1
|
Mao S, Yang Z, Liu Z, Wang Y, Zeng Y, Jaffrezic-Renault N, Zhang Z, Dong Y, Guo Z. A DNA sensor based on CbAgo effector protein and on a dual electrochemical signal amplification strategy for B19 parvovirus detection. Bioelectrochemistry 2025; 162:108860. [PMID: 39612515 DOI: 10.1016/j.bioelechem.2024.108860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 12/01/2024]
Abstract
Human parvovirus B19 is a prevalent childhood infectious virus that poses a great challenge to public health, so the detection of B19V is of great importance. In this study, a DNA sensor based on CbAgo, a Cas effector, and a dual electrochemical signal amplification strategy was developed by using a novel nanocomposite MnO2/CMK-3/g-C3N4/AgNPs for initial signal amplification, with CMK being an ordered mesoporous carbon nanomaterial. Single-walled carbon nanotubes (SWCNTs) were used as electrocatalytic probes for secondary signal amplification to detect B19 DNA. The detection process begins with polymerase chain reaction (PCR) amplification using the B19V infectious clone plasmid (pB19-M20) as a template and NS1-F/R as primers, followed by specific cleavage of B19 DNA based on the programmable cutting sites of CbAgo effector protein. This study enriches the application of Argonaute proteins in sensing and introduces a novel method to detect B19V. Under optimized conditions, the biosensor can detect B19 DNA in the range of 10-15-10-10 M, with a detection limit (LOD) of 0.2 fM. The results indicate that the developed DNA sensor holds promise for reliable and sensitive detection of B19 DNA in human serum.
Collapse
Affiliation(s)
- Siying Mao
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Faculty of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Zhiruo Yang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Faculty of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Zhiyi Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yue Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yonghua Zeng
- Department of Emergency Medicine, Shanghai Zhongye Hospital, No. 456 Chunlei Road, Baoshan District, Shanghai 200941, China
| | | | - Zhipeng Zhang
- Hubei University of Science & Technology, Xianning Medical College, Xianning, Hubei 437100, China.
| | - Yanming Dong
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China.
| | - Zhenzhong Guo
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Faculty of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China.
| |
Collapse
|
2
|
Zou Q, Chen P, Chen J, Chen D, Xia H, Chen L, Feng H, Feng L. Multisystem Involvement Induced by Human Parvovirus B19 Infection in a Non-immunosuppressed Adult: A Case Report. Front Med (Lausanne) 2022; 9:808205. [PMID: 35492345 PMCID: PMC9039281 DOI: 10.3389/fmed.2022.808205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 03/16/2022] [Indexed: 11/13/2022] Open
Abstract
Background Human parvovirus B19 (B19V) infection is usually symptomless and occurs in the childhood. While in immunocompromised adults, B19V infection also presents various clinical symptoms due to the host's immune status. The classic symptoms include erythema, anemia, arthropathy, and edema, but neurological involvement is rare. Case Presentation In this report, we present a case of B19V infection caused multiple organ dysfunction in a non-immunosuppressed adult. Metagenomic next-generation sequencing (mNGS) was used and successfully detected the pathogen in multiple types of samples, including blood, cerebrospinal fluid (CSF), and bronchoalveolar lavage fluid (BALF). The diagnosis was subsequently confirmed by polymerase chain reaction (PCR). He was treated with intravenous gamma globulin, resulting in a significant resolution of symptoms after 1 month. Conclusion Multisystem involvement induced by B19V infection was found in this case report. mNGS performed great advantages in rapidly and accurately diagnosing B19V infection in multiple types of samples, which helps the timely adjustment of treatment and improves the prognosis.
Collapse
Affiliation(s)
- Qihang Zou
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Peisong Chen
- Department of Laboratory Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiaxin Chen
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Dingbang Chen
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Han Xia
- Department of Scientific Affairs, Hugobiotech Co., Ltd., Beijing, China
| | - Ling Chen
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Huiyu Feng
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Li Feng
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| |
Collapse
|
3
|
Abstract
Inflammatory dilated cardiomyopathy (DCMi) is a syndrome, not an etiological disease entity. The infective etiology and the immunopathology can be best determined through endomyocardial biopsy with a complete work-up by light microscopy, immunohistology, and polymerase chain reaction for microbial agents. This review focuses on the methodological advances in diagnosis in the past few years and exemplifies the importance of an etiology-orientated treatment in different case scenarios. In fulminant nonviral myocarditis, immunosuppressive treatment together with hemodynamic stabilization of the patient via mechanical circulatory support (e.g., microaxial pumps, extracorporeal membrane oxygenation, left ventricular assist device) can be life-saving. For viral inflammatory cardiomyopathy, intravenous immunoglobulin treatment can resolve inflammation and often eradicate the virus.
Collapse
Affiliation(s)
- Bernhard Maisch
- Medical Faculty, Philipps University, Marburg, Germany.
- Heart and Vessel Centre, Marburg, Germany.
