1
|
Lee CY, Ong HX, Tan CY, Low SE, Phang LY, Lai J, Ooi PT, Fong MWC. Molecular Characterization and Phylogenetic Analysis of Outer membrane protein P2 ( OmpP2) of Glaesserella ( Haemophilus) parasuis Isolates in Central State of Peninsular Malaysia. Pathogens 2023; 12:pathogens12020308. [PMID: 36839580 PMCID: PMC9966854 DOI: 10.3390/pathogens12020308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Glaesserella (Haemophilus) parasuis, the etiological agent of Glässer's disease, is an economically significant pathogen commonly associated with serofibrinous polyserositis, arthritis, fibrinous bronchopneumonia and/or meningitis. This study is the first attempt to molecularly characterize and provide a detailed overview of the genetic variants of G. parasuis present in Malaysia, in reference to its serotype, virulence-associated trimeric autotransporters (vtaA) gene and outer membrane protein P2 (OmpP2) gene. The G. parasuis isolates (n = 11) from clinically sick field samples collected from two major pig producing states (Selangor and Perak) were selected for analysis. Upon multiplex PCR, the majority of the isolates (eight out of 11) were identified to be serotype 5 or 12, and interestingly, serotypes 3, 8 and 15 were also detected, which had never been reported in Malaysia prior to this. Generally, virulent vtaA was detected for all isolates, except for one, which displayed a nonvirulent vtaA. A phylogenetic analysis of the OmpP2 gene revealed that the majority of Malaysian isolates were clustered into genotype 1, which could be further divided into Ia and Ib, while only one isolate was clustered into genotype 2.
Collapse
Affiliation(s)
- Chee Yien Lee
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM, Serdang 43400, Malaysia
| | - Hui Xin Ong
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM, Serdang 43400, Malaysia
| | - Chew Yee Tan
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM, Serdang 43400, Malaysia
| | - Suet Ee Low
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM, Serdang 43400, Malaysia
| | - Lai Yee Phang
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM, Serdang 43400, Malaysia
| | - Jyhmirn Lai
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chiayi University, Chiayi City 60004, Taiwan
| | - Peck Toung Ooi
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM, Serdang 43400, Malaysia
- Correspondence: (P.T.O.); (M.W.C.F.)
| | - Michelle Wai Cheng Fong
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM, Serdang 43400, Malaysia
- Correspondence: (P.T.O.); (M.W.C.F.)
| |
Collapse
|
2
|
Wu J, Nan W, Peng G, Hu H, Xu C, Huang J, Xiao Z. Screening of linear B-cell epitopes and its proinflammatory activities of Haemophilus parasuis outer membrane protein P2. Front Cell Infect Microbiol 2023; 13:1192651. [PMID: 37207184 PMCID: PMC10189045 DOI: 10.3389/fcimb.2023.1192651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 04/11/2023] [Indexed: 05/21/2023] Open
Abstract
Haemophilus parasuis is a commensal organism of the upper respiratory tract of pigs, but virulent strains can cause Glässer's disease, resulting in significant economic losses to the swine industry. OmpP2 is an outer membrane protein of this organism that shows considerable heterogeneity between virulent and non-virulent strains, with classification into genotypes I and II. It also acts as a dominant antigen and is involved in the inflammatory response. In this study, 32 monoclonal antibodies (mAbs) against recombinant OmpP2 (rOmpP2) of different genotypes were tested for reactivity to a panel of OmpP2 peptides. Nine linear B cell epitopes were screened, including five common genotype epitopes (Pt1a, Pt7/Pt7a, Pt9a, Pt17, and Pt19/Pt19a) and two groups of genotype-specific epitopes (Pt5 and Pt5-II, Pt11/Pt11a, and Pt11a-II). In addition, we used positive sera from mice and pigs to screen for five linear B-cell epitopes (Pt4, Pt14, Pt15, Pt21, and Pt22). After porcine alveolar macrophages (PAMs) were stimulated with overlapping OmpP2 peptides, we found that the epitope peptides Pt1 and Pt9, and the loop peptide Pt20 which was adjacent epitopes could all significantly upregulated the mRNA expression levels of IL-1α, IL-1β, IL-6, IL-8, and TNF-α. Additionally, we identified epitope peptides Pt7, Pt11/Pt11a, Pt17, Pt19, and Pt21 and loop peptides Pt13 and Pt18 which adjacent epitopes could also upregulate the mRNA expression levels of most proinflammatory cytokines. This suggested that these peptides may be the virulence-related sites of the OmpP2 protein, with proinflammatory activity. Further study revealed differences in the mRNA expression levels of proinflammatory cytokines, including IL-1β and IL-6, between genotype-specific epitopes, which may be responsible for pathogenic differences between different genotype strains. Here, we profiled a linear B-cell epitope map of the OmpP2 protein and preliminarily analyzed the proinflammatory activities and effects of these epitopes on bacterial virulence, providing a reliable theoretical basis for establishing a method to distinguish strain pathogenicity and to screen candidate peptides for subunit vaccines.
