. Vancomycin-variable enterococci (VVE) are vanA-positive, yet phenotypically vancomycin-susceptible enterococci that can switch to a vancomycin-resistant phenotype when exposed to vancomycin. The aim of the present study was to determine the prevalence of VVE in India. METHODS Isolates of phenotypically vancomycin susceptible Enterococcus faecium from 20 tertiary care hospitals across India were collected and tested for the presence of vanA, vanR, vanS, vanB and vanC genes by conventional PCR using previously published primers. Isolates positive for vanA gene were considered as VVE. RESULTS The prevalence of VVE was 1.5% (5/340). Only one VVE isolate was positive for vanR and vanS, and all the isolates were negative for vanB and vanC. CONCLUSIONS Although the prevalence is low, our finding emphasizes the importance of routinely screening for van genes in enterococci that are phenotypically susceptible. Silenced vanA able to escape detection and revert to resistance during vancomycin therapy represents a new challenge in clinical settings.
Collapse
Affiliation(s)
- Lakshmi Shree Viswanath
- Department of Microbiology, Jawaharlal Institute of Postgraduate Medical Education & Research, Puducherry, India
| | - Madhan Sugumar
- Department of Microbiology, Jawaharlal Institute of Postgraduate Medical Education & Research, Puducherry, India
| | - Sreeram Chandra Murthy Peela
- Department of Microbiology, Jawaharlal Institute of Postgraduate Medical Education & Research, Puducherry, India
| | - Kamini Walia
- ICMR, Division of Epidemiology & Communicable Diseases, Indian Council of Medical Research, New Delhi, India
| | - Sujatha Sistla
- Department of Microbiology, Jawaharlal Institute of Postgraduate Medical Education & Research, Puducherry, India.
| |
Collapse
|
13
|
McEllistrem MC, Nordstrom HR, Lucas A, Decker BK, Van Tyne D. Detection of Vancomycin-Resistant Enterococcus faecium Endocarditis After Clearance of Vancomycin-Sensitive Enterococcus faecium Bacteremia. Microb Drug Resist 2021; 28:382-385. [PMID: 34918959 DOI: 10.1089/mdr.2021.0233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Vancomycin-resistant enterococcal (VRE) bacteremia is associated with higher mortality rates and longer hospitalizations than vancomycin-sensitive enterococcal (VSE) bacteremia. A 67-year-old man with a right psoas abscess and pacemaker-associated tricuspid valve endocarditis in September 2020 grew VSE Enterococcus faecium from blood cultures that cleared after administration of intravenous vancomycin and gentamicin. Subsequently, he underwent tricuspid valve repair, pacemaker removal, and partial lead extraction. Valve and postoperative blood cultures grew VRE E. faecium, which cleared after administration of intravenous daptomycin. One VSE and two VRE isolates were collected and sequenced. All isolates belonged to E. faecium multilocus sequence type ST17 and were closely related, having <20 mutations in pairwise genome comparisons. Vancomycin resistance was due to the acquisition of a plasmid-encoded VanA operon. None of the isolates encoded the virulence factors asa1, gelE, cylA, or hyl; all encoded a homologue of efaAfm. VSE E. faecium, but not VRE E. faecium isolates, encoded a glucose transporter gene mutation. Two VRE E. faecium isolates formed more robust biofilms than the VSE E. faecium isolate (p < 0.001). The VRE E. faecium isolates, which generated larger biofilms than the VSE E. faecium isolate, could have remained protected in the heart valve and only caused bacteremia when disrupted during cardiac surgery. This study demonstrates that bacteria detected in the bloodstream of patients with endocarditis may not fully represent the organisms adherent to the cardiac valves or indwelling devices.
Collapse
Affiliation(s)
- Mary Catherine McEllistrem
- VA Pittsburgh Healthcare System, Infectious Diseases Section, Pittsburgh, Pennsylvania, USA.,Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Hayley R Nordstrom
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Aaron Lucas
- VA Pittsburgh Healthcare System, Infectious Diseases Section, Pittsburgh, Pennsylvania, USA.,Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Brooke K Decker
- VA Pittsburgh Healthcare System, Infectious Diseases Section, Pittsburgh, Pennsylvania, USA.,Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Daria Van Tyne
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
14
|
Prediction of antimicrobial resistance in clinical Enterococcus faecium isolates using a rules-based analysis of whole genome sequences. Antimicrob Agents Chemother 2021; 66:e0119621. [PMID: 34694881 DOI: 10.1128/aac.01196-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background: Enterococcus faecium is a major cause of clinical infections, often due to multidrug-resistant (MDR) strains. Whole genome sequencing (WGS) is a powerful tool to study MDR bacteria and their antimicrobial resistance (AMR) mechanisms. Here we use WGS to characterize E. faecium clinical isolates and test the feasibility of rules-based genotypic prediction of AMR. Methods: Clinical isolates were divided into derivation and validation sets. Phenotypic susceptibility testing for ampicillin, vancomycin, high-level gentamicin, ciprofloxacin, levofloxacin, doxycycline, tetracycline, and linezolid was performed using the VITEK 2 automated system, with confirmation and discrepancy resolution by broth microdilution, disk diffusion, or gradient diffusion when needed. WGS was performed to identify isolate lineage and AMR genotype. AMR prediction rules were derived by analyzing the genotypic-phenotypic relationship in the derivation set. Results: Phylogenetic analysis demonstrated that 88% of isolates in the collection belonged to hospital-associated clonal complex 17. Additionally, 12% of isolates had novel sequence types. When applied to the validation set, the derived prediction rules demonstrated an overall positive predictive value of 98% and negative predictive value of 99% compared to standard phenotypic methods. Most errors were falsely resistant predictions for tetracycline and doxycycline. Further analysis of genotypic-phenotypic discrepancies revealed potentially novel pbp5 and tet(M) alleles that provide insight into ampicillin and tetracycline class resistance mechanisms. The prediction rules demonstrated generalizability when tested on an external dataset. Conclusions: Known AMR genes and mutations can predict E. faecium phenotypic susceptibility with high accuracy for most routinely tested antibiotics, providing opportunities for advancing molecular diagnostics.
Collapse
|
15
|
Wagner TM, Janice J, Sivertsen A, Sjögren I, Sundsfjord A, Hegstad K. Alternative vanHAX promoters and increased vanA-plasmid copy number resurrect silenced glycopeptide resistance in Enterococcus faecium. J Antimicrob Chemother 2021; 76:876-882. [PMID: 33367710 PMCID: PMC7953315 DOI: 10.1093/jac/dkaa541] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 12/04/2020] [Indexed: 11/30/2022] Open
Abstract
Background Vancomycin variable enterococci (VVE) are van-positive isolates with a susceptible phenotype that can convert to a resistant phenotype during vancomycin selection. Objectives To describe a vancomycin-susceptible vanA-PCR positive ST203 VVE Enterococcus faecium isolate (VVESwe-S) from a liver transplantation patient in Sweden which reverted to resistant (VVESwe-R) during in vitro vancomycin exposure. Methods WGS analysis revealed the genetic differences between the isolates. Expression of the van-operon was investigated by qPCR. Fitness and stability of the revertant were investigated by growth measurements, competition and serial transfer. Results The VVESwe-R isolate gained high-level vancomycin (MIC >256 mg/L) and teicoplanin resistance (MIC = 8 mg/L). VVESwe-S has a 5′-truncated vanR activator sequence and the VVESwe-R has in addition acquired a 44 bp deletion upstream of vanHAX in a region containing alternative putative constitutive promoters. In VVESwe-R the vanHAX-operon is constitutively expressed at a level comparable to the non-induced prototype E. faecium BM4147 strain. The vanHAX operon of VVESwe is located on an Inc18-like plasmid, which has a 3–4-fold higher copy number in VVESwe-R compared with VVESwe-S. Resistance has a low fitness cost and the vancomycin MIC of VVESwe-R decreased during in vitro serial culture without selection. The reduction in MIC was associated with a decreased vanA-plasmid copy number. Conclusions Our data support a mechanism by which vancomycin-susceptible VVE strains may revert to a resistant phenotype through the use of an alternative, constitutive, vanR-activator-independent promoter and a vanA-plasmid copy number increase.