| | - Sabine Pankuweit
- Department of Internal Medicine and Cardiology, Philipps University and UKGM, Marburg, Germany
| |
Collapse
|
4
|
Theis KR, Romero R, Motomura K, Galaz J, Winters AD, Pacora P, Miller D, Slutsky R, Florova V, Levenson D, Para R, Varrey A, Kacerovsky M, Hsu CD, Gomez-Lopez N. Microbial burden and inflammasome activation in amniotic fluid of patients with preterm prelabor rupture of membranes. J Perinat Med 2020; 48:115-131. [PMID: 31927525 PMCID: PMC7147952 DOI: 10.1515/jpm-2019-0398] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 12/01/2019] [Indexed: 02/07/2023]
Abstract
Background Intra-amniotic inflammation, which is associated with adverse pregnancy outcomes, can occur in the presence or absence of detectable microorganisms, and involves activation of the inflammasome. Intra-amniotic inflammasome activation has been reported in clinical chorioamnionitis at term and preterm labor with intact membranes, but it has not yet been investigated in women with preterm prelabor rupture of membranes (preterm PROM) in the presence/absence of detectable microorganisms. The aim of this study was to determine whether, among women with preterm PROM, there is an association between detectable microorganisms in amniotic fluid and intra-amniotic inflammation, and whether intra-amniotic inflammasome activation correlates with microbial burden. Methods Amniotic fluids from 59 cases of preterm PROM were examined for the presence/absence of microorganisms through culture and 16S ribosomal RNA (rRNA) gene quantitative real-time polymerase chain reaction (qPCR), and concentrations of interleukin-6 (IL-6) and ASC [apoptosis-associated spec-like protein containing a caspase recruitment domain (CARD)], an indicator of inflammasome activation, were determined. Results qPCR identified more microbe-positive amniotic fluids than culture. Greater than 50% of patients with a negative culture and high IL-6 concentration in amniotic fluid yielded a positive qPCR signal. ASC concentrations were greatest in patients with high qPCR signals and elevated IL-6 concentrations in amniotic fluid (i.e. intra-amniotic infection). ASC concentrations tended to increase in patients without detectable microorganisms but yet with elevated IL-6 concentrations (i.e. sterile intra-amniotic inflammation) compared to those without intra-amniotic inflammation. Conclusion qPCR is a valuable complement to microbiological culture for the detection of microorganisms in the amniotic cavity in women with preterm PROM, and microbial burden is associated with the severity of intra-amniotic inflammatory response, including inflammasome activation.
Collapse
Affiliation(s)
- Kevin R. Theis
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA
- Detroit Medical Center, Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Florida International University, Miami, Florida, USA
| | - Kenichiro Motomura
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Jose Galaz
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Andrew D. Winters
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Percy Pacora
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Derek Miller
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Rebecca Slutsky
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
| | - Violetta Florova
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Dustyn Levenson
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Robert Para
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Aneesha Varrey
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Marian Kacerovsky
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Chaur-Dong Hsu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
5
|
Eid AJ, Ardura MI. Human parvovirus B19 in solid organ transplantation: Guidelines from the American society of transplantation infectious diseases community of practice. Clin Transplant 2019; 33:e13535. [PMID: 30973192 DOI: 10.1111/ctr.13535] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 02/27/2019] [Indexed: 12/21/2022]
Abstract
Clinical manifestations of human parvovirus B19 infection can vary widely and may be atypical in solid organ transplant (SOT) recipients. However, disease is apparent when there is destruction of erythrocyte progenitor cells leading to severe acute or chronic anemia with lack of an appropriate reticulocyte response in the setting of active parvovirus B19 infection. Serology may not reliably establish the diagnosis. High-level viremia is more likely to be associated with symptomatic disease. Conversely, ongoing DNAemia after infection may not be clinically significant, if detected at low levels. Despite lack of robust data, intravenous immunoglobulin (IVIG) is frequently used for the treatment of SOT recipients with symptomatic parvovirus B19 infection. Although the optimal dosage and duration of IVIG is not known, most patients receive a total of 2 g/kg over a period of 2-5 days. A daily dose of 1 g/kg or more seems to be associated with higher incidence of toxicity. Application of standard and droplet isolation precautions remains the cornerstone for preventing human parvovirus B19 transmission. Additional research is needed to assess the efficacy of current and novel therapies and to develop a safe and effective parvovirus B19 vaccine.
Collapse
Affiliation(s)
- Albert J Eid
- Department of Internal Medicine, Infectious Diseases, The University of Kansas Medical Center, Kansas City, Kansas
| | - Monica I Ardura
- Department of Pediatrics, Infectious Diseases and Host Defense, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio
| | | |
Collapse
|
6
|
Fluorescence resonance energy transfer usage to track the sequence promoter changes in CGB5 gene in ovarian cancer patients. Biomed Pharmacother 2017; 90:139-146. [PMID: 28355589 DOI: 10.1016/j.biopha.2017.02.113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 02/10/2017] [Accepted: 02/15/2017] [Indexed: 11/22/2022] Open
Abstract
PURPOSE The survival rates for ovarian cancer patients remain very low, often as a result of late diagnosis due to the asymptomatic course of the early stage disease. Based on the important biological contribution of human chorionic gonadotropin to various key processes including; cell cycle control, DNA repair, cellular differentiation and developmental processes, we hypothesized that genetic polymorphisms in the genes promoter could be associated with ovarian cancer risk. Thus, the purpose of the study was to determine whether particular polymorphisms occur in the promoter region of the human chorionic gonadotropin polypeptide 5 encoding gene, and if so, are they associated with ovarian cancer outcome. PATIENTS AND METHODS We analyzed Central European females diagnosed with ovarian cancer (n=95) and controls (n=76) for the occurrence of at least one of three polymorphisms (rs7260002, rs7246045, rs540432391) and their impact on cancer risk. The fluorescence resonance energy transfer technique was used in order to conduct single nucleotide polymorphisms genotyping. RESULTS The occurrence of two studied polymorphisms, rs7260002 and rs540432391 present in the 5' upstream region of the chorionic gonadotropin (CG) gene were associated with an increased risk of ovarian cancer. The former polymorphism had a minor impact on cancer risk (P=0.049; OR=1.95; 95% CI=0.97-3.92), while the latter had a much larger impact and may be of great importance in the evaluation of cancer development in the analyzed population (p<0.001; OR 8.5; 95% CI 3.59-20.23). CONCLUSIONS The fluorescence resonance energy transfer application used in tracking the sequence promoter variations of genes expressed during tumorigenesis may be an important factor in early prediction of ovarian cancer. Taking under consideration the elevated CG expression associated with several different cancer types it seems reasonable to estimate if the analyzed polymorphisms could affect cancer outcome.
