1
|
Drysdale SB, Thwaites RS, Price J, Thakur D, McGinley J, McPherson C, Öner D, Aerssens J, Openshaw PJ, Pollard AJ. What have we learned from animal studies of immune responses to respiratory syncytial virus infection? J Clin Virol 2024; 175:105731. [PMID: 39368446 DOI: 10.1016/j.jcv.2024.105731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/18/2024] [Indexed: 10/07/2024]
Abstract
Respiratory syncytial virus (RSV) is a common cause of severe respiratory tract infection at the extremes of age and in vulnerable populations. However, it is difficult to predict the clinical course and most infants who develop severe disease have no pre-existing risk factors. With the recent licencing of RSV vaccines and monoclonal antibodies, it is important to identify high-risk individuals in order to prioritise those who will most benefit from prophylaxis. The immune response to RSV and the mechanisms by which the virus prevents the establishment of immunological memory have been extensively investigated but remain incompletely characterised. In animal models, beneficial and harmful immune responses have both been demonstrated. While only chimpanzees are fully permissive for human RSV replication, most research has been conducted in rodents, or in calves infected with bovine RSV. Based on these studies, components of innate and adaptive immune systems, cytokines, chemokines and metabolites, and specific genetic and transcriptomic signatures are identified as potential predictive indicators of RSV disease severity. These findings may inform the development of future human studies and contribute to the early identification of patients at high risk of severe infection. This narrative review summarises the factors involved in the immune response to RSV infection in these models and highlights the relationship between potential biomarkers and disease severity.
Collapse
Affiliation(s)
- Simon B Drysdale
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom and the NIHR Oxford Biomedical Research Centre, Oxford, UK.
| | - Ryan S Thwaites
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | - Devika Thakur
- St George's University Hospitals NHS Foundation Trust, London, UK
| | - Joseph McGinley
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Calum McPherson
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Deniz Öner
- Infectious Diseases Translational Biomarkers, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Jeroen Aerssens
- Infectious Diseases Translational Biomarkers, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Peter Jm Openshaw
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| |
Collapse
|
2
|
da Silva Barcelos L, Ford AK, Frühauf MI, Botton NY, Fischer G, Maggioli MF. Interactions Between Bovine Respiratory Syncytial Virus and Cattle: Aspects of Pathogenesis and Immunity. Viruses 2024; 16:1753. [PMID: 39599867 PMCID: PMC11598946 DOI: 10.3390/v16111753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/25/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
Bovine respiratory syncytial virus (BRSV) is a major respiratory pathogen in cattle and is relevant to the livestock industry worldwide. BRSV is most severe in young calves and is often associated with stressful management events. The disease is responsible for economic losses due to lower productivity, morbidity, mortality, and prevention and treatment costs. As members of the same genus, bovine and human RSV share a high degree of homology and are similar in terms of their genomes, transmission, clinical signs, and epidemiology. This overlap presents an opportunity for One Health approaches and translational studies, with dual benefits; however, there is still a relative lack of studies focused on BRSV, and the continued search for improved prophylaxis highlights the need for a deeper understanding of its immunological features. BRSV employs different host-immunity-escaping mechanisms that interfere with effective long-term memory responses to current vaccines and natural infections. This review presents an updated description of BRSV's immunity processes, such as the PRRs and signaling pathways involved in BRSV infection, aspects of its pathogeny, and the evading mechanisms developed by the virus to thwart the immune response.
Collapse
Affiliation(s)
- Lariane da Silva Barcelos
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK 74078, USA; (L.d.S.B.)
- Laboratory of Virology and Immunology, Veterinary College, Universidade Federal de Pelotas, Capão do Leão, Rio Grande do Sul 96010, Brazil; (M.I.F.); (N.Y.B.); (G.F.)
| | - Alexandra K. Ford
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK 74078, USA; (L.d.S.B.)
| | - Matheus Iuri Frühauf
- Laboratory of Virology and Immunology, Veterinary College, Universidade Federal de Pelotas, Capão do Leão, Rio Grande do Sul 96010, Brazil; (M.I.F.); (N.Y.B.); (G.F.)
| | - Nadalin Yandra Botton
- Laboratory of Virology and Immunology, Veterinary College, Universidade Federal de Pelotas, Capão do Leão, Rio Grande do Sul 96010, Brazil; (M.I.F.); (N.Y.B.); (G.F.)
| | - Geferson Fischer
- Laboratory of Virology and Immunology, Veterinary College, Universidade Federal de Pelotas, Capão do Leão, Rio Grande do Sul 96010, Brazil; (M.I.F.); (N.Y.B.); (G.F.)
| | - Mayara Fernanda Maggioli
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK 74078, USA; (L.d.S.B.)
| |
Collapse
|
3
|
Grego E, Kelly SM, McGill JL, Wannemuehler M, Narasimhan B. Bovine Respiratory Syncytial Virus Nanovaccine Induces Long-Lasting Humoral Immunity in Mice. ACS Pharmacol Transl Sci 2024; 7:3205-3215. [PMID: 39421663 PMCID: PMC11480889 DOI: 10.1021/acsptsci.4c00375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 10/19/2024]
Abstract
With limited therapies and vaccines available, human respiratory syncytial virus (HRSV) has a significant negative health impact on all age groups but particularly on infants, young children, and older adults. Bovine respiratory syncytial virus (BRSV) is pathogenically and antigenically similar to HRSV. Building upon previous studies using a BRSV nanovaccine coencapsulating multiple proteins, this work demonstrates the development and comparative evaluation of a coencapsulated nanovaccine to a cocktail nanovaccine formulation composed of polyanhydride nanoparticles encapsulating BRSV postfusion (F) glycoprotein and CpG ODN 1668 coadjuvant delivered simultaneously with nanoparticles encapsulating BRSV attachment glycoprotein (G) and CpG ODN 1668. These nanovaccine formulations were administered to C57BL/6 mice by one of two prime-boost regimens (i.e., intranasal/intranasal or intranasal/subcutaneous) followed by assessment of humoral immunity. The cocktail nanovaccine induced sustained anti-F and anti-G serum IgG antibody responses for 12 weeks postprimary immunization. Using polyanhydride particles to deliver G protein in a prime-boost regime also significantly induced serum anti-G antibodies compared to protein and coadjuvant alone. Serum IgG induced by the nanovaccine demonstrated virus-neutralizing capability from 42 to 119 days postprimary immunization. Further, anti-F IgG antibodies were detected in the bronchoalveolar lavage fluid of vaccinated animals. Finally, the nanovaccine induced long-lived anti-F antibody secreting plasma cells that were detectable in the bone marrow 205 days postprimary immunization. Overall, the BRSV nanovaccine(s) successfully induced long-lived humoral immune responses capable of virus neutralization, making this a promising vaccine candidate for further evaluation in other relevant animal models.
Collapse
Affiliation(s)
- Elizabeth Grego
- Chemical
& Biological Engineering, Iowa State
University, Ames, Iowa 50011, United States
- Nanovaccine
Institute, Ames, Iowa 50011, United States
| | - Sean M. Kelly
- Chemical
& Biological Engineering, Iowa State
University, Ames, Iowa 50011, United States
- Nanovaccine
Institute, Ames, Iowa 50011, United States
| | - Jodi L. McGill
- Nanovaccine
Institute, Ames, Iowa 50011, United States
- Veterinary
Microbiology & Preventive Medicine, Iowa State University, Ames, Iowa 50011, United States
| | - Michael Wannemuehler
- Nanovaccine
Institute, Ames, Iowa 50011, United States
- Veterinary
Microbiology & Preventive Medicine, Iowa State University, Ames, Iowa 50011, United States
| | - Balaji Narasimhan
- Chemical
& Biological Engineering, Iowa State
University, Ames, Iowa 50011, United States
- Nanovaccine
Institute, Ames, Iowa 50011, United States
| |
Collapse
|
4
|
Woolums AR. Serology in Bovine Infectious Disease Diagnosis. Vet Clin North Am Food Anim Pract 2023; 39:141-155. [PMID: 36731994 DOI: 10.1016/j.cvfa.2022.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Serologic diagnosis is used to identify evidence of infection or vaccination by specific agents, or for population surveillance. The enzyme-linked immunosorbent assay and the serum (virus) neutralizing tests are most used for bovine serologic diagnosis. Although infectious agent-specific antibodies may include immunoglobulin M, immunoglobulin G, and immunoglobulin A, the antibody class is rarely specifically identified in diagnostic laboratory testing. When interpreting the results of serology, consider whether the antibodies are due to an agent that causes life-long infection, transient infection with no history of vaccination, or transient infection with a history of vaccination. Paired serology is necessary to confirm recent infection in cattle with a history of vaccination.
Collapse
Affiliation(s)
- Amelia R Woolums
- Department of Pathobiology and Population Medicine, Mississippi State University, Mississippi State, MS 39762, USA.
| |
Collapse
|
5
|
Protection against Bovine Respiratory Syncytial Virus Afforded by Maternal Antibodies from Cows Immunized with an Inactivated Vaccine. Vaccines (Basel) 2023; 11:vaccines11010141. [PMID: 36679988 PMCID: PMC9864491 DOI: 10.3390/vaccines11010141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
The passive protection afforded by the colostrum from cattle that were vaccinated prepartum with an inactivated combination vaccine against the bovine respiratory syncytial virus (BRSV) was evaluated after an experimental challenge of calves. Pregnant cows without or with a low ELISA and neutralizing BRSV antibody titers were twice vaccinated or not vaccinated, the last immunization being at one month prior to calving. Vaccination was followed by a rapid increase in BRSV antibody titers after the second immunization. Twenty-eightnewborn calves were fed during the 6 h following birth, with 4 L of colostrum sourced from vaccinated cows (14 vaccine calves) or non-vaccinated cows (14 control calves) and were challenged with BRSV at 21 days of age. We showed that maternal immunity to BRSV provides a significant reduction in the clinical signs of BRSV in calves, especially for severe clinical forms. This protection was correlated with reduced BRSV detection in the lower respiratory tract but not in nasal swabs, indicating an absence of protection against BRSV nasal excretion. Finally, transcriptomic assays in bronchoalveolar lavages showed no statistical differences between groups for chemokine and cytokine mRNA transcriptions, with the exception of the overexpression of IL-9 at days 6 and 10 post-challenge, and a severe downregulation of CXCL-1 at day 3 post-challenge, in the vaccine group.
Collapse
|
6
|
Local and Systemic Antibody Responses in Beef Calves Vaccinated with a Modified-Live Virus Bovine Respiratory Syncytial Virus (BRSV) Vaccine at Birth following BRSV Infection. Vet Sci 2022; 10:vetsci10010020. [PMID: 36669022 PMCID: PMC9863489 DOI: 10.3390/vetsci10010020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022] Open
Abstract
Maternal antibodies interfere with BRSV vaccine responses and efficacy in young calves. The objective of this study was to determine if vaccination before the complete absorption of colostral antibodies results in adequate immune priming and clinical protection of beef calves. Within 6 h of life, calves were randomly assigned to 2 different treatment groups. Group Vacc (n = 25) received a single dose of a modified-live virus (MLV) BRSV vaccine intranasally (IN) and group Control (n = 25) received 2 mL of 0.9% saline IN. At approximately 3 months of age, all calves were experimentally challenged with BRSV. Serum and nasal secretion samples were collected before and after challenge for BRSV real-time RT-PCR and antibody testing. Respiratory signs were not observed before challenge. After challenge, respiratory scores were similar between groups. On the challenge day, >40% of calves in each group were febrile. The mean serum and nasal BRSV-specific antibody titers indicated natural BRSV exposure before the experimental challenge in both groups. All calves tested positive for BRSV and had a similar duration of shedding after challenge. Based on these results, vaccination at birth does not offer advantages for immune priming or clinical protection for beef calves in BRSV-endemic cow-calf herds.
