1
|
Ikram A, Alzahrani B, Zaheer T, Sattar S, Rasheed S, Aurangzeb M, Ishaq Y. An In Silico Deep Learning Approach to Multi-Epitope Vaccine Design: A Hepatitis E Virus Case Study. Vaccines (Basel) 2023; 11:vaccines11030710. [PMID: 36992295 DOI: 10.3390/vaccines11030710] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/08/2023] [Accepted: 03/16/2023] [Indexed: 03/31/2023] Open
Abstract
Hepatitis E Virus (HEV) is a major cause of acute and chronic hepatitis. The severity of HEV infection increases manyfold in pregnant women and immunocompromised patients. Despite the extensive research on HEV in the last few decades, there is no widely available vaccine yet. In the current study, immunoinformatic analyses were applied to predict a multi-epitope vaccine candidate against HEV. From the ORF2 region, 41 conserved and immunogenic epitopes were prioritized. These epitopes were further analyzed for their probable antigenic and non-allergenic combinations with several linkers. The stability of the vaccine construct was confirmed by molecular dynamic simulations. The vaccine construct is potentially antigenic and docking analysis revealed stable interactions with TLR3. These results suggest that the proposed vaccine can efficiently stimulate both cellular and humoral immune responses. However, further studies are needed to determine the immunogenicity of the vaccine construct.
Collapse
Affiliation(s)
- Aqsa Ikram
- Institute of Molecular Biology and Biotechnology (IMBB), University of Lahore (UOL), Lahore 54000, Pakistan
| | - Badr Alzahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia
| | - Tahreem Zaheer
- Department of Biological Physics, Eötvös Loránd University, Pázmány Péter Sétány 1/A, 1117 Budapest, Hungary
| | - Sobia Sattar
- Institute of Molecular Biology and Biotechnology (IMBB), University of Lahore (UOL), Lahore 54000, Pakistan
| | - Sidra Rasheed
- Institute of Molecular Biology and Biotechnology (IMBB), University of Lahore (UOL), Lahore 54000, Pakistan
| | - Muhammad Aurangzeb
- Institute of Molecular Biology and Biotechnology (IMBB), University of Lahore (UOL), Lahore 54000, Pakistan
| | - Yasmeen Ishaq
- Institute of Molecular Biology and Biotechnology (IMBB), University of Lahore (UOL), Lahore 54000, Pakistan
| |
Collapse
|
2
|
Zhang J, Zheng Z, Xia N. Prophylactic Hepatitis E Vaccine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1417:227-245. [PMID: 37223870 DOI: 10.1007/978-981-99-1304-6_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The hepatitis E has been increasingly recognized as an underestimated global disease burden in recent years. Subpopulations with more serious infection associated damage or death include pregnant women, patients with basic liver diseases, and elderly persons. Vaccine would be the most effective means for prevention of HEV infection. The lack of an efficient cell culture system for HEV makes the development of classic inactive or attenuated vaccine infeasible. Hence, the recombinant vaccine approaches are explored deeply. The neutralizing sites are located almost exclusively in the capsid protein, pORF2, of the virion. Based on pORF2, many vaccine candidates showed potential of protecting primate animals, two of them were tested in human and evidenced to be well-tolerated in adults and highly efficacious in preventing hepatitis E. The world's first hepatitis E vaccine, Hecolin® (HEV 239 vaccine), was licensed in China and launched in 2012.
Collapse
Affiliation(s)
- Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, China.
| | - Zizheng Zheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, China
| |
Collapse
|
3
|
Shata MTM, Hetta HF, Sharma Y, Sherman KE. Viral hepatitis in pregnancy. J Viral Hepat 2022; 29:844-861. [PMID: 35748741 PMCID: PMC9541692 DOI: 10.1111/jvh.13725] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/17/2021] [Accepted: 06/13/2022] [Indexed: 12/09/2022]
Abstract
Viral hepatitis is caused by a heterogenous group of viral agents representing a wide range of phylogenetic groups. Many viruses can involve the liver and cause liver injury but only a subset are delineated as 'hepatitis viruses' based upon their primary site of replication and tropism for hepatocytes which make up the bulk of the liver cell population. Since their discovery, beginning with the agent that caused serum hepatitis in the 1960s, the alphabetic designations have been utilized. To date, we have five hepatitis viruses, A through E, though it is postulated that others may exist. This chapter will focus on those viruses. Note that hepatitis D is included as a subset of hepatitis B, as it cannot exist without concurrent hepatitis B infection. Pregnancy has the potential to affect all aspects of these viral agents due to the unique immunologic and physiologic changes that occur during and after the gestational period. In this review, we will discuss the most common viral hepatitis and their effects during pregnancy.
Collapse
Affiliation(s)
- Mohamed Tarek M. Shata
- Division of Digestive Disease, Department of Internal MedicineUniversity of CincinnatiCincinnatiOhioUSA
| | - Helal F. Hetta
- Division of Digestive Disease, Department of Internal MedicineUniversity of CincinnatiCincinnatiOhioUSA,Department of Medical Microbiology and Immunology, Faculty of MedicineAssiut UniversityAssiutEgypt
| | - Yeshika Sharma
- Division of Digestive Disease, Department of Internal MedicineUniversity of CincinnatiCincinnatiOhioUSA
| | - Kenneth E. Sherman
- Division of Digestive Disease, Department of Internal MedicineUniversity of CincinnatiCincinnatiOhioUSA
| |
Collapse
|
4
|
Samavia N, Fahed P, Yasir W, Tasneem A, Syeda N. Prediction of promiscuous epitopes in ORF2 of Hepatitis E virus: an In-Silico approach. Afr Health Sci 2022; 22:626-639. [PMID: 36910344 PMCID: PMC9993254 DOI: 10.4314/ahs.v22i3.67] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background Vaccine development against emerging infections is essentially important for saving people from increasing viral infections. In developing countries, Hepatitis E (HEV) is a common infection affecting millions of people worldwide. Based on In-silico analysis, different approaches have been targeted. Objectives Rationale of this study is to design an epitope-based vaccine candidates with the help of immunoinformatics that can predict promiscuous B-cell and T-cell epitopes of the most antigenic HEV-ORF2 capsid protein. Materials & Methods This study suggests potential T-cell and B-cell epitopes of the highly antigenic HEV ORF2 capsid protein while using various In-silico tools such as NCBI-BLAST, Expassy, CLC workbench, Ellipro and Discotope. Results Potential antigenic and immunogenic CD8+ T-cell epitopes were predicted from the global consensus sequence of ORF2-HEV. Furthermore, twenty-two linear B-cell epitopes were predicted. Among these, "SLGAGPV" at position 587-593 and "LEFRNLTPGNTNTRVSRYSS" at position 306-325 were most antigenic with antigenicity score 1.4206 and 1.3600 respectively. Discontinuous B-cell epitopes were found by three-dimensional capsid protein structure. Epitopes predicted in this study reveal high antigenicity and promiscuity for HLA classes. Conclusion Collectively, our data suggests promiscuous epitopes that can potentially acts as new candidates for the design of HEV peptide vaccine.
Collapse
Affiliation(s)
- Noor Samavia
- Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Parvaiz Fahed
- Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Waheed Yasir
- Foundation University Medical College, Foundation University Islamabad, Pakistan
| | - Anwar Tasneem
- Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Nasreen Syeda
- IBADAT International University, Islamabad, Pakistan
| |
Collapse
|
5
|
Sridhar S, Yip CCY, Wu S, Chew NFS, Leung KH, Chan JFW, Zhao PS, Chan WM, Poon RWS, Tsoi HW, Cai JP, Chan HSY, Leung AWS, Tse CWS, Zee JST, Tsang OTY, Cheng VCC, Lau SKP, Woo PCY, Tsang DNC, Yuen KY. Transmission of Rat Hepatitis E Virus Infection to Humans in Hong Kong: A Clinical and Epidemiological Analysis. Hepatology 2021; 73:10-22. [PMID: 31960460 DOI: 10.1002/hep.31138] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/23/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS Hepatitis E virus (HEV) variants causing human infection predominantly belong to HEV species A (HEV-A). HEV species C genotype 1 (HEV-C1) circulates in rats and is highly divergent from HEV-A. It was previously considered unable to infect humans, but the first case of human HEV-C1 infection was recently discovered in Hong Kong. The aim of this study is to further describe the features of this zoonosis in Hong Kong. APPROACH AND RESULTS We conducted a territory-wide prospective screening study for HEV-C1 infection over a 31-month period. Blood samples from 2,860 patients with abnormal liver function (n = 2,201) or immunosuppressive conditions (n = 659) were screened for HEV-C1 RNA. In addition, 186 captured commensal rats were screened for HEV-C1 RNA. Sequences of human-derived and rat-derived HEV-C1 isolates were compared. Epidemiological and clinical features of HEV-C1 infection were analyzed. HEV-C1 RNA was detected in 6/2,201 (0.27%) patients with hepatitis and 1/659 (0.15%) immunocompromised persons. Including the previously reported case, eight HEV-C1 infections were identified, including five in patients who were immunosuppressed. Three patients had acute hepatitis, four had persistent hepatitis, and one had subclinical infection without hepatitis. One patient died of meningoencephalitis, and HEV-C1 was detected in cerebrospinal fluid. HEV-C1 hepatitis was generally milder than HEV-A hepatitis. HEV-C1 RNA was detected in 7/186 (3.76%) rats. One HEV-C1 isolate obtained from a rat captured near the residences of patients was closely related to the major outbreak strain. CONCLUSIONS HEV-C1 is a cause of hepatitis E in humans in Hong Kong. Immunosuppressed individuals are susceptible to persistent HEV-C1 infection and extrahepatic manifestations. Subclinical HEV-C1 infection threatens blood safety. Tests for HEV-C1 are required in clinical laboratories.