Collapse
|
7
|
Abstract
Accurate diagnosis of viral infections enhances the ability of the clinician to make decisions on appropriate treatment of patients, evaluate disease progression and prevent misuse of antibiotics. Knowledge of the pathogen involved also allow implementation of infection control and monitoring of success of antiviral treatments that may affect the prognosis of patients. Epidemiological data collected through accurate diagnostics play an important role in public health through identification and control of outbreaks, implementation of appropriate diagnostic tests, vaccination programs and treatment but also to recognize common and emerging pathogens in a community. It is key that the clinician have an understanding of appropriate specimens to send to the laboratory and the value of specific nucleic acid and serological testing for different viral pathogens. Molecular techniques have revolutionized viral diagnoses over the past decade and enhanced both the sensitivity and specificity of tests and the speed by which a diagnosis can be made and new tests be developed. The continued use of serology for viruses with a short viremia, or for chronic infections should however complement these tests. This chapter aims to provide an overview of the available tests, the principles of testing and appropriate tests to select for different viruses and syndromes. Also provided is a glimpse of new developments in diagnostics that may further enhance the capacity to make a conclusive diagnosis in the near future.
Collapse
Affiliation(s)
- Robin J. Green
- Department of Paediatrics and Child Health, University of Pretoria, School of Medicine, Pretoria, ZA, South Africa
| |
Collapse
|
8
|
Abstract
ABSTRACT
Primary parvovirus B19 infection is an infrequent, but serious and treatable, cause of chronic anemia in immunocompromised hosts. Many compromised hosts have preexisting antibody to B19 and are not at risk. However, upon primary infection, some patients may be able to mount a sufficient immune response to terminate active parvovirus B19 infection of erythroid precursors. The most common consequence of B19 infection in the compromised host is pure red-cell aplasia, resulting in chronic or recurrent anemia with reticulocytopenia. Anemia persists until neutralizing antibody is either produced by the host or passively administered. Parvovirus B19 should be suspected in compromised hosts with unexplained or severe anemia and reticulocytopenia, or when bone-marrow examination shows either giant pronormoblasts or absence of red-cell precursors. Diagnosis is established by detection of B19 DNA in serum in the absence of IgG antibody to B19. In some cases, IgG antibody is detected but is not neutralizing. Anti-B19 IgM may or may not be present. Therapy includes any or all of the following: red-cell transfusion, adjustment in medications to restore or improve the patient’s immune system, and administration of intravenous immunoglobulin (IVIG). Following treatment, patients should be closely monitored, especially if immunosuppression is unchanged or increased. Should hematocrit trend downward and parvovirus DNA trend upward, the therapeutic options above should be revisited. In a few instances, monthly maintenance IVIG may be indicated. Caregivers should be aware that B19 variants, though rarely encountered, can be missed or under-quantitated by some real-time polymerase-chain reaction methods.
Collapse
|
9
|
Molecular Diagnostics for Viral Infections in Transplant Recipients. Mol Microbiol 2016. [DOI: 10.1128/9781555819071.ch34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Atalay A, Gökahmetoğlu S, Durmaz S, Kandemir İ, Sağlam D, Kaynar L, Eser B, Çetin M, Kılıç H. Investigation of epstein-barr virus and parvovirus b19 DNA in allogeneic stem cell transplant patients. Turk J Haematol 2014; 31:155-60. [PMID: 25035673 PMCID: PMC4102043 DOI: 10.4274/tjh.2012.0042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 03/22/2013] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVE We aimed to investigate posttransplant Epstein-Barr virus (EBV) and parvovirus B19 DNA in allogeneic stem cell transplant patients between 2009 and 2010. MATERIALS AND METHODS Forty-five adult patients in whom allogeneic stem cell transplantation was performed between April 2009 and November 2010 in the Erciyes University Faculty of Medicine, Department of Internal Medicine, Division of Hematology and Oncology, were included in the study. EBV and parvovirus B19 DNA positivity was investigated by using real-time polymerase chain reaction technique in 135 plasma samples obtained after transplantation at between 1 and 6 months. Pretransplant serological markers of EBV and parvovirus B19 were provided from patient files. RESULTS In 32 (71.1%) of the patients, EBV antibodies in the pretransplantation period were as follows: anti-EBNA-1 IgG (+), VCA IgM (-), and VCA IgG (+). In 2 patients (4.45%), these antibodies were as follows: anti-EBNA-1 IgG (+), VCA IgM (-), and VCA IgG (-). In 1 patient (2.2%), they were as follows: anti-EBNA-1 IgG (-), VCA IgM (-), and VCA IgG (+). EBV serological markers were negative in 2 (2.2%) out of 45 patients before transplantation. There was low DNA positivity (<600 copies/mL) in 4 patients (8.9%), and VCA IgM was negative and VCA IgG was positive in these same 4 patients. In spite of low viral load, there were no symptoms related to EBV, and posttransplant lymphoproliferative disorder (PTLD) did not occur. While in 44 (99.7%) of 45 patients parvovirus B19 IgM was negative and IgG was positive, parvovirus B19 IgM was positive and IgG was negative in 1 (2.3%) patient. Parvovirus B19 DNA was not identified in any of the samples obtained from these 45 patients. CONCLUSION In this study, EBV and parvovirus B19 DNA were investigated in allogeneic stem cell transplant patients. None of the patients developed PTLD and parvovirus B19 DNA positivity was not detected. However, this issue needs to be further evaluated in prospective, multicenter studies with larger series of patients.