Collapse
Affiliation(s)
- Theresa Maria Wagner
- Research group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Jessin Janice
- Research group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway.,Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North-Norway, Tromsø, Norway
| | - Audun Sivertsen
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North-Norway, Tromsø, Norway
| | - Ingegerd Sjögren
- Department of Clinical Microbiology and Infection Control, Hospital of Halland, Halmstad, Sweden
| | - Arnfinn Sundsfjord
- Research group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway.,Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North-Norway, Tromsø, Norway
| | - Kristin Hegstad
- Research group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway.,Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North-Norway, Tromsø, Norway
| |
Collapse
|
16
|
Jung YH, Cha MH, Woo GJ, Chi YM. Characterization of oxazolidinone and phenicol resistance genes in non-clinical enterococcal isolates from Korea. J Glob Antimicrob Resist 2021; 24:363-369. [PMID: 33515778 DOI: 10.1016/j.jgar.2021.01.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 11/29/2020] [Accepted: 01/18/2021] [Indexed: 10/22/2022] Open
Abstract
OBJECTIVES To investigate the distribution and genetic characteristics of linezolid-resistant enterococci. METHODS Enterococcus faecalis and Enterococcus faecium strains were isolated from pigs, equipment, grounds, and employees of 19 Korean swine farms in 2017. Antimicrobial susceptibility testing was then performed and linezolid resistance genes were detected via PCR. For genetic epidemiological characterization, multilocus sequence typing and whole-genome sequencing data were analysed. RESULTS Twenty-eightE. faecalis and five E. faecium strains were isolated from 1026 samples obtained from the 19 farms. Ten sequence types were identified among the E. faecalis strains, of which ST256 (42.9%) and ST86 (25%) were the most abundant. The oxazolidinone and phenicol resistance genes poxtA, optrA, and fexA were detected in isolates of E. faecalis (100%, 85.7%, and 67.9%, respectively) and E. faecium (100%, 60%, and 80%, respectively). The minimum inhibitory concentrations of linezolid in these isolates ranged from 2 mg/L to 12 mg/L. The whole-genome sequencing data indicated that fexA was located upstream of poxtA. CONCLUSIONS This is the first study to report the detection of poxtA in isolates that were both susceptible and resistant to linezolid in Korea. These results demonstrate the importance of antimicrobial resistance monitoring programmes, including regular antimicrobial susceptibility testing and resistance gene expression analysis, to facilitate the control of the spread of antibiotic resistance in non-clinical settings in Korea.
Collapse
Affiliation(s)
- Young-Hee Jung
- Division of Biotechnology, College of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Min-Hyeok Cha
- Laboratory of Food Safety and Evaluation, Department of Biotechnology, Korea University Graduate School, Seoul, 02841, Republic of Korea
| | - Gun-Jo Woo
- Laboratory of Food Safety and Evaluation, Department of Biotechnology, Korea University Graduate School, Seoul, 02841, Republic of Korea.
| | - Young-Min Chi
- Division of Biotechnology, College of Life Sciences, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
17
|
Merlino J, Gray T. Vancomycin variable Enterococcus (VVE), E. faecium, harbouring the vanA gene complex. Pathology 2020; 53:680-682. [PMID: 33317904 DOI: 10.1016/j.pathol.2020.08.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/24/2020] [Accepted: 08/28/2020] [Indexed: 11/26/2022]
Affiliation(s)
- John Merlino
- Department of Microbiology and Infectious Diseases, Concord Hospital, NSW Heath Pathology, Sydney, NSW, Australia; Department of Infectious Diseases and Immunology, Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.
| | - Timothy Gray
- Department of Microbiology and Infectious Diseases, Concord Hospital, NSW Heath Pathology, Sydney, NSW, Australia; Concord Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
18
|
Phenotypic and Molecular Characterization of Plasmid-Mediated Virulence and Antimicrobial Resistance Traits among Multidrug Resistant Enterococcus spp. in Egypt. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2020. [DOI: 10.22207/jpam.14.3.03] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Enterococcus spp. are remarkable multidrug resistant (MDR) bacteria that are causing serious healthcare-associated infections. The current study investigated the frequency of Enterococcus spp., antimicrobial susceptibility, biofilm formation and the presence of some plasmid-mediated virulence characters and antimicrobial resistance determinants in enterococcal isolates from Egyptian hospitals in Cairo. Enterococcus bacterial isolates were recovered from different clinical specimens and identified using biochemical testing and KB005A HiStrep™ identification kit. Kirby-Bauer disc diffusion method and/or broth microdilution method were used to determine the antimicrobial susceptibility patterns. Phenotypic assays were performed to study biofilm formation and cytolysin and gelatinase production. PCR assays targeting the plasmid-carried genes aac(6’)-aph(2’), aph(3)-IIIa, vanA, agg and cylA were performed. In this study, 50 isolates of diverse Enterococcus spp. were identified with E. faecium was the most frequently isolated one. High resistance profiles were determined against tested antimicrobials and all isolates were MDR. Moderate biofilm formation was detected in 20% of isolates, 18% showed complete blood hemolysis and 12% produced gelatinase. All isolates carried the tested aminoglycosides resistance genes, while vanA was found only in 4 isolates (8%). The virulence genes agg and cylA were detected in 4% and 32% of isolates, respectively. In conclusion, E. faecium was the most prevalent species. The entire isolates set were MDR and the plasmid-carried aminoglycoside resistance genes were extensively disseminated among MDR isolates. Thus, regular surveillance studies, from the area of study or other geographical regions in Egypt, and strict infection control measures are required to monitor the emerging MDR enterococci.
Collapse
|
19
|
Zhou X, Willems RJL, Friedrich AW, Rossen JWA, Bathoorn E. Enterococcus faecium: from microbiological insights to practical recommendations for infection control and diagnostics. Antimicrob Resist Infect Control 2020; 9:130. [PMID: 32778149 PMCID: PMC7418317 DOI: 10.1186/s13756-020-00770-1] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 07/02/2020] [Indexed: 02/08/2023] Open
Abstract
Early in its evolution, Enterococcus faecium acquired traits that allowed it to become a successful nosocomial pathogen. E. faecium inherent tenacity to build resistance to antibiotics and environmental stressors that allows the species to thrive in hospital environments. The continual wide use of antibiotics in medicine has been an important driver in the evolution of E. faecium becoming a highly proficient hospital pathogen.For successful prevention and reduction of nosocomial infections with vancomycin resistant E. faecium (VREfm), it is essential to focus on reducing VREfm carriage and spread. The aim of this review is to incorporate microbiological insights of E. faecium into practical infection control recommendations, to reduce the spread of hospital-acquired VREfm (carriage and infections). The spread of VREfm can be controlled by intensified cleaning procedures, antibiotic stewardship, rapid screening of VREfm carriage focused on high-risk populations, and identification of transmission routes through accurate detection and typing methods in outbreak situations. Further, for successful management of E. faecium, continual innovation in the fields of diagnostics, treatment, and eradication is necessary.