Collapse
Affiliation(s)
- Siddharth Sridhar
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China
| | - Cyril Chik-Yan Yip
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Shusheng Wu
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Nicholas Foo-Siong Chew
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kit-Hang Leung
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jasper Fuk-Woo Chan
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China
| | - Pyrear Suhui Zhao
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Wan-Mui Chan
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Rosana Wing-Shan Poon
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Hoi-Wah Tsoi
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jian-Piao Cai
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Helen Shuk-Ying Chan
- The Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Hong Kong, China
| | | | | | | | | | - Vincent Chi-Chung Cheng
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Susanna Kar-Pui Lau
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China.,Tuen Mun Hospital, Hong Kong, China
| | - Patrick Chiu-Yat Woo
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China.,Tuen Mun Hospital, Hong Kong, China
| | | | - Kwok-Yung Yuen
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China.,Tuen Mun Hospital, Hong Kong, China
| |
Collapse
|
6
|
Gupta J, Kaul S, Srivastava A, Kaushik N, Ghosh S, Sharma C, Batra G, Banerjee M, Shalimar, Nayak B, Ranjith-Kumar CT, Surjit M. Expression, Purification and Characterization of the Hepatitis E Virus Like-Particles in the Pichia pastoris. Front Microbiol 2020; 11:141. [PMID: 32117160 PMCID: PMC7017414 DOI: 10.3389/fmicb.2020.00141] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/21/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatitis E virus (HEV) is associated with acute hepatitis disease, which may lead to chronic disease in immunocompromised individuals. The disease is particularly severe among pregnant women (20-30% mortality). The only licensed vaccine against HEV, which is available in China, is the Escherichia coli purified recombinant virus-like particles (VLPs) encompassing the 368-660 amino acids (aa) of the viral ORF2 protein. The viral capsid is formed by the ORF2 protein, which harbors three glycosylation sites. Baculo virus expression system has been employed to generate a glycosylated VLP, which encompasses 112-608aa of the ORF2 protein. Here, we sought to produce a recombinant VLP containing 112-608aa of the ORF2 protein in Pichia pastoris (P. pastoris) expression system. The cDNA sequence encoding 112-608aa of the ORF2 protein was fused with the α-mating factor secretion signal coding sequence (for release of the fusion protein to the culture medium) and cloned into the yeast vector pPICZα. Optimum expression of recombinant protein was obtained at 72 h induction in 1.5% methanol using inoculum density (A600) of 80 and at pH-3.0 of the culture medium. Identity of the purified protein was confirmed by mass spectrometry analysis. Further studies revealed the glycosylation pattern and VLP nature of the purified protein. Immunization of BALB/c mice with these VLPs induced potent immune response as evidenced by the high ORF2 specific IgG titer and augmented splenocyte proliferation in a dose dependent manner. 112-608aa ORF2 VLPs produced in P. pastoris appears to be a suitable candidate for development of diagnostic and prophylactic reagents against the hepatitis E.
Collapse
Affiliation(s)
- Jyoti Gupta
- Virology Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Sheetal Kaul
- Virology Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Akriti Srivastava
- Virology Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Neha Kaushik
- Centre for Bio-Design and Diagnostics, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
- School of Life Sciences, Manipal University, Manipal, India
| | - Sukanya Ghosh
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| | - Chandresh Sharma
- Centre for Bio-Design and Diagnostics, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Gaurav Batra
- Centre for Bio-Design and Diagnostics, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Manidipa Banerjee
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| | - Shalimar
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, India
| | - Baibaswata Nayak
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, India
| | - C. T. Ranjith-Kumar
- Virology Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India
| | - Milan Surjit
- Virology Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| |
Collapse
|
7
|
Bigoraj E, Rzeżutka A. Application of ELISA recomWell HEV IgG (Human) for Detection of Virus-Specific Antibodies in Sera of Slaughtered Rabbits. FOOD ANAL METHOD 2018. [DOI: 10.1007/s12161-018-1367-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
8
|
Zhang J, Zhao Q, Xia N. Prophylactic Hepatitis E Vaccine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 948:223-246. [PMID: 27738988 DOI: 10.1007/978-94-024-0942-0_13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Hepatitis E has been increasingly recognized as an underestimated global disease burden in recent years. Subpopulations with more serious infection-associated damage or death include pregnant women, patients with basic liver diseases, and elderly persons. Vaccine would be the most effective means for prevention of HEV infection. The lack of an efficient cell culture system for HEV makes the development of classic inactive or attenuated vaccine infeasible. Hence, the recombinant vaccine approaches are explored deeply. The neutralizing sites are located almost exclusively in the capsid protein, pORF2, of the virion. Based on pORF2, many vaccine candidates showed potential of protecting primate animals; two of them were tested in human and evidenced to be well tolerated in adults and highly efficacious in preventing hepatitis E. The world's first hepatitis E vaccine, Hecolin® (HEV 239 vaccine), was licensed in China and launched in 2012.
Collapse
Affiliation(s)
- Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, China.
| | - Qinjian Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, China
| |
Collapse
|
9
|
Brown A, Halliday JS, Swadling L, Madden RG, Bendall R, Hunter JG, Maggs J, Simmonds P, Smith DB, Vine L, McLaughlin C, Collier J, Bonsall D, Jeffery K, Dunachie S, Klenerman P, Izopet J, Kamar N, Dalton HR, Barnes E. Characterization of the Specificity, Functionality, and Durability of Host T-Cell Responses Against the Full-Length Hepatitis E Virus. Hepatology 2016; 64:1934-1950. [PMID: 27631819 PMCID: PMC5132006 DOI: 10.1002/hep.28819] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 07/13/2016] [Accepted: 08/17/2016] [Indexed: 12/19/2022]
Abstract
UNLABELLED The interplay between host antiviral immunity and immunopathology during hepatitis E virus (HEV) infection determines important clinical outcomes. We characterized the specificity, functionality, and durability of host T-cell responses against the full-length HEV virus and assessed a novel "Quantiferon" assay for the rapid diagnosis of HEV infection. Eighty-nine volunteers were recruited from Oxford, Truro (UK), and Toulouse (France), including 44 immune-competent patients with acute HEV infection, 18 HEV-exposed immunosuppressed organ-transplant recipients (8 with chronic HEV), and 27 healthy volunteers. A genotype 3a peptide library (616 overlapping peptides spanning open reading frames [ORFs] 1-3) was used in interferon-gamma (IFN-γ) T-cell ELISpot assays. CD4+ /CD8+ T-cell subsets and polyfunctionality were defined using ICCS and SPICE analysis. Quantification of IFN-γ used whole-blood stimulation with recombinant HEV-capsid protein in the QuantiFERON kit. HEV-specific T-cell responses were detected in 41/44 immune-competent HEV exposed volunteers (median magnitude: 397 spot-forming units/106 peripheral blood mononuclear cells), most frequently targeting ORF2. High-magnitude, polyfunctional CD4 and CD8+ T cells were detected during acute disease and maintained to 12 years, but these declined over time, with CD8+ responses becoming more monofunctional. Low-level responses were detectable in immunosuppressed patients. Twenty-three novel HEV CD4+ and CD8+ T-cell targets were mapped predominantly to conserved genomic regions. QuantiFERON testing demonstrated an inverse correlation between IFN-γ production and the time from clinical presentation, providing 100% specificity, and 71% sensitivity (area under the receiver operator characteristic curve of 0.86) for HEV exposure at 0.3 IU/mL. CONCLUSION Robust HEV-specific T-cell responses generated during acute disease predominantly target ORF2, but decline in magnitude and polyfunctionality over time. Defining HEV T-cell targets will be important for the investigation of HEV-associated autoimmune disease. (Hepatology 2016;64:1934-1950).
Collapse
Affiliation(s)
- Anthony Brown
- Peter Medawar Building for Pathogen ResearchUniversity of OxfordOxfordUnited Kingdom
| | - John S. Halliday
- Peter Medawar Building for Pathogen ResearchUniversity of OxfordOxfordUnited Kingdom
- The Royal Melbourne HospitalMelbourneVictoriaAustralia
| | - Leo Swadling
- Peter Medawar Building for Pathogen ResearchUniversity of OxfordOxfordUnited Kingdom
| | | | | | | | - James Maggs
- Oxford University Hospitals NHS Foundation TrustOxfordUnited Kingdom
| | - Peter Simmonds
- Peter Medawar Building for Pathogen ResearchUniversity of OxfordOxfordUnited Kingdom
- Centre for Immunity, Infection and Evolution, University of EdinburghUnited Kingdom
| | - Donald B. Smith
- Centre for Immunity, Infection and Evolution, University of EdinburghUnited Kingdom
| | - Louisa Vine
- The Royal Cornwall HospitalTruroUnited Kingdom
| | | | - Jane Collier
- Oxford University Hospitals NHS Foundation TrustOxfordUnited Kingdom
| | - David Bonsall
- Peter Medawar Building for Pathogen ResearchUniversity of OxfordOxfordUnited Kingdom
| | - Katie Jeffery
- Oxford University Hospitals NHS Foundation TrustOxfordUnited Kingdom
| | - Susanna Dunachie
- Peter Medawar Building for Pathogen ResearchUniversity of OxfordOxfordUnited Kingdom
- Centre for Tropical Medicine & Global HealthUniversity of OxfordOxfordUnited Kingdom
| | - Paul Klenerman
- Peter Medawar Building for Pathogen ResearchUniversity of OxfordOxfordUnited Kingdom
- Oxford University Hospitals NHS Foundation TrustOxfordUnited Kingdom
- National Institute for Health Research (NIHR)Oxford Biomedical Research CentreOxfordUnited Kingdom
| | | | | | | | - Eleanor Barnes
- Peter Medawar Building for Pathogen ResearchUniversity of OxfordOxfordUnited Kingdom
- Oxford University Hospitals NHS Foundation TrustOxfordUnited Kingdom
- National Institute for Health Research (NIHR)Oxford Biomedical Research CentreOxfordUnited Kingdom
| |
Collapse
|
10
|
Kobayashi T, Takahashi M, Jirintai S, Nagashima S, Nishizawa T, Okamoto H. Characterization and epitope mapping of monoclonal antibodies raised against rat hepatitis E virus capsid protein: An evaluation of their neutralizing activity in a cell culture system. J Virol Methods 2016; 233:78-88. [PMID: 26992654 DOI: 10.1016/j.jviromet.2016.03.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 03/10/2016] [Accepted: 03/12/2016] [Indexed: 01/23/2023]
Abstract
Hepatitis E virus (HEV) is the causative agent of acute hepatitis. Rat HEV is a recently discovered virus related to, but distinct from, human HEV. Since laboratory rats can be reproducibly infected with rat HEV and a cell culture system has been established for rat HEV, this virus may be used as a surrogate virus for human HEV, enabling studies on virus replication and mechanism of infection. However, monoclonal antibodies (MAbs) against rat HEV capsid (ORF2) protein are not available. In this study, 12 murine MAbs were generated against a recombinant ORF2 protein of rat HEV (rRatHEV-ORF2: amino acids 101-644) and were classified into at least six distinct groups by epitope mapping and a cross-reactivity analysis with human HEV ORF2 proteins. Two non-cross-reactive MAbs recognizing the protruding (P) domain detected both non-denatured and denatured rRatHEV-ORF2 protein and efficiently captured cell culture-produced rat HEV particles that had been treated with deoxycholate and trypsin, but not those without prior treatment. In addition, these two MAbs were able to efficiently neutralize replication of cell culture-generated rat HEV particles without lipid membranes (but not those with lipid membranes) in a cell culture system, similar to human HEV.