Collapse
|
7
|
Soto JA, Galvez NMS, Rivera DB, Díaz FE, Riedel CA, Bueno SM, Kalergis AM. From animal studies into clinical trials: the relevance of animal models to develop vaccines and therapies to reduce disease severity and prevent hRSV infection. Expert Opin Drug Discov 2022; 17:1237-1259. [PMID: 36093605 DOI: 10.1080/17460441.2022.2123468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Human respiratory syncytial virus (hRSV) is an important cause of lower respiratory tract infections in the pediatric and the geriatric population worldwide. There is a substantial economic burden resulting from hRSV disease during winter. Although no vaccines have been approved for human use, prophylactic therapies are available for high-risk populations. Choosing the proper animal models to evaluate different vaccine prototypes or pharmacological treatments is essential for developing efficient therapies against hRSV. AREAS COVERED This article describes the relevance of using different animal models to evaluate the effect of antiviral drugs, pharmacological molecules, vaccine prototypes, and antibodies in the protection against hRSV. The animal models covered are rodents, mustelids, bovines, and nonhuman primates. Animals included were chosen based on the available literature and their role in the development of the drugs discussed in this manuscript. EXPERT OPINION Choosing the correct animal model is critical for exploring and testing treatments that could decrease the impact of hRSV in high-risk populations. Mice will continue to be the most used preclinical model to evaluate this. However, researchers must also explore the use of other models such as nonhuman primates, as they are more similar to humans, prior to escalating into clinical trials.
Collapse
Affiliation(s)
- J A Soto
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - N M S Galvez
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - D B Rivera
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - F E Díaz
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - C A Riedel
- Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - S M Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - A M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
8
|
Martínez DA, Chamorro MF, Passler T, Huber L, Walz PH, Thoresen M, Raithel G, Silvis S, Stockler R, Woolums AR. The titers, duration, and residual clinical protection of passively transferred nasal and serum antibodies are similar among beef calves that nursed colostrum from vaccinated or unvaccinated dams and were challenged experimentally with bovine respiratory syncytial virus at three months of age. Am J Vet Res 2022; 83:1-9. [PMID: 36173761 DOI: 10.2460/ajvr.22.07.0118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVES To compare initial titers, duration, and residual clinical protection of passively transferred bovine respiratory syncytial virus (BRSV) nasal immunoglobulin (Ig) G-1 and IgA, and serum neutralizing (SN) antibodies. ANIMALS 40 three-month-old beef steers born either to unvaccinated or vaccinated cows. PROCEDURES During the last trimester of gestation, cows were assigned randomly to either vaccinated or unvaccinated groups. Calves were grouped on the basis of whether they nursed colostrum from unvaccinated dams (NO-VACC group; n = 20) versus dams vaccinated with 2 doses of an inactivated BRSV vaccine (VACC group; n = 20). At 3 months of age, calves were challenged with BRSV. Respiratory signs were scored. Nasal BRSV IgG-1 and IgA and SN antibodies were compared before and after the challenge. The presence of BRSV in nasal secretions was evaluated by reverse transcription-PCR assays. RESULTS Respiratory scores after BRSV challenge were similar between treatment groups. Nasal BRSV IgG-1 and SN antibodies were significantly greater in VACC calves at 48 hours of life; however, by 3 months of age, titers had decayed in both groups. Nasal BRSV IgA titers were minimal after colostrum intake and before the BRSV challenge, and increased in both groups after the challenge. The NO-VACC group had a significantly greater probability of shedding BRSV compared with VACC calves. CLINICAL RELEVANCE At 3 months of age, titers of passively transferred BRSV antibodies in VACC and NO-VACC calves had decayed to nonprotective levels. Calves born to vaccinated dams had a decreased probability of BRSV shedding; however, this was not related to differences in SN or nasal BRSV antibody titers.
Collapse
Affiliation(s)
- David A Martínez
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL
| | - Manuel F Chamorro
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL
| | - Thomas Passler
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL
| | - Laura Huber
- Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL
| | - Paul H Walz
- Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL
| | - Merrilee Thoresen
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS
| | - Gage Raithel
- Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL
| | - Scott Silvis
- Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL
| | - Ricardo Stockler
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL
| | - Amelia R Woolums
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS
| |
Collapse
|
9
|
Hägglund S, Näslund K, Svensson A, Lefverman C, Enül H, Pascal L, Siltenius J, Holzhauer M, Delabouglise A, Österberg J, Alvåsen K, Olsson U, Eléouët JF, Riffault S, Taylor G, Rodriguez MJ, Garcia Duran M, Valarcher JF. Longitudinal study of the immune response and memory following natural bovine respiratory syncytial virus infections in cattle of different age. PLoS One 2022; 17:e0274332. [PMID: 36112582 PMCID: PMC9481050 DOI: 10.1371/journal.pone.0274332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/25/2022] [Indexed: 11/24/2022] Open
Abstract
Human and bovine respiratory syncytial virus (HRSV and BRSV) are closely genetically related and cause respiratory disease in their respective host. Whereas HRSV vaccines are still under development, a multitude of BRSV vaccines are used to reduce clinical signs. To enable the design of vaccination protocols to entirely stop virus circulation, we aimed to investigate the duration, character and efficacy of the immune responses induced by natural infections. The systemic humoral immunity was monitored every two months during two years in 33 dairy cattle in different age cohorts following a natural BRSV outbreak, and again in selected individuals before and after a second outbreak, four years later. Local humoral and systemic cellular responses were also monitored, although less extensively. Based on clinical observations and economic losses linked to decreased milk production, the outbreaks were classified as moderate. Following the first outbreak, most but not all animals developed neutralising antibody responses, BRSV-specific IgG1, IgG2 and HRSV F- and HRSV N-reactive responses that lasted at least two years, and in some cases at least four years. In contrast, no systemic T cell responses were detected and only weak IgA responses were detected in some animals. Seronegative sentinels remained negative, inferring that no new infections occurred between the outbreaks. During the second outbreak, reinfections with clinical signs and virus shedding occurred, but the signs were milder, and the virus shedding was significantly lower than in naïve animals. Whereas the primary infection induced similar antibody titres against the prefusion and the post fusion form of the BRSV F protein, memory responses were significantly stronger against prefusion F. In conclusion, even if natural infections induce a long-lasting immunity, it would probably be necessary to boost memory responses between outbreaks, to stop the circulation of the virus and limit the potential role of previously infected adult cattle in the chain of BRSV transmission.
Collapse
Affiliation(s)
- Sara Hägglund
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
- * E-mail:
| | - Katarina Näslund
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Anna Svensson
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Cecilia Lefverman
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Hakan Enül
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Leonore Pascal
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jari Siltenius
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Menno Holzhauer
- Ruminant Health Department Royal GD Animal Health, Deventer, The Netherlands
| | - Alexis Delabouglise
- CIRAD, UMR ASTRE, F-34398 Montpellier, France and UMR ASTRE, Univ Montpellier, CIRAD, INRAE, Montpellier, France
| | - Julia Österberg
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Karin Alvåsen
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Ulf Olsson
- Department of Energy and Technology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | - Sabine Riffault
- Université Paris-Saclay, UVSQ, INRAE, VIM, Jouy-en-Josas, France
| | - Geraldine Taylor
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey, United Kingdom
| | | | | | - Jean François Valarcher
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
10
|
Martinez DA, Newcomer B, Passler T, Chamorro MF. Efficacy of Bovine Respiratory Syncytial Virus Vaccines to Reduce Morbidity and Mortality in Calves Within Experimental Infection Models: A Systematic Review and Meta-Analysis. Front Vet Sci 2022; 9:906636. [PMID: 35782561 PMCID: PMC9245045 DOI: 10.3389/fvets.2022.906636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/11/2022] [Indexed: 11/18/2022] Open
Abstract
Producers and veterinarians commonly use vaccination as the main strategy to reduce the incidence of bovine respiratory syncytial virus (BRSV) infection in calves; however, supportive evidence of BRSV vaccination efficacy has been inconsistent in the literature. The objective of this meta-analysis was to evaluate data from controlled studies on the efficacy of commercially available BRSV vaccines on reducing calf morbidity and mortality after experimental infection with BRSV. A systematic review and meta-analysis was performed in BRSV experimental challenge studies that reported the efficacy of commercially available modified-live virus (MLV) and inactivated BRSV vaccines on protection against calf morbidity and mortality. The studies included in the analysis were randomized, controlled, clinical trials with clear definitions of calf morbidity and mortality. Risk ratios with 95% confidence intervals and forest plots were generated. Fourteen studies including 29 trials were selected for the analysis. Commercially available MLV BRSV vaccines reduced the risk of calf mortality after experimental infection with BRSV. Modified-live virus vaccines reduced the risk of morbidity in calves with absence of serum maternal antibodies at initial vaccination, but failed to demonstrate significant morbidity reduction when calves were vaccinated in the face of maternal immunity. Results from experimental challenge studies do not always represent the conditions of natural infection and caution should be used when making vaccine recommendations.
Collapse
Affiliation(s)
- David A. Martinez
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Benjamin Newcomer
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, West Texas A&M University, Canyon, TX, United States
| | - Thomas Passler
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Manuel F. Chamorro
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- *Correspondence: Manuel F. Chamorro
| |
Collapse
|
11
|
Nuijten P, Cleton N, van der Loop J, Makoschey B, Pulskens W, Vertenten G. Early Activation of the Innate Immunity and Specific Cellular Immune Pathways after Vaccination with a Live Intranasal Viral Vaccine and Challenge with Bovine Parainfluenza Type 3 Virus. Vaccines (Basel) 2022; 10:vaccines10010104. [PMID: 35062765 PMCID: PMC8777984 DOI: 10.3390/vaccines10010104] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/27/2021] [Accepted: 12/29/2021] [Indexed: 02/04/2023] Open
Abstract
Bovine parainfluenza type 3 (BPIV3) and bovine respiratory syncytial virus (BRSV) may cause bovine respiratory disease (BRD) in very young calves, and therefore vaccination should induce protection at the youngest age and as quickly as possible. This can be achieved by intranasal vaccination with a vaccine containing live attenuated BRSV and BPIV3 virus strains. The objective of this study was to measure gene expression levels by means of RT-qPCR of proteins involved in the innate and adaptive immune response in the nasopharyngeal mucosae after administration of the above-mentioned vaccine and after challenge with BPIV3. Gene expression profiles were different between (i) vaccinated, (ii) nonvaccinated-challenged, and (iii) vaccinated-challenged animals. In nonvaccinated-challenged animals, expression of genes involved in development of disease symptoms and pathology were increased, however, this was not the case after vaccination. Moreover, gene expression patterns of vaccinated animals reflected induction of the antiviral and innate immune pathways as well as an initial Th1 (cytotoxic) cellular response. After challenge with BPIV3, the vaccinated animals were protected against nasal shedding of the challenge virus and clinical symptoms, and in parallel the expression levels of the investigated genes had returned to values that were found before vaccination. In conclusion, in comparison to the virulent wild-type field isolates, the two virus strains in the vaccine have lost their capacity to evade the immune response, resulting in the induction of an antiviral state followed by a very early activation of innate immune and antiviral responses as well as induction of specific cellular immune pathways, resulting in protection. The exact changes in the genomes of these vaccine strains leading to attenuation have not been identified. These data represent the real-life situation and can serve as a basis for further detailed research. This is the first report describing the effects on immune gene expression profiles in the nasal mucosae induced by intranasal vaccination with a bivalent, live BRSV-BPI3V vaccine formulation in comparison to wild-type infection with a virulent BPI3V strain.
Collapse
|
12
|
A Field Study Evaluating Humoral Immunity in Calves Vaccinated with Multivalent Bovine Respiratory Pathogen Vaccines. FOLIA VETERINARIA 2021. [DOI: 10.2478/fv-2021-0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Bovine Respiratory Syncytial Virus (BRSV), Bovine Parainfluenza 3 (BPI3) and Mannheimia haemolytica (Mh) are major respiratory pathogens in the bovine respiratory disease complex. It is important to optimize passive and active immunity to these pathogens early in life to reduce clinical and subclinical productivity losses. The administration of inactivated, adjuvanted and multivalent vaccines, such as Bovilis® Bovipast RSP (Bovipast), and Bovalto® Respi 3 (Bovalto) to calves, may enhance cellular and humoral immunity against BRSV, BPI3 and Mh. A field trial evaluated the immune responses to these three agents in the first year of life in 12 Bovipast and 13 Bovalto vaccinated calves, and 5 negative control calves. Calves were vaccinated starting at 2 weeks of age and revaccinated 4 weeks later (primo vaccination). A booster vaccination was given at approximately 10 months of age. Serum samples were taken at time intervals up to 6 months after primo vaccination and up to 1 month after the booster vaccination. BRSV serum titres were evaluated using a serum neutralisation assay (SN), and BRSV, BPI3 and Mh titres were evaluated using a commercial enzyme linked immunosorbent assay (ELISA) test. Serum antibodies after primo and booster vaccinations in the individual calves were evaluated by calculating the areas under the curve (AUC) of the Log2 transformed BRSV SN titres and the optic density measures of the ELISA tests for BRSV, BPI3 and Mh. Multivariate general linear models were used to evaluate the influence of the vaccination on the AUC of the serum measures within 6 months after the primo vaccination. Similarly, models evaluated the AUC of the serum measures after the booster vaccination. The Bovipast vaccinated calves had significantly higher SN and ELISA titres AUC following the primo vaccination and booster vaccinations compared to the negative control calves and the Bovalto vaccinated calves. The Bovalto vaccinated calves did not have a significantly different BRSV SN and ELISA titres AUC response after the primo or booster vaccinations compared to the negative control calves. The serum antibody responses to BPI3 and Mh in the vaccinated calves were less pronounced than the Bovipast BRSV antibody response. Bovipast and Boval- to vaccinated calves mounted a significantly higher AUC ELISA OD for both BPI3 and Mh and the highest AUC was measured in the Bovipast vaccinated calves. This study indicated that early vaccinations of calves with multivalent adjuvanted inactivated BRD vaccines, such as Bovilis® Bovipast RSP can elicit a humoral response with a cellular-mediated memory effect as indicated by the booster vaccination.