Collapse
Affiliation(s)
- Xuewei Zhou
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - Rob J L Willems
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Alexander W Friedrich
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - John W A Rossen
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Erik Bathoorn
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
20
|
Hammerum AM, Justesen US, Pinholt M, Roer L, Kaya H, Worning P, Nygaard S, Kemp M, Clausen ME, Nielsen KL, Samulioniené J, Kjærsgaard M, Østergaard C, Coia J, Søndergaard TS, Gaini S, Schønning K, Westh H, Hasman H, Holzknecht BJ. Surveillance of vancomycin-resistant enterococci reveals shift in dominating clones and national spread of a vancomycin-variable vanA Enterococcus faecium ST1421-CT1134 clone, Denmark, 2015 to March 2019. ACTA ACUST UNITED AC 2020; 24. [PMID: 31456560 PMCID: PMC6712932 DOI: 10.2807/1560-7917.es.2019.24.34.1900503] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We describe clonal shifts in vanA Enterococcus faecium isolates from clinical samples obtained from patients in Denmark from 2015 to the first quarter (Q1) of 2019. During Q1 2019, the vancomycin-variable enterococci (VVE) ST1421-CT1134 vanA E. faecium became the most dominant vanA E. faecium clone and has spread to all five regions in Denmark. Among 174 E. faecium isolates with vanA, vanB or vanA/vanB genes in Q1 2019, 44% belonged to this type.
Collapse
Affiliation(s)
- Anette M Hammerum
- Department for Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Ulrik S Justesen
- Department of Clinical Microbiology, Odense University Hospital, Odense, Denmark
| | - Mette Pinholt
- Department of Clinical Microbiology, Hvidovre University Hospital, Hvidovre, Denmark
| | - Louise Roer
- Department for Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Hülya Kaya
- Department for Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Peder Worning
- Department of Clinical Microbiology, Hvidovre University Hospital, Hvidovre, Denmark
| | - Sanne Nygaard
- Department of Clinical Microbiology, Herlev and Gentofte University Hospital, Herlev, Denmark
| | - Michael Kemp
- Department of Clinical Microbiology, Odense University Hospital, Odense, Denmark
| | | | - Karen Leth Nielsen
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
| | - Jurgita Samulioniené
- Department of Clinical Microbiology, Aalborg University Hospital, Aalborg, Denmark
| | - Mona Kjærsgaard
- Department of Clinical Microbiology, Aarhus University Hospital, Aarhus, Denmark
| | - Claus Østergaard
- Department of Clinical Microbiology, Lillebaelt Hospital, Vejle, Denmark
| | - John Coia
- Department of Clinical Microbiology, Hospital South West Jutland, Esbjerg, Denmark
| | | | - Shahin Gaini
- Centre of Health Research, University of the Faroe Islands, Torshavn, Faroe Islands.,Department of Infectious Diseases, Odense University Hospital, Odense, Denmark.,Medical Department, National Hospital Faroe Islands, Torshavn, Faroe Islands
| | - Kristian Schønning
- Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Microbiology, Hvidovre University Hospital, Hvidovre, Denmark
| | - Henrik Westh
- Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Microbiology, Hvidovre University Hospital, Hvidovre, Denmark
| | - Henrik Hasman
- Department for Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | | |
Collapse
|
21
|
Impact of vanA-Positive Enterococcus faecium Exhibiting Diverse Susceptibility Phenotypes to Glycopeptides on 30-Day Mortality of Patients with a Bloodstream Infection. Antimicrob Agents Chemother 2020; 64:AAC.02180-19. [PMID: 32340989 DOI: 10.1128/aac.02180-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 04/22/2020] [Indexed: 11/20/2022] Open
Abstract
This study was performed to evaluate the impacts of vanA positivity of Enterococcus faecium exhibiting diverse susceptibility phenotypes to glycopeptides on clinical outcomes in patients with a bloodstream infection (BSI) through a prospective, multicenter, observational study. A total of 509 patients with E. faecium BSI from eight sentinel hospitals in South Korea during a 2-year period were enrolled in this study. Risk factors of the hosts and causative E. faecium isolates were assessed to determine associations with the 30-day mortality of E. faecium BSI patients via multivariable logistic regression analyses. The vanA gene was detected in 35.2% (179/509) of E. faecium isolates; 131 E. faecium isolates exhibited typical VanA phenotypes (group vanA-VanA), while the remaining 48 E. faecium isolates exhibited atypical phenotypes (group vanA-atypical), which included VanD (n = 43) and vancomycin-variable phenotypes (n = 5). A multivariable logistic regression indicated that vanA positivity of causative pathogens was independently associated with the increased 30-day mortality rate in the patients with E. faecium BSI; however, there was no significant difference in survival rates between the patients of the vanA-VanA and vanA-atypical groups (log rank test, P = 0.904). A high 30-day mortality rate was observed in patients with vanA-positive E. faecium BSIs, and vanA positivity of causative E. faecium isolates was an independent risk factor for early mortality irrespective of the susceptibility phenotypes to glycopeptides; thus, intensified antimicrobial stewardship is needed to improve the clinical outcomes of patients with vanA-positive E. faecium BSI.
Collapse
|
22
|
Quality of molecular detection of vancomycin resistance in enterococci: results of 6 consecutive years of Quality Control for Molecular Diagnostics (QCMD) external quality assessment. Eur J Clin Microbiol Infect Dis 2019; 38:1633-1641. [DOI: 10.1007/s10096-019-03591-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 05/13/2019] [Indexed: 11/24/2022]
|
23
|
Sun L, Qu T, Wang D, Chen Y, Fu Y, Yang Q, Yu Y. Characterization of vanM carrying clinical Enterococcus isolates and diversity of the suppressed vanM gene cluster. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2019; 68:145-152. [PMID: 30553064 DOI: 10.1016/j.meegid.2018.12.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 11/24/2018] [Accepted: 12/11/2018] [Indexed: 10/27/2022]
Abstract
Here we report the prevalence of the suppressed vanM gene cluster as a reservoir of vancomycin resistance genes. Among 1284 clinical isolates of enterococci from four hospitals in Hangzhou, China, 55 isolates of Enterococcus faecium and one isolate of Enterococcus faecalis were screened positive for the vanM genotype. Antimicrobial susceptibility testing showed that 55 of the 56 vanM-positive isolates were susceptible to vancomycin and teicoplanin. Most of them (54/56) belonged to the main epidemic lineage CC17, mostly the ST78 type. The vanM gene clusters in the 55 vancomycin-susceptible isolates showed sequence diversity owing to different insertion locations of IS1216E. The vanM transposons could be classified into five types and they all carried two or more IS1216E elements, leading to complete or partial deletions of vanR, vanS, or vanX. Quantitative reverse transcription polymerase chain reaction showed that the expression level of vanM was significantly lower in the vancomycin-susceptible isolates than in the vancomycin-resistant isolate. Considering the prevalence of the vanM genotype and the potential for conversion to a resistant phenotype, vanM might act as an important determinant of glycopeptide resistance in the future. It is essential to strengthen the surveillance of vanM-containing enterococci to control the dissemination of vancomycin resistance.