Collapse
Affiliation(s)
- Altay Atalay
- Erciyes University Faculty of Medicine, Department of Clinical Microbiology, Kayseri, Turkey
- * Address for Correspondence: Erciyes University Faculty of Medicine, Department of Clinical Microbiology, Kayseri, Turkey Phone: +90 352 207 66 66-23385 E-mail:
| | - Selma Gökahmetoğlu
- Erciyes University Faculty of Medicine, Department of Clinical Microbiology, Kayseri, Turkey
| | - Süleyman Durmaz
- Erciyes University Faculty of Medicine, Department of Clinical Microbiology, Kayseri, Turkey
| | - İdris Kandemir
- Erciyes University Faculty of Medicine, Department of Clinical Microbiology, Kayseri, Turkey
| | - Derya Sağlam
- Erciyes University Faculty of Medicine, Department of Clinical Microbiology, Kayseri, Turkey
| | - Leylagül Kaynar
- Erciyes University Faculty of Medicine, Department of Hematology, Kayseri, Turkey
| | - Bülent Eser
- Erciyes University Faculty of Medicine, Department of Hematology, Kayseri, Turkey
| | - Mustafa Çetin
- Erciyes University Faculty of Medicine, Department of Hematology, Kayseri, Turkey
| | - Hüseyin Kılıç
- Erciyes University Faculty of Medicine, Department of Clinical Microbiology, Kayseri, Turkey
| |
Collapse
|
11
|
Romero R, Miranda J, Chaiworapongsa T, Chaemsaithong P, Gotsch F, Dong Z, Ahmed AI, Yoon BH, Hassan SS, Kim CJ, Korzeniewski SJ, Yeo L. A novel molecular microbiologic technique for the rapid diagnosis of microbial invasion of the amniotic cavity and intra-amniotic infection in preterm labor with intact membranes. Am J Reprod Immunol 2014; 71:330-58. [PMID: 24417618 DOI: 10.1111/aji.12189] [Citation(s) in RCA: 163] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Accepted: 11/25/2013] [Indexed: 12/16/2022] Open
Abstract
PROBLEM The diagnosis of microbial invasion of the amniotic cavity (MIAC) has been traditionally performed using traditional cultivation techniques, which require growth of microorganisms in the laboratory. Shortcomings of culture methods include the time required (days) for identification of microorganisms, and that many microbes involved in the genesis of human diseases are difficult to culture. A novel technique combines broad-range real-time polymerase chain reaction with electrospray ionization time-of-flight mass spectrometry (PCR/ESI-MS) to identify and quantify genomic material from bacteria and viruses. METHOD OF STUDY AF samples obtained by transabdominal amniocentesis from 142 women with preterm labor and intact membranes (PTL) were analyzed using cultivation techniques (aerobic, anaerobic, and genital mycoplasmas) as well as PCR/ESI-MS. The prevalence and relative magnitude of intra-amniotic inflammation [AF interleukin 6 (IL-6) concentration ≥ 2.6 ng/mL], acute histologic chorioamnionitis, spontaneous preterm delivery, and perinatal mortality were examined. RESULTS (i) The prevalence of MIAC in patients with PTL was 7% using standard cultivation techniques and 12% using PCR/ESI-MS; (ii) seven of ten patients with positive AF culture also had positive PCR/ESI-MS [≥17 genome equivalents per PCR reaction well (GE/well)]; (iii) patients with positive PCR/ESI-MS (≥17 GE/well) and negative AF cultures had significantly higher rates of intra-amniotic inflammation and acute histologic chorioamnionitis, a shorter interval to delivery [median (interquartile range-IQR)], and offspring at higher risk of perinatal mortality, than women with both tests negative [90% (9/10) versus 32% (39/122) OR: 5.6; 95% CI: 1.4-22; (P < 0.001); 70% (7/10) versus 35% (39/112); (P = 0.04); 1 (IQR: <1-2) days versus 25 (IQR: 5-51) days; (P = 0.002), respectively]; (iv) there were no significant differences in these outcomes between patients with positive PCR/ESI-MS (≥17 GE/well) who had negative AF cultures and those with positive AF cultures; and (v) PCR/ESI-MS detected genomic material from viruses in two patients (1.4%). CONCLUSION (i) Rapid diagnosis of intra-amniotic infection is possible using PCR/ESI-MS; (ii) the combined use of biomarkers of inflammation and PCR/ESI-MS allows for the identification of specific bacteria and viruses in women with preterm labor and intra-amniotic infection; and (iii) this approach may allow for administration of timely and specific interventions to reduce morbidity attributed to infection-induced preterm birth.
Collapse
Affiliation(s)
- Roberto Romero
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA, and Detroit, MI, USA; Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA; Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Eid AJ, Chen SF. Human parvovirus B19 in solid organ transplantation. Am J Transplant 2013; 13 Suppl 4:201-5. [PMID: 23465012 DOI: 10.1111/ajt.12111] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- A J Eid
- Division of Infectious Diseases, University of Kansas Medical Center, Kansas City, KS, USA.
| | | | | |
Collapse
|
13
|
Cobo F. Application of molecular diagnostic techniques for viral testing. Open Virol J 2012; 6:104-14. [PMID: 23248732 PMCID: PMC3522074 DOI: 10.2174/1874357901206010104] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 08/17/2012] [Accepted: 08/23/2012] [Indexed: 02/08/2023] Open
Abstract
Nucleic acid amplification techniques are commonly used currently to diagnose viral diseases and manage patients with this kind of illnesses. These techniques have had a rapid but unconventional route of development during the last 30 years, with the discovery and introduction of several assays in clinical diagnosis. The increase in the number of commercially available methods has facilitated the use of this technology in the majority of laboratories worldwide. This technology has reduced the use of some other techniques such as viral culture based methods and serological assays in the clinical virology laboratory. Moreover, nucleic acid amplification techniques are now the methods of reference and also the most useful assays for the diagnosis in several diseases. The introduction of these techniques and their automation provides new opportunities for the clinical laboratory to affect patient care. The main objectives in performing nucleic acid tests in this field are to provide timely results useful for high-quality patient care at a reasonable cost, because rapid results are associated with improvements in patients care. The use of amplification techniques such as polymerase chain reaction, real-time polymerase chain reaction or nucleic acid sequence-based amplification for virus detection, genotyping and quantification have some advantages like high sensitivity and reproducibility, as well as a broad dynamic range. This review is an up-to-date of the main nucleic acid techniques and their clinical applications, and special challenges and opportunities that these techniques currently provide for the clinical virology laboratory.