Collapse
|
13
|
Lemon JL, McMenamy MJ. A Review of UK-Registered and Candidate Vaccines for Bovine Respiratory Disease. Vaccines (Basel) 2021; 9:vaccines9121403. [PMID: 34960149 PMCID: PMC8703677 DOI: 10.3390/vaccines9121403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/10/2021] [Accepted: 11/22/2021] [Indexed: 01/11/2023] Open
Abstract
Vaccination is widely regarded as a cornerstone in animal or herd health and infectious disease management. Nineteen vaccines against the major pathogens implicated in bovine respiratory disease are registered for use in the UK by the Veterinary Medicines Directorate (VMD). However, despite annual prophylactic vaccination, bovine respiratory disease is still conservatively estimated to cost the UK economy approximately £80 million per annum. This review examines the vaccine types available, discusses the surrounding literature and scientific rationale of the limitations and assesses the potential of novel vaccine technologies.
Collapse
Affiliation(s)
- Joanne L. Lemon
- Sustainable Agri-Food and Sciences Division, Agri-Food and Bioscience Institute, Newforge Lane, Belfast BT9 5PX, UK
- Correspondence:
| | - Michael J. McMenamy
- Veterinary Sciences Division, Agri-Food and Bioscience Institute, Stormont, Belfast BT4 3SD, UK;
| |
Collapse
|
14
|
Makoschey B, Berge AC. Review on bovine respiratory syncytial virus and bovine parainfluenza - usual suspects in bovine respiratory disease - a narrative review. BMC Vet Res 2021; 17:261. [PMID: 34332574 PMCID: PMC8325295 DOI: 10.1186/s12917-021-02935-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 06/10/2021] [Indexed: 12/26/2022] Open
Abstract
Bovine Respiratory Syncytial virus (BRSV) and Bovine Parainfluenza 3 virus (BPIV3) are closely related viruses involved in and both important pathogens within bovine respiratory disease (BRD), a major cause of morbidity with economic losses in cattle populations around the world. The two viruses share characteristics such as morphology and replication strategy with each other and with their counterparts in humans, HRSV and HPIV3. Therefore, BRSV and BPIV3 infections in cattle are considered useful animal models for HRSV and HPIV3 infections in humans.The interaction between the viruses and the different branches of the host's immune system is rather complex. Neutralizing antibodies seem to be a correlate of protection against severe disease, and cell-mediated immunity is thought to be essential for virus clearance following acute infection. On the other hand, the host's immune response considerably contributes to the tissue damage in the upper respiratory tract.BRSV and BPIV3 also have similar pathobiological and epidemiological features. Therefore, combination vaccines against both viruses are very common and a variety of traditional live attenuated and inactivated BRSV and BPIV3 vaccines are commercially available.
Collapse
Affiliation(s)
- Birgit Makoschey
- Intervet International BV/MSD-Animal Health, Wim de Körverstraat, 5831AN, Boxmeer, The Netherlands.
| | - Anna Catharina Berge
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium
| |
Collapse
|
15
|
Vlasova AN, Saif LJ. Bovine Immunology: Implications for Dairy Cattle. Front Immunol 2021; 12:643206. [PMID: 34267745 PMCID: PMC8276037 DOI: 10.3389/fimmu.2021.643206] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 06/15/2021] [Indexed: 11/13/2022] Open
Abstract
The growing world population (7.8 billion) exerts an increased pressure on the cattle industry amongst others. Intensification and expansion of milk and beef production inevitably leads to increased risk of infectious disease spread and exacerbation. This indicates that improved understanding of cattle immune function is needed to provide optimal tools to combat the existing and future pathogens and improve food security. While dairy and beef cattle production is easily the world's most important agricultural industry, there are few current comprehensive reviews of bovine immunobiology. High-yielding dairy cattle and their calves are more vulnerable to various diseases leading to shorter life expectancy and reduced environmental fitness. In this manuscript, we seek to fill this paucity of knowledge and provide an up-to-date overview of immune function in cattle emphasizing the unresolved challenges and most urgent needs in rearing dairy calves. We will also discuss how the combination of available preventative and treatment strategies and herd management practices can maintain optimal health in dairy cows during the transition (periparturient) period and in neonatal calves.
Collapse
Affiliation(s)
- Anastasia N Vlasova
- Center for Food Animal Health, Ohio Agricultural Research and Development Center, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, United States
| | - Linda J Saif
- Center for Food Animal Health, Ohio Agricultural Research and Development Center, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, United States
| |
Collapse
|
16
|
Díaz FE, Guerra-Maupome M, McDonald PO, Rivera-Pérez D, Kalergis AM, McGill JL. A Recombinant BCG Vaccine Is Safe and Immunogenic in Neonatal Calves and Reduces the Clinical Disease Caused by the Respiratory Syncytial Virus. Front Immunol 2021; 12:664212. [PMID: 33981309 PMCID: PMC8108697 DOI: 10.3389/fimmu.2021.664212] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/31/2021] [Indexed: 12/18/2022] Open
Abstract
The human respiratory syncytial virus (hRSV) constitutes a major health burden, causing millions of hospitalizations in children under five years old worldwide due to acute lower respiratory tract infections. Despite decades of research, licensed vaccines to prevent hRSV are not available. Development of vaccines against hRSV targeting young infants requires ruling out potential vaccine-enhanced disease presentations. To achieve this goal, vaccine testing in proper animal models is essential. A recombinant BCG vaccine that expresses the Nucleoprotein of hRSV (rBCG-N-hRSV) protects mice against hRSV infection, eliciting humoral and cellular immune protection. Further, this vaccine was shown to be safe and immunogenic in human adult volunteers. Here, we evaluated the safety, immunogenicity, and protective efficacy of the rBCG-N-hRSV vaccine in a neonatal bovine RSV calf infection model. Newborn, colostrum-replete Holstein calves were either vaccinated with rBCG-N-hRSV, WT-BCG, or left unvaccinated, and then inoculated via aerosol challenge with bRSV strain 375. Vaccination with rBCG-N-hRSV was safe and well-tolerated, with no systemic adverse effects. There was no evidence of vaccine-enhanced disease following bRSV challenge of rBCG-N-hRSV vaccinated animals, suggesting that the vaccine is safe for use in neonates. Vaccination increased virus-specific IgA and virus-neutralization activity in nasal fluid and increased the proliferation of virus- and BCG-specific CD4+ and CD8+ T cells in PBMCs and lymph nodes at 7dpi. Furthermore, rBCG-N-hRSV vaccinated calves developed reduced clinical disease as compared to unvaccinated control calves, although neither pathology nor viral burden were significantly reduced in the lungs. These results suggest that the rBCG-N-hRSV vaccine is safe in neonatal calves and induces protective humoral and cellular immunity against this respiratory virus. These data from a newborn animal model provide further support to the notion that this vaccine approach could be considered as a candidate for infant immunization against RSV.
Collapse
Affiliation(s)
- Fabián E Díaz
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mariana Guerra-Maupome
- Department of Veterinary Microbiology and Preventative Medicine, Iowa State University, Ames, IA, United States
| | - Paiton O McDonald
- Department of Veterinary Microbiology and Preventative Medicine, Iowa State University, Ames, IA, United States
| | - Daniela Rivera-Pérez
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jodi L McGill
- Department of Veterinary Microbiology and Preventative Medicine, Iowa State University, Ames, IA, United States
| |
Collapse
|
17
|
Single-Shot Vaccines against Bovine Respiratory Syncytial Virus (BRSV): Comparative Evaluation of Long-Term Protection after Immunization in the Presence of BRSV-Specific Maternal Antibodies. Vaccines (Basel) 2021; 9:vaccines9030236. [PMID: 33803302 PMCID: PMC8001206 DOI: 10.3390/vaccines9030236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/25/2021] [Accepted: 03/03/2021] [Indexed: 11/28/2022] Open
Abstract
The induction of long-lasting clinical and virological protection is needed for a successful vaccination program against the bovine respiratory syncytial virus (BRSV). In this study, calves with BRSV-specific maternally derived antibodies were vaccinated once, either with (i) a BRSV pre-fusion protein (PreF) and MontanideTM ISA61 VG (ISA61, n = 6), (ii) BRSV lacking the SH gene (ΔSHrBRSV, n = 6), (iii) a commercial vaccine (CV, n = 6), or were injected with ISA61 alone (n = 6). All calves were challenged with BRSV 92 days later and were euthanized 13 days post-infection. Based on clinical, pathological, and proteomic data, all vaccines appeared safe. Compared to the controls, PreF induced the most significant clinical and virological protection post-challenge, followed by ΔSHrBRSV and CV, whereas the protection of PreF-vaccinated calves was correlated with BRSV-specific serum immunoglobulin (Ig)G antibody responses 84 days post-vaccination, and the IgG antibody titers of ΔSHrBRSV- and CV-vaccinated calves did not differ from the controls on this day. Nevertheless, strong anamnestic BRSV- and PreF-specific IgG responses occurred in calves vaccinated with either of the vaccines, following a BRSV challenge. In conclusion, PreF and ΔSHrBRSV are two efficient one-shot candidate vaccines. By inducing a protection for at least three months, they could potentially improve the control of BRSV in calves.
Collapse
|
18
|
McGill JL, Sacco RE. The Immunology of Bovine Respiratory Disease: Recent Advancements. Vet Clin North Am Food Anim Pract 2020; 36:333-348. [PMID: 32327252 PMCID: PMC7170797 DOI: 10.1016/j.cvfa.2020.03.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Jodi L McGill
- Department of Veterinary Microbiology and Preventative Medicine, Iowa State University, 1907 ISU C-Drive, VMRI Building 5, Ames, IA 50010, USA.
| | - Randy E Sacco
- Ruminant Diseases and Immunology Research Unit, Agricultural Research Services, USDA, PO Box 70, 1920 Dayton Avenue, Ames, IA 50010, USA
| |
Collapse
|
19
|
Stokstad M, Klem TB, Myrmel M, Oma VS, Toftaker I, Østerås O, Nødtvedt A. Using Biosecurity Measures to Combat Respiratory Disease in Cattle: The Norwegian Control Program for Bovine Respiratory Syncytial Virus and Bovine Coronavirus. Front Vet Sci 2020; 7:167. [PMID: 32318587 PMCID: PMC7154156 DOI: 10.3389/fvets.2020.00167] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/10/2020] [Indexed: 01/10/2023] Open
Abstract
Bovine respiratory disease (BRD) cause important health problems in all cattle husbandry systems. It contributes substantially to the use of antimicrobial substances and compromises animal welfare and the sustainability of the cattle industry. The existing preventive measures of BRD focus at the individual animal or herd level and include vaccination, mass treatment with antimicrobials and improvement of the animal's environment and general health status. Despite progress in our understanding of disease mechanism and technological development, the current preventive measures are not sufficiently effective. Thus, there is a need for alternative, sustainable strategies to combat the disease. Some of the primary infectious agents in the BRD complex are viruses that are easily transmitted between herds such as bovine respiratory syncytial virus (BRSV) and bovine coronavirus (BCoV). This conceptual analysis presents arguments for combatting BRD through improved external biosecurity in the cattle herds. As an example of a population-based approach to the control of BRD, the Norwegian BRSV/BCoV control-program is presented. The program is voluntary and launched by the national cattle industry. The core principle is classification of herds based on antibody testing and subsequent prevention of virus-introduction through improved biosecurity measures. Measures include external herd biosecurity barriers and regulations in the organization of animal trade to reduce direct and indirect transmission of virus. Improved biosecurity in a large proportion of herds will lead to a considerable effect at the population level. Positive herds are believed to gain freedom by time if new introduction is avoided. Vaccination is not used as part of the program. Dissemination of information to producers and veterinarians is essential. We believe that reducing the incidence of BRD in cattle is essential and will lead to reduced antimicrobial usage while at the same time improving animal health, welfare and production. Alternative approaches to the traditional control measures are needed.