Collapse
Affiliation(s)
- Jingbo Wu
- Henry Fok College of Yingdong Biology and Agricultural, Shaoguan University, Shaoguan, China
- North Guangdong Collaborative Innovation and Development Center of Pig Farming and Disease Control, Shaoguan University, Shaoguan, China
- North Guangdong Pig Breeding Waste Reduction Engineering Technology Center, Shaoguan University, Shaoguan, China
| | - Wenjin Nan
- Henry Fok College of Yingdong Biology and Agricultural, Shaoguan University, Shaoguan, China
- North Guangdong Pig Breeding Waste Reduction Engineering Technology Center, Shaoguan University, Shaoguan, China
- *Correspondence: Wenjin Nan,
| | - Guoliang Peng
- Henry Fok College of Yingdong Biology and Agricultural, Shaoguan University, Shaoguan, China
- North Guangdong Pig Breeding Waste Reduction Engineering Technology Center, Shaoguan University, Shaoguan, China
| | - Honghui Hu
- Henry Fok College of Yingdong Biology and Agricultural, Shaoguan University, Shaoguan, China
- North Guangdong Pig Breeding Waste Reduction Engineering Technology Center, Shaoguan University, Shaoguan, China
| | - Chongbo Xu
- Henry Fok College of Yingdong Biology and Agricultural, Shaoguan University, Shaoguan, China
- North Guangdong Collaborative Innovation and Development Center of Pig Farming and Disease Control, Shaoguan University, Shaoguan, China
| | - Jianqiang Huang
- Henry Fok College of Yingdong Biology and Agricultural, Shaoguan University, Shaoguan, China
- North Guangdong Collaborative Innovation and Development Center of Pig Farming and Disease Control, Shaoguan University, Shaoguan, China
| | - Zhengzhong Xiao
- Henry Fok College of Yingdong Biology and Agricultural, Shaoguan University, Shaoguan, China
- North Guangdong Collaborative Innovation and Development Center of Pig Farming and Disease Control, Shaoguan University, Shaoguan, China
| |
Collapse
|
3
|
Dosing Regimen of Aditoprim and Sulfamethoxazole Combination for the Glaesserella parasuis Containing Resistance and Virulence Genes. Pharmaceutics 2022; 14:pharmaceutics14102058. [PMID: 36297496 PMCID: PMC9607282 DOI: 10.3390/pharmaceutics14102058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 11/23/2022] Open
Abstract
Glaesserella parasuis (G. parasuis) causes Glasser’s disease in pigs and causes high mortality in piglets. The new drug Aditoprim (ADP) alone or combined with Sulfamethoxazole (SMZ) is one of the good choices for treating respiratory infections. The objective of this study was to recommend the optimal dosing regimen for the treatment of G. parasuis infection which contains resistance and virulence genes by ADP/SMZ compound through pharmacokinetics–pharmacodynamics (PK-PD) modeling. The whole genome of the virulent strain G. parasuis H78 was obtained and annotated by whole genome sequencing. The results show that G. parasuis H78 consists of a unilateral circular chromosome with prophages in the genome. The annotation results of G. parasuis H78 showed that the genome contained a large number of virulence-related genes and drug resistance-related genes. The in vitro PD study showed that the antibacterial effect of ADP/SMZ compound against G. parasuis was time-dependent, and AUC/MIC was selected as the PK-PD modeling parameter. The PK study showed that the content of ADP/SMZ compound in pulmonary epithelial lining fluid (PELF) was higher than plasma, and there were no significant differences in ADP and SMZ PK parameters between the healthy and infected group. The dose equation to calculate the optimal dosing regimen of ADP/SMZ compound administration for control of G. parasuis infection was 5/25 mg/kg b.w., intramuscular injection once a day for 3~5 consecutive days. The results of this study provide novel therapeutic options for the treatment of G. parasuis infection to decrease the prevalence and disease burden caused by G. parasuis.