Collapse
Affiliation(s)
- Fernando Cobo
- Microbiology Unit (Biotechnology Area), Hospital de Poniente. Ctra de Almerimar S/N, El Ejido 04700, Almería, Spain
| |
Collapse
|
14
|
|
15
|
Plentz A, Modrow S. Diagnosis, management and possibilities to prevent parvovirus B19 infection in pregnancy. Future Virol 2011. [DOI: 10.2217/fvl.11.120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Human parvovirus B19 (B19V) infection in pregnancy can cause severe fetal anemia and nonimmune hydrops fetalis, which may be associated with spontaneous abortion and fetal death. Approximately 30–40% of women of child-bearing age are not immune to B19V infection. The risk to fetal life is particularly high if maternal infection occurs during the first 20 weeks of gestation. In this article we intend to give an overview on the molecular biology, epidemiology and management of B19V infection during pregnancy. These data will be combined with an assessment of the clinical situation of the infected fetus and the possibilities for avoiding and/or preventing B19V infection in pregnant women. Currently B19V infection is the causative agent of one of the most frequently occurring infectious complications in pregnancy that endangers fetal life, and so the necessity to develop a preventive vaccine is discussed.
Collapse
Affiliation(s)
- Annelie Plentz
- Institut für Medizinische Mikrobiologie und Hygiene, Universität Regensburg, Franz-Josef-Strauß Allee 11, 93053 Regensburg, Germany
| | | |
Collapse
|
16
|
Parvovirus B19-associated purpuric–petechial eruption. J Clin Virol 2011; 52:269-71. [DOI: 10.1016/j.jcv.2011.08.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2011] [Revised: 08/02/2011] [Accepted: 08/04/2011] [Indexed: 11/17/2022]
|
17
|
Viral Infections in Transplant Recipients. Mol Microbiol 2011. [DOI: 10.1128/9781555816834.ch40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
|
19
|
ZAKI MES, ASHRAY RE. Clinical and hematological study for Parvovirus b19 infection in children with acute leukemia. Int J Lab Hematol 2010; 32:159-166. [PMID: 19261033 DOI: 10.1111/j.1751-553x.2009.01150.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
20
|
Affiliation(s)
- A J Eid
- University of Kansas Medical Center, Kansas City, KS, USA.
| | | | | |
Collapse
|
21
|
Fett JD. Diagnosis of viral cardiomyopathy by analysis of peripheral blood? Expert Opin Ther Targets 2008; 12:1073-5. [DOI: 10.1517/14728222.12.9.1073] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
22
|
Lurchachaiwong W, Payungporn S, Srisatidnarakul U, Mungkundar C, Theamboonlers A, Poovorawan Y. Rapid detection and strain identification of porcine reproductive and respiratory syndrome virus (PRRSV) by real-time RT-PCR. Lett Appl Microbiol 2007; 46:55-60. [PMID: 17944835 DOI: 10.1111/j.1472-765x.2007.02259.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS To develop and validate assays based on real-time reverse transcriptase-polymerase chain reaction (RT-PCR) for rapid detection and strain identification (European and North American strains) of porcine reproductive and respiratory syndrome virus (PRRSV) by using SYBR Green I and TaqMan probe chemistries. METHODS AND RESULTS This study describes two alternative assays based on real-time RT-PCR for rapid detection and strain identification of PRRSV in comparison with conventional RT-PCR. The first assay utilized SYBR Green I with melting curve analysis; another assay was performed using strain-specific TaqMan probes. Primers were selected from the conserved regions within ORF7 (N) of both strains whereas two TaqMan probes labelled with different fluorescent dyes were specifically designed for each strain. The result of strain identification was confirmed by direct sequencing. Both assays can be used for rapid detection and strain identification of PRRSV with a sensitivity of 10(4) and 10(3) copies microl(-1) for SYBR Green and TaqMan probe, respectively. CONCLUSIONS Real-time RT-PCR is a powerful method combining rapidity, specificity and efficiency for large-scale screening and strain identification of PRRSV. SIGNIFICANCE AND IMPACT OF THE STUDY The data indicate that the methods developed are invaluable for detecting low levels of PRRSV infection in swine.
Collapse
Affiliation(s)
- W Lurchachaiwong
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | | | | | | | | |
Collapse
|
23
|
García Tapia AM, Lozano Domínguez MC, Fernández Gutiérrez del Alamo C. Infección por Erythrovirus B19. Enferm Infecc Microbiol Clin 2006; 24 Suppl 1:24-9. [PMID: 17125665 DOI: 10.1157/13094275] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Erythrovirus B19 has been associated with an expanding range of clinical disorders since its identification as the etiological agent of erythema infectiosum, or fifth disease of childhood: acute arthropathy, dermatologic manifestations, chronic anemia in immunocompromised patients, and transient aplastic crisis in individuals with underlying chronic hemolytic disorders. Furthermore, exposure to and infection by B19 virus can lead to serious complications during pregnancy, which may result in fetal anemia, spontaneous abortion, and hydrops fetalis. Consequently, the B19 immune status of pregnant women should be routinely determined. Because many immunocompromised patients with chronic anemia will respond positively to intravenous immunoglobulin therapy, laboratory confirmation of B19 infection is required. Since Erythrovirus B19 cannot be routinely grown in vitro, diagnostic methods for detecting the presence of B19 by molecular techniques or by investigating the specific immune response should be considered in clinical microbiology laboratories.