Collapse
Affiliation(s)
- Maria Stokstad
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, Oslo, Norway
| | | | - Mette Myrmel
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, Oslo, Norway
| | - Veslemøy Sunniva Oma
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, Oslo, Norway
| | - Ingrid Toftaker
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, Oslo, Norway
| | - Olav Østerås
- Section for Research and Development in Primary Production, Tine SA, Oslo, Norway
| | - Ane Nødtvedt
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, Oslo, Norway
| |
Collapse
|
20
|
Klem TB, Sjurseth SK, Sviland S, Gjerset B, Myrmel M, Stokstad M. Bovine respiratory syncytial virus in experimentally exposed and rechallenged calves; viral shedding related to clinical signs and the potential for transmission. BMC Vet Res 2019; 15:156. [PMID: 31109324 PMCID: PMC6528318 DOI: 10.1186/s12917-019-1911-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 05/13/2019] [Indexed: 11/10/2022] Open
Abstract
Background Bovine respiratory syncytial virus (BRSV) is an important respiratory pathogen worldwide, detrimentally affecting the economy and animal welfare. To prevent and control BRSV infection, further knowledge on virus shedding and transmission potential in individual animals is required. This study aimed to detect viral RNA and infective virions during BRSV infection to evaluate duration of the transmission period and correlation with clinical signs of disease. The outcome of BRSV re-exposure on calves, their housing environment and effect of introduction of sentinel calves was also investigated. A live animal experiment including 10 calves was conducted over 61 days. Initially, two calves were inoculated with a non-passaged BRSV field isolate. Two days later, six naïve calves (EG: Exposed group) were introduced for commingling and four weeks later, another two naïve calves (SG: Sentinel group) were introduced. Seven weeks after commingling, EG animals were re-inoculated. Clinical examination was performed daily. Nasal swabs were collected regularly and analysed for viral RNA by RT-ddPCR, while virus isolation was performed in cell culture. BRSV serology was performed with ELISA. Results All the EG calves seroconverted and showed clinical signs of respiratory disease. Viral RNA was detected from days 1–27 after exposure, while the infective virus was isolated on day 6 and 13. On day 19, all animals were seropositive and virus could not be isolated. Total clinical score for respiratory signs corresponded well with the shedding of viral RNA. The SG animals, introduced 27 days after exposure, remained negative for BRSV RNA and stayed seronegative throughout the study. Inoculation of the EG calves seven weeks after primary infection did not lead to new shedding of viral RNA or clinical signs of disease. Conclusion Viral RNA was detected in nasal swabs from the calves up to four weeks after exposure. The detection and amount of viral RNA corresponded well with the degree of respiratory signs. The calves were shedding infective virions for a considerable shorter period, and naïve calves introduced after four weeks were not infected. Infected calves were protected from reinfection for at least seven weeks. This knowledge is useful to prevent spread of BRSV.
Collapse
Affiliation(s)
- Thea Blystad Klem
- Norwegian Veterinary Institute, P.O. Box 750 Sentrum, 0106, Oslo, Norway.
| | | | - Ståle Sviland
- Norwegian Veterinary Institute, P.O. Box 750 Sentrum, 0106, Oslo, Norway
| | - Britt Gjerset
- Norwegian Veterinary Institute, P.O. Box 750 Sentrum, 0106, Oslo, Norway
| | - Mette Myrmel
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, P.O. Box 8146 Dep, 0033, Oslo, Norway
| | - Maria Stokstad
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, P.O. Box 8146 Dep, 0033, Oslo, Norway
| |
Collapse
|
21
|
McGill JL, Guerra-Maupome M, Schneider S. Prophylactic digoxin treatment reduces IL-17 production in vivo in the neonatal calf and moderates RSV-associated disease. PLoS One 2019; 14:e0214407. [PMID: 30908540 PMCID: PMC6433258 DOI: 10.1371/journal.pone.0214407] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 03/12/2019] [Indexed: 11/18/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a leading cause of morbidity and mortality in human infants. Bovine RSV infection of neonatal calves is pathologically and immunologically similar to RSV infection in infants, and is therefore a useful preclinical model for testing novel therapeutics. Treatment of severe RSV bronchiolitis relies on supportive care and may include use of bronchodilators and inhaled or systemic corticosteroids. Interleukin-17A (IL-17) is an inflammatory cytokine that plays an important role in neutrophil recruitment and activation. IL-17 is increased in children and rodents with severe RSV infection; and in calves with severe BRSV infection. It is currently unclear if IL-17 and Th17 immunity is beneficial or detrimental to the host during RSV infection. Digoxin was recently identified to selectively inhibit IL-17 production by antagonizing its transcription factor, retinoid-related orphan receptor γ t (RORγt). Digoxin inhibits RORγt binding to IL-17 and Th17 associated genes, and suppresses IL-17 production in vitro in human and murine leukocytes and in vivo in rodent models of autoimmune disease. We demonstrate here that in vitro and in vivo digoxin treatment also inhibits IL-17 production by bovine leukocytes. To determine the role of IL-17 in primary RSV infection, calves were treated prophylactically with digoxin and infected with BRSV. Digoxin treated calves demonstrated reduced signs of clinical illness after BRSV infection, and reduced lung pathology compared to untreated control calves. Digoxin treatment did not adversely affect virus shedding or lung viral burden, but had a significant impact on pulmonary inflammatory cytokine expression on day 10 post infection. Together, our results suggest that exacerbated expression of IL-17 has a negative impact on RSV disease, and that development of specific therapies targeting Th17 immunity may be a promising strategy to improve disease outcome during severe RSV infection.
Collapse
Affiliation(s)
- Jodi L. McGill
- Department of Veterinary Microbiology and Preventative Medicine, Iowa State University, Ames, Iowa, United States of America
- * E-mail:
| | - Mariana Guerra-Maupome
- Department of Veterinary Microbiology and Preventative Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Sarah Schneider
- Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, Kansas, United States of America
| |
Collapse
|
22
|
Guerra-Maupome M, Palmer MV, McGill JL, Sacco RE. Utility of the Neonatal Calf Model for Testing Vaccines and Intervention Strategies for Use against Human RSV Infection. Vaccines (Basel) 2019; 7:vaccines7010007. [PMID: 30626099 PMCID: PMC6466205 DOI: 10.3390/vaccines7010007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/26/2018] [Accepted: 01/04/2019] [Indexed: 01/23/2023] Open
Abstract
Respiratory syncytial virus (RSV) is a significant cause of pediatric respiratory tract infections. It is estimated that two-thirds of infants are infected with RSV during the first year of life and it is one of the leading causes of death in this age group worldwide. Similarly, bovine RSV is a primary viral pathogen in cases of pneumonia in young calves and plays a significant role in bovine respiratory disease complex. Importantly, naturally occurring infection of calves with bovine RSV shares many features in common with human RSV infection. Herein, we update our current understanding of RSV infection in cattle, with particular focus on similarities between the calf and human infection, and the recent reports in which the neonatal calf has been employed for the development and testing of vaccines and therapeutics which may be applied to hRSV infection in humans.
Collapse
Affiliation(s)
- Mariana Guerra-Maupome
- Department of Veterinary Microbiology and Preventative Medicine, Iowa State University, Ames, IA 50011, USA.
| | - Mitchell V Palmer
- Infectious Bacterial Diseases of Livestock Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA 50010, USA.
| | - Jodi L McGill
- Department of Veterinary Microbiology and Preventative Medicine, Iowa State University, Ames, IA 50011, USA.
| | - Randy E Sacco
- Ruminant Diseases and Immunology Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA 50010, USA.
| |
Collapse
|
23
|
Silva B, Baccili C, Henklein A, Oliveira P, Oliveira S, Sobreira N, Ribeiro C, Gomes V. Transferência de imunidade passiva (TIP) e dinâmica de anticorpos específicos em bezerros naturalmente expostos para as viroses respiratórias. ARQ BRAS MED VET ZOO 2018. [DOI: 10.1590/1678-4162-9486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
RESUMO Esta pesquisa avaliou a TIP e a dinâmica de anticorpos (ACs) específicos em bezerros naturalmente expostos aos agentes causadores da doença respiratória bovina (DRB). Foram selecionados 19 bezerros Holandeses alimentados com colostro proveniente de doadoras vacinadas para DRB. Amostras de soro foram obtidas antes e após a ingestão do colostro (48h) para a soroneutralização (SN). Os valores médios (log2) detectados após colostragem foram de 11,5±1,6 (BVDV), 8,8±1,3 (BoHV-1), 5,5±1,6 (BRSV) e 8,4±1,5 (BPIV-3). Cinco bezerros foram criados do nascimento aos 240 dias de vida, observando-se decréscimo nos títulos de ACs para BVDV, BoHV-1 e BPIV-3 ao longo do tempo (P≤0,001). As taxas de infecções detectadas entre o D14 e o D240 foram de 40% (2/5), 20% (1/5), 80% (4/5), e 60% (3/5), respectivamente, para BVDV, BoHV-1, BRSV e BPIV-3. A maioria dos bezerros manifestou broncopneumonia após as infecções virais. Os bezerros apresentaram ACs para todas as viroses às 48 horas de vida, porém os títulos adquiridos para o BRSV foram baixos. A susceptibilidade para as infecções variou de acordo com os níveis e a duração dos títulos de ACs maternos.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - V. Gomes
- Universidade de São Paulo, Brazil
| |
Collapse
|
24
|
Murray GM, More SJ, Clegg TA, Earley B, O'Neill RG, Johnston D, Gilmore J, Nosov M, McElroy MC, Inzana TJ, Cassidy JP. Risk factors associated with exposure to bovine respiratory disease pathogens during the peri-weaning period in dairy bull calves. BMC Vet Res 2018; 14:53. [PMID: 29482563 PMCID: PMC5828089 DOI: 10.1186/s12917-018-1372-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 02/14/2018] [Indexed: 12/15/2022] Open
Abstract
Background Bovine respiratory disease (BRD) remains among the leading causes of death of cattle internationally. The objective of this study was to identify risk factors associated with exposure to BRD pathogens during the peri-weaning period (day (d)-14 to d 14 relative to weaning at 0) in dairy bull calves using serological responses to these pathogens as surrogate markers of exposure. Clinically normal Holstein-Friesian and Jersey breed bull calves (n = 72) were group housed in 4 pens using a factorial design with calves of different breeds and planes of nutrition in each pen. Intrinsic, management and clinical data were collected during the pre-weaning (d − 56 to d − 14) period. Calves were gradually weaned over 14 days (d − 14 to d 0). Serological analysis for antibodies against key BRD pathogens (BRSV, BPI3V, BHV-1, BHV-4, BCoV, BVDV and H. somni) was undertaken at d − 14 and d 14. Linear regression models (for BVDV, BPI3V, BHV-1, BHV-4, BCoV and H. somni) and a single mixed effect random variable model (for BRSV) were used to identify risk factors for changes in antibody levels to these pathogens. Results BRSV was the only pathogen which demonstrated clustering by pen. Jersey calves experienced significantly lower changes in BVDV S/P than Holstein-Friesian calves. Animals with a high maximum respiratory score (≥8) recorded significant increases in H. somni S/P during the peri-weaning period when compared to those with respiratory scores of ≤3. Haptoglobin levels of between 1.32 and 1.60 mg/ml at d − 14 were significantly associated with decreases in BHV-1 S/N during the peri-weaning period. Higher BVDV S/P ratios at d − 14 were significantly correlated with increased changes in serological responses to BHV-4 over the peri-weaning period. Conclusions Haptoglobin may have potential as a predictor of exposure to BHV-1. BRSV would appear to play a more significant role at the ‘group’ rather than ‘individual animal’ level. The significant associations between the pre-weaning levels of antibodies to certain BRD pathogens and changes in the levels of antibodies to the various pathogens during the peri-weaning period may reflect a cohort of possibly genetically linked ‘better responders’ among the study population.