Collapse
|
4
|
Zhou YY, Wang C, Yuan J, Yin RL, Chen X, Li R, Zhang XL, Wang J, Huang C, Yin RH. Comparative Transcriptomic Analyses of Haemophilus parasuis Reveal Differently Expressed Genes among Strains with Different Virulence Degrees. Curr Microbiol 2021; 78:1566-1576. [PMID: 33674900 DOI: 10.1007/s00284-021-02417-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 02/10/2021] [Indexed: 11/26/2022]
Abstract
Haemophilus parasuis is commonly found in the upper respiratory tract of the pigs. Some isolates of H. parasuis can lead to both pneumonia and Glässer's disease of pigs with severe clinical symptoms. The virulence-associated genes for the various degrees of virulence observed in H. parasuis remains poorly understood. In the present study, we identified the differentially expressed genes between YK1603 (non-virulent strain) and XM1602 (moderately virulent strain) or CY1201 (highly virulent strain) of H. parasuis using Illumina sequencing technique. In comparison to YK1603, a total of 195 genes were significantly changed in CY1201, of which 71 genes were up-regulated and 124 genes were down-regulated, whereas 705 genes were significantly changed in XM1602, of which 415 genes were up-regulated and 290 genes were down-regulated. The enriched analysis of Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways on the differentially expressed genes showed that both enriched main GO terms and KEGG pathways appear to be different between the two kinds of comparision: CY1201 versus YK1603, and XM1602 versus YK1603. Based on real-time PCR technique, on the whole, it was confirmed that the expression of ten genes: lpxL, tbpB, kdtA, waaQ, oapA, napA, ptsH, mmsA, lpxM, and lpxB were agreement with the findings in Illumina sequencing analysis. These identified genes might participate in the regulation of a wide range of biological process involved in virulence of H. parasuis, such as phosphotransferase system and ABC transporters. Our results from this study provide a new way to gain insight into the virulent mechanisms of H. parasuis.
Collapse
Affiliation(s)
- Yuan Y Zhou
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Chao Wang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
- Liaoning Agricultural Technical College, Yingkou, 115009, China
| | - Jing Yuan
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Rong L Yin
- Research Academy of Animal Husbandry and Veterinary Medicine Sciences of Jilin Province, Changchun, 130062, China
| | - Xin Chen
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Rui Li
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xue L Zhang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Jing Wang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Chen Huang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Rong H Yin
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
5
|
Hau SJ, Eberle KC, Brockmeier SL. Importance of strain selection in the generation of heterologous immunity to Glaesserella (Haemophilus) parasuis. Vet Immunol Immunopathol 2021; 234:110205. [PMID: 33636545 DOI: 10.1016/j.vetimm.2021.110205] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 02/05/2021] [Accepted: 02/06/2021] [Indexed: 02/01/2023]
Abstract
Glaesserella (Haemophilus) parasuis is a part of the microbiota of healthy pigs and also causes the systemic condition called Glässer's disease. G. parasuis is categorized by it capsular polysaccharide into 15 serovars. Because of the serovar and strain specific immunity generated by whole cell vaccines and the rapid onset of disease, G. parasuis has been difficult to control in the swine industry. This report investigated the protection afforded by the use of two serovar 5 isolates (Nagasaki and HS069) as whole cell, killed bacterins against homologous challenge and heterologous challenge with the serovar 1 strain 12939 to better understand bacterin generated immunity. Both bacterins induced a high antibody titer to the vaccine strain and the heterologous challenge strain. Protection was seen with both bacterins against homologous challenge; however, after heterologous challenge, the HS069 bacterin provided complete protection and all Nagasaki bacterin vaccinated animals succumbed to disease. The difference in protection appears to be due to differences in antibody specificity and the capacity of induced antibody to fix complement and opsonize G. parasuis, as shown by Western blotting and functional assays. This report shows the importance of strain selection when developing bacterin vaccines, as some strains are better able to generate heterologous protection. The difference in protection seen here can also be utilized to detect proteins of interest for subunit vaccine development.