Collapse
Affiliation(s)
- Lingyan Sun
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China; Key Laboratory of Microorganism Technology and Bioinformatics Research of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Tingting Qu
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Danying Wang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China; Key Laboratory of Microorganism Technology and Bioinformatics Research of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Yan Chen
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China; Key Laboratory of Microorganism Technology and Bioinformatics Research of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Ying Fu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China; Key Laboratory of Microorganism Technology and Bioinformatics Research of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Qing Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China; Key Laboratory of Microorganism Technology and Bioinformatics Research of Zhejiang Province, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
24
|
Update on prevalence and mechanisms of resistance to linezolid, tigecycline and daptomycin in enterococci in Europe: Towards a common nomenclature. Drug Resist Updat 2018; 40:25-39. [DOI: 10.1016/j.drup.2018.10.002] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 08/10/2018] [Accepted: 10/30/2018] [Indexed: 01/04/2023]
|
25
|
Rapid monitoring of vancomycin-resistant Enterococcus faecium in hospital departments by repetitive element palindromic polymerase chain reaction. J Hosp Infect 2018; 99:208-217. [DOI: 10.1016/j.jhin.2017.11.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 11/27/2017] [Indexed: 12/24/2022]
|
26
|
Prevalence of vancomycin-variable Enterococcus faecium (VVE) among vanA-positive sterile site isolates and patient factors associated with VVE bacteremia. PLoS One 2018; 13:e0193926. [PMID: 29566004 PMCID: PMC5863957 DOI: 10.1371/journal.pone.0193926] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 02/21/2018] [Indexed: 11/19/2022] Open
Abstract
Vancomycin-variable enterococci (VVE) are vanA-positive, vancomycin-susceptible enterococci with the ability to revert to a vancomycin-resistant phenotype on exposure to vancomycin. We sought to assess the prevalence of VVE and to determine clinical characteristics of patients infected with VVE. We prospectively collected Enterococcus faecium sterile site isolates from Toronto Invasive Bacterial Diseases Network hospitals from January 2015 to June 2016 and calculated VVE (defined as vanA-positive, vancomycin-susceptible isolates) prevalence among vanA-containing isolates. We performed chart reviews of VVE and vancomycin-resistant E. faecium (VRE) bacteremias identified from January 2012 to June 2016, and on a random sample of patients with bacteremia due to vanA/vanB-negative, vancomycin-susceptible enterococci (VSE) from January 2015 to June 2016. Clinical characteristics were compared and factors associated with mortality assessed. Because of the potential reversion from VVE to VRE, pulsed-field gel electrophoresis (PFGE) was performed for strains causing breakthrough bacteremia in order to identify relatedness among strains with different phenotypic resistance within the same patient. VVE comprised 47% (18/38) of vanA-positive isolates. The charts of 36 VRE, 25 VVE, and 79 VSE patients were reviewed. Central venous catheter associated bacteremia was more common in VVE (44%) and VRE patients (57%) than in VSE patients (28%) (P = 0.01). The Pitt bacteremia (OR 1.3, P = 0.002) and the Charlson score (OR 1.2, P = 0.008) were the only independent mortality predictors. PFGE of strains causing breakthrough bacteremia showed high within-patient clonality, irrespective of vanA-positivity or vancomycin-susceptibility. A substantial proportion of vanA-positive isolates are VVE and are therefore not detected with conventional selective culture methods. Bacteremia sources of patients with VVE are similar to those infected with VRE. We detected no association between VVE and 30-day mortality or breakthrough bacteremia.
Collapse
|
27
|
Demirgül F, Tuncer Y. Detection of Antibiotic Resistance and Resistance Genes in Enterococci Isolated from Sucuk, a Traditional Turkish Dry-Fermented Sausage. Korean J Food Sci Anim Resour 2017; 37:670-681. [PMID: 29147090 PMCID: PMC5686325 DOI: 10.5851/kosfa.2017.37.5.670] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 08/16/2017] [Accepted: 08/23/2017] [Indexed: 01/08/2023] Open
Abstract
The aim of this study was to isolate enterococci in Sucuk, a traditional Turkish dry-fermented sausage and to analyze isolates for their biodiversity, antibiotic resistance patterns and the presence of some antibiotic resistance genes. A total of 60 enterococci strains were isolated from 20 sucuk samples manufactured without using a starter culture and they were identified as E. faecium (73.3%), E. faecalis (11.7%), E. hirae (8.3%), E. durans (3.3%), E. mundtii (1.7%) and E. thailandicus (1.7%). Most of the strains were found resistant to rifampin (51.67%) followed by ciprofloxacin (38.33%), nitrofurantoin (33.33%) and erythromycin (21.67%). All strains were found susceptible to ampicillin. Only E. faecium FYE4 and FYE60 strains displayed susceptibility to all antibiotics. Other strains showed different resistance patterns to antibiotics. E. faecalis was found more resistant to antibiotics than other species. Most of the strains (61.7%) displayed resistance from between two and eight antibiotics. The ermB, ermC, gyrA, tetM, tetL and vanA genes were detected in some strains. A lack of correlation between genotypic and phenotypic analysis for some strains was detected. The results of this study indicated that Sucuk manufactured without using a starter culture is a reservoir of multiple antibiotic resistant enterococci. Consequently, Sucuk is a potential reservoir for the transmission of antibiotic resistance genes from animals to humans.
Collapse
Affiliation(s)
- Furkan Demirgül
- Süleyman Demirel University, Faculty of Engineering, Department of Food Engineering, 32260, Isparta, Turkey.,İstanbul Kavram Vocational School, Department of Hotel, Restaurant and Catering Services, 34680, İstanbul, Turkey
| | - Yasin Tuncer
- Süleyman Demirel University, Faculty of Engineering, Department of Food Engineering, 32260, Isparta, Turkey
| |
Collapse
|
28
|
Ahmed MO, Baptiste KE. Vancomycin-Resistant Enterococci: A Review of Antimicrobial Resistance Mechanisms and Perspectives of Human and Animal Health. Microb Drug Resist 2017; 24:590-606. [PMID: 29058560 DOI: 10.1089/mdr.2017.0147] [Citation(s) in RCA: 232] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Vancomycin-resistant enterococci (VRE) are both of medical and public health importance associated with serious multidrug-resistant infections and persistent colonization. Enterococci are opportunistic environmental inhabitants with a remarkable adaptive capacity to evolve and transmit antimicrobial-resistant determinants. The VRE gene operons show distinct genetic variability and apparently continued evolution leading to a variety of antimicrobial resistance phenotypes and various environmental and livestock reservoirs for the most common van genes. Such complex diversity renders a number of important therapeutic options including "last resort antibiotics" ineffective and poses a particular challenge for clinical management. Enterococci resistance to glycopeptides and multidrug resistance warrants attention and continuous monitoring.
Collapse
Affiliation(s)
- Mohamed O Ahmed
- 1 Department of Microbiology and Parasitology, Faculty of Veterinary Medicine, University of Tripoli , Tripoli, Libya
| | - Keith E Baptiste
- 2 Department of Veterinary Medicine, Danish Medicines Agency , Copenhagen South, Denmark
| |
Collapse
|
29
|
Flórez AB, Vázquez L, Mayo B. A Functional Metagenomic Analysis of Tetracycline Resistance in Cheese Bacteria. Front Microbiol 2017; 8:907. [PMID: 28596758 PMCID: PMC5442184 DOI: 10.3389/fmicb.2017.00907] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 05/04/2017] [Indexed: 11/13/2022] Open
Abstract
Metagenomic techniques have been successfully used to monitor antibiotic resistance genes in environmental, animal and human ecosystems. However, despite the claim that the food chain plays a key role in the spread of antibiotic resistance, metagenomic analysis has scarcely been used to investigate food systems. The present work reports a functional metagenomic analysis of the prevalence and evolution of tetracycline resistance determinants in a raw-milk, blue-veined cheese during manufacturing and ripening. For this, the same cheese batch was sampled and analyzed on days 3 and 60 of manufacture. Samples were diluted and grown in the presence of tetracycline on plate count milk agar (PCMA) (non-selective) and de Man Rogosa and Sharpe (MRS) agar (selective for lactic acid bacteria, LAB). DNA from the cultured bacteria was then isolated and used to construct four fosmid libraries, named after the medium and sampling time: PCMA-3D, PCMA-60D, MRS-3D, and MRS-60D. Clones in the libraries were subjected to restriction enzyme analysis, PCR amplification, and sequencing. Among the 300 fosmid clones analyzed, 268 different EcoRI restriction profiles were encountered. Sequence homology of their extremes clustered the clones into 47 groups. Representative clones of all groups were then screened for the presence of tetracycline resistance genes by PCR, targeting well-recognized genes coding for ribosomal protection proteins and efflux pumps. A single tetracycline resistance gene was detected in each of the clones, with four such resistance genes identified in total: tet(A), tet(L), tet(M), and tet(S). tet(A) was the only gene identified in the PCMA-3D library, and tet(L) the only one identified in the PCMA-60D and MRS-60D libraries. tet(M) and tet(S) were both detected in the MRS-3D library and in similar numbers. Six representative clones of the libraries were sequenced and analyzed. Long segments of all clones but one showed extensive homology to plasmids from Gram-positive and Gram-negative bacteria. tet(A) was found within a sequence showing strong similarity to plasmids pMAK2 and pO26-Vir from Salmonella enterica and Escherichia coli, respectively. All other genes were embedded in, or near to, sequences homologous to those of LAB species. These findings strongly suggest an evolution of tetracycline resistance gene types during cheese ripening, which might reflect the succession of the microbial populations. The location of the tetracycline resistance genes in plasmids, surrounded or directly flanked by open reading frames encoding transposases, invertases or mobilization proteins, suggests they might have a strong capacity for transference. Raw-milk cheeses should therefore be considered reservoirs of tetracycline resistance genes that might be horizontally transferred.