Collapse
|
24
|
Watzinger F, Ebner K, Lion T. Detection and monitoring of virus infections by real-time PCR. Mol Aspects Med 2006. [PMID: 16481036 DOI: 10.1016/j.mam.2005.12.00] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
The employment of polymerase chain reaction (PCR) techniques for virus detection and quantification offers the advantages of high sensitivity and reproducibility, combined with an extremely broad dynamic range. A number of qualitative and quantitative PCR virus assays have been described, but commercial PCR kits are available for quantitative analysis of a limited number of clinically important viruses only. In addition to permitting the assessment of viral load at a given time point, quantitative PCR tests offer the possibility of determining the dynamics of virus proliferation, monitoring of the response to treatment and, in viruses displaying persistence in defined cell types, distinction between latent and active infection. Moreover, from a technical point of view, the employment of sequential quantitative PCR assays in virus monitoring helps identifying false positive results caused by inadvertent contamination of samples with traces of viral nucleic acids or PCR products. In this review, we provide a survey of the current state-of-the-art in the application of the real-time PCR technology to virus analysis. Advantages and limitations of the RQ-PCR methodology, and quality control issues related to standardization and validation of diagnostic assays are discussed.
Collapse
Affiliation(s)
- F Watzinger
- Children's Cancer Research Institute, St. Anna Kinderspital, A-1090 Vienna, Austria
| | | | | |
Collapse
|
25
|
Abstract
The employment of polymerase chain reaction (PCR) techniques for virus detection and quantification offers the advantages of high sensitivity and reproducibility, combined with an extremely broad dynamic range. A number of qualitative and quantitative PCR virus assays have been described, but commercial PCR kits are available for quantitative analysis of a limited number of clinically important viruses only. In addition to permitting the assessment of viral load at a given time point, quantitative PCR tests offer the possibility of determining the dynamics of virus proliferation, monitoring of the response to treatment and, in viruses displaying persistence in defined cell types, distinction between latent and active infection. Moreover, from a technical point of view, the employment of sequential quantitative PCR assays in virus monitoring helps identifying false positive results caused by inadvertent contamination of samples with traces of viral nucleic acids or PCR products. In this review, we provide a survey of the current state-of-the-art in the application of the real-time PCR technology to virus analysis. Advantages and limitations of the RQ-PCR methodology, and quality control issues related to standardization and validation of diagnostic assays are discussed.
Collapse
Affiliation(s)
| | | | - T. Lion
- Corresponding author. Tel.: +43 1 40470 489; fax: +43 1 40470 437.
| |
Collapse
|
26
|
Espy MJ, Uhl JR, Sloan LM, Buckwalter SP, Jones MF, Vetter EA, Yao JDC, Wengenack NL, Rosenblatt JE, Cockerill FR, Smith TF. Real-time PCR in clinical microbiology: applications for routine laboratory testing. Clin Microbiol Rev 2006; 19:165-256. [PMID: 16418529 PMCID: PMC1360278 DOI: 10.1128/cmr.19.1.165-256.2006] [Citation(s) in RCA: 800] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Real-time PCR has revolutionized the way clinical microbiology laboratories diagnose many human microbial infections. This testing method combines PCR chemistry with fluorescent probe detection of amplified product in the same reaction vessel. In general, both PCR and amplified product detection are completed in an hour or less, which is considerably faster than conventional PCR detection methods. Real-time PCR assays provide sensitivity and specificity equivalent to that of conventional PCR combined with Southern blot analysis, and since amplification and detection steps are performed in the same closed vessel, the risk of releasing amplified nucleic acids into the environment is negligible. The combination of excellent sensitivity and specificity, low contamination risk, and speed has made real-time PCR technology an appealing alternative to culture- or immunoassay-based testing methods for diagnosing many infectious diseases. This review focuses on the application of real-time PCR in the clinical microbiology laboratory.
Collapse
Affiliation(s)
- M J Espy
- Mayo Clinic, 200 First St. SW, Hilton 470, Rochester, MN 55905, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Queipo-Ortuño MI, Colmenero JD, Reguera JM, García-Ordoñez MA, Pachón ME, Gonzalez M, Morata P. Rapid diagnosis of human brucellosis by SYBR Green I-based real-time PCR assay and melting curve analysis in serum samples. Clin Microbiol Infect 2005; 11:713-8. [PMID: 16104985 DOI: 10.1111/j.1469-0691.2005.01202.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The aim of this study was to develop a LightCycler-based real-time PCR (LC-PCR) assay and to evaluate its diagnostic use for the detection of Brucella DNA in serum samples. Following amplification of a 223-bp gene sequence encoding an immunogenetic membrane protein (BCSP31) specific for the Brucella genus, melting curve and DNA sequencing analysis was performed to verify the specificity of the PCR products. The intra- and inter-assay variation coefficients were 1.3% and 6.4%, respectively, and the detection limit was 5 fg of Brucella DNA (one genome equivalent). After optimisation of the PCR assay conditions, a standard curve was obtained with a linear range (correlation coefficient=0.99) over seven orders of magnitude from 10(7) to 10 fg of Brucella DNA. The LC-PCR assay was found to be 91.9% sensitive and 95.4% specific when tested with 65 negative control samples and 62 serum samples from 60 consecutive patients with active brucellosis. The assay is reproducible, easily standardised, minimises the risk of infection in laboratory workers, and has a total processing time of <2 h. It could therefore form a promising and practical approach for the rapid diagnosis of human brucellosis.