Collapse
Affiliation(s)
- Gerard M Murray
- Sligo Regional Veterinary Laboratory, Department of Agriculture, Food and Marine, Doonally, Sligo, Ireland.
| | - Simon J More
- Centre for Veterinary Epidemiology and Risk Analysis, UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Tracy A Clegg
- Centre for Veterinary Epidemiology and Risk Analysis, UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Bernadette Earley
- Animal and Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, Co. Meath, Ireland
| | - Rónan G O'Neill
- Central Veterinary Research Laboratory, Department of Agriculture, Food and Marine, Backweston, Celbridge, Co. Kildare, Ireland
| | - Dayle Johnston
- Animal and Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, Co. Meath, Ireland
| | - John Gilmore
- Farmlab Diagnostics, Emlagh Lodge, Elphin, Co. Roscommon, Ireland
| | - Mikhail Nosov
- Farmlab Diagnostics, Emlagh Lodge, Elphin, Co. Roscommon, Ireland
| | - Máire C McElroy
- Central Veterinary Research Laboratory, Department of Agriculture, Food and Marine, Backweston, Celbridge, Co. Kildare, Ireland
| | - Thomas J Inzana
- Department of Biomedical Sciences & Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
| | - Joseph P Cassidy
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
25
|
Heath PT, Culley FJ, Jones CE, Kampmann B, Le Doare K, Nunes MC, Sadarangani M, Chaudhry Z, Baker CJ, Openshaw PJM. Group B streptococcus and respiratory syncytial virus immunisation during pregnancy: a landscape analysis. THE LANCET. INFECTIOUS DISEASES 2017; 17:e223-e234. [PMID: 28433702 DOI: 10.1016/s1473-3099(17)30232-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 02/02/2017] [Accepted: 02/07/2017] [Indexed: 12/30/2022]
Abstract
Group B streptococcus and respiratory syncytial virus are leading causes of infant morbidity and mortality worldwide. No licensed vaccines are available for either disease, but vaccines for both are under development. Severe respiratory syncytial virus disease can be prevented by passively administered antibody. The presence of maternal IgG antibody specific to respiratory syncytial virus is associated with reduced prevalence and severity of respiratory syncytial virus disease in the first few weeks of life, whereas maternal serotype-specific anticapsular antibody is associated with protection against both early-onset and late-onset group B streptococcus disease. Therefore, vaccination in pregnancy might protect infants against both diseases. This report describes what is known about immune protection against group B streptococcus and respiratory syncytial virus, identifies knowledge gaps regarding the immunobiology of both diseases, and aims to prioritise research directions in maternal immunisation.
Collapse
Affiliation(s)
- Paul T Heath
- Vaccine Institute, Institute for Infection and Immunity, St George's, University of London and St George's University Hospitals NHS Foundation Trust, London, UK.
| | - Fiona J Culley
- Respiratory Medicine, National Heart and Lung Institute, Imperial College London, London, UK
| | - Christine E Jones
- Faculty of Medicine and Institute for Life Sciences, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Beate Kampmann
- Centre for International Child Health, Department of Paediatrics, Imperial College London, London, UK; Medical Research Council Unit, Serrekunda, The Gambia
| | - Kirsty Le Doare
- Vaccine Institute, Institute for Infection and Immunity, St George's, University of London and St George's University Hospitals NHS Foundation Trust, London, UK; Centre for International Child Health, Department of Paediatrics, Imperial College London, London, UK
| | - Marta C Nunes
- Department of Science and Technology and National Research Foundation, Vaccine Preventable Diseases and Medical Research Council, University of the Witwatersrand, Faculty of Health Science, Johannesburg, South Africa; Respiratory and Meningeal Pathogens Research Unit, University of the Witwatersrand, Faculty of Health Science, Johannesburg, South Africa
| | - Manish Sadarangani
- Department of Paediatrics, University of Oxford, Oxford, UK; Vaccine Evaluation Centre, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Zain Chaudhry
- Respiratory Medicine, National Heart and Lung Institute, Imperial College London, London, UK
| | - Carol J Baker
- Department of Pediatrics, Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Peter J M Openshaw
- Respiratory Medicine, National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
26
|
Mansoor F, Earley B, Cassidy JP, Markey B, Doherty S, Welsh MD. Comparing the immune response to a novel intranasal nanoparticle PLGA vaccine and a commercial BPI3V vaccine in dairy calves. BMC Vet Res 2015; 11:220. [PMID: 26293453 PMCID: PMC4546173 DOI: 10.1186/s12917-015-0481-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 07/13/2015] [Indexed: 12/31/2022] Open
Abstract
Background There is a need to improve vaccination against respiratory pathogens in calves by stimulation of local immunity at the site of pathogen entry at an early stage in life. Ideally such a vaccine preparation would not be inhibited by the maternally derived antibodies. Additionally, localized immune response at the site of infection is also crucial to control infection at the site of entry of virus. The present study investigated the response to an intranasal bovine parainfluenza 3 virus (BPI3V) antigen preparation encapsulated in PLGA (poly dl-lactic-co-glycolide) nanoparticles in the presence of pre-existing anti-BPI3V antibodies in young calves and comparing it to a commercially available BPI3V respiratory vaccine. Results There was a significant (P < 0.05) increase in BPI3V-specific IgA in the nasal mucus of the BPI3V nanoparticle vaccine group alone. Following administration of the nanoparticle vaccine an early immune response was induced that continued to grow until the end of study and was not observed in the other treatment groups. Virus specific serum IgG response to both the nanoparticle vaccine and commercial live attenuated vaccine showed a significant (P < 0.05) rise over the period of study. However, the cell mediated immune response observed didn’t show any significant rise in any of the treatment groups. Conclusion Calves administered the intranasal nanoparticle vaccine induced significantly greater mucosal IgA responses, compared to the other treatment groups. This suggests an enhanced, sustained mucosal-based immunological response to the BPI3V nanoparticle vaccine in the face of pre-existing antibodies to BPI3V, which are encouraging and potentially useful characteristics of a candidate vaccine. However, ability of nanoparticle vaccine in eliciting cell mediated immune response needs further investigation. More sustained local mucosal immunity induced by nanoparticle vaccine has obvious potential if it translates into enhanced protective immunity in the face of virus outbreak.
Collapse
Affiliation(s)
- Fawad Mansoor
- Agri-Food & Biosciences Institute, Veterinary Sciences Division, Stoney Road, Stormont, Belfast, BT4 3SD, UK. .,Animal and Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, Co. Meath, Ireland. .,Veterinary Sciences Centre, School of Agriculture, Food Science and Veterinary Medicine, University College Dublin, Belfield, Ireland.
| | - Bernadette Earley
- Animal and Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, Co. Meath, Ireland.
| | - Joseph P Cassidy
- Veterinary Sciences Centre, School of Agriculture, Food Science and Veterinary Medicine, University College Dublin, Belfield, Ireland.
| | - Bryan Markey
- Veterinary Sciences Centre, School of Agriculture, Food Science and Veterinary Medicine, University College Dublin, Belfield, Ireland.
| | - Simon Doherty
- Agri-Food & Biosciences Institute, Veterinary Sciences Division, Stoney Road, Stormont, Belfast, BT4 3SD, UK. .,Present address: SiSaf Ltd, Innovation Centre, Northern Ireland Science Park, Queen's Island, Belfast, BT3 9DT, UK.
| | - Michael D Welsh
- Agri-Food & Biosciences Institute, Veterinary Sciences Division, Stoney Road, Stormont, Belfast, BT4 3SD, UK. .,Present address: SiSaf Ltd, Innovation Centre, Northern Ireland Science Park, Queen's Island, Belfast, BT3 9DT, UK.
| |
Collapse
|
27
|
Sacco RE, Durbin RK, Durbin JE. Animal models of respiratory syncytial virus infection and disease. Curr Opin Virol 2015; 13:117-22. [PMID: 26176495 DOI: 10.1016/j.coviro.2015.06.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 06/10/2015] [Indexed: 01/05/2023]
Abstract
The study of human respiratory syncytial virus pathogenesis and immunity has been hampered by its exquisite host specificity, and the difficulties encountered in adapting this virus to a murine host. The reasons for this obstacle are not well understood, but appear to reflect, at least in part, the inability of the virus to block the interferon response in any but the human host. This review addresses some of the issues encountered in mouse models of respiratory syncytial virus infection, and describes the advantages and disadvantages of alternative model systems.
Collapse
Affiliation(s)
- Randy E Sacco
- Ruminant Diseases and Immunology Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, Ames, IA, United States
| | - Russell K Durbin
- Center for Immunity and Inflammation, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, United States
| | - Joan E Durbin
- Center for Immunity and Inflammation, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, United States; Department of Pathology, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, United States.
| |
Collapse
|
28
|
Blodörn K, Hägglund S, Gavier-Widen D, Eléouët JF, Riffault S, Pringle J, Taylor G, Valarcher JF. A bovine respiratory syncytial virus model with high clinical expression in calves with specific passive immunity. BMC Vet Res 2015; 11:76. [PMID: 25890239 PMCID: PMC4377052 DOI: 10.1186/s12917-015-0389-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 03/10/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bovine respiratory syncytial virus (BRSV) is a major cause of respiratory disease in cattle worldwide. Calves are particularly affected, even with low to moderate levels of BRSV-specific maternally derived antibodies (MDA). Available BRSV vaccines have suboptimal efficacy in calves with MDA, and published infection models in this target group are lacking in clinical expression. Here, we refine and characterize such a model. RESULTS In a first experiment, 2 groups of 3 calves with low levels of MDA were experimentally inoculated by inhalation of aerosolized BRSV, either: the Snook strain, passaged in gnotobiotic calves (BRSV-Snk), or isolate no. 9402022 Denmark, passaged in cell culture (BRSV-Dk). All calves developed clinical signs of respiratory disease and shed high titers of virus, but BRSV-Snk induced more severe disease, which was then reproduced in a second experiment in 5 calves with moderate levels of MDA. These 5 calves shed high titers of virus and developed severe clinical signs of disease and extensive macroscopic lung lesions (mean+/-SD, 48.3+/-12.0% of lung), with a pulmonary influx of inflammatory cells, characterized by interferon gamma secretion and a marked effect on lung function. CONCLUSIONS We present a BRSV-infection model, with consistently high clinical expression in young calves with low to moderate levels of BRSV-specific MDA, that may prove useful in studies into disease pathogenesis, or evaluations of vaccines and antivirals. Additionally, refined tools to assess the outcome of BRSV infection are described, including passive measurement of lung function and a refined system to score clinical signs of disease. Using this cognate host calf model might also provide answers to elusive questions about human RSV (HRSV), a major cause of morbidity in children worldwide.
Collapse
Affiliation(s)
- Krister Blodörn
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Host Pathogen Interaction Group, Uppsala, Sweden.
| | - Sara Hägglund
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Host Pathogen Interaction Group, Uppsala, Sweden.
| | - Dolores Gavier-Widen
- Department of Pathology and Wildlife Diseases, National Veterinary Institute, Uppsala, Sweden. .,Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | | | - Sabine Riffault
- INRA, Unité de Virologie et Immunologie Moléculaires, Jouy-en-Josas, France.
| | - John Pringle
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Host Pathogen Interaction Group, Uppsala, Sweden.
| | | | - Jean François Valarcher
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Host Pathogen Interaction Group, Uppsala, Sweden. .,Department of Virology, National Veterinary Institute, Immunology, and Parasitology, Uppsala, Sweden.
| |
Collapse
|
29
|
Guzman E, Taylor G. Immunology of bovine respiratory syncytial virus in calves. Mol Immunol 2014; 66:48-56. [PMID: 25553595 DOI: 10.1016/j.molimm.2014.12.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 11/28/2014] [Accepted: 12/07/2014] [Indexed: 12/31/2022]
Abstract
Bovine respiratory syncytial virus (BRSV) is an important cause of respiratory disease in young calves. The virus is genetically and antigenically closely related to human (H)RSV, which is a major cause of respiratory disease in young infants. As a natural pathogen of calves, BRSV infection recapitulates the pathogenesis of respiratory disease in man more faithfully than semi-permissive, animal models of HRSV infection. With the increasing availability of immunological reagents, the calf can be used to dissect the pathogenesis of and mechanisms of immunity to RSV infection, to analyse the ways in which the virus proteins interact with components of the innate response, and to evaluate RSV vaccine strategies. Passively transferred, neutralising bovine monoclonal antibodies, which recognise the same epitopes in the HRSV and BRSV fusion (F) protein, can protect calves against BRSV infection, and depletion of different T cells subsets in calves has highlighted the importance of CD8(+) T cells in viral clearance. Calves can be used to model maternal-antibody mediated suppression of RSV vaccine efficacy, and to increase understanding of the mechanisms responsible for RSV vaccine-enhanced respiratory disease.