Collapse
Affiliation(s)
- Tominari Kobayashi
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke-Shi, Tochigi 329-0498, Japan
| | - Masaharu Takahashi
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke-Shi, Tochigi 329-0498, Japan
| | - Suljid Jirintai
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke-Shi, Tochigi 329-0498, Japan
| | - Shigeo Nagashima
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke-Shi, Tochigi 329-0498, Japan
| | - Tsutomu Nishizawa
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke-Shi, Tochigi 329-0498, Japan
| | - Hiroaki Okamoto
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke-Shi, Tochigi 329-0498, Japan.
| |
Collapse
|
11
|
Zhang X, Xin L, Li S, Fang M, Zhang J, Xia N, Zhao Q. Lessons learned from successful human vaccines: Delineating key epitopes by dissecting the capsid proteins. Hum Vaccin Immunother 2016; 11:1277-92. [PMID: 25751641 DOI: 10.1080/21645515.2015.1016675] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Recombinant VLP-based vaccines have been successfully used against 3 diseases caused by viral infections: Hepatitis B, cervical cancer and hepatitis E. The VLP approach is attracting increasing attention in vaccine design and development for human and veterinary use. This review summarizes the clinically relevant epitopes on the VLP antigens in successful human vaccines. These virion-like epitopes, which can be delineated with molecular biology, cryo-electron microscopy and x-ray crystallographic methods, are the prerequisites for these efficacious vaccines to elicit functional antibodies. The critical epitopes and key factors influencing these epitopes are discussed for the HEV, HPV and HBV vaccines. A pentamer (for HPV) or a dimer (for HEV and HBV), rather than a monomer, is the basic building block harboring critical epitopes for the assembly of VLP antigen. The processing and formulation of VLP-based vaccines need to be developed to promote the formation and stabilization of these epitopes in the recombinant antigens. Delineating the critical epitopes is essential for antigen design in the early phase of vaccine development and for critical quality attribute analysis in the commercial phase of vaccine manufacturing.
Collapse
Affiliation(s)
- Xiao Zhang
- a State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics; National Institute of Diagnostics and Vaccine Development in Infectious Diseases; Xiamen University ; Xiamen , Fujian , PR China
| | | | | | | | | | | | | |
Collapse
|
12
|
Morozov VA, Morozov AV, Rotem A, Barkai U, Bornstein S, Denner J. Extended Microbiological Characterization of Göttingen Minipigs in the Context of Xenotransplantation: Detection and Vertical Transmission of Hepatitis E Virus. PLoS One 2015; 10:e0139893. [PMID: 26466154 PMCID: PMC4605773 DOI: 10.1371/journal.pone.0139893] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 08/08/2015] [Indexed: 12/28/2022] Open
Abstract
Xenotransplantation has been proposed as a solution to the shortage of suitable human donors. Pigs are currently favoured as donor animals for xenotransplantation of cells, including islet cells, or organs. To reduce the xenotransplantation-associated risk of infection of the recipient the pig donor should be carefully characterised. Göttingen minipigs from Ellegaard are often used for biomedical research and are regularly tested by their vendor for the presence of numerous bacteria, fungi, viruses and parasites. However, screening for some pathogens transmittable to humans had not been performed.The presence of microorganisms was examined in Göttingen Minipigs by PCR methods. Since zoonotic transmission of porcine hepatitis E virus HEV to humans has been demonstrated, extended search for HEV was considered as a priority. RNA from sera, islet and other cells from 40 minipigs were examined for HEV using different real-time reverse transcription (RT)-PCRs, among them two newly established. In addition, sera were examined by Western blot analysis using two recombinant capsid proteins of HEV as antigens. HEV RNA was not detected in pigs older than one year including gilts, but it was detected in the sera of three of ten animals younger than 1 year. Furthermore, HEV was also detected in the sera of three sows six days after delivery and their offspring, indicating vertical transmission of the virus. PCR amplicons were cloned, sequenced and the viruses were found to belong to the HEV genotype (gt) 3/4. Anti-HEV immunoglobulins G were detected in one sow and maternal antibodies in her six day old piglet. Since Göttingen minipigs were negative for many xenotransplantation-relevant microorganisms, they can now be classified as safe. HEV may be eliminated from the Ellegaard herd by selection of negative animals and/or by treatment of the animals.
Collapse
Affiliation(s)
| | | | - Avi Rotem
- Beta-O2 Technologies Ltd., Rosh Haain, Israel
| | | | - Stefan Bornstein
- Center Internal Medicine, University Clinics Carl Gustav Carus, Technical University, Dresden, Germany
| | - Joachim Denner
- Robert Koch Institute, Berlin, Germany
- * E-mail: (VAM); (JD)
| |
Collapse
|
13
|
Qi Y, Zhang F, Zhang L, Harrison TJ, Huang W, Zhao C, Kong W, Jiang C, Wang Y. Hepatitis E Virus Produced from Cell Culture Has a Lipid Envelope. PLoS One 2015; 10:e0132503. [PMID: 26161670 PMCID: PMC4498737 DOI: 10.1371/journal.pone.0132503] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 06/15/2015] [Indexed: 01/10/2023] Open
Abstract
The absence of a productive cell culture system hampered detailed analysis of the structure and protein composition of the hepatitis E virion. In this study, hepatitis E virus from a robust HEV cell culture system and from the feces of infected monkeys at the peak of virus excretion was purified by ultra-centrifugation. The common feature of the two samples after ultracentrifugation was that the ORF2 protein mainly remained in the top fractions. The ORF2 protein from cell culture system was glycosylated, with an apparent molecular weight of 88 kDa, and was not infectious in PLC/PRF/5 cells. The ORF2 protein in this fraction can bind to and protect HEV RNA from digestion by RNase A. The RNA-ORF2 product has a similar sedimentation coefficient to the virus from feces. The viral RNA in the cell culture supernatant was mainly in the fraction of 1.15 g/cm3 but that from the feces was mainly in the fraction of 1.21 g/cm3. Both were infectious in PLC/PRF/5 cells. And the fraction in the middle of the gradient (1.06 g/cm3) from the cell culture supernatant,but not that from the feces, also has ORF2 protein and HEV RNA but was not infectious in PLC/PRF/5.The infectious RNA-rich fraction from the cell culture contained ORF3 protein and lipid but the corresponding fraction from feces had no lipid and little ORF3 protein. The lipid on the surface of the virus has no effect on its binding to cells but the ORF3 protein interferes with binding. The result suggests that most of the secreted ORF2 protein is not associated with HEV RNA and that hepatitis E virus produced in cell culture differs in structure from the virus found in feces in that it has a lipid envelope.
Collapse
Affiliation(s)
- Ying Qi
- National Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun, 130012, China
- Division of HIV/AIDS and Sexually-Transmitted Virus Vaccines, National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Feng Zhang
- Division of HIV/AIDS and Sexually-Transmitted Virus Vaccines, National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Li Zhang
- Division of HIV/AIDS and Sexually-Transmitted Virus Vaccines, National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Tim J. Harrison
- Division of Medicine, University College London Medical School, London, WC1E 6BT, United Kingdom
| | - Weijin Huang
- Division of HIV/AIDS and Sexually-Transmitted Virus Vaccines, National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Chenyan Zhao
- Division of HIV/AIDS and Sexually-Transmitted Virus Vaccines, National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Wei Kong
- National Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun, 130012, China
| | - Chunlai Jiang
- National Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun, 130012, China
| | - Youchun Wang
- Division of HIV/AIDS and Sexually-Transmitted Virus Vaccines, National Institutes for Food and Drug Control, Beijing, 100050, China
| |
Collapse
|
14
|
Lessons from hepatitis E vaccine design. Curr Opin Virol 2015; 11:130-6. [PMID: 25913817 DOI: 10.1016/j.coviro.2015.04.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 04/01/2015] [Accepted: 04/06/2015] [Indexed: 12/29/2022]
Abstract
Acute hepatitis E is still a major public health issue, especially in developing countries, and hepatitis E virus (HEV) infection will likely only be preventable through prophylactic vaccines. In this review, we describe the lessons learnt from developing the first commercial hepatitis E vaccine (Hecolin), launched to market in China in 2012. The antigenicity and immunogenicity of VLP immunogens concomitant with the scalable Escherichia coli system and our large-scale clinical verification resulted in the success of our vaccine. The structures of the HEV capsid protein in complex with different antibodies provide important molecular insights into capsid assembly and antibody neutralization of the virus, providing a paradigm for B-cell epitope-based vaccine design.
Collapse
|
15
|
Wang L, Sun Y, Du T, Wang C, Xiao S, Mu Y, Zhang G, Liu L, Widén F, Hsu WH, Zhao Q, Zhou EM. Identification of an antigenic domain in the N-terminal region of avian hepatitis E virus (HEV) capsid protein that is not common to swine and human HEVs. J Gen Virol 2014; 95:2710-2715. [PMID: 25209807 DOI: 10.1099/vir.0.069021-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The antigenic domains located in the C-terminal 268 amino acid residues of avian hepatitis E virus (HEV) capsid protein have been characterized. This region shares common epitopes with swine and human HEVs. However, epitopes in the N-terminal 338 amino acid residues have never been reported. In this study, an antigenic domain located between amino acids 23 and 85 was identified by indirect ELISA using the truncated recombinant capsid proteins as coating antigens and anti-avian HEV chicken sera as primary antibodies. In addition, this domain did not react with anti-swine and human HEV sera. These results indicated that the N-terminal 338 amino acid residues of avian HEV capsid protein do not share common epitopes with swine and human HEVs. This finding is important for our understanding of the antigenicity of the avian HEV capsid protein. Furthermore, it has important implications in the selection of viral antigens for serological diagnosis.