Collapse
Affiliation(s)
- Samantha J Hau
- National Animal Disease Center, ARS, USDA, 1920 Dayton Ave, Ames, IA, 50010, United States; Oak Ridge Institute for Science and Education, 1299 Bethel Valley Rd, Oak Ridge, TN, 37830, United States
| | - Kirsten C Eberle
- National Animal Disease Center, ARS, USDA, 1920 Dayton Ave, Ames, IA, 50010, United States; Oak Ridge Institute for Science and Education, 1299 Bethel Valley Rd, Oak Ridge, TN, 37830, United States
| | - Susan L Brockmeier
- National Animal Disease Center, ARS, USDA, 1920 Dayton Ave, Ames, IA, 50010, United States.
| |
Collapse
|
6
|
Lin WH, Shih HC, Lin CF, Yang CY, Lin CN, Chiou MT. Genotypic analyses and virulence characterization of Glaesserella parasuis isolates from Taiwan. PeerJ 2019; 7:e6960. [PMID: 31149406 PMCID: PMC6526895 DOI: 10.7717/peerj.6960] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 04/16/2019] [Indexed: 11/21/2022] Open
Abstract
Background Glaesserella (Haemophilus) parasuis (G. parasuis) causes severe economic losses in the swine industry. Multiple G. parasuis strains can exist in single animals. Typing techniques are required for identifying G. parasuis isolates. Different strains within a serovar display varying virulence. Enterobacterial repetitive intergenic consensus polymerase chain reaction (ERIC-PCR) can assess the heterogeneity. The group 1 virulence-associated trimeric autotransporters (vtaA) gene is an indicator of virulence. The aim of this study was to characterize Taiwanese G. parasuis isolates via molecular serotyping, vtaA PCR and ERIC-PCR. Methods One hundred and forty-five strains were collected between November 2013 and March 2017 in Taiwan and further examined by molecular serotyping, vtaA PCR and ERIC-PCR. Results The dendrogram revealed heterogeneous genetic diversity within many clusters. Partial correlation between the ERIC-PCR clusters of different strains, serovars and lesion patterns was observed. Twelve herds (8.3%) infected with more than one strain. Group 1 vtaA positive rate reached 98.6%. Discussion This study showed the high genetic diversity of G. parasuis in Taiwan by a high discriminatory capability of ERIC-PCR. Group 1 vtaA commonly exists in G. parasuis isolates and may play important roles in the pathogenesis of Taiwanese G. parasuis isolates.