Collapse
Affiliation(s)
- Ana B Flórez
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas, IPLA - CSICAsturias, Spain
| | - Lucía Vázquez
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas, IPLA - CSICAsturias, Spain
| | - Baltasar Mayo
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas, IPLA - CSICAsturias, Spain
| |
Collapse
|
30
|
Holzknecht B, Hansen D, Nielsen L, Kailow A, Jarløv J. Screening for vancomycin-resistant enterococci with Xpert® vanA/vanB: diagnostic accuracy and impact on infection control decision making. New Microbes New Infect 2017; 16:54-59. [PMID: 28203378 PMCID: PMC5295639 DOI: 10.1016/j.nmni.2016.12.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 12/21/2016] [Accepted: 12/26/2016] [Indexed: 11/24/2022] Open
Abstract
Vancomycin-resistant enterococci (VRE) are increasingly important nosocomial pathogens and screening for colonization status is a mainstay in infection control. We implemented PCR-based screening during vanA-positive Enterococcus faecium outbreaks in four university hospitals in Copenhagen, Denmark. Xpert®vanA/vanB was performed directly on rectal swabs and the vanA PCR result was used to guide infection control measures. Concurrently, all samples were selectively cultured including an overnight enrichment step. Diagnostic accuracy was calculated as well as turnaround time and the impact of the earlier available PCR results on infection control decision making. In all, 1110 samples were analysed. The vanA PCR positivity rate was 13.8% and culture positivity rate was 15.2%. The diagnostic accuracy of the vanA part of the assay was high with a sensitivity of 87.1%, a specificity of 99.7%, and positive and negative predictive values of 98.0% and 97.7%, respectively. The vanB PCR had a considerably lower specificity of 77.6% and a positive predictive value of 0.4%. In 1067 (96.1%) samples, PCR results were reported within 1 day, whereas median culture turnaround time was 3 days. The saving of time to available results corresponded to 141 saved isolation days and 292 saved transmission risk days. False-negative or false-positive PCR results led to six additional transmission risk days and 13 additional isolation days, respectively. The vanA PCR had high diagnostic accuracy and the prompt availability of results gave a considerable benefit for infection control decision making.
Collapse
Affiliation(s)
- B.J. Holzknecht
- Department of Clinical Microbiology, Herlev and Gentofte Hospital, University of Copenhagen, Herlev, Denmark
| | | | | | | | | |
Collapse
|
31
|
Dehoux P, Marvaud JC, Abouelleil A, Earl AM, Lambert T, Dauga C. Comparative genomics of Clostridium bolteae and Clostridium clostridioforme reveals species-specific genomic properties and numerous putative antibiotic resistance determinants. BMC Genomics 2016; 17:819. [PMID: 27769168 PMCID: PMC5073890 DOI: 10.1186/s12864-016-3152-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 10/11/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Clostridium bolteae and Clostridium clostridioforme, previously included in the complex C. clostridioforme in the group Clostridium XIVa, remain difficult to distinguish by phenotypic methods. These bacteria, prevailing in the human intestinal microbiota, are opportunistic pathogens with various drug susceptibility patterns. In order to better characterize the two species and to obtain information on their antibiotic resistance genes, we analyzed the genomes of six strains of C. bolteae and six strains of C. clostridioforme, isolated from human infection. RESULTS The genome length of C. bolteae varied from 6159 to 6398 kb, and 5719 to 6059 CDSs were detected. The genomes of C. clostridioforme were smaller, between 5467 and 5927 kb, and contained 5231 to 5916 CDSs. The two species display different metabolic pathways. The genomes of C. bolteae contained lactose operons involving PTS system and complex regulation, which contribute to phenotypic differentiation from C. clostridioforme. The Acetyl-CoA pathway, similar to that of Faecalibacterium prausnitzii, a major butyrate producer in the human gut, was only found in C. clostridioforme. The two species have also developed diverse flagella mobility systems contributing to gut colonization. Their genomes harboured many CDSs involved in resistance to beta-lactams, glycopeptides, macrolides, chloramphenicol, lincosamides, rifampin, linezolid, bacitracin, aminoglycosides and tetracyclines. Overall antimicrobial resistance genes were similar within a species, but strain-specific resistance genes were found. We discovered a new group of genes coding for rifampin resistance in C. bolteae. C. bolteae 90B3 was resistant to phenicols and linezolide in producing a 23S rRNA methyltransferase. C. clostridioforme 90A8 contained the VanB-type Tn1549 operon conferring vancomycin resistance. We also detected numerous genes encoding proteins related to efflux pump systems. CONCLUSION Genomic comparison of C. bolteae and C. clostridiofrome revealed functional differences in butyrate pathways and in flagellar systems, which play a critical role within human microbiota. Most of the resistance genes detected in both species were previously characterized in other bacterial species. A few of them were related to antibiotics inactive against Clostridium spp. Some were part of mobile genetic elements suggesting that these commensals of the human microbiota act as reservoir of antimicrobial resistances.
Collapse
Affiliation(s)
- Pierre Dehoux
- Department of Genomes and Genetics, Institut Pasteur, Paris, France
| | - Jean Christophe Marvaud
- Faculté de Pharmacie, EA4043 “Unité Bactéries Pathogènes et Santé” (UBaPS), Université Paris Sud, Châtenay-Malabry Cedex, 92296 France
| | - Amr Abouelleil
- Genome Sequencing and Analysis Program, Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - Ashlee M. Earl
- Genome Sequencing and Analysis Program, Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - Thierry Lambert
- Faculté de Pharmacie, EA4043 “Unité Bactéries Pathogènes et Santé” (UBaPS), Université Paris Sud, Châtenay-Malabry Cedex, 92296 France
- Antibacterial Agents Unit, Department of Microbiology, Institut Pasteur, Paris, France
| | - Catherine Dauga
- Department of Genomes and Genetics, Institut Pasteur, Paris, France
- International Group of Data Analysis, Centre for Bioinformatics, Biostatistics and Integrative Biology, Institut Pasteur, Paris, France
| |
Collapse
|
32
|
Freitas AR, Tedim AP, Francia MV, Jensen LB, Novais C, Peixe L, Sánchez-Valenzuela A, Sundsfjord A, Hegstad K, Werner G, Sadowy E, Hammerum AM, Garcia-Migura L, Willems RJ, Baquero F, Coque TM. Multilevel population genetic analysis ofvanAandvanB Enterococcus faeciumcausing nosocomial outbreaks in 27 countries (1986–2012). J Antimicrob Chemother 2016; 71:3351-3366. [DOI: 10.1093/jac/dkw312] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 06/11/2016] [Accepted: 07/05/2016] [Indexed: 01/17/2023] Open
|
33
|
A Silenced vanA Gene Cluster on a Transferable Plasmid Caused an Outbreak of Vancomycin-Variable Enterococci. Antimicrob Agents Chemother 2016; 60:4119-27. [PMID: 27139479 PMCID: PMC4914660 DOI: 10.1128/aac.00286-16] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 04/21/2016] [Indexed: 12/17/2022] Open
Abstract
We report an outbreak of vancomycin-variable vanA(+) enterococci (VVE) able to escape phenotypic detection by current guidelines and demonstrate the molecular mechanisms for in vivo switching into vancomycin resistance and horizontal spread of the vanA cluster. Forty-eight vanA(+) Enterococcus faecium isolates and one Enterococcus faecalis isolate were analyzed for clonality with pulsed-field gel electrophoresis (PFGE), and their vanA gene cluster compositions were assessed by PCR and whole-genome sequencing of six isolates. The susceptible VVE strains were cultivated in brain heart infusion broth containing vancomycin at 8 μg/ml for in vitro development of resistant VVE. The transcription profiles of susceptible VVE and their resistant revertants were assessed using quantitative reverse transcription-PCR. Plasmid content was analyzed with S1 nuclease PFGE and hybridizations. Conjugative transfer of vanA was assessed by filter mating. The only genetic difference between the vanA clusters of susceptible and resistant VVE was an ISL3-family element upstream of vanHAX, which silenced vanHAX gene transcription in susceptible VVE. Furthermore, the VVE had an insertion of IS1542 between orf2 and vanR that attenuated the expression of vanHAX Growth of susceptible VVE occurred after 24 to 72 h of exposure to vancomycin due to excision of the ISL3-family element. The vanA gene cluster was located on a transferable broad-host-range plasmid also detected in outbreak isolates with different pulsotypes, including one E. faecalis isolate. Horizontally transferable silenced vanA able to escape detection and revert into resistance during vancomycin therapy represents a new challenge in the clinic. Genotypic testing of invasive vancomycin-susceptible enterococci by vanA-PCR is advised.