Collapse
Affiliation(s)
- Lizhen Wang
- Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, China Ministry of Agriculture, Yangling, Shaanxi 712100, PR China.,Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Yani Sun
- Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, China Ministry of Agriculture, Yangling, Shaanxi 712100, PR China.,Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Taofeng Du
- Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, China Ministry of Agriculture, Yangling, Shaanxi 712100, PR China.,Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Chengbao Wang
- Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, China Ministry of Agriculture, Yangling, Shaanxi 712100, PR China.,Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Shuqi Xiao
- Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, China Ministry of Agriculture, Yangling, Shaanxi 712100, PR China.,Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Yang Mu
- Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, China Ministry of Agriculture, Yangling, Shaanxi 712100, PR China.,Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Gaiping Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Henan Agriculture University, Zhengzhou, Henan 450002, PR China.,Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Lihong Liu
- Department of Virology, Immunobiology and Parasitology, National Veterinary Institute (SVA), 75189 Uppsala, Sweden
| | - Frederik Widén
- Department of Virology, Immunobiology and Parasitology, National Veterinary Institute (SVA), 75189 Uppsala, Sweden
| | - Walter H Hsu
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Qin Zhao
- Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, China Ministry of Agriculture, Yangling, Shaanxi 712100, PR China.,Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, PR China
| | - En-Min Zhou
- Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, China Ministry of Agriculture, Yangling, Shaanxi 712100, PR China.,Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, PR China
| |
Collapse
|
16
|
Novel molecular alterations in the ORF 2 capsid gene of hepatitis E virus in patients with acute liver failure in North India. Arch Virol 2014; 159:3391-4. [DOI: 10.1007/s00705-014-2198-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 07/29/2014] [Indexed: 10/24/2022]
|
17
|
Characterization of antigenic domains and epitopes in the ORF3 protein of a Chinese isolate of avian hepatitis E virus. Vet Microbiol 2013; 167:242-9. [PMID: 24021883 DOI: 10.1016/j.vetmic.2013.08.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 07/27/2013] [Accepted: 08/03/2013] [Indexed: 01/14/2023]
Abstract
Avian hepatitis E virus (HEV) is an emerging virus associated with the big liver and spleen disease or hepatitis-splenomegaly syndrome in chickens and subclinical infections by the virus are also common. The complete genome of avian HEV contains three open-reading frames (ORFs) in which ORF2 protein is part of virus particles and thus contains primary epitopes. Antigenic epitopes of avian HEV ORF2 protein have been described but those associated with the ORF3 have not. To analyze the antigenic domains and epitopes in the ORF3 protein of a Chinese isolate of avian HEV (CaHEV), we generated a series of antigens comprised of the complete ORF3 and also five truncated overlapping ORF3 peptides. The antibodies used in this study were mouse antisera and monoclonal antibodies against ORF3, positive chicken sera from Specific Pathogen Free chickens experimentally infected with CaHEV and clinical chicken sera. Using these antigens and antibodies, we identified three antigenic domains at amino acids (aa) 1-28, 55-74 and 75-88 in which aa 75-88 was a dominant domain. The dominant domain contained at least two major epitopes since field chickens infected with avian HEV produced antibodies against the domain and epitopes. These results provide useful information for future development of immunoassays for the diagnosis of avian HEV infection.
Collapse
|
18
|
Dremsek P, Wenzel JJ, Johne R, Ziller M, Hofmann J, Groschup MH, Werdermann S, Mohn U, Dorn S, Motz M, Mertens M, Jilg W, Ulrich RG. Seroprevalence study in forestry workers from eastern Germany using novel genotype 3- and rat hepatitis E virus-specific immunoglobulin G ELISAs. Med Microbiol Immunol 2012; 201:189-200. [PMID: 22179131 DOI: 10.1007/s00430-011-0221-2] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Indexed: 12/16/2022]
Abstract
Hepatitis E virus (HEV) is the causative agent of an acute self-limiting hepatitis in humans. In industrialized countries, autochthonous cases are linked to zoonotic transmission from domestic pigs, wild boar and red deer. The main route of human infection presumably is consumption of contaminated meat. Farmers, slaughterers and veterinarians are expected to be risk groups as they work close to potentially infected animals. In this study, we tested four Escherichia coli-expressed segments of the capsid protein (CP) of a German wild boar-derived HEV genotype 3 strain for their diagnostic value in an indirect immunoglobulin G (IgG) ELISA. In an initial validation experiment, a carboxy-terminal CP segment spanning amino acid (aa) residues 326-608 outperformed the other segments harbouring aa residues 112-608, 326-660 and 112-335. Based on this segment, an indirect ELISA for detection of anti-HEV IgG antibodies in human sera was established and validated using a commercial line immunoassay as reference assay. A total of 563 sera from forestry workers of all forestry offices of Brandenburg, eastern Germany and 301 sera of blood donors from eastern Germany were surveyed using these assays. The commercial test revealed seroprevalence rates of 11% for blood donors and 18% for forestry workers. These rates are in line with data obtained by the in-house test (12 and 21%). Hence, the in-house test performed strikingly similar to the commercial test (sensitivity 0.9318, specificity 0.9542). An initial screening of forestry worker and blood donor sera with a corresponding CP segment of the recently discovered Norway rat-associated HEV revealed several strong positive sera exclusively in the forestry worker panel. Future investigations have to prove the performance of this novel IgG ELISA in large-scale seroepidemiological studies. In addition, the observed elevated seroprevalence in a forestry worker group has to be confirmed by studies on groups of forestry workers from other regions. The epidemiological role of ratHEV in human disease should be assessed in a large-scale study of risk and non-risk groups.
Collapse
Affiliation(s)
- Paul Dremsek
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, OIE Collaborating Centre for Zoonoses in Europe, Institute for Novel and Emerging Infectious Diseases, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Serological diagnostics of hepatitis E virus infection. Virus Res 2011; 161:84-92. [PMID: 21704091 DOI: 10.1016/j.virusres.2011.06.006] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 06/03/2011] [Accepted: 06/07/2011] [Indexed: 12/15/2022]
Abstract
Development of accurate diagnostic assays for the detection of serological markers of hepatitis E virus (HEV) infection remains challenging. In the course of nearly 20 years after the discovery of HEV, significant progress has been made in characterizing the antigenic structure of HEV proteins, engineering highly immunoreactive diagnostic antigens, and devising efficient serological assays. However, many outstanding issues related to sensitivity and specificity of these assays in clinical and epidemiological settings remain to be resolved. Complexity of antigenic composition, viral genetic heterogeneity and varying epidemiological patterns of hepatitis E in different parts of the world present challenges to the refinement of HEV serological diagnostic assays. Development of antigens specially designed for the identification of serological markers specific to acute infection and of IgG anti-HEV specific to the convalescent phase of infection would greatly facilitate accurate identification of active, recent and past HEV infections.
Collapse
|
20
|
A single amino acid substitution changes antigenicity of ORF2-encoded proteins of hepatitis E virus. Int J Mol Sci 2010; 11:2962-75. [PMID: 21152284 PMCID: PMC2996735 DOI: 10.3390/ijms11082962] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 07/25/2010] [Accepted: 08/08/2010] [Indexed: 01/29/2023] Open
Abstract
Extensive genomic diversity has been observed among hepatitis E virus (HEV) strains. However, the implication of the genetic heterogeneity on HEV antigenic properties is uncertain. In this study, monoclonal antibodies (Mabs) against truncated ORF2-encoded proteins (aa452-617, designated p166 proteins) derived from HEV strains of Burma (genotype 1a, p166Bur), Pakistan (1b, p166Pak) and Morocco (1c, p166Mor) were raised and used for identification of HEV antigenic diversity. Six Mabs reacted to these 3 p166 proteins as well as p166 proteins constructed from strains derived from Mexico (genotype 2), US (genotype 3) and China (genotype 4), indicating the existence of pan-genotypic epitopes. Two Mabs, 1B5 and 6C7, reacted with p166Bur and p166Mor, but not p166Pak or p166s derived from genotypes 2, 3, and 4, indicating that these 2 Mabs recognized strain-specific HEV epitopes. Both the common and specific epitopes could not be mapped by 23 synthetic peptides spanning the p166Bur sequence, suggesting that they are confirmation-dependent. Comparative sequence analysis showed that p166Bur and p166Mor shared an identical aa sequence along their entire lengths, whereas for p166Pak the aas occupying positions 606 and 614 are different from aas at corresponding positions of p166Bur and p166Mor. Reactivity between 1B5 and p166Bur was abrogated with mutation of p166Bur/A606V, whereas p166Pak acquired the reactivity to 1B5 with mutation of p166Pak/V606A. However, mutations of p166Bur/L614M and P166Pak/M614L did not affect the immunoreactivity. Therefore, the aa occupying position 606 plays a critical role in maintaining the antigenicity of the HEV p166 proteins.
Collapse
|
21
|
Application of truncated immunodominant polypeptide from hepatitis E virus (HEV) ORF2 in an assay to exclude nonspecific binding in detecting anti-HEV immunoglobulin M. J Clin Microbiol 2009; 48:779-84. [PMID: 20042615 DOI: 10.1128/jcm.01671-09] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The diagnosis of recent hepatitis E virus (HEV) infection depends on serologic testing for anti-HEV IgM; however, false-positive results may occur. In the present study, we cloned the ORF2 fragment of genotype 4 HEV and demonstrated that a subregion covering amino acids 459 to 607 in ORF2 forms the immunodominant B-cell epitopes, as it does in genotype 1 viruses. Truncation of several residues from either the N or C terminus of the polypeptide abolished the reactivity of anti-HEV from naturally infected persons. By the combination of high reactivity of the immunodominant polypeptide and poor reactivity of the truncated polypeptide, we established an indirect enzyme-linked immunosorbent assay (ELISA) to detect anti-HEV IgM. In this assay, all 37 sera that were HEV RNA positive reacted with the immunodominant polypeptide but not with the truncated one, and none of 159 sera from healthy persons reacted with either of the polypeptides. In retesting of 117 sera that originally tested positive for anti-HEV IgM, using a Genelabs kit, only 34 were positive and 83 were negative. Western blot analyses and other experiments strongly indicated that these 83 discordant sera were negative for anti-HEV IgM. Furthermore, among the 117 sera, 5 reacted with both the immunodominant and truncated polypeptides, with comparable optical densities at 450 nm. However, their reactivity was demonstrated to result from nonspecific binding. Together, the data indicate that the poor reactivity of a truncated ORF2 polypeptide can be used to exclude nonspecific binding in the detection of anti-HEV IgM.