Collapse
Affiliation(s)
- Wei-Hao Lin
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan.,Animal Disease Diagnostic Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Hsing-Chun Shih
- Animal Disease Diagnostic Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Chuen-Fu Lin
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chiayi University, Chiayi, Taiwan
| | - Cheng-Yao Yang
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Chao-Nan Lin
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan.,Animal Disease Diagnostic Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Ming-Tang Chiou
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan.,Animal Disease Diagnostic Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan.,Research Center for Animal Biologics, National Pingtung University of Science and Technology, Pingtung, Taiwan
| |
Collapse
|
7
|
Li J, Xu L, Su F, Yu B, Yuan X. Association between iscR-based phylogeny, serovars and potential virulence markers of Haemophilus parasuis. PeerJ 2019; 7:e6950. [PMID: 31143554 PMCID: PMC6524630 DOI: 10.7717/peerj.6950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 04/09/2019] [Indexed: 12/03/2022] Open
Abstract
Haemophilus parasuis is an economically important bacterial pathogen of swine. Extensive genetic and phenotypic heterogeneity among H. parasuis strains have been observed, which hinders the deciphering of the population structure and its association with clinical virulence. In this study, two highly divergent clades were defined according to iron-sulphur cluster regulator (iscR)-based phylogeny analysis of 148 isolates. Clear separation of serovars and potential virulence markers (PVMs) were observed between the two clades, which are indicative of independent evolution of the two lineages. Previously suggested virulence factors showed no correlation with clinical virulence, and were probably clade or serovar specific genes emerged during different stage of evolution. PVMs profiles varied widely among isolates in the same serovar. Higher strain diversity in respect of PVMs was found for isolates from multi-strain infected farms than those from single strain infected ones, which indicates that multi-strain infection in one farm may increase the frequency of gene transfer in H. parasuis. Systemic isolates were more frequently found in serovar 13 and serovar 12, while no correlation between clinical virulence and iscR-based phylogeny was observed. It shows that iscR is a reliable marker for studying population structure of H. parasuis, while other factors should be included to avoid the interference of gene exchange of iscR between isolates. The two lineages of H. parasuis may have undergone independent evolution, but show no difference in clinical virulence. Wide distribution of systemic isolates across the entire population poses new challenge for development of vaccine with better cross-protection. Our study provides new information for better deciphering the population structure of H. parasuis, which helps understanding the extreme diversity within this pathogenic bacterium.
Collapse
Affiliation(s)
- Junxing Li
- Zhejiang Academy of Agricultural Sciences, Institute of Animal Husbandry and Veterinary Medicine, Hangzhou, Zhejiang, China
| | - Lihua Xu
- Zhejiang Academy of Agricultural Sciences, Institute of Animal Husbandry and Veterinary Medicine, Hangzhou, Zhejiang, China
| | - Fei Su
- Zhejiang Academy of Agricultural Sciences, Institute of Animal Husbandry and Veterinary Medicine, Hangzhou, Zhejiang, China
| | - Bin Yu
- Zhejiang Academy of Agricultural Sciences, Institute of Animal Husbandry and Veterinary Medicine, Hangzhou, Zhejiang, China
| | - Xiufang Yuan
- Zhejiang Academy of Agricultural Sciences, Institute of Animal Husbandry and Veterinary Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
8
|
Álvarez-Estrada Á, Gutiérrez-Martín CB, Rodríguez-Ferri EF, Martínez-Martínez S. Transcriptomics of Haemophilus (Glässerella) parasuis serovar 5 subjected to culture conditions partially mimetic to natural infection for the search of new vaccine antigens. BMC Vet Res 2018; 14:326. [PMID: 30400794 PMCID: PMC6219065 DOI: 10.1186/s12917-018-1647-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/12/2018] [Indexed: 11/10/2022] Open
Abstract
Background Haemophilus (Glässerella) parasuis is the etiological agent of Glässer’s disease in pigs. Control of this disorder has been traditionally based on bacterins. The search for alternative vaccines has focused mainly on the study of outer membrane proteins. This study investigates the transcriptome of H. (G.) parasuis serovar 5 subjected to in vitro conditions mimicking to those existing during an infection (high temperature and iron-restriction), with the aim of detecting the overexpression of genes coding proteins exposed on bacterial surface, which could represent good targets as vaccine candidates. Results The transcriptomic approach identified 13 upregulated genes coding surface proteins: TbpA, TbpB, HxuA, HxuB, HxuC, FhuA, FimD, TolC, an autotransporter, a protein with immunoglobulin folding domains, another large protein with a tetratricopeptide repeat and two small proteins that did not contain any known domains. Of these, the first six genes coded proteins being related to iron extraction. Conclusion Six of the proteins have already been tested as vaccine antigens in murine and/or porcine infection models and showed protection against H. (G.) parasuis. However, the remaining seven have not yet been tested and, consequently, they could become useful as putative antigens in the prevention of Glässer’s disease. Anyway, the expression of this seven novel vaccine candidates should be shown in other serovars different from serovar 5. Electronic supplementary material The online version of this article (10.1186/s12917-018-1647-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Álvaro Álvarez-Estrada
- Microbiology & Immunology Section, Animal Health Department, Faculty of Veterinary Medicine, University of León, León, Spain
| | - César B Gutiérrez-Martín
- Microbiology & Immunology Section, Animal Health Department, Faculty of Veterinary Medicine, University of León, León, Spain.