Collapse
|
34
|
Xia J, Gao J, Tang W. Nosocomial infection and its molecular mechanisms of antibiotic resistance. Biosci Trends 2016; 10:14-21. [PMID: 26877142 DOI: 10.5582/bst.2016.01020] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Nosocomial infection is a kind of infection, which is spread in various hospital environments, and leads to many serious diseases (e.g. pneumonia, urinary tract infection, gastroenteritis, and puerperal fever), and causes higher mortality than community-acquired infection. Bacteria are predominant among all the nosocomial infection-associated pathogens, thus a large number of antibiotics, such as aminoglycosides, penicillins, cephalosporins, and carbapenems, are adopted in clinical treatment. However, in recent years antibiotic resistance quickly spreads worldwide and causes a critical threat to public health. The predominant bacteria include Methicillin-resistant Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumoniae, Escherichia coli, and Acinetobacter baumannii. In these bacteria, resistance emerged from antibiotic resistant genes and many of those can be exchanged between bacteria. With technical advances, molecular mechanisms of resistance have been gradually unveiled. In this review, recent advances in knowledge about mechanisms by which (i) bacteria hydrolyze antibiotics (e.g. extended spectrum β-lactamases, (ii) AmpC β-lactamases, carbapenemases), (iii) avoid antibiotic targeting (e.g. mutated vanA and mecA genes), (iv) prevent antibiotic permeation (e.g. porin deficiency), or (v) excrete intracellular antibiotics (e.g. active efflux pump) are summarized.
Collapse
Affiliation(s)
- Jufeng Xia
- Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, Graduate School of Medicine, The University of Tokyo
| | | | | |
Collapse
|
35
|
Brodrick HJ, Raven KE, Harrison EM, Blane B, Reuter S, Török ME, Parkhill J, Peacock SJ. Whole-genome sequencing reveals transmission of vancomycin-resistant Enterococcus faecium in a healthcare network. Genome Med 2016; 8:4. [PMID: 26759031 PMCID: PMC4709893 DOI: 10.1186/s13073-015-0259-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 12/29/2015] [Indexed: 08/30/2023] Open
Abstract
Background Bacterial whole-genome sequencing (WGS) has the potential to identify reservoirs of multidrug-resistant organisms and transmission of these pathogens across healthcare networks. We used WGS to define transmission of vancomycin-resistant enterococci (VRE) within a long-term care facility (LTCF), and between this and an acute hospital in the United Kingdom (UK). Methods A longitudinal prospective observational study of faecal VRE carriage was conducted in a LTCF in Cambridge, UK. Stool samples were collected at recruitment, and then repeatedly until the end of the study period, discharge or death. Selective culture media were used to isolate VRE, which were subsequently sequenced and analysed. We also analysed the genomes of 45 Enterococcus faecium bloodstream isolates collected at Cambridge University Hospitals NHS Foundation Trust (CUH). Results Forty-five residents were recruited during a 6-month period in 2014, and 693 stools were collected at a frequency of at least 1 week apart. Fifty-one stool samples from 3/45 participants (7 %) were positive for vancomycin-resistant E. faecium. Two residents carried multiple VRE lineages, and one carried a single VRE lineage. Genome analyses based on single nucleotide polymorphisms (SNPs) in the core genome indicated that VRE carried by each of the three residents were unrelated. Participants had extensive contact with the local healthcare network. We found that VRE genomes from LTCF residents and hospital-associated bloodstream infection were interspersed throughout the phylogenetic tree, with several instances of closely related VRE strains from the two settings. Conclusions A proportion of LTCF residents are long-term carriers of VRE. Evidence for genetic relatedness between these and VRE associated with bloodstream infection in a nearby acute NHS Trust indicate a shared bacterial population. Electronic supplementary material The online version of this article (doi:10.1186/s13073-015-0259-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hayley J Brodrick
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Box 157, Hills Road, Cambridge, CB2 0QQ, UK.
| | - Kathy E Raven
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Box 157, Hills Road, Cambridge, CB2 0QQ, UK.
| | - Ewan M Harrison
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Box 157, Hills Road, Cambridge, CB2 0QQ, UK.
| | - Beth Blane
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Box 157, Hills Road, Cambridge, CB2 0QQ, UK.
| | - Sandra Reuter
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Box 157, Hills Road, Cambridge, CB2 0QQ, UK.
| | - M Estée Török
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Box 157, Hills Road, Cambridge, CB2 0QQ, UK. .,Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge, CB2 0QQ, UK. .,Cambridge Public Health England Microbiology and Public Health Laboratory, Box 157, Hills Road, Cambridge, CB2 0QQ, UK.
| | - Julian Parkhill
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.
| | - Sharon J Peacock
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Box 157, Hills Road, Cambridge, CB2 0QQ, UK. .,Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge, CB2 0QQ, UK. .,Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK. .,London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK.
| |
Collapse
|
36
|
Detection of Vancomycin-Resistant Enterococci. Mol Microbiol 2016. [DOI: 10.1128/9781555819071.ch18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
37
|
Jordana-Lluch E, Giménez M, Quesada MD, Rivaya B, Marcó C, Domínguez MJ, Arméstar F, Martró E, Ausina V. Evaluation of the Broad-Range PCR/ESI-MS Technology in Blood Specimens for the Molecular Diagnosis of Bloodstream Infections. PLoS One 2015; 10:e0140865. [PMID: 26474394 PMCID: PMC4608784 DOI: 10.1371/journal.pone.0140865] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 10/01/2015] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Rapid identification of the etiological agent in bloodstream infections is of vital importance for the early administration of the most appropriate antibiotic therapy. Molecular methods may offer an advantage to current culture-based microbiological diagnosis. The goal of this study was to evaluate the performance of IRIDICA, a platform based on universal genetic amplification followed by mass spectrometry (PCR/ESI-MS) for the molecular diagnosis of sepsis-related pathogens directly from the patient's blood. METHODS A total of 410 whole blood specimens from patients admitted to Emergency Room (ER) and Intensive Care Unit (ICU) with clinical suspicion of sepsis were tested with the IRIDICA BAC BSI Assay (broad identification of bacteria and Candida spp.). Microorganisms grown in culture and detected by IRIDICA were compared considering blood culture as gold standard. When discrepancies were found, clinical records and results from other cultures were taken into consideration (clinical infection criterion). RESULTS The overall positive and negative agreement of IRIDICA with blood culture in the analysis by specimen was 74.8% and 78.6%, respectively, rising to 76.9% and 87.2% respectively, when compared with the clinical infection criterion. Interestingly, IRIDICA detected 41 clinically significant microorganisms missed by culture, most of them from patients under antimicrobial treatment. Of special interest were the detections of one Mycoplasma hominis and two Mycobacterium simiae in immunocompromised patients. When ICU patients were analyzed separately, sensitivity, specificity, positive and negative predictive values compared with blood culture were 83.3%, 78.6%, 33.9% and 97.3% respectively, and 90.5%, 87.2%, 64.4% and 97.3% respectively, in comparison with the clinical infection criterion. CONCLUSIONS IRIDICA is a promising technology that offers an early and reliable identification of a wide variety of pathogens directly from the patient's blood within 6h, which brings the opportunity to improve management of septic patients, especially for those critically ill admitted to the ICU.