Collapse
|
22
|
Zhao K, Liu Q, Yu R, Li Z, Li J, Zhu H, Wu X, Tan F, Wang J, Tang X. Screening of specific diagnostic peptides of swine hepatitis E virus. Virol J 2009; 6:186. [PMID: 19887014 PMCID: PMC2780410 DOI: 10.1186/1743-422x-6-186] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Accepted: 11/04/2009] [Indexed: 11/21/2022] Open
Abstract
Background Swine hepatitis E virus (swHEV) is a zoonotic disease that is considered a major problem in pig production and presents a threat to human health. Elucidation of the major antigenic epitopes of swHEV is essential for the effective control of swHEV epidemics. Results By bioinformatic analysis, we identified and then synthesized 12 peptides from open reading frames (ORFs) ORF1, ORF2 and ORF3, including swHEV-1 - swHEV-12. Using the results from ELISA, we selected swHEV-11 as the best candidate antigen and used it as a coating antigen for the development of peptide-based swine anti-HEV ELISA kits. The coefficient of variation (CV) the coefficient of variation (CV) varied between 4.3-7.2% in the same batch, and between 8.2-17.7% in six different batches. When comparing our swine peptide-based kit with the commercial recombinant-based kit, the humane anti-HEV IgG test had a 73.4% correspondence rate for them. Conclusion This is the first systemic study to screen the diagnostic peptides of swHEV and our findings strongly suggest that peptide swHEV-11 is a potent diagnostic reagent of swHEV that could be used in the development of highly efficient diagnostic assays for the specific and highly sensitive detection of anti-HEV activity in swine serum samples.
Collapse
Affiliation(s)
- Kai Zhao
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, PR China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Guu TSY, Liu Z, Ye Q, Mata DA, Li K, Yin C, Zhang J, Tao YJ. Structure of the hepatitis E virus-like particle suggests mechanisms for virus assembly and receptor binding. Proc Natl Acad Sci U S A 2009; 106:12992-7. [PMID: 19622744 PMCID: PMC2722310 DOI: 10.1073/pnas.0904848106] [Citation(s) in RCA: 183] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Indexed: 02/06/2023] Open
Abstract
Hepatitis E virus (HEV), a small, non-enveloped RNA virus in the family Hepeviridae, is associated with endemic and epidemic acute viral hepatitis in developing countries. Our 3.5-A structure of a HEV-like particle (VLP) shows that each capsid protein contains 3 linear domains that form distinct structural elements: S, the continuous capsid; P1, 3-fold protrusions; and P2, 2-fold spikes. The S domain adopts a jelly-roll fold commonly observed in small RNA viruses. The P1 and P2 domains both adopt beta-barrel folds. Each domain possesses a potential polysaccharide-binding site that may function in cell-receptor binding. Sugar binding to P1 at the capsid protein interface may lead to capsid disassembly and cell entry. Structural modeling indicates that native T = 3 capsid contains flat dimers, with less curvature than those of T = 1 VLP. Our findings significantly advance the understanding of HEV molecular biology and have application to the development of vaccines and antiviral medications.
Collapse
Affiliation(s)
- Tom S. Y. Guu
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77005
| | - Zheng Liu
- Department of Biophysics, Health Science Centre, Peking University, Beijing, China 100191; and
| | - Qiaozhen Ye
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77005
| | - Douglas A. Mata
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77005
| | - Kunpeng Li
- State Key Laboratory for Biocontrol, Sun Yat-Sen University, Guangzhou, China 510275
| | - Changcheng Yin
- Department of Biophysics, Health Science Centre, Peking University, Beijing, China 100191; and
| | - Jingqiang Zhang
- State Key Laboratory for Biocontrol, Sun Yat-Sen University, Guangzhou, China 510275
| | - Yizhi Jane Tao
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77005
| |
Collapse
|
24
|
Ulanova TI, Obriadina AP, Talekar G, Burkov AN, Fields HA, Khudyakov YE. A new artificial antigen of the hepatitis E virus. J Immunoassay Immunochem 2009; 30:18-39. [PMID: 19117200 DOI: 10.1080/15321810802570269] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
An artificial antigen composed of 12 small antigenic regions derived from the ORF2 and ORF3 HEV proteins was designed. The gene encoding for this artificial antigen was assembled from synthetic oligonucleotides by a new method called Restriction Enzyme-Assisted Ligation (REAL). The diagnostic relevance of this second generation HEV mosaic protein (HEV MA-II) was demonstrated by testing this antigen against a panel of 142 well defined anti-HEV positive and anti-HEV negative serum samples. The data obtained in this study support the substantial diagnostic potential of this HEV mosaic antigen.
Collapse
Affiliation(s)
- T I Ulanova
- RPC Diagnostic Systems, Nizhniy, Novgorod, Russia
| | | | | | | | | | | |
Collapse
|
25
|
Production of monoclonal antibodies against hepatitis E virus capsid protein and evaluation of their neutralizing activity in a cell culture system. Arch Virol 2008; 153:657-66. [PMID: 18266052 DOI: 10.1007/s00705-008-0045-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Accepted: 01/28/2008] [Indexed: 12/15/2022]
Abstract
Nine murine monoclonal antibodies (mAbs) generated against a recombinant ORF2 protein (amino acids 111-660) of a genotype 4 hepatitis E virus (HEV) strain recognized four sets of epitopes by pairwise competitive ELISA. One mAb (H6225) was able to capture HEV efficiently regardless of genotype and was tested for its ability to neutralize a genotype 3 HEV strain (JE03-1760F) in a recently developed cell culture system for HEV in a hepatocarcinoma cell line (PLC/PRF/5). When PLC/PRF/5 cells were inoculated with HEV (4.0 x 10(5) or 4.0 x 10(6) copies/ml) incubated with 100 microg/ml of a negative control mAb, HEV RNA in the culture medium continued to be detectable after day 14 or 12 post-inoculation (dpi), respectively. However, when cells were inoculated with the two distinct concentrations of HEV that had been mixed with 100 microg/ml of H6225, the harvested culture supernatants were negative for HEV RNA throughout the 60-day observation period. Upon prior mixing of the virus with 10 microg/ml of H6225, HEV RNA in culture supernatant continued to be undetectable until 46 or 28 dpi, respectively. In conclusion, one mAb (H6225) against HEV capsid protein that can efficiently neutralize HEV in vitro was obtained in the present study.
Collapse
|
26
|
Quer J, Martell M, Rodriguez F, Bosch A, Jardi R, Buti M, Esteban J. The Impact of Rapid Evolution of Hepatitis Viruses. ORIGIN AND EVOLUTION OF VIRUSES 2008:303-349. [DOI: 10.1016/b978-0-12-374153-0.00015-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
27
|
Vasickova P, Psikal I, Kralik P, Widen F, Hubalek Z, Pavlik I. Hepatitis E virus: a review. VET MED-CZECH 2007; 52:365-384. [DOI: 10.17221/1999-vetmed] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
|
28
|
Abstract
Hepatitis E virus (HEV) is the aetiological agent of non-HAV enterically transmitted hepatitis. It is the major cause of sporadic as well as epidemic hepatitis, which is no longer confined to Asia and developing countries but has also become a concern of the developed nations. In the Indian subcontinent, it accounts for 30-60% of sporadic hepatitis. It is generally accepted that hepatitis E is mostly self-limited and never progresses to chronicity. It has a higher mortality in pregnant women where the disease condition is accentuated with the development of fulminant liver disease. Currently, no antiviral drug or vaccine is licensed for HEV, although a vaccine candidate is in clinical trials. HEV genome is 7.2kb in size with three open reading frames (ORFs) and 5' and 3' cis acting elements, which have important roles to play in HEV replication and transcription. ORF1 codes for methyl transferase, protease, helicase and replicase; ORF2 codes for the capsid protein and ORF3 for a protein of undefined function. HEV has recently been classified in the genus Hepevirus of the family Hepeviridae. There are four major recognised genotypes with a single known serotype. The absence of a reliable in vitro propagation system is an obstacle to deciphering HEV biology. The genome of HEV has been cloned, sequenced and the infectious nature of these replicons has been established. However, questions related to replication, transcription, virus-host interactions and pathogenesis remain to be answered. This comprehensive review summarises the progress made so far in HEV research, and addresses some of the unanswered questions.
Collapse
Affiliation(s)
- Subrat Kumar Panda
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India.
| | | | | |
Collapse
|
29
|
He J, Kuschner RA, Dewar V, Voet P, Asher LV, Vaughn DW. Characterization of monoclonal antibodies to hepatitis E virus (HEV) capsid protein and identification of binding activity. J Biomed Sci 2007; 14:555-63. [PMID: 17487571 DOI: 10.1007/s11373-007-9172-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2007] [Accepted: 03/26/2007] [Indexed: 12/21/2022] Open
Abstract
Twenty-seven monoclonal antibodies (Mabs) recognizing the open reading frame 2 structural protein of the Pakistan strain of hepatitis E virus (HEV) were generated by conventional hybridoma technique. These Mabs were characterized by ELISA, affinity-capture reverse transcriptase-polymerase chain reaction (AC/RT-PCR), immune electron microscopy (IEM), and a RT-PCR based seroneutralization assay. Twenty-seven Mabs were positive by ELISA. By AC/RT-PCR, 24 Mabs bound to Pakistan and Namibia HEV strains. Thirteen Mabs were examined by IEM. Nine Mabs, positive by ELISA and AC/RT-PCR, bound and aggregated to Mexican HEV strain. We tested five Mabs that were positive by ELISA, AC/RT/PCR, and IEM by a RT-PCR based seroneutralization assay. Only one Mab (Mab 7) showed activity that inhibited the ability of HEV to attach to Alexander hepatoma cells (PLC-PRF-5). When Mab 7 was diluted to 1: 160, its inhibition activity persisted suggesting that Mab 7 might be a potential candidate for further evaluation in primates (passive protection experiments).