Collapse
Affiliation(s)
- Efrain Guzman
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK
| | - Geraldine Taylor
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK.
| |
Collapse
|
30
|
Abstract
Enteric viral infections in domestic animals cause significant economic losses. The recent emergence of virulent enteric coronaviruses [porcine epidemic diarrhea virus (PEDV)] in North America and Asia, for which no vaccines are available, remains a challenge for the global swine industry. Vaccination strategies against rotavirus and coronavirus (transmissible gastroenteritis virus) infections are reviewed. These vaccination principles are applicable against emerging enteric infections such as PEDV. Maternal vaccines to induce lactogenic immunity, and their transmission to suckling neonates via colostrum and milk, are critical for early passive protection. Subsequently, in weaned animals, oral vaccines incorporating novel mucosal adjuvants (e.g., vitamin A, probiotics) may provide active protection when maternal immunity wanes. Understanding intestinal and systemic immune responses to experimental rotavirus and transmissible gastroenteritis virus vaccines and infection in pigs provides a basis and model for the development of safe and effective vaccines for young animals and children against established and emerging enteric infections.
Collapse
Affiliation(s)
- Kuldeep S Chattha
- Canadian Food Inspection Agency, Lethbridge, Alberta T1H 6P7, Canada;
| | | | | |
Collapse
|
31
|
Hägglund S, Hu K, Blodörn K, Makabi-Panzu B, Gaillard AL, Ellencrona K, Chevret D, Hellman L, Bengtsson KL, Riffault S, Taylor G, Valarcher JF, Eléouët JF. Characterization of an experimental vaccine for bovine respiratory syncytial virus. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 21:997-1004. [PMID: 24828093 PMCID: PMC4097437 DOI: 10.1128/cvi.00162-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 05/07/2014] [Indexed: 11/20/2022]
Abstract
Bovine respiratory syncytial virus (BRSV) and human respiratory syncytial virus (HRSV) are major causes of respiratory disease in calves and children, respectively, and are priorities for vaccine development. We previously demonstrated that an experimental vaccine, BRSV-immunostimulating complex (ISCOM), is effective in calves with maternal antibodies. The present study focuses on the antigenic characterization of this vaccine for the design of new-generation subunit vaccines. The results of our study confirmed the presence of membrane glycoprotein (G), fusion glycoprotein (F), and nucleoprotein (N) proteins in the ISCOMs, and this knowledge was extended by the identification of matrix (M), M2-1, phosphoprotein (P), small hydrophobic protein (SH) and of cellular membrane proteins, such as the integrins αVβ1, αVβ3, and α3β1. The quantity of the major protein F was 4- to 5-fold greater than that of N (∼77 μg versus ∼17 μg/calf dose), whereas G, M, M2-1, P, and SH were likely present in smaller amounts. The polymerase (L), M2-2, nonstructural 1 (NS1), and NS2 proteins were not detected, suggesting that they are not essential for protection. Sera from the BRSV-ISCOM-immunized calves contained high titers of IgG antibody specific for F, G, N, and SH. Antibody responses against M and P were not detected; however, this does not exclude their role in protective T-cell responses. The absence of immunopathological effects of the cellular proteins, such as integrins, needs to be further confirmed, and their possible contribution to adjuvant functions requires elucidation. This work suggests that a combination of several surface and internal proteins should be included in subunit RSV vaccines and identifies absent proteins as potential candidates for differentiating infected from vaccinated animals.
Collapse
Affiliation(s)
- Sara Hägglund
- Swedish University of Agricultural Sciences, Host Pathogen Interaction Group, Department of Clinical Sciences, Uppsala, Sweden
| | - Kefei Hu
- Swedish University of Agricultural Sciences, Host Pathogen Interaction Group, Department of Clinical Sciences, Uppsala, Sweden
| | - Krister Blodörn
- Swedish University of Agricultural Sciences, Host Pathogen Interaction Group, Department of Clinical Sciences, Uppsala, Sweden
| | | | | | - Karin Ellencrona
- Swedish University of Agricultural Sciences, Host Pathogen Interaction Group, Department of Clinical Sciences, Uppsala, Sweden
| | - Didier Chevret
- INRA, UMR1319 Micalis, Plateforme d'Analyse Protéomique de Paris Sud-Ouest, Jouy-en-Josas, France
| | - Lars Hellman
- Uppsala University, Department of Cell and Molecular Biology, Chemical Biology, Uppsala, Sweden
| | | | - Sabine Riffault
- INRA, Unité de Virologie et Immunologie Moléculaires, Jouy-en-Josas, France
| | | | - Jean François Valarcher
- Swedish University of Agricultural Sciences, Host Pathogen Interaction Group, Department of Clinical Sciences, Uppsala, Sweden National Veterinary Institute, Department of Virology, Immunobiology and Parasitology, Uppsala, Sweden
| | | |
Collapse
|
32
|
Blodörn K, Hägglund S, Fix J, Dubuquoy C, Makabi-Panzu B, Thom M, Karlsson P, Roque JL, Karlstam E, Pringle J, Eléouët JF, Riffault S, Taylor G, Valarcher JF. Vaccine safety and efficacy evaluation of a recombinant bovine respiratory syncytial virus (BRSV) with deletion of the SH gene and subunit vaccines based on recombinant human RSV proteins: N-nanorings, P and M2-1, in calves with maternal antibodies. PLoS One 2014; 9:e100392. [PMID: 24945377 PMCID: PMC4063758 DOI: 10.1371/journal.pone.0100392] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 05/23/2014] [Indexed: 12/27/2022] Open
Abstract
The development of safe and effective vaccines against both bovine and human respiratory syncytial viruses (BRSV, HRSV) to be used in the presence of RSV-specific maternally-derived antibodies (MDA) remains a high priority in human and veterinary medicine. Herein, we present safety and efficacy results from a virulent BRSV challenge of calves with MDA, which were immunized with one of three vaccine candidates that allow serological differentiation of infected from vaccinated animals (DIVA): an SH gene-deleted recombinant BRSV (ΔSHrBRSV), and two subunit (SU) formulations based on HRSV-P, -M2-1, and -N recombinant proteins displaying BRSV-F and -G epitopes, adjuvanted by either oil emulsion (Montanide ISA71VG, SUMont) or immunostimulating complex matrices (AbISCO-300, SUAbis). Whereas all control animals developed severe respiratory disease and shed high levels of virus following BRSV challenge, ΔSHrBRSV-immunized calves demonstrated almost complete clinical and virological protection five weeks after a single intranasal vaccination. Although mucosal vaccination with ΔSHrBRSV failed to induce a detectable immunological response, there was a rapid and strong anamnestic mucosal BRSV-specific IgA, virus neutralizing antibody and local T cell response following challenge with virulent BRSV. Calves immunized twice intramuscularly, three weeks apart with SUMont were also well protected two weeks after boost. The protection was not as pronounced as that in ΔSHrBRSV-immunized animals, but superior to those immunized twice subcutaneously three weeks apart with SUAbis. Antibody responses induced by the subunit vaccines were non-neutralizing and not directed against BRSV F or G proteins. When formulated as SUMont but not as SUAbis, the HRSV N, P and M2-1 proteins induced strong systemic cross-protective cell-mediated immune responses detectable already after priming. ΔSHrBRSV and SUMont are two promising DIVA-compatible vaccines, apparently inducing protection by different immune responses that were influenced by vaccine-composition, immunization route and regimen.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Cattle
- Epitopes/chemistry
- Epitopes/immunology
- Gene Deletion
- Genes, Viral
- Humans
- Lung/immunology
- Lung/pathology
- Lung/virology
- Lymph Nodes/pathology
- Lymphocytes/immunology
- Molecular Sequence Data
- Respiratory Syncytial Virus Infections/blood
- Respiratory Syncytial Virus Infections/immunology
- Respiratory Syncytial Virus Infections/virology
- Respiratory Syncytial Virus Vaccines/adverse effects
- Respiratory Syncytial Virus Vaccines/immunology
- Respiratory Syncytial Virus, Bovine/genetics
- Respiratory Syncytial Virus, Bovine/immunology
- Respiratory Syncytial Virus, Bovine/pathogenicity
- Respiratory Syncytial Virus, Human/immunology
- Respiratory Syncytial Virus, Human/metabolism
- Species Specificity
- Vaccination
- Vaccines, Subunit/adverse effects
- Vaccines, Subunit/immunology
- Viral Load
- Viral Proteins/metabolism
- Virulence
Collapse
Affiliation(s)
- Krister Blodörn
- Swedish University of Agricultural Sciences, Host Pathogen Interaction Group, Department of Clinical Sciences, Uppsala, Sweden
| | - Sara Hägglund
- Swedish University of Agricultural Sciences, Host Pathogen Interaction Group, Department of Clinical Sciences, Uppsala, Sweden
- * E-mail:
| | - Jenna Fix
- INRA, Unité de Virologie et Immunologie Moléculaires, Jouy-en-Josas, France
| | - Catherine Dubuquoy
- INRA, Unité de Virologie et Immunologie Moléculaires, Jouy-en-Josas, France
| | | | - Michelle Thom
- The Pirbright Institute, Pirbright, Surrey, United Kingdom
| | - Per Karlsson
- National Veterinary Institute, Department of Virology, Immunology, and Parasitology, Uppsala, Sweden
| | | | - Erika Karlstam
- National Veterinary Institute, Department of Pathology and Wildlife Diseases, Uppsala, Sweden
| | - John Pringle
- Swedish University of Agricultural Sciences, Host Pathogen Interaction Group, Department of Clinical Sciences, Uppsala, Sweden
| | | | - Sabine Riffault
- INRA, Unité de Virologie et Immunologie Moléculaires, Jouy-en-Josas, France
| | | | - Jean François Valarcher
- Swedish University of Agricultural Sciences, Host Pathogen Interaction Group, Department of Clinical Sciences, Uppsala, Sweden
- National Veterinary Institute, Department of Virology, Immunology, and Parasitology, Uppsala, Sweden
| |
Collapse
|
33
|
Elbers ARW, Stockhofe N, van der Poel WHM. Schmallenberg virus antibodies in adult cows and maternal antibodies in calves. Emerg Infect Dis 2014; 20:901-2. [PMID: 24751164 PMCID: PMC4012791 DOI: 10.3201/eid2005.130763] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
34
|
Elbers ARW, Stockhofe-Zurwieden N, van der Poel WHM. Schmallenberg virus antibody persistence in adult cattle after natural infection and decay of maternal antibodies in calves. BMC Vet Res 2014; 10:103. [PMID: 24885026 PMCID: PMC4013805 DOI: 10.1186/1746-6148-10-103] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 04/23/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Schmallenberg virus (SBV) has swept through the major part of Europe in the period 2011-2013. A vaccine against SBV has been developed and may be a possible preventive instrument against infection. Presently, there is no data available to refute the assumption that natural SBV infection results in long-term immunity. In that respect, it is of interest to know how long (protecting) virus-neutralizing antibodies are present in naturally infected animals. New-born calves acquire passive immunity from their dams by ingestion and absorption of antibodies present in colostrum, which can block the production of serum antibodies when vaccine is administered to calves with maternally derived antibodies. In that respect, it is useful to know how long it takes for maternal antibodies against SBV to disappear in young animals born from infected dams. RESULTS Longitudinal whole-herd serological monitoring using virus neutralization test (VNT) indicated that 80% of adult dairy cows still had measurable antibodies against SBV at least 24 months after the estimated introduction of the virus into the herd. Median 2Log VNT titer of the adult dairy cows (≥1 year) dropped from 8.6 to 5.6 in a period of 17 months. Median 2Log VNT maternal antibodies titers of calves sampled within 30 days after birth was 8. Calves lost their maternally-derived antibodies after 5-6 months. There was a definite positive relationship between the VNT titer of the dam and the VNT titer of the corresponding calf (age ≤ 30 days) of dam-calf combinations sampled on the same day: the higher the VNT titer of the dam, the higher the VNT titer (maternal antibodies) of the calf. CONCLUSIONS Our field data support the assumption that natural SBV infection in adult cows results in persistence of specific antibodies for at least two years. Based on the observed decay of maternally-derived antibodies in calves, it is presumed safe to vaccinate calves against SBV at an age of approximately 6 months.