Collapse
Affiliation(s)
- Elena Jordana-Lluch
- Microbiology Service, Germans Trias i Pujol University Hospital, Department of Genetics and Microbiology, Autonomous University of Barcelona, Badalona, Spain
- CIBER in Respiratory Diseases (CIBERES), Madrid, Spain
- Health Sciences Research Institute (IGTP), Badalona, Spain
| | - Montserrat Giménez
- Microbiology Service, Germans Trias i Pujol University Hospital, Department of Genetics and Microbiology, Autonomous University of Barcelona, Badalona, Spain
- CIBER in Respiratory Diseases (CIBERES), Madrid, Spain
| | - Mª Dolores Quesada
- Microbiology Service, Germans Trias i Pujol University Hospital, Department of Genetics and Microbiology, Autonomous University of Barcelona, Badalona, Spain
| | - Belén Rivaya
- Microbiology Service, Germans Trias i Pujol University Hospital, Department of Genetics and Microbiology, Autonomous University of Barcelona, Badalona, Spain
| | - Clara Marcó
- Microbiology Service, Germans Trias i Pujol University Hospital, Department of Genetics and Microbiology, Autonomous University of Barcelona, Badalona, Spain
| | - Mª Jesús Domínguez
- Emergency Room, Germans Trias i Pujol University Hospital, Badalona, Spain
| | - Fernando Arméstar
- Intensive Care Unit, Germans Trias i Pujol University Hospital, Badalona, Spain
| | - Elisa Martró
- Microbiology Service, Germans Trias i Pujol University Hospital, Department of Genetics and Microbiology, Autonomous University of Barcelona, Badalona, Spain
- Health Sciences Research Institute (IGTP), Badalona, Spain
- CIBER in Epidemiology and Public Health (CIBERESP), Madrid, Spain
- * E-mail:
| | - Vicente Ausina
- Microbiology Service, Germans Trias i Pujol University Hospital, Department of Genetics and Microbiology, Autonomous University of Barcelona, Badalona, Spain
- CIBER in Respiratory Diseases (CIBERES), Madrid, Spain
- Health Sciences Research Institute (IGTP), Badalona, Spain
| |
Collapse
|
38
|
Vancomycin-Variable Enterococcal Bacteremia. J Clin Microbiol 2015; 53:3951-3. [PMID: 26424845 DOI: 10.1128/jcm.02046-15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 09/28/2015] [Indexed: 11/20/2022] Open
Abstract
Vancomycin-variable enterococcus (VVE) is an emerging pathogen. VVE isolates initially appear phenotypically susceptible to vancomycin but possesses the vanA gene and can develop in vitro and in vivo resistance to vancomycin. We report a case of VVE bacteremia and describe how VVE poses diagnostic and therapeutic dilemmas.
Collapse
|
39
|
Wang H, Lee M, Peng Z, Blázquez B, Lastochkin E, Kumarasiri M, Bouley R, Chang M, Mobashery S. Synthesis and evaluation of 1,2,4-triazolo[1,5-a]pyrimidines as antibacterial agents against Enterococcus faecium. J Med Chem 2015; 58:4194-203. [PMID: 25923368 DOI: 10.1021/jm501831g] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Rapid emergence of antibiotic resistance is one of the most challenging global public health concerns. In particular, vancomycin-resistant Enterococcus faecium infections have been increasing in frequency, representing 25% of enterococci infections in intensive care units. A novel class of 1,2,4-triazolo[1,5-a]pyrimidines active against E. faecium is reported herein. We used a three-component Biginelli-like heterocyclization reaction for the synthesis of a series of these derivatives based on reactions of aldehydes, β-dicarbonyl compounds, and 3-alkylthio-5-amino-1,2,4-triazoles. The resulting compounds were assayed for antimicrobial activity against the ESKAPE panel of bacteria, followed by investigation of their in vitro activities. These analyses identified a subset of 1,2,4-triazolo[1,5-a]pyrimidines that had good narrow-spectrum antibacterial activity against E. faecium and exhibited metabolic stability with low intrinsic clearance. Macromolecular synthesis assays revealed cell-wall biosynthesis as the target of these antibiotics.
Collapse
Affiliation(s)
- Huan Wang
- Department of Chemistry and Biochemistry and Eck Institute for Global Health, University of Notre Dame, 423 Nieuwland Hall, Notre Dame, Indiana 46556, United States
| | - Mijoon Lee
- Department of Chemistry and Biochemistry and Eck Institute for Global Health, University of Notre Dame, 423 Nieuwland Hall, Notre Dame, Indiana 46556, United States
| | - Zhihong Peng
- Department of Chemistry and Biochemistry and Eck Institute for Global Health, University of Notre Dame, 423 Nieuwland Hall, Notre Dame, Indiana 46556, United States
| | - Blas Blázquez
- Department of Chemistry and Biochemistry and Eck Institute for Global Health, University of Notre Dame, 423 Nieuwland Hall, Notre Dame, Indiana 46556, United States
| | - Elena Lastochkin
- Department of Chemistry and Biochemistry and Eck Institute for Global Health, University of Notre Dame, 423 Nieuwland Hall, Notre Dame, Indiana 46556, United States
| | - Malika Kumarasiri
- Department of Chemistry and Biochemistry and Eck Institute for Global Health, University of Notre Dame, 423 Nieuwland Hall, Notre Dame, Indiana 46556, United States
| | - Renee Bouley
- Department of Chemistry and Biochemistry and Eck Institute for Global Health, University of Notre Dame, 423 Nieuwland Hall, Notre Dame, Indiana 46556, United States
| | - Mayland Chang
- Department of Chemistry and Biochemistry and Eck Institute for Global Health, University of Notre Dame, 423 Nieuwland Hall, Notre Dame, Indiana 46556, United States
| | - Shahriar Mobashery
- Department of Chemistry and Biochemistry and Eck Institute for Global Health, University of Notre Dame, 423 Nieuwland Hall, Notre Dame, Indiana 46556, United States
| |
Collapse
|
40
|
Mikalsen T, Pedersen T, Willems R, Coque TM, Werner G, Sadowy E, van Schaik W, Jensen LB, Sundsfjord A, Hegstad K. Investigating the mobilome in clinically important lineages of Enterococcus faecium and Enterococcus faecalis. BMC Genomics 2015; 16:282. [PMID: 25885771 PMCID: PMC4438569 DOI: 10.1186/s12864-015-1407-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 02/27/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The success of Enterococcus faecium and E. faecalis evolving as multi-resistant nosocomial pathogens is associated with their ability to acquire and share adaptive traits, including antimicrobial resistance genes encoded by mobile genetic elements (MGEs). Here, we investigate this mobilome in successful hospital associated genetic lineages, E. faecium sequence type (ST)17 (n=10) and ST78 (n=10), E. faecalis ST6 (n=10) and ST40 (n=10) by DNA microarray analyses. RESULTS The hybridization patterns of 272 representative targets including plasmid backbones (n=85), transposable elements (n=85), resistance determinants (n=67), prophages (n=29) and clustered regularly interspaced short palindromic repeats (CRISPR)-cas sequences (n=6) separated the strains according to species, and for E. faecalis also according to STs. RCR-, Rep_3-, RepA_N- and Inc18-family plasmids were highly prevalent and with the exception of Rep_3, evenly distributed between the species. There was a considerable difference in the replicon profile, with rep 17/pRUM , rep 2/pRE25 , rep 14/EFNP1 and rep 20/pLG1 dominating in E. faecium and rep 9/pCF10 , rep 2/pRE25 and rep 7 in E. faecalis strains. We observed an overall high correlation between the presence and absence of genes coding for resistance towards antibiotics, metals, biocides and their corresponding MGEs as well as their phenotypic antimicrobial susceptibility pattern. Although most IS families were represented in both E. faecalis and E. faecium, specific IS elements within these families were distributed in only one species. The prevalence of IS256-, IS3-, ISL3-, IS200/IS605-, IS110-, IS982- and IS4-transposases was significantly higher in E. faecium than E. faecalis, and that of IS110-, IS982- and IS1182-transposases in E. faecalis ST6 compared to ST40. Notably, the transposases of IS981, ISEfm1 and IS1678 that have only been reported in few enterococcal isolates were well represented in the E. faecium strains. E. faecalis ST40 strains harboured possible functional CRISPR-Cas systems, and still resistance and prophage sequences were generally well represented. CONCLUSIONS The targeted MGEs were highly prevalent among the selected STs, underlining their potential importance in the evolution of hospital-adapted lineages of enterococci. Although the propensity of inter-species horizontal gene transfer (HGT) must be emphasized, the considerable species-specificity of these MGEs indicates a separate vertical evolution of MGEs within each species, and for E. faecalis within each ST.