Collapse
Affiliation(s)
- Junkun He
- Armed Forces Institute of Pathology, 1413 Research Boulevard, Rockville, MD 20850, USA.
| | | | | | | | | | | |
Collapse
|
30
|
Aggarwal R, Shukla R, Jameel S, Agrawal S, Puri P, Gupta VK, Patil AP, Naik S. T-cell epitope mapping of ORF2 and ORF3 proteins of human hepatitis E virus. J Viral Hepat 2007; 14:283-92. [PMID: 17381721 PMCID: PMC2441432 DOI: 10.1111/j.1365-2893.2006.00796.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Little data are available on cellular immune responses during infection with hepatitis E virus (HEV). We therefore mapped CD4 T-cell epitopes in open reading frame (ORF)2 and ORF3 proteins of HEV using lymphocyte proliferation assays and overlapping peptide libraries. Proliferation of peripheral blood mononuclear cells from 40 patients with acute hepatitis E and 21 healthy controls with recombinant HEV ORF2 protein or pools of overlapping HEV ORF2/ORF3 peptides was measured. HLA-DQB1 and HLA-DRB1 alleles were also determined. Mononuclear cells from patients with hepatitis E more often showed significant proliferation on stimulation with recombinant ORF2 protein than controls (32/40 vs 7/21), and had higher median (range) stimulation indices [2.6 (0.9-15.2) vs 1.3 (0.6-12.9)]. Peptide pools corresponding to amino acids 73-156, 289-372, 361-444 and 505-588 of HEV ORF2 protein were associated with significant proliferation. Individual peptides in these pools did not show a clear pattern of stimulation. HEV ORF3 peptide pools did not induce proliferative responses. Lymphocyte proliferation in response to the peptide pool corresponding to amino acids 289-372 of HEV ORF2 protein was associated with presence of HLA-DRB1 allele 010X. These data on mapping of T-cell epitopes in HEV proteins may prove useful for designing HEV vaccines and for studying the immunopathogenesis of hepatitis E.
Collapse
Affiliation(s)
- R Aggarwal
- Department of Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Molecular Virology of Enteric Viruses (with Emphasis on Caliciviruses). VIRUSES IN FOODS 2006:43-100. [PMCID: PMC7120911 DOI: 10.1007/0-387-29251-9_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
|
32
|
Pal R, Aggarwal R, Naik SR, Das V, Das S, Naik S. Immunological alterations in pregnant women with acute hepatitis E. J Gastroenterol Hepatol 2005; 20:1094-101. [PMID: 15955220 DOI: 10.1111/j.1440-1746.2005.03875.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Infection with hepatitis E virus (HEV) is a major cause of acute viral hepatitis in several developing countries. Although usually self-limiting and benign, the disease is particularly severe among pregnant women, with mortality rates reaching 15-20%. METHODS Immune parameters among pregnant women with acute hepatitis E (P-HEV) were investigated and compared with those in non-pregnant patients with hepatitis E (N-HEV), and healthy pregnant (PC) and non-pregnant (NPC) women. RESULTS Peripheral blood mononuclear cells (PBMC) from P-HEV patients had lower lymphocyte proliferation response to phytohemagglutinin (PHA) than those in the PC and NPC groups. A positive lymphocyte proliferation response to HEV antigen (HEVAg), a mixture of eight peptides derived from HEV proteins, was observed in 7/19 (37%) P-HEV patients, 3/9 (33%) N-HEV patients and only 2/21 (10%) PC and 2/14 (14%) NPC subjects; the stimulation indices in the P-HEV group were similar to the N-HEV group and higher than the PC group. Measurement of cytokine production by PBMC in response to PHA and HEVAg showed a reduction in production of T-helper 1 (Th1) cytokines and an increase in that of Th2 cytokines in the P-HEV group. Cytokine mRNA levels showed similar changes. CONCLUSION These results show the existence of a Th2 bias in pregnant women with acute hepatitis E. The role of this Th2 bias in the greater severity of hepatitis E among pregnant women needs further investigation.
Collapse
Affiliation(s)
- Rekha Pal
- Department of Immunology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | | | | | | | | | | |
Collapse
|
33
|
Zhou YH, Purcell RH, Emerson SU. An ELISA for putative neutralizing antibodies to hepatitis E virus detects antibodies to genotypes 1, 2, 3, and 4. Vaccine 2004; 22:2578-85. [PMID: 15193383 DOI: 10.1016/j.vaccine.2003.12.017] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2003] [Revised: 12/11/2003] [Accepted: 12/12/2003] [Indexed: 02/03/2023]
Abstract
Two monoclonal antibodies that neutralize hepatitis E virus (HEV) were used to identify a subregion of ORF2 capsid protein spanning amino acids 459-607 as the shortest peptide to form the corresponding neutralization epitopes. An enzyme-linked immunosorbent assay (ELISA) based on a purified recombinant protein covering amino acids 458-607 in ORF2 of the Sar-55 strain (genotype 1) efficiently detected anti-HEV in non-human primates which had been experimentally infected with the four known mammalian genotypes of HEV, respectively. However, anti-HEV in these animals did not react with a shorter ORF2 peptide spanning amino acids 475-607. The ELISA was highly specific and sensitive when human or non-human primate sera were tested in parallel with a previously established ELISA based on amino acids 112-607 in ORF2. The antibody titer to peptides 458-607 in two ORF2-vaccinated rhesus monkeys which had different HEV challenge outcomes differed at the time of challenge. Since the ELISA appeared to be specific for neutralizing antibodies against HEV, it should be especially useful for quantifying the humoral immune response in hepatitis E vaccine trials.
Collapse
Affiliation(s)
- Yi-Hua Zhou
- Hepatitis Viruses and Molecular Hepatitis Sections, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive MSC-8009, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
34
|
Grandadam M, Tebbal S, Caron M, Siriwardana M, Larouze B, Koeck JL, Buisson Y, Enouf V, Nicand E. Evidence for hepatitis E virus quasispecies. J Gen Virol 2004; 85:3189-3194. [PMID: 15483231 DOI: 10.1099/vir.0.80248-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The genetic diversity of hepatitis E virus (HEV) has been extensively analysed during the last decade. Most sporadic and epidemic HEV strains are distributed into genotypes or groups. Nevertheless, few studies have looked at the polymorphism of HEV strains isolated from a given outbreak. A serum bank collected in Tanefdour, Algeria, during an acute hepatitis epidemic (1986-1987), retrospectively confirmed as hepatitis E, was analysed. Of the 69 serum samples collected within an 8-week period, 23 were positive for both partial ORF1 (replicase gene) and ORF2 (capsid gene) sequences. Inter- and intra-patient diversities were assessed by RFLP, and by sequencing a 448 bp sequence corresponding to ORF2. RFLP analysis distinguished three profiles: A (18/23), B (3/23) and C (2/23). Most isolates (18/23) shared 99.7-100 % sequence identity and the remainder showed 1-1.3 % divergence. HEV intra-patient diversity was studied using 12 isolates (seven displaying the major RFLP profile and five displaying minor RFLP profiles). For 9 of 12 isolates, additional intra-patient heterogeneity was revealed by RFLP analysis of 100 clones from each isolate and sequence diversity ranging from 0.11 to 3.4 %. These data strongly support the quasispecies organization of HEV during epidemics and could explain the adaptable behaviour of the virus in the host-pathogen interrelations.
Collapse
Affiliation(s)
- Marc Grandadam
- Laboratoire de Biologie Clinique, HIA Val de Grâce, 74 boulevard de Port Royal, 75230 Paris cédex 05, France
| | - Soraya Tebbal
- Service de Maladies Infectieuses, CHU de Batna, Batna, Algeria
| | - Mélanie Caron
- Laboratoire de Biologie Clinique, HIA Val de Grâce, 74 boulevard de Port Royal, 75230 Paris cédex 05, France
| | - Mahinda Siriwardana
- Unité de Recherche "Epidémiologie et Sciences de l'Information", INSERM U444, Faculté de Médecine de Saint Antoine, 27, rue de Chaligny, 75571 Paris cédex 12, France
| | - Bernard Larouze
- Unité de Recherche "Epidémiologie et Sciences de l'Information", INSERM U444, Faculté de Médecine de Saint Antoine, 27, rue de Chaligny, 75571 Paris cédex 12, France
| | - Jean Louis Koeck
- Laboratoire de Biologie Clinique, HIA Val de Grâce, 74 boulevard de Port Royal, 75230 Paris cédex 05, France
| | - Yves Buisson
- Laboratoire de Biologie Clinique, HIA Val de Grâce, 74 boulevard de Port Royal, 75230 Paris cédex 05, France
| | - Vincent Enouf
- Laboratoire de Biologie Clinique, HIA Val de Grâce, 74 boulevard de Port Royal, 75230 Paris cédex 05, France
| | - Elisabeth Nicand
- Laboratoire de Biologie Clinique, HIA Val de Grâce, 74 boulevard de Port Royal, 75230 Paris cédex 05, France
| |
Collapse
|
35
|
Abstract
Hepatitis E accounts for the major part of enterally transmitted non-A, non-B hepatitis worldwide. Its agent, the hepatitis E virus (HEV), is a small, single-stranded RNA virus. Only one serotype of HEV is recognised. Infection results in protective immunity with long-lived neutralising antibodies. In developing countries with poor sanitary conditions and high population density, hepatitis E causes water-borne epidemics with substantial mortality rates in pregnant women. In addition, more than 50% of cases of acute hepatic failure and sporadic acute hepatitis are due to hepatitis E. The overall prevalence rates of antibodies to the HEV in populations native to these areas rarely exceed 25%. Hence, many individuals remain susceptible to hepatitis E infection, making hepatitis E an important public health concern. In this context, the development of an HEV vaccine is warranted. Because HEV does not grow adequately in cell cultures the development of a vaccine based on inactivated or attenuated whole-virus particles is not feasible. HEV vaccines currently under study are based on recombinant proteins derived from immunogenic parts of the HEV capsid gene. Other approaches such as DNA-based vaccines or transgenic tomatoes have also been developed. Several recombinant protein-based vaccines elicited neutralising antibodies and protective immunity in vaccinated non-human primates. One such vaccine has passed phase I trial and is currently under further evaluation in field trials. Even so, several questions remain to be answered before vaccination programmes could be implemented.