| | - Elías F Rodríguez-Ferri
- Microbiology & Immunology Section, Animal Health Department, Faculty of Veterinary Medicine, University of León, León, Spain
| | - Sonia Martínez-Martínez
- Microbiology & Immunology Section, Animal Health Department, Faculty of Veterinary Medicine, University of León, León, Spain
| |
Collapse
|
9
|
Comparative genomic and methylome analysis of non-virulent D74 and virulent Nagasaki Haemophilus parasuis isolates. PLoS One 2018; 13:e0205700. [PMID: 30383795 PMCID: PMC6211672 DOI: 10.1371/journal.pone.0205700] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 09/28/2018] [Indexed: 12/13/2022] Open
Abstract
Haemophilus parasuis is a respiratory pathogen of swine and the etiological agent of Glässer's disease. H. parasuis isolates can exhibit different virulence capabilities ranging from lethal systemic disease to subclinical carriage. To identify genomic differences between phenotypically distinct strains, we obtained the closed whole-genome sequence annotation and genome-wide methylation patterns for the highly virulent Nagasaki strain and for the non-virulent D74 strain. Evaluation of the virulence-associated genes contained within the genomes of D74 and Nagasaki led to the discovery of a large number of toxin-antitoxin (TA) systems within both genomes. Five predicted hemolysins were identified as unique to Nagasaki and seven putative contact-dependent growth inhibition toxin proteins were identified only in strain D74. Assessment of all potential vtaA genes revealed thirteen present in the Nagasaki genome and three in the D74 genome. Subsequent evaluation of the predicted protein structure revealed that none of the D74 VtaA proteins contain a collagen triple helix repeat domain. Additionally, the predicted protein sequence for two D74 VtaA proteins is substantially longer than any predicted Nagasaki VtaA proteins. Fifteen methylation sequence motifs were identified in D74 and fourteen methylation sequence motifs were identified in Nagasaki using SMRT sequencing analysis. Only one of the methylation sequence motifs was observed in both strains indicative of the diversity between D74 and Nagasaki. Subsequent analysis also revealed diversity in the restriction-modification systems harbored by D74 and Nagasaki. The collective information reported in this study will aid in the development of vaccines and intervention strategies to decrease the prevalence and disease burden caused by H. parasuis.