Collapse
Affiliation(s)
- Theresa Mikalsen
- Research group for Host-microbe Interactions, Department of Medical Biology, Faculty of Health Science, UiT - The Arctic University of Norway, Tromsø, Norway.
| | - Torunn Pedersen
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway.
| | - Rob Willems
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Teresa M Coque
- Servicio de Microbiologia, Hospital Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain. .,Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBER-ESP), Madrid, Spain.
| | - Guido Werner
- Division of Nosocomial Pathogens and Antibiotic Resistance, Robert Koch Institute, Wernigerode Branch, Wernigerode, Germany.
| | - Ewa Sadowy
- Department of Molecular Microbiology, National Medicines Institute, ul, Chełmska 30/34, 00-725, Warsaw, Poland.
| | - Willem van Schaik
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Lars Bogø Jensen
- Division of Food Microbiologyt, National Food Institute, Danish Technical University, Copenhagen V, Denmark.
| | - Arnfinn Sundsfjord
- Research group for Host-microbe Interactions, Department of Medical Biology, Faculty of Health Science, UiT - The Arctic University of Norway, Tromsø, Norway. .,Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway.
| | - Kristin Hegstad
- Research group for Host-microbe Interactions, Department of Medical Biology, Faculty of Health Science, UiT - The Arctic University of Norway, Tromsø, Norway. .,Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway.
| |
Collapse
|
41
|
Vancomycin-variable enterococci can give rise to constitutive resistance during antibiotic therapy. Antimicrob Agents Chemother 2014; 59:1405-10. [PMID: 25512425 DOI: 10.1128/aac.04490-14] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Vancomycin-resistant enterococci (VRE) are notorious clinical pathogens restricting the use of glycopeptide antibiotics in the clinic setting. Routine surveillance to detect VRE isolated from patients relies on PCR bioassays and chromogenic agar-based test methods. In recent years, we and others have reported the emergence of enterococcal strains harboring a "silent" copy of vancomycin resistance genes that confer a vancomycin-susceptible phenotype (vancomycin-susceptible enterococci [VSE]) and thus escape detection using drug sensitivity screening tests. Alarmingly, these strains are able to convert to a resistance phenotype (VSE→VRE) during antibiotic treatment, severely compromising the success of therapy. Such strains have been termed vancomycin-variable enterococci (VVE). We have investigated the molecular mechanisms leading to the restoration of resistance in VVE isolates through the whole-genome sequencing of resistant isolates, measurement of resistance gene expression, and quantification of the accumulation of drug-resistant peptidoglycan precursors. The results demonstrate that VVE strains can revert to a VRE phenotype through the constitutive expression of the vancomycin resistance cassette. This is accomplished through a variety of changes in the DNA region upstream of the resistance genes that includes both a deletion of a likely transcription inhibitory secondary structure and the introduction of a new unregulated promoter. The VSE→VRE transition of VVE can occur in patients during the course of antibiotic therapy, resulting in treatment failure. These VVE strains therefore pose a new challenge to the current regimen of diagnostic tests used for VRE detection in the clinic setting.
Collapse
|
42
|
Cilo BD, Ağca H, Efe K, Sınırtaş M, Çelebi S, Özkan H, Köksal N, Hacımustafaoğlu M, Özakın C. Investigation of vancomycin resistant Enterococcus faecium outbreak in neonatal intensive care unit. Int J Clin Exp Med 2014; 7:5342-5347. [PMID: 25664041 PMCID: PMC4307488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 11/13/2014] [Indexed: 06/04/2023]
Abstract
Enterococci are one of the major agents of community-acquired and nosocomial infections. In this study we aimed to analyze the clonal relation of the vancomycin-resistant Enterococci outbreak seen at the Neonate Intensive Care Unit (NICU) of Uludag University Hospital. Vancomycin resistance gene was investigated in the Enterococcus faecium strains and pulsed field gel electrophoresis (PFGE) was used to investigate the genetic relation between outbreak strains. Enterococci grown in all patient samples were identified as Enterococcus faecium by BD Phoenix 100 (Becton Dickinson, USA). We found vanA resistance gene in all of the swab samples by Xpert VanA/B test on Cepheid (Cepheid, USA). PFGE band patterns revealed two different strains, of which the majority of them (22/24) had the same clonal origin. The common clonal origin was also isolated from rectal probes. Perianal swab culture positivity was evaluated as colonization but culture growth in two blood cultures, two urine cultures and one wound culture was evaluated as infection and treated with linezolid. All of the patients survived the outbreak. Besides the infection control precautions determining the genetic relation between outbreak strains which can be done in the microbiology laboratory is necessary to control an outbreak. PFGE is a reliable method in the microbiologic analysis of outbreaks. Molecular microbiologic analysis of outbreak strains will contribute to prove the epidemiologic and evolution of outbreaks.
Collapse
Affiliation(s)
- Burcu Dalyan Cilo
- Department of Medical Microbiology, Uludağ University Faculty of Medicine Bursa, Turkey
| | - Harun Ağca
- Department of Medical Microbiology, Uludağ University Faculty of Medicine Bursa, Turkey
| | - Kadir Efe
- Department of Medical Microbiology, Uludağ University Faculty of Medicine Bursa, Turkey
| | - Melda Sınırtaş
- Department of Medical Microbiology, Uludağ University Faculty of Medicine Bursa, Turkey
| | - Solmaz Çelebi
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Uludağ University Faculty of Medicine Bursa, Turkey
| | - Hilal Özkan
- Division of Neonatalogy, Department of Pediatrics, Uludağ University Faculty of Medicine Bursa, Turkey
| | - Nilgün Köksal
- Division of Neonatalogy, Department of Pediatrics, Uludağ University Faculty of Medicine Bursa, Turkey
| | - Mustafa Hacımustafaoğlu
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Uludağ University Faculty of Medicine Bursa, Turkey
| | - Cüneyt Özakın
- Department of Medical Microbiology, Uludağ University Faculty of Medicine Bursa, Turkey
| |
Collapse
|
43
|
Vancomycin-variable Enterococcus faecium: in vivo emergence of vancomycin resistance in a vancomycin-susceptible isolate. J Clin Microbiol 2014; 52:1766-7. [PMID: 24523476 DOI: 10.1128/jcm.03579-13] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report the emergence of vancomycin resistance in a patient colonized with a vanA-containing, vanRS-negative isolate of Enterococcus faecium which was initially vancomycin susceptible. This is a previously undescribed mechanism of drug resistance with diagnostic and therapeutic implications.
Collapse
|