Collapse
Affiliation(s)
- Harald Claus Worm
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University Clinic Graz, Auenbruggerplatz 15, A-8036 Graz, Austria.
| | | |
Collapse
|
36
|
Clemente-Casares P, Pina S, Buti M, Jardi R, Martín M, Bofill-Mas S, Girones R. Hepatitis E virus epidemiology in industrialized countries. Emerg Infect Dis 2003; 9:448-54. [PMID: 12702225 PMCID: PMC2957966 DOI: 10.3201/eid0904.020351] [Citation(s) in RCA: 194] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
To determine the prevalence of Hepatitis E virus (HEV) in industrialized nations, we analyzed the excretion of HEV strains by the populations of Spain, France, Greece, Sweden, and the United States. Twenty of 46 (43.5%) urban sewage samples collected in Barcelona from 1994 to 2002 tested positive for HEV. We identified 15 HEV strains, which were similar to two HEV isolates previously described in Barcelona in clinical samples and to strains from diverse geographic HEV-nonendemic areas. We also identified two HEV strains in sewage samples from Washington, D.C., and Nancy, France; these samples were also positive for Hepatitis A virus. In addition, we studied the role of pigs as a reservoir for HEV and identified one new swine HEV strain. Our results suggest that HEV may be more prevalent than previously considered in industrialized countries and that variants of the virus circulate simultaneously in one region.
Collapse
Affiliation(s)
| | - Sonia Pina
- University of Barcelona, Barcelona, Spain
| | - Maria Buti
- Hospital General Universitario Valle Hebron, Barcelona, Spain
| | - Rosend Jardi
- Hospital General Universitario Valle Hebron, Barcelona, Spain
| | | | | | | |
Collapse
|
37
|
Engle RE, Yu C, Emerson SU, Meng XJ, Purcell RH. Hepatitis E virus (HEV) capsid antigens derived from viruses of human and swine origin are equally efficient for detecting anti-HEV by enzyme immunoassay. J Clin Microbiol 2002; 40:4576-80. [PMID: 12454155 PMCID: PMC154628 DOI: 10.1128/jcm.40.12.4576-4580.2002] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The recombinant truncated ORF2 (capsid) antigen derived from the Meng strain of swine hepatitis E virus (HEV) differs from that of the Sar-55 strain of human HEV by approximately 5% at the amino acid level. Serial serum samples from two chimpanzees and six rhesus monkeys experimentally infected with HEV were tested with one enzyme immunoassay (EIA) based on the Sar-55 antigen and with a second EIA based on the Meng antigen. We obtained 98% agreement (kappa = 0.952) by direct comparison. The virtually identical results obtained with these antigens in detecting seroconversion following infection with HEV suggests that they were reacting with antibodies that detect the same or very similar epitopes of HEV. We then tested human and swine serum samples for anti-HEV in EIAs that utilized one or the other of the two ORF2 antigens and showed that these results were also virtually identical. The specimens tested included swine sera from the United States, Canada, China, Korea, and Thailand and sera from veterinarians, U.S. and non-U.S. volunteer blood donors, and U.S. and non-U.S. animal handlers. We tested 792 swine sera and obtained 93% agreement (kappa = 0.839). We similarly tested 882 human sera and obtained 99% agreement (kappa = 0.938). Moreover, we found virtually no difference in the levels of prevalence of anti-HEV as measured by the two tests, again suggesting that the antigens derived from human and swine HEV contain the same immunodominant epitopes.
Collapse
Affiliation(s)
- R E Engle
- Hepatitis Viruses and Molecular Hepatitis Sections, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA.
| | | | | | | | | |
Collapse
|
38
|
Obriadina A, Meng JH, Ulanova T, Trinta K, Burkov A, Fields HA, Khudyakov YE. A new enzyme immunoassay for the detection of antibody to hepatitis E virus. J Gastroenterol Hepatol 2002; 17 Suppl 3:S360-4. [PMID: 12472964 DOI: 10.1046/j.1440-1746.17.s3.28.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
BACKGROUND AND AIM The purpose of the present study was to develop enzyme immunoassay (EIA) for the detection of IgG anti-hepatitis E virus (HEV) activity using two new recombinant proteins as antigenic targets, and to evaluate these EIA with the aid of statistical methods. METHODS Two proteins, a mosaic protein and pB166 containing region 452-617 aa of the ORF2 of the HEV Burma strain, were used to develop the new HEV EIA. This EIA was evaluated using several panels of serum specimens obtained from: (i) acutely HEV-infected patients; (ii) patients with non-A, non-C hepatitis; (iii) normal blood donors (NBD) from non-endemic countries; and (iv) experimentally infected chimpanzees. RESULTS A new HEV EIA was developed using two new recombinant proteins. This assay was able to detect anti-HEV activity in all specimens from acutely HEV-infected patients. When NBD were tested, more than 15% of specimens were found to be IgG anti-HEV positive. All NBD anti-HEV-positive specimens were tested with overlapping synthetic peptides spanning the entire HEV ORF2-encoded protein. More than 90% of the anti-HEV-positive NBD specimens immunoreacted with an average of 15 synthetic peptides derived from different regions of the HEV ORF2 protein. These data suggest that the HEV EIA is at least 90% specific in detecting remote HEV infections. CONCLUSION The new HEV EIA developed in the present study is a highly specific diagnostic assay for the detection of anti-HEV activity in serum specimens obtained from different epidemiologic settings.
Collapse
Affiliation(s)
- A Obriadina
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
The hepatitis E virus (HEV) is a non-enveloped, positive-sense, single-stranded RNA virus with icosahedral symmetry. Although it is related to the alpha-virus superfamily, the HEV is classified as a separate Hepatitis E-like viruses genus. Infection in humans occurs in sporadic and epidemic forms and can cause an acute, self-limited, icteric hepatitis. Recent studies indicate the existence of a reservoir in animals.
Collapse
Affiliation(s)
- Harald C Worm
- Second Department of Medicine, Department of Gastroenterology and Hepatology, LKH-Universitätsklinikum Graz, Auenbruggerplatz 15, Austria.
| | | | | |
Collapse
|
40
|
Huang FF, Haqshenas G, Guenette DK, Halbur PG, Schommer SK, Pierson FW, Toth TE, Meng XJ. Detection by reverse transcription-PCR and genetic characterization of field isolates of swine hepatitis E virus from pigs in different geographic regions of the United States. J Clin Microbiol 2002; 40:1326-32. [PMID: 11923352 PMCID: PMC140370 DOI: 10.1128/jcm.40.4.1326-1332.2002] [Citation(s) in RCA: 295] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hepatitis E virus (HEV) is an important public health concern in many developing countries. HEV is also endemic in some industrialized counties, including the United States. With our recent discovery of swine HEV in pigs that is genetically closely related to human HEV, hepatitis E is now considered a zoonotic disease. Human strains of HEV are genetically heterogenic. So far in the United States, only one strain of swine HEV has been identified and characterized from a pig. To determine the extent of genetic variations and the nature of swine HEV infections in U.S. pigs, we developed a universal reverse transcription-PCR (RT-PCR) assay that is capable of detecting genetically divergent strains of HEV. By using this universal RT-PCR assay, we tested fecal and serum samples of pigs of 2 to 4 months of age from 37 different U.S. swine farms for the presence of swine HEV RNA. Thirty-four of the 96 pigs (35%) and 20 of the 37 swine herds (54%) tested were positive for swine HEV RNA. The sequences of a 348-bp region within the ORF2 gene of 27 swine HEV isolates from different geographic regions were determined. Sequence analyses revealed that the 27 U.S. swine HEV isolates shared 88 to 100% nucleotide sequence identities with each other and 89 to 98% identities with the prototype U.S. strain of swine HEV. These U.S. swine HEV isolates are only distantly related to the Taiwanese strains of swine HEV, with about 74 to 78% nucleotide sequence identities; to most known human strains of HEV worldwide, with <79% sequence identities; and to avian HEV, with 54 to 56% sequence identities. Phylogenetic analysis showed that all the U.S. swine HEV isolates identified in this study clustered in the same genotype with the prototype U.S. swine HEV and the two U.S. strains of human HEV. The data from this study indicated that swine HEV is widespread and enzoonotic in U.S. swine herds and that, as is with human HEV, swine HEV isolates from different geographic regions of the world are also genetically heterogenic. These data further raise potential concerns for zoonosis, xenozoonosis, and food safety.
Collapse
Affiliation(s)
- F F Huang
- Center for Molecular Medicine and Infectious Diseases, College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0342, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Niikura M, Takamura S, Kim G, Kawai S, Saijo M, Morikawa S, Kurane I, Li TC, Takeda N, Yasutomi Y. Chimeric recombinant hepatitis E virus-like particles as an oral vaccine vehicle presenting foreign epitopes. Virology 2002; 293:273-80. [PMID: 11886247 DOI: 10.1006/viro.2001.1240] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Many viral and bacterial pathogens establish infections through mucosal surfaces in their initial stage. However, only a few nonreplicating molecules successfully induce strong mucosal immune reaction without the addition of adjuvants by oral administration. To overcome this difficulty, we investigated whether hepatitis E virus-like particles (HEV-VLPs) could be utilized as a carrier molecule for foreign antigenic epitopes and to stimulate mucosal immunity without the need for adjuvants. To accomplish this goal, we incorporated a B cell epitope tag, consisting of 11 amino acids at the C-terminal of HEV-VLP. The chimeric VLP showed morphology similar to that of the mature HEV virion and VLP. The inserted epitope was reactive with a specific monoclonal antibody in the VLP form, suggesting that it was exposed on the surface of the VLP. After oral administration without adjuvant, this chimeric HEV induced significant levels of specific IgG and IgA to both the inserted epitope and HEV-VLP in intestinal secretions. These humoral immune responses were observed as early as 2 weeks after the first immunization. These results suggest the potential of HEV-VLP as a mucosal vaccine carrier vehicle for the presentation of antigenic epitopes through oral administration.