Collapse
Affiliation(s)
- M I Queipo-Ortuño
- Biochemistry and Molecular Biology Department, Faculty of Medicine, Universidad de Málaga, Málaga, Spain.
| | | | | | | | | | | | | |
Collapse
|
28
|
Chung WB, Chan WH, Chaung HC, Lien Y, Wu CC, Huang YL. Real-time PCR for quantitation of porcine reproductive and respiratory syndrome virus and porcine circovirus type 2 in naturally-infected and challenged pigs. J Virol Methods 2004; 124:11-9. [PMID: 15664045 DOI: 10.1016/j.jviromet.2004.10.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2004] [Revised: 10/12/2004] [Accepted: 10/18/2004] [Indexed: 11/15/2022]
Abstract
Real-time PCR assays were developed for quantitative detection of porcine reproductive and respiratory syndrome virus (PRRSV) and porcine circovirus type 2 (PCV2). The established real-time PCR for the quantitation of PRRSV cDNA and PCV2 DNA were found to be in the 9-log(10) linear dynamic range with excellent linearity and reliable reproducibility. Using these techniques, the distribution and quantitation of PRRSV and PCV2 in naturally infected and challenged pigs were investigated. The viral concentrations were expressed as the mean log(10) viral DNA or cDNA copy numbers per mg or ml of tested samples. For pigs infected naturally with both viruses, the lung, spleen, tonsil and lymphoid organs had the highest viral burdens with ranges from 5.73 to 8.38 and 5.65 to 6.91 for PRRSV and PCV2, respectively. The injection of formalin-inactivated Salmonella choleraesuis emulsified in complete Freund's adjuvant 1 week before and after the inoculation of both viruses resulted in PRRSV replication enhancement 2 weeks post-challenge. However, this facilitated the clearance of PRRSV 4 weeks post-challenge. Results from this study show that the established quantitative PCR could be a useful tool when applied to vaccine development and pathogenesis studies in the future.
Collapse
Affiliation(s)
- Wen-Bin Chung
- Department of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 912, ROC, Taiwan.
| | | | | | | | | | | |
Collapse
|
29
|
Candotti D, Etiz N, Parsyan A, Allain JP. Identification and characterization of persistent human erythrovirus infection in blood donor samples. J Virol 2004; 78:12169-78. [PMID: 15507603 PMCID: PMC525065 DOI: 10.1128/jvi.78.22.12169-12178.2004] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The presence of human erythrovirus DNA in 2,440 blood donations from the United Kingdom and sub-Saharan Africa (Ghana, Malawi, and South Africa) was screened. Sensitive qualitative and real-time quantitative PCR assays revealed a higher prevalence of persistent infection with the simultaneous presence of immunoglobulin G (IgG) and viral DNA (0.55 to 1.3%) than previously reported. This condition was characterized by a low viral load (median, 558 IU/ml; range, 42 to 135,000 IU/ml), antibody-complexed virus, free specific IgG, and potentially infectious free virus. Human erythrovirus genotype 1 (formerly parvovirus B19) was prevalent in the United Kingdom, Malawi, and South Africa. In contrast, only human erythrovirus genotype 3 (erythrovirus variant V9) was prevalent in Ghana. Genotype 3 had considerable genetic diversity, clustering in two probable subtypes. Genotype 1-based antibody assays failed to detect 38.5% of Ghanaian samples containing antibodies to genotype 3 virus but did not fail to detect cases of persistent infection. This study indicates a potential African origin of genotype 3 human erythrovirus and considerable shortcomings in the tools currently used to diagnose erythrovirus infection.
Collapse
Affiliation(s)
- Daniel Candotti
- National Blood Service, Cambridge Blood Centre, Long Road, Cambridge CB2 2PT, United Kingdom.
| | | | | | | |
Collapse
|
30
|
Schorling S, Schalasta G, Enders G, Zauke M. Quantification of parvovirus B19 DNA using COBAS AmpliPrep automated sample preparation and LightCycler real-time PCR. J Mol Diagn 2004; 6:37-41. [PMID: 14736825 PMCID: PMC1867462 DOI: 10.1016/s1525-1578(10)60489-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The COBAS AmpliPrep instrument (Roche Diagnostics GmbH, D-68305 Mannheim, Germany) automates the entire sample preparation process of nucleic acid isolation from serum or plasma for polymerase chain reaction analysis. We report the analytical performance of the LightCycler Parvovirus B19 Quantification Kit (Roche Diagnostics) using nucleic acids isolated with the COBAS AmpliPrep instrument. Nucleic acids were extracted using the Total Nucleic Acid Isolation Kit (Roche Diagnostics) and amplified with the LightCycler Parvovirus B19 Quantification Kit. The kit combination processes 72 samples per 8-hour shift. The lower detection limit is 234 IU/ml at a 95% hit-rate, linear range approximately 10(4)-10(10) IU/ml, and overall precision 16 to 40%. Relative sensitivity and specificity in routine samples from pregnant women are 100% and 93%, respectively. Identification of a persistent parvovirus B19-infected individual by the polymerase chain reaction among 51 anti-parvovirus B19 IgM-negative samples underlines the importance of additional nucleic acid testing in pregnancy and its superiority to serology in identifying the risk of parvovirus B19 transmission via blood or blood products. Combination of the Total Nucleic Acid Isolation Kit on the COBAS AmpliPrep instrument with the LightCycler Parvovirus B19 Quantification Kit provides a reliable and time-saving tool for sensitive and accurate detection of parvovirus B19 DNA.
Collapse
|
31
|
El-Mahallawy HA, Mansour T, El-Din SE, Hafez M, Abd-el-Latif S. Parvovirus B19 infection as a cause of anemia in pediatric acute lymphoblastic leukemia patients during maintenance chemotherapy. J Pediatr Hematol Oncol 2004; 26:403-6. [PMID: 15218412 DOI: 10.1097/00043426-200407000-00001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE Persistent parvovirus B19 tends to occur in immunocom-promised patients and manifests as pure red cell aplasia and chronic anemia. This study aimed to detect the contribution of parvovirus B19 infection to anemia in children with acute lymphoblastic leukemia (ALL) receiving chemotherapy. PATIENTS AND METHODS Two groups of ALL patients were studied during maintenance chemotherapy: 50 patients with persistent anemia (ie, extending for >2 weeks) and 34 patients without anemia (controls). Serum parvovirus B19 IgG and IgM were investigated by an enzyme-linked immunosorbent assay, and the virus DNA was sought in bone marrow cells by a nested polymerase chain reaction assay. RESULTS Parvovirus B19 DNA was detected in 11 of the 50 (22%) ALL children with anemia, 4 of whom were also IgM positive. In addition, IgM positivity was observed in nine (18%) other children who were negative for parvovirus B19 DNA. The children without anemia were found to be significantly different than those with anemia in terms of parvovirus B19 DNA positivity and DNA + IgM positivity (P = 0.03 and 0.01, respectively). IgG was found to be positive in a total of 19 (38%) cases, with B19 DNA present in 6 of them. CONCLUSIONS These findings indicate the high frequency of parvovirus B19 in anemia in children with ALL and the importance of testing for its DNA in the bone marrow cells together with IgG and IgM antibodies in the serum of immunocompromised patients. It is important to consider parvovirus B19 infections as a cause of anemia and suppressed erythropoiesis in children with ALL who are receiving ongoing treatment.