Collapse
|
10
|
Li L, Tian Y, Yu J, Song X, Jia R, Cui Q, Tong W, Zou Y, Li L, Yin L, Liang X, He C, Yue G, Ye G, Zhao L, Shi F, Lv C, Cao S, Yin Z. iTRAQ-based quantitative proteomic analysis reveals multiple effects of Emodin to Haemophilus parasuis. J Proteomics 2017; 166:39-47. [DOI: 10.1016/j.jprot.2017.06.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 06/09/2017] [Accepted: 06/21/2017] [Indexed: 12/20/2022]
|
11
|
Li G, Xie F, Li J, Liu J, Li D, Zhang Y, Langford PR, Li Y, Liu S, Wang C. Identification of novel Haemophilus parasuis serovar 5 vaccine candidates using an immunoproteomic approach. J Proteomics 2017; 163:111-117. [PMID: 28528009 DOI: 10.1016/j.jprot.2017.05.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/25/2017] [Accepted: 05/15/2017] [Indexed: 10/19/2022]
Abstract
Haemophilus parasuis is the aetiological agent of Glässer's disease, which is responsible for cases of fibrinous polyserositis, polyarthritis and meningitis. No vaccine is known that provides cross-protection against all serovars. The identification of novel immunoprotective antigens would undoubtedly contribute to the development of efficient subunit vaccines. In the present study, an immunoproteomic approach was used to analyze secreted proteins of H. parasuis and six proteins with high immunogenicity were identified. Five of them were successfully expressed, and their immunogenicity and protective efficacy were assessed in a mouse challenge model. All five proteins elicited strong humoral antibody and cellular immune responses in mice. They all effectively reduced the growth of H. parasuis in mouse organs and conferred different levels of protection (40-80%) against challenge. IgG subtype analysis revealed that the five proteins induce a bias toward a Th1-type immune response, and a significant increase was observed in the cytokine levels of IL-2, IFN-γ and Th2-specific IL-4 in the culture supernatants of splenocytes isolated from immunized mice. The results suggest that both Th1 and Th2 responses are involved in mediating protection. These data suggest that the five proteins could be potential subunit vaccine candidates for use to prevent H. parasuis infection. BIOLOGICAL SIGNIFICANCE Haemophilus parasuis can cause huge financial loss in the swine industry worldwide. There are still no vaccines which can provide cross-protection against all serovars. To address this need, we applied an immunoproteomic approach involving 2-DE, MALDI-TOF/TOF MS and Western-blot to identify the secreted proteins which may be able to provide immunoprotection to this disease. We identified six immunogenic proteins, and the immunogenicity and protective efficacy were validated. This result provides a foundation for developing novel subunit vaccines against Haemophilus parasuis.
Collapse
Affiliation(s)
- Gang Li
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Fang Xie
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jianjun Li
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jiao Liu
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Dapeng Li
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yanhe Zhang
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Paul R Langford
- Section of Paediatrics, Department of Medicine, Imperial College London, St. Mary's Campus, London, United Kingdom
| | - Yanwen Li
- Section of Paediatrics, Department of Medicine, Imperial College London, St. Mary's Campus, London, United Kingdom
| | - Siguo Liu
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Chunlai Wang
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
| |
Collapse
|
12
|
Effect of enrofloxacin on Haemophilus parasuis infection, disease and immune response. Vet Microbiol 2017; 199:91-99. [DOI: 10.1016/j.vetmic.2016.12.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 11/25/2016] [Accepted: 12/22/2016] [Indexed: 11/21/2022]
|
13
|
Wen Y, Yan X, Wen Y, Cao S, He L, Ding L, Zhang L, Zhou P, Huang X, Wu R, Wen X. Immunogenicity of the recombinant HxuCBA proteins encoded by hxuCBA gene cluster of Haemophilus parasuis in mice. Gene 2016; 591:478-83. [DOI: 10.1016/j.gene.2016.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 06/29/2016] [Accepted: 07/01/2016] [Indexed: 10/21/2022]
|
14
|
Liu Q, Liu Q, Zhao X, Liu T, Yi J, Liang K, Kong Q. Immunogenicity and Cross-Protective Efficacy Induced by Outer Membrane Proteins from Salmonella Typhimurium Mutants with Truncated LPS in Mice. Int J Mol Sci 2016; 17:416. [PMID: 27011167 PMCID: PMC4813267 DOI: 10.3390/ijms17030416] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 03/08/2016] [Accepted: 03/11/2016] [Indexed: 12/11/2022] Open
Abstract
Lipopolysaccharide (LPS) is a major virulence factor present in the outer membrane of Salmonella enterica serovar Typhimurium (S. Typhimurium). Outer membrane proteins (OMPs) from Salmonella show high immunogenicity and provide protection against Salmonella infection, and truncated LPS alters the outer membrane composition of the cell wall. In our previous study, we demonstrated that Salmonella mutants carrying truncated LPS failed to induce strong immune responses and cross-reaction to other enteric bacteria, due to their high attenuation and low colonization in the host. Therefore, we plan to investigate whether outer membrane proteins from Salmonella mutants with truncated LPS resulting from a series of nonpolar mutations, including ∆waaC12, ∆waaF15, ∆waaG42, ∆rfaH49, ∆waaI43, ∆waaJ44, ∆waaL46, ∆wbaP45 and ∆wzy-48, affect immunogenicity and provide protection against diverse Salmonella challenge. In this study, the immunogenicity and cross-protection efficiency of purified OMPs from all mutants were investigated to explore a potential OMP vaccine to protect against homologous or heterologous serotype Salmonella challenge. The results demonstrated that OMPs from three Salmonella mutants (∆waaC12, ∆waaJ44 and ∆waaL46) induced higher immune responses and provided good protection against homologous S. Typhimurium. The OMPs from these three mutants were also selected to determine the cross-protective efficacy against homologous and heterologous serotype Salmonella. Our results indicated that the mutant ∆waaC12 can elicit higher cross-reactivity and can provide good protection against S. Choleraesuis and S. Enteritidis infection and that the cross-reactivity may be ascribed to an antigen of approximately 18.4–30 kDa.