Collapse
Affiliation(s)
- Masahiro Niikura
- Department of Virology 1, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Zhang JZ, Im SWK, Lau SH, Chau TN, Lai ST, Ng SP, Peiris M, Tse C, Ng TK, Ng MH. Occurrence of hepatitis E virus IgM, low avidity IgG serum antibodies, and viremia in sporadic cases of non-A, -B, and -C acute hepatitis. J Med Virol 2002; 66:40-8. [PMID: 11748657 DOI: 10.1002/jmv.2109] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Serum samples were taken from 57 patients with sporadic non-A, -B, and -C (Non A, B, C) acute hepatitis at different times after onset of the disease and tested for the presence of the hepatitis E virus (HEV) RNA, IgM, and low avidity IgG antibodies. The viral antibodies were detected using two ELISA. One assay (GL) was produced using a mixture of recombinant peptides specified by ORF2 and ORF3 of the viral genome. The other was produced with an ORF2 specified peptide, pE2. The latter occurs naturally as homodimer, it is recognized strongly in its dimeric form by human sera and, in the primate model, it confers protection against experimental HEV infection. Nineteen samples were positive for one or more of these acute markers of HEV infection, 14 of which were acute sera with elevated ALT levels and 5 were convalescent sera with normal ALT level. The results showed that icteric phase of sporadic hepatitis lasts for about 17 days and it coincides with a period when viremia is subsiding as HEV antibodies are developing. Viremia was intermittent and all but one of the 5 instances were confined to the icteric phase with elevated ALT levels. On two of these occasions, viremia preceded detection of HEV antibody, on another 2 occasions it was concurrent with the detection of pE2 specific IgM and/or low avidity IgG and only in one case of protracted viremia was the viral genome detected concurrently with avid pE2 IgG antibody. Ten (71%) of the 14 acute sera were reactive for pE2 IgM, eight (57%) were reactive for low avidity pE2 IgG, and six (43%) for the GL IgM. The sensitivity for the diagnosis of acute hepatitis E may be increased to 87% by combining pE2 IgM and viremia. GL IgM was detected later, but persisted for a longer period of time than the pE2 antibodies, and it was the only acute antibody detected in the convalescent sera.
Collapse
Affiliation(s)
- J Z Zhang
- Department of Microbiology, Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, P.R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Meng J, Dai X, Chang JC, Lopareva E, Pillot J, Fields HA, Khudyakov YE. Identification and characterization of the neutralization epitope(s) of the hepatitis E virus. Virology 2001; 288:203-11. [PMID: 11601892 DOI: 10.1006/viro.2001.1093] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The neutralization epitope(s) of the hepatitis E virus (HEV) was studied by an in vitro neutralization assay using antibodies obtained by immunization of mice with 51 overlapping 30-mer synthetic peptides spanning the region 221-660 amino acids (aa) of the HEV open reading frame 2 encoded protein (pORF2) and 31 overlapping recombinant proteins of different sizes derived from the entire pORF2 of the HEV Burma strain. Antibodies against synthetic peptides and short recombinant proteins of approximately 100 aa did not neutralize HEV, suggesting the HEV neutralization epitope(s) is conformation-dependent. However, one recombinant protein of approximately 400 aa in length comprising the pORF2 sequence at position 274-660 aa as well as all truncated derivatives of this protein containing region 452-617 aa elicited antibodies, demonstrating HEV neutralizing activity. These findings establish for the first time that the minimal size fragment, designated pB166, that can efficiently model the neutralization epitope(s) is 166 aa in length and is located at position 452-617 aa of the HEV pORF2. Additionally, antibodies against pB166 were found to cross-neutralize three different HEV genotypes, suggesting that a common neutralization epitope(s) may exist within the different HEV genotypes. Thus, recombinant proteins constructed in this study may be considered as potential candidates for the development of an HEV subunit vaccine as well as for the development of highly sensitive and specific diagnostic tests.
Collapse
Affiliation(s)
- J Meng
- Division of Viral Hepatitis, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Hepatitis E virus (HEV) is a major cause of outbreaks and sporadic cases of viral hepatitis in tropical and subtropical countries but is infrequent in industrialized countries. The virus is transmitted by the fecal-oral route with fecally contaminated drinking water being the usual vehicle. Hepatitis resulting from HEV infection is a moderately severe jaundice that is self-limiting in most patients. Young adults, 15 to 30 years of age, are the main targets of infection, and the overall death rate is 0.5 to 3.0%. However, the death rate during pregnancy approaches 15 to 25%. Death of the mother and fetus, abortion, premature delivery, or death of a live-born baby soon after birth are common complications of hepatitis E infection during pregnancy. Hepatitis E virus is found in both wild and domestic animals; thus, HEV is a zoonotic virus. The viruses isolated from swine in the United States or Taiwan are closely related to human HEV found in those areas. The close genetic relationship of the swine and human virus suggests that swine may be a reservoir of HEV. In areas where swine are raised, swine manure could be a source of HEV contamination of irrigation water or coastal waters with concomitant contamination of produce or shellfish. Increasing globalization of food markets by industrialized countries has the potential of introducing HEV into new areas of the world. The purpose of this review is to cover certain aspects of hepatitis E including the causative agent, the disease, diagnosis, viral detection, viral transmission, epidemiology, populations targeted by HEV, and the role of animals as potential vectors of the virus.
Collapse
Affiliation(s)
- J L Smith
- US Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, Pennsylvania 19038, USA.
| |
Collapse
|
45
|
Riddell MA, Li F, Anderson DA. Identification of immunodominant and conformational epitopes in the capsid protein of hepatitis E virus by using monoclonal antibodies. J Virol 2000; 74:8011-7. [PMID: 10933710 PMCID: PMC112333 DOI: 10.1128/jvi.74.17.8011-8017.2000] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antibody to the capsid (PORF2) protein of hepatitis E virus (HEV) is sufficient to confer immunity, but knowledge of B-cell epitopes in the intact capsid is limited. A panel of murine monoclonal antibodies (MAbs) was generated following immunization with recombinant ORF2.1 protein, representing the C-terminal 267 amino acids (aa) of the 660-aa capsid protein. Two MAbs reacted exclusively with the conformational ORF2.1 epitope (F. Li, J. Torresi, S. A. Locarnini, H. Zhuang, W. Zhu, X. Guo, and D. A. Anderson, J. Med. Virol. 52:289-300, 1997), while the remaining five demonstrated reactivity with epitopes in the regions aa 394 to 414, 414 to 434, and 434 to 457. The antigenic structures of both the ORF2.1 protein expressed in Escherichia coli and the virus-like particles (VLPs) expressed using the baculovirus system were examined by competitive enzyme-linked immunosorbent assays (ELISAs) using five of these MAbs and HEV patient sera. Despite the wide separation of epitopes within the primary sequence, all the MAbs demonstrated some degree of cross-inhibition with each other in ORF2. 1 and/or VLP ELISAs, suggesting a complex antigenic structure. MAbs specific for the conformational ORF2.1 epitope and a linear epitope within aa 434 to 457 blocked convalescent patient antibody reactivity against VLPs by approximately 60 and 35%, respectively, while MAbs against epitopes within aa 394 to 414 and 414 to 434 were unable to block patient serum reactivity. These results suggest that sequences spanning aa 394 to 457 of the capsid protein participate in the formation of strongly immunodominant epitopes on the surface of HEV particles which may be important in immunity to HEV infection.
Collapse
Affiliation(s)
- M A Riddell
- Hepatitis Research Unit and Australian Centre for Hepatitis Virology, Macfarlane Burnet Centre for Medical Research, Fairfield 3078, Victoria, Australia
| | | | | |
Collapse
|
46
|
Schofield DJ, Glamann J, Emerson SU, Purcell RH. Identification by phage display and characterization of two neutralizing chimpanzee monoclonal antibodies to the hepatitis E virus capsid protein. J Virol 2000; 74:5548-55. [PMID: 10823861 PMCID: PMC112041 DOI: 10.1128/jvi.74.12.5548-5555.2000] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Two monoclonal antibodies (MAbs) against the ORF2 protein of the SAR-55 strain of hepatitis E virus (HEV) were isolated by phage display from a cDNA library of chimpanzee (Pan troglodytes) gamma1/kappa antibody genes. Both MAbs, HEV#4 and HEV#31, bound to reduced, denatured open reading frame 2 (ORF2) protein in a Western blot, suggesting that they recognize linear epitopes. The affinities (equilibrium dissociation constants, K(d)) for the SAR-55 ORF2 protein were 1.7 nM for HEV#4 and 5.4 nM for HEV#31. The two MAbs also reacted in an enzyme-linked immunosorbent assay with recombinant ORF2 protein from a heterologous HEV, the Meng strain. Each MAb blocked the subsequent binding of the other MAb to homologous ORF2 protein in indirect competition assays, suggesting that they recognize the same or overlapping epitopes. Radioimmunoprecipitation assays suggested that at least part of the linear epitope(s) recognized by the two MAbs is located between amino acids 578 and 607. MAbs were mixed with homologous HEV in vitro and then inoculated into rhesus monkeys (Macaca mulatta) to determine their neutralizing ability. Whereas all control animals developed hepatitis (elevated liver enzyme levels in serum) and seroconverted to HEV, those receiving an inoculum incubated with either HEV#4 or HEV#31 were not infected. Therefore, each MAb neutralized the SAR-55 strain of HEV in vitro.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/genetics
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/metabolism
- Antibodies, Viral/chemistry
- Antibodies, Viral/genetics
- Antibodies, Viral/immunology
- Antibodies, Viral/metabolism
- Antibody Affinity
- Antibody Specificity
- Antigens, Viral/chemistry
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Binding, Competitive
- Blotting, Western
- Capsid/chemistry
- Capsid/immunology
- Cross Reactions
- Deoxyribonucleases, Type II Site-Specific/metabolism
- Epitope Mapping
- Hepatitis E/immunology
- Hepatitis E/prevention & control
- Hepatitis E/virology
- Hepatitis E virus/genetics
- Hepatitis E virus/immunology
- Hepatitis E virus/physiology
- Immunization, Passive
- Immunoglobulin Fab Fragments/chemistry
- Immunoglobulin Fab Fragments/genetics
- Immunoglobulin Fab Fragments/immunology
- Immunoglobulin Fab Fragments/metabolism
- Macaca mulatta
- Molecular Sequence Data
- Neutralization Tests
- Open Reading Frames
- Pan troglodytes/immunology
- Peptide Library
- Protein Denaturation
- Sequence Analysis
Collapse
Affiliation(s)
- D J Schofield
- Hepatitis Viruses, National Institutes of Health, Bethesda, Maryland 20852, USA.
| | | | | | | |
Collapse
|