Collapse
Affiliation(s)
- Armin R W Elbers
- Department of Epidemiology, Crisis organisation and Diagnostics, Central Veterinary Institute, part of Wageningen UR, PO Box 65, NL-8200AB Lelystad, Netherlands.
| | | | | |
Collapse
|
35
|
Sacco RE, McGill JL, Pillatzki AE, Palmer MV, Ackermann MR. Respiratory syncytial virus infection in cattle. Vet Pathol 2013; 51:427-36. [PMID: 24009269 DOI: 10.1177/0300985813501341] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Bovine respiratory syncytial virus (RSV) is a cause of respiratory disease in cattle worldwide. It has an integral role in enzootic pneumonia in young dairy calves and summer pneumonia in nursing beef calves. Furthermore, bovine RSV infection can predispose calves to secondary bacterial infection by organisms such as Mannheimia haemolytica, Pasteurella multocida, and Histophilus somni, resulting in bovine respiratory disease complex, the most prevalent cause of morbidity and mortality among feedlot cattle. Even in cases where animals do not succumb to bovine respiratory disease complex, there can be long-term losses in production performance. This includes reductions in feed efficiency and rate of gain in the feedlot, as well as reproductive performance, milk production, and longevity in the breeding herd. As a result, economic costs to the cattle industry from bovine respiratory disease have been estimated to approach $1 billion annually due to death losses, reduced performance, and costs of vaccinations and treatment modalities. Human and bovine RSV are closely related viruses with similarities in histopathologic lesions and mechanisms of immune modulation induced following infection. Therefore, where appropriate, we provide comparisons between RSV infections in humans and cattle. This review article discusses key aspects of RSV infection of cattle, including epidemiology and strain variability, clinical signs and diagnosis, experimental infection, gross and microscopic lesions, innate and adaptive immune responses, and vaccination strategies.
Collapse
Affiliation(s)
- R E Sacco
- National Animal Disease Center, Ruminant Diseases and Immunology Research Unit, Ames, IA 50010, USA.
| | | | | | | | | |
Collapse
|
36
|
Neonatal calf infection with respiratory syncytial virus: drawing parallels to the disease in human infants. Viruses 2013; 4:3731-53. [PMID: 23342375 PMCID: PMC3528288 DOI: 10.3390/v4123731] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Respiratory syncytial virus (RSV) is the most common viral cause of childhood acute lower respiratory tract infections. It is estimated that RSV infections result in more than 100,000 deaths annually worldwide. Bovine RSV is a cause of enzootic pneumonia in young dairy calves and summer pneumonia in nursing beef calves. Furthermore, bovine RSV plays a significant role in bovine respiratory disease complex, the most prevalent cause of morbidity and mortality among feedlot cattle. Infection of calves with bovine RSV shares features in common with RSV infection in children, such as an age-dependent susceptibility. In addition, comparable microscopic lesions consisting of bronchiolar neutrophilic infiltrates, epithelial cell necrosis, and syncytial cell formation are observed. Further, our studies have shown an upregulation of pro-inflammatory mediators in RSV-infected calves, including IL-12p40 and CXCL8 (IL-8). This finding is consistent with increased levels of IL-8 observed in children with RSV bronchiolitis. Since rodents lack IL-8, neonatal calves can be useful for studies of IL-8 regulation in response to RSV infection. We have recently found that vitamin D in milk replacer diets can be manipulated to produce calves differing in circulating 25-hydroxyvitamin D3. The results to date indicate that although the vitamin D intracrine pathway is activated during RSV infection, pro-inflammatory mediators frequently inhibited by the vitamin D intacrine pathway in vitro are, in fact, upregulated or unaffected in lungs of infected calves. This review will summarize available data that provide parallels between bovine RSV infection in neonatal calves and human RSV in infants.
Collapse
|
37
|
Gershwin LJ. Immunology of bovine respiratory syncytial virus infection of cattle. Comp Immunol Microbiol Infect Dis 2012; 35:253-7. [PMID: 22410266 DOI: 10.1016/j.cimid.2012.01.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2011] [Revised: 01/07/2012] [Accepted: 01/09/2012] [Indexed: 10/28/2022]
Abstract
Bovine respiratory syncytial virus (BRSV) is a respiratory pathogen of cattle that causes severe disease in calves alone and as one of several viruses and bacteria that cause bovine respiratory disease complex. Like human RSV this virus modulates the immune response to avoid stimulation of a vibrant CD8+ T cytotoxic cell response and instead promotes a Th2 response. The Th2 skew sometimes results in the production of IgE antibodies and depresses production of the Th1 cytokine interferon γ. Innate immune cells have a pivotal role in guiding the adaptive response to BRSV, with selective secretion of cytokines by pulmonary dendritic cells. Here we review some of the pertinent observations on immune responses to BRSV infection and vaccination and illustrate how experimental infection models have been used to elucidate the immunopathogenesis of BRSV infection. Recent experiments using intranasal vaccination and/or immune modulation with DNA based adjuvants show promise for effective vaccination by the stimulation of Th1 T cell responses.
Collapse
Affiliation(s)
- Laurel J Gershwin
- Department of Pathology, Microbiology, & Immunology, University of California, Davis, CA 95616, United States.
| |
Collapse
|
38
|
Shafique M, Wilschut J, de Haan A. Induction of mucosal and systemic immunity against respiratory syncytial virus by inactivated virus supplemented with TLR9 and NOD2 ligands. Vaccine 2011; 30:597-606. [PMID: 22120195 DOI: 10.1016/j.vaccine.2011.11.054] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 10/13/2011] [Accepted: 11/14/2011] [Indexed: 12/18/2022]
Abstract
Respiratory syncytial virus (RSV) infection is the most important viral cause of severe respiratory disease in infants and children worldwide and also forms a serious threat in the elderly. The development of RSV vaccine, however, has been hampered by the disastrous outcome of an earlier trial using an inactivated and parenterally administered RSV vaccine which did not confer protection but rather primed for enhanced disease upon natural infection. Mucosal administration does not seem to prime for enhanced disease, but non-replicating RSV antigen does not induce a strong mucosal immune response. We therefore investigated if mucosal immunization with inactivated RSV supplemented with innate receptor ligands, TLR9 (CpG ODN) and NOD2 (L18-MDP) through the upper or total respiratory tract is an effective and safe approach to induce RSV-specific immunity. Our data show that beta-propiolactone (BPL) inactivated RSV (BPL-RSV) supplemented with CpG ODN and L18-MDP potentiates activation of antigen-presenting cells (APC) in vitro, as demonstrated by NF-κB induction in a model APC cell line. In vivo, BPL-RSV supplemented with CpG ODN/L18-MDP ligands induces local IgA responses and augments Th1-signature IgG2a subtype responses after total respiratory tract (TRT), but less efficient after upper respiratory tract (intranasal, IN) immunization. Addition of TLR9/NOD2 ligands to the inactivated RSV also promoted affinity maturation of RSV-specific IgG antibodies and shifted T cell responses from mainly IL-5-secreting cells to predominantly IFN-γ-producing cells, indicating a Th1-skewed response. This effect was seen for both IN and TRT immunization. Finally, BPL-RSV supplemented with TLR9/NOD2 ligands significantly improved the protection efficacy against a challenge with infectious virus, without stimulating enhanced disease as evidenced by lack of eotaxin mRNA expression and eosinophil infiltration in the lung. We conclude that mucosal immunization with inactivated RSV antigen supplemented with TLR9/NOD2 ligands is a promising approach to induce effective RSV-specific immunity without priming for enhanced disease.
Collapse
Affiliation(s)
- Muhammad Shafique
- Department of Medical Microbiology, Molecular Virology Section, University Medical Center and University of Groningen, Groningen, The Netherlands
| | | | | |
Collapse
|
39
|
Pardon B, De Bleecker K, Dewulf J, Callens J, Boyen F, Catry B, Deprez P. Prevalence of respiratory pathogens in diseased, non-vaccinated, routinely medicated veal calves. Vet Rec 2011; 169:278. [DOI: 10.1136/vr.d4406] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- B. Pardon
- Department of Large Animal Internal Medicine; Faculty of Veterinary Medicine; Ghent University; Salisburylaan 133 9820 Merelbeke Belgium
| | - K. De Bleecker
- Animal Health Service Flanders; Industrielaan 29 8820 Torhout Belgium
| | - J. Dewulf
- Veterinary Epidemiology Unit; Department of Reproduction, Obstetrics and Herd Health; Faculty of Veterinary Medicine; Ghent University; Salisburylaan 133 9820 Merelbeke Belgium
| | - J. Callens
- Animal Health Service Flanders; Industrielaan 29 8820 Torhout Belgium
| | - F. Boyen
- Department of Pathology, Bacteriology and Avian Medicine; Faculty of Veterinary Medicine; Ghent University; Salisburylaan 133 9820 Merelbeke Belgium
| | - B. Catry
- Healthcare Associated Infections and Antimicrobial Resistance; Scientific Institute of Public Health; Rue Juliette Wytsmanstraat 14 1050 Brussels Belgium
| | - P. Deprez
- Department of Large Animal Internal Medicine; Faculty of Veterinary Medicine; Ghent University; Salisburylaan 133 9820 Merelbeke Belgium
| |
Collapse
|
40
|
Abstract
Bovine respiratory syncytial virus (BRSV) is a major cause of respiratory disease and a major contributor to the bovine respiratory disease (BRD) complex. BRSV infects the upper and lower respiratory tract and is shed in nasal secretions. The close relatedness of BRSV to human respiratory syncytial virus (HRSV) has allowed researchers to use BRSV and HRSV to elucidate the mechanisms by which these viruses induce disease. Attempted vaccine production using formalin-inactivated vaccine resulted in exacerbated disease when infants became exposed to HRSV. Cattle vaccinated with formalin-inactivated virus had enhanced disease when inoculated with BRSV. This article discusses various aspects of BRSV, its epidemiology, pathogenesis, diagnostic tests, immunity, and vaccination.
Collapse
|
41
|
Rubbenstroth D, Rautenschlein S. Investigations on the protective role of passively transferred antibodies against avian metapneumovirus infection in turkeys. Avian Pathol 2009; 38:427-36. [DOI: 10.1080/03079450903349204] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
42
|
Orro T, Pohjanvirta T, Rikula U, Huovilainen A, Alasuutari S, Sihvonen L, Pelkonen S, Soveri T. Acute phase protein changes in calves during an outbreak of respiratory disease caused by bovine respiratory syncytial virus. Comp Immunol Microbiol Infect Dis 2009; 34:23-9. [PMID: 19897247 PMCID: PMC7124580 DOI: 10.1016/j.cimid.2009.10.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2009] [Indexed: 11/08/2022]
Abstract
Bovine acute phase proteins (APPs), lipopolysaccharide binding protein (LBP), serum amyloid A (SAA), haptoglobin (Hp) and alpha1-acid glycoprotein (AGP) were evaluated as inflammatory markers during an outbreak of bovine respiratory disease (BRD) caused by bovine respiratory syncytial virus (BRSV). Calves (n = 10) presented mild to moderate signs of respiratory disease. Secondary bacterial infections, Pasteurella multocida and Mycoplasma dispar as major species, were detected in tracheobronchial lavage samples. Concentrations of SAA and LBP increased at week 1 had the highest values at week 3 and decreased at week 4 of outbreak. Some calves had high Hp concentrations at week 3, but AGP concentrations did not rise during respiratory disease. Higher SAA, LBP and Hp concentrations at a later stage of BRD (week 3) were associated with the low BRSV-specific IgG1 production, suggesting that these calves had enhanced inflammatory response to the secondary bacterial infection. In conclusion, APPs (especially SAA and LBP) are sensitive markers of respiratory infection, and they may be useful to explore host response to the respiratory infections in clinical research.
Collapse
Affiliation(s)
- Toomas Orro
- Department of Animal Health and Environment, Estonian University of Life Sciences, Tartu, Estonia.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Timsit E, Le Dréan E, Maingourd C, Belloc C, Guattéo R, Bareille N, Seegers H, Douart A, Sellal E, Assié S. Detection by real-time RT-PCR of a bovine respiratory syncytial virus vaccine in calves vaccinated intranasally. Vet Rec 2009; 165:230-3. [PMID: 19700783 DOI: 10.1136/vr.165.8.230] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Seventeen four- to five-week-old calves that were not shedding bovine respiratory syncytial virus (BRSV) were vaccinated intranasally against the disease and sampled by nasal swabbing on 16 different days for up to 20 days after vaccination. BRSV vaccine virus was detected in 15 of the 17 calves. Five of the calves were PCR positive on only one swab, eight were PCR positive on two to five swabs and two were PCR positive on more than five swabs. Twelve of the calves were positive only before day 14 and three were positive after day 14. The nasal shedding of BRSV vaccine virus was very variable.