Collapse
|
32
|
Gallinella G, Bonvicini F, Filippone C, Delbarba S, Manaresi E, Zerbini M, Musiani M. Calibrated real-time PCR for evaluation of parvovirus b19 viral load. Clin Chem 2004; 50:759-62. [PMID: 15044335 DOI: 10.1373/clinchem.2003.027292] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Giorgio Gallinella
- Department of Clinical and Experimental Medicine, Division of Microbiology, University of Bologna, Bologna, Italy.
| | | | | | | | | | | | | |
Collapse
|
33
|
Shrestha NK, Tuohy MJ, Hall GS, Reischl U, Gordon SM, Procop GW. Detection and differentiation of Mycobacterium tuberculosis and nontuberculous mycobacterial isolates by real-time PCR. J Clin Microbiol 2004; 41:5121-6. [PMID: 14605148 PMCID: PMC262464 DOI: 10.1128/jcm.41.11.5121-5126.2003] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mycobacteria cause a variety of illnesses that differ in severity and public health implications. The differentiation of Mycobacterium tuberculosis from nontuberculous mycobacteria (NTM) is of primary importance for infection control and choice of antimicrobial therapy. Despite advances in molecular diagnostics, the ability to rapidly diagnose M. tuberculosis infections by PCR is still inadequate, largely because of the possibility of false-negative reactions. We designed and validated a real-time PCR for mycobacteria by using the LightCycler system with 18 reference strains and 168 clinical mycobacterial isolates. All clinically significant mycobacteria were detected; the mean melting temperatures (with 99.9% confidence intervals [99.9% CI] in parentheses) for the different mycobacteria were as follows: M. tuberculosis, 64.35 degrees C (63.27 to 65.42 degrees C); M. kansasii, 59.20 degrees C (58.07 to 60.33 degrees C); M. avium, 57.82 degrees C (57.05 to 58.60 degrees C); M. intracellulare, 54.46 degrees C (53.69 to 55.23 degrees C); M. marinum, 58.91 degrees C (58.28 to 59.55 degrees C); rapidly growing mycobacteria, 53.09 degrees C (50.97 to 55.20 degrees C) or 43.19 degrees C (42.19 to 44.49 degrees C). This real-time PCR assay with melting curve analysis consistently accurately detected and differentiated M. tuberculosis from NTM. Detection of an NTM helps ensure that the negative result for M. tuberculosis is a true negative. The specific melting temperature also provides a suggestion of the identity of the NTM present, when the most commonly encountered mycobacterial species are considered. In a parallel comparison, both the LightCycler assay and the COBAS Amplicor M. tuberculosis assay correctly categorized 48 of 50 specimens that were proven by culture to contain M. tuberculosis, and the LightCycler assay correctly characterized 3 of 3 specimens that contained NTM.
Collapse
Affiliation(s)
- Nabin K Shrestha
- Department of Infectious Diseases. Section of Clinical Microbiology, The Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | | | | | | | |
Collapse
|
34
|
Cavallo R, Merlino C, Re D, Bollero C, Bergallo M, Lembo D, Musso T, Leonardi G, Segoloni GP, Ponzi AN. B19 virus infection in renal transplant recipients. J Clin Virol 2003; 26:361-8. [PMID: 12637086 DOI: 10.1016/s1386-6532(02)00104-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND B19 virus infection with persistent anaemia has been reported in organ transplant recipients. Detection of B19 virus DNA in serum is the best direct marker of active infection. OBJECTIVE The present study evaluated the incidence and clinical role of active B19 virus infection in renal transplant recipients presenting with anaemia. STUDY DESIGN Forty-eight such recipients were investigated by nested PCR on serum samples. The controls were 21 recipients without anaemia. Active HCMV infection was also investigated as a marker of high immunosuppression. RESULTS AND CONCLUSIONS In 11/48 (23%) patients B19 virus DNA was demonstrated in serum versus only 1/21 (5%) of the controls. Ten of these 11 patients had already been seropositive at transplantation and active infection occurred in eight of them during the first 3 months after transplantation. The remaining patient experienced a primary infection 9 months after transplantation. Eight (73%) of these 11 patients displayed a concomitant HCMV infection and four (36%) showed increasing serum creatinine levels but none developed glomerulopathy; 3/11 (27%) recovered spontaneously from anaemia whereas 8/11 (73%) needed therapy. In conclusion, the relatively high occurrence (23%) of B19 virus infection in patients presenting with anaemia, suggests that it should be considered in the differential diagnosis of persistent anaemia in renal transplant recipients. Presence of the viral DNA should be assessed early from transplantation and the viral load should be monitored to follow persistent infection and better understand the relation between active infection and occurrence of anaemia, and to assess the efficacy of IVIG therapy and/or immunosuppression reduction in clearing the virus.
Collapse
Affiliation(s)
- Rossana Cavallo
- Virology Unit, Department of Public Health and Microbiology, University of Turin, Via Santena 9, 10126, Turin, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|