Collapse
Affiliation(s)
- E Timsit
- UMR Bio-aggression, Epidemiology and Risk Analysis, Ecole Nationale Vétérinaire de Nantes, BP 40706, 44307 Nantes Cedex 03, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Maternally and naturally acquired antibodies to Shiga toxins in a cohort of calves shedding Shiga-toxigenic Escherichia coli. Appl Environ Microbiol 2009; 75:3695-704. [PMID: 19363081 DOI: 10.1128/aem.02869-08] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Calves become infected with Shiga toxin-producing Escherichia coli (STEC) early in life, which frequently results in long-term shedding of the zoonotic pathogen. Little is known about the animals' immunological status at the time of infection. We assessed the quantity and dynamics of maternal and acquired antibodies to Shiga toxins (Stx1 and Stx2), the principal STEC virulence factors, in a cohort of 27 calves. Fecal and serum samples were taken repeatedly from birth until the 24th week of age. Sera, milk, and colostrums of dams were also assessed. STEC shedding was confirmed by detection of stx in fecal cultures. Stx1- and Stx2-specific antibodies were quantified by Vero cell neutralization assay and further analyzed by immunoblotting. By the eighth week of age, 13 and 15 calves had at least one stx(1)-type and at least one stx(2)-type positive culture, respectively. Eleven calves had first positive cultures only past that age. Sera and colostrums of all dams and postcolostral sera of all newborn calves contained Stx1-specific antibodies. Calf serum titers decreased rapidly within the first 6 weeks of age. Only five calves showed Stx1-specific seroconversion. Maternal and acquired Stx1-specific antibodies were mainly directed against the StxA1 subunit. Sparse Stx2-specific titers were detectable in sera and colostrums of three dams and in postcolostral sera of their calves. None of the calves developed Stx2-specific seroconversion. The results indicate that under natural conditions of exposure, first STEC infections frequently coincide with an absence of maternal and acquired Stx-specific antibodies in the animals' sera.
Collapse
|
45
|
Letellier C, Boxus M, Rosar L, Toussaint JF, Walravens K, Roels S, Meyer G, Letesson JJ, Kerkhofs P. Vaccination of calves using the BRSV nucleocapsid protein in a DNA prime-protein boost strategy stimulates cell-mediated immunity and protects the lungs against BRSV replication and pathology. Vaccine 2008; 26:4840-8. [PMID: 18644416 PMCID: PMC7115630 DOI: 10.1016/j.vaccine.2008.06.100] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Revised: 06/25/2008] [Accepted: 06/29/2008] [Indexed: 11/06/2022]
Abstract
Respiratory syncytial virus (RSV) is a major cause of respiratory disease in both cattle and young children. Despite the development of vaccines against bovine (B)RSV, incomplete protection and exacerbation of subsequent RSV disease have occurred. In order to circumvent these problems, calves were vaccinated with the nucleocapsid protein, known to be a major target of CD8+ T cells in cattle. This was performed according to a DNA prime–protein boost strategy. The results showed that DNA vaccination primed a specific T-cell-mediated response, as indicated by both a lymphoproliferative response and IFN-γ production. These responses were enhanced after protein boost. After challenge, mock-vaccinated calves displayed gross pneumonic lesions and viral replication in the lungs. In contrast, calves vaccinated by successive administrations of plasmid DNA and protein exhibited protection against the development of pneumonic lesions and the viral replication in the BAL fluids and the lungs. The protection correlated to the cell-mediated immunity and not to the antibody response.
Collapse
|
46
|
Abstract
In this article we cover the immunologic response as it develops, the components of passive immunity, and the immune response of young calves. We discuss interference from maternal immunity in the development of specific immunity and vaccine strategies for developing protection against pathogens in calves.
Collapse
|
47
|
Abstract
Bovine respiratory syncytial virus (BRSV) causes severe respiratory disease in young cattle. Much like the human respiratory syncytial virus, BRSV induces immunomodulation in the infected host, favoring a Th2 response. Several groups have demonstrated IgE responses to BRSV proteins during infection and particularly in response to vaccination with formalin-inactivated vaccine in the field and experimentally. Newer vaccine modalities that favor a shift to Th1 cytokine production have provided promising results. Infection with BRSV is a major contributor to the multi-pathogen disease, bovine respiratory disease complex. This review stresses the unique immunomodulatory aspects of BRSV infection, vaccination and its interaction with the host's immune system.
Collapse
|
48
|
Hansbro NG, Horvat JC, Wark PA, Hansbro PM. Understanding the mechanisms of viral induced asthma: new therapeutic directions. Pharmacol Ther 2008; 117:313-53. [PMID: 18234348 PMCID: PMC7112677 DOI: 10.1016/j.pharmthera.2007.11.002] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2007] [Accepted: 11/19/2007] [Indexed: 12/12/2022]
Abstract
Asthma is a common and debilitating disease that has substantially increased in prevalence in Western Societies in the last 2 decades. Respiratory tract infections by respiratory syncytial virus (RSV) and rhinovirus (RV) are widely implicated as common causes of the induction and exacerbation of asthma. These infections in early life are associated with the induction of wheeze that may progress to the development of asthma. Infections may also promote airway inflammation and enhance T helper type 2 lymphocyte (Th2 cell) responses that result in exacerbations of established asthma. The mechanisms of how RSV and RV induce and exacerbate asthma are currently being elucidated by clinical studies, in vitro work with human cells and animal models of disease. This research has led to many potential therapeutic strategies and, although none are yet part of clinical practise, they show much promise for the prevention and treatment of viral disease and subsequent asthma.
Collapse
Key Words
- aad, allergic airways disease
- ahr, airway hyperresponsiveness
- apc, antigen-presenting cell
- asm, airway smooth muscle
- balf, broncho-alveolar lavage fluid
- bec, bronchoepithelial cell
- bfgf, basic fibroblast growth factor
- cam, cellular adhesion molecules
- ccr, cc chemokine receptor
- cgrp, calcitonin gene-related peptide
- crp, c reactive protein
- dsrna, double stranded rna
- ecp, eosinophil cationic protein
- ena-78, epithelial neutrophil-activating peptide-78
- fev1, forced expiratory volume
- fi, formalin-inactivated
- g-csf and gm-csf, granulocyte and granulocyte-macrophage colony stimulating factor
- ics, inhaled corticosteroid
- ifn, interferon, ifn
- il, interleukin
- ip-10, ifn-γ inducible protein-10
- laba, long acting beta agonist
- ldh, lactate dehydrogenase
- ldlpr, low density lipoprotein receptor
- lrt, lower respiratory tract
- lt, leukotriene
- mab, monoclonal antibody
- mcp, monocyte chemoattractant proteins
- mdc, myeloid dendritic cell
- mhc, major histocompatibility
- mip, macrophage inhibitory proteins
- mpv, metapneumovirus
- nf-kb, nuclear factor (nf)-kb
- nk cells, natural killer cells
- nk1, neurogenic receptor 1
- or, odds ratio
- paf, platelet-activating factor
- pbmc, peripheral blood mononuclear cell
- pdc, plasmacytoid dendritic cell
- pef, peak expiratory flow
- penh, enhanced pause
- pfu, plaque forming units
- pg, prostaglandin
- pkr, protein kinase r
- pvm, pneumonia virus of mice
- rad, reactive airway disease
- rantes, regulated on activation normal t cell expressed and secreted
- rr, relative risk
- rsv, respiratory syncytial virus
- rv, rhinovirus (rv)
- ssrna, single stranded rna
- tgf, transforming growth factor
- th, t helper lymphocytes
- tlr, toll-like receptors
- tnf, tumor necrosis factor
- urt, upper respiratory tract
- vegf, vascular endothelial growth factor
- vs, versus
- wbc, white blood cell
- respiratory syncytial virus
- rhinovirus
- induction
- exacerbation
- asthma
- allergy
- treatment
- prevention
Collapse
Affiliation(s)
- Nicole G. Hansbro
- Priority Research Centre for Asthma and Respiratory Disease, Faculty of Health, The University of Newcastle, New South Wales 2308, Australia
- Vaccines, Immunology/Infection, Viruses and Asthma Group, Hunter Medical Research Institute, Locked Bag 1 New Lambton, New South Wales 2305, Australia
| | - Jay C. Horvat
- Priority Research Centre for Asthma and Respiratory Disease, Faculty of Health, The University of Newcastle, New South Wales 2308, Australia
- Vaccines, Immunology/Infection, Viruses and Asthma Group, Hunter Medical Research Institute, Locked Bag 1 New Lambton, New South Wales 2305, Australia
| | - Peter A. Wark
- Priority Research Centre for Asthma and Respiratory Disease, Faculty of Health, The University of Newcastle, New South Wales 2308, Australia
- Vaccines, Immunology/Infection, Viruses and Asthma Group, Hunter Medical Research Institute, Locked Bag 1 New Lambton, New South Wales 2305, Australia
- Department of Respiratory & Sleep Medicine, John Hunter Hospital & Sleep Medicine, School of Medical Practice, University of Newcastle, Newcastle, Australia
| | - Philip M. Hansbro
- Priority Research Centre for Asthma and Respiratory Disease, Faculty of Health, The University of Newcastle, New South Wales 2308, Australia
- Vaccines, Immunology/Infection, Viruses and Asthma Group, Hunter Medical Research Institute, Locked Bag 1 New Lambton, New South Wales 2305, Australia
| |
Collapse
|
49
|
Meyer G, Deplanche M, Schelcher F. Human and bovine respiratory syncytial virus vaccine research and development. Comp Immunol Microbiol Infect Dis 2007; 31:191-225. [PMID: 17720245 DOI: 10.1016/j.cimid.2007.07.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2007] [Indexed: 11/23/2022]
Abstract
Human (HRSV) and bovine (BRSV) respiratory syncytial viruses (RSV) are two closely related viruses, which are the most important causative agents of respiratory tract infections of young children and calves, respectively. BRSV vaccines have been available for nearly 2 decades. They probably have reduced the prevalence of RSV infection but their efficacy needs improvement. In contrast, despite decades of research, there is no currently licensed vaccine for the prevention of HRSV disease. Development of a HRSV vaccine for infants has been hindered by the lack of a relevant animal model that develops disease, the need to immunize immunologically immature young infants, the difficulty for live vaccines to find the right balance between attenuation and immunogenicity, and the risk of vaccine-associated disease. During the past 15 years, intensive research into a HRSV vaccine has yielded vaccine candidates, which have been evaluated in animal models and, for some of them, in clinical trials in humans. Recent formulations have focused on subunit vaccines with specific CD4+ Th-1 immune response-activating adjuvants and on genetically engineered live attenuated vaccines. It is likely that different HRSV vaccines and/or combinations of vaccines used sequentially will be needed for the various populations at risk. This review discusses the recent advances in RSV vaccine development.
Collapse
Affiliation(s)
- Gilles Meyer
- INRA-ENVT, UMR1225 IHAP, Interactions Hôtes-Virus et Vaccinologie, Ecole Nationale Vétérinaire, 23 Chemin des Capelles, BP 87614, 31076 Toulouse Cedex, France.
| | | | | |
Collapse
|
50
|
Bennett N, Ellis J, Bonville C, Rosenberg H, Domachowske J. Immunization strategies for the prevention of pneumovirus infections. Expert Rev Vaccines 2007; 6:169-82. [PMID: 17408367 DOI: 10.1586/14760584.6.2.169] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Pneumoviruses, which are viruses of the family Paramyxoviridae, subfamily Pneumovirinae, are pathogens that infect the respiratory tract of their host species. The human pneumovirus pathogen, human respiratory syncytial virus (RSV), has counterparts that infect cows (bovine RSV), sheep (ovine RSV), goats (caprine RSV) and rodents (pneumonia virus of mice). Each pneumovirus is host specific and results in a spectrum of disease, ranging from mild upper-respiratory illness to severe bronchiolitis and pneumonia with significant morbidity and mortality. Given the public health burden caused by human RSV and the concomitant agricultural impact of bovine RSV, these two viruses are considered as prime targets for the development of safe and effective vaccines. In this review, we describe the strategies used to develop vaccines against human and bovine RSV and introduce the pneumonia virus mouse model as a novel and invaluable tool for preclinical studies and new vaccine strategies.
Collapse
Affiliation(s)
- Nicholas Bennett
- Department of Pediatrics, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | | | | | | | | |
Collapse
|