Collapse
Affiliation(s)
- Qiong Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Qing Liu
- Department of Bioengineering, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Tian Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Jie Yi
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Kang Liang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Qingke Kong
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
15
|
Li M, Song S, Yang D, Li C, Li G. Identification of secreted proteins as novel antigenic vaccine candidates of Haemophilus parasuis serovar 5. Vaccine 2015; 33:1695-701. [DOI: 10.1016/j.vaccine.2015.02.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 02/04/2015] [Accepted: 02/09/2015] [Indexed: 10/24/2022]
|
16
|
Identification of putative virulence-associated genes among Haemophilus parasuis strains and the virulence difference of different serovars. Microb Pathog 2014; 77:17-23. [PMID: 25283960 DOI: 10.1016/j.micpath.2014.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Revised: 09/29/2014] [Accepted: 10/01/2014] [Indexed: 11/24/2022]
Abstract
This study was aimed at determining virulence-associated genes among Haemophilus parasuis (H. parasuis) strains, and supplying for the Kielstein-Rapp-Gabrielson serotyping scheme. The subtractive fragments, obtained through suppression subtractive hybridization and reverse Southern blot hybridization, were found to encode genes representative of 7 different functions. PCR was used to investigate the distribution of these fragments in H. parasuis strains isolated from different infection sites in pigs. Mice challenge was then used to analyze the correlationship between subtractive fragments, infection sites and bacterial virulence. Eight weeks old female BALB/c mice (10 mice/group) were inoculated intraperitoneally with 3.0 × 10(9) CFU suspension (0.5 ml/mouse) of H. parasuis strains in PBS. Results indicated that H. parasuis possessed varied virulence even among the same serovar strains. Transcription units hsdR, hsdS, gpT and ompP2, identified from the subtractive fragments, were uniformly expressed in highly virulent strains, while absent in weakly virulent strains, and demonstrated variable degrees of expression in moderately virulent strains. Moreover, H. parasuis strains, isolated from pericardium and heart blood, were all highly virulent strains, while from nasal cavity and joint were moderately or weakly virulent strains. This study indicated that fragments hsdR, hsdS, gpT and ompP2 were associated with the virulence of H. parasuis. The virulence of H. parasuis strains isolated from different infection sites was different. The current research provides a new reference for determining bacterial virulence in different H. parasuis strains.
Collapse
|
17
|
Zhang B, Tang C, Liao M, Yue H. Update on the pathogenesis of Haemophilus parasuis infection and virulence factors. Vet Microbiol 2014; 168:1-7. [DOI: 10.1016/j.vetmic.2013.07.027] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 07/23/2013] [Accepted: 07/24/2013] [Indexed: 01/09/2023]
|
18
|
Costa-Hurtado M, Aragon V. Advances in the quest for virulence factors of Haemophilus parasuis. Vet J 2013; 198:571-6. [DOI: 10.1016/j.tvjl.2013.08.027] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 08/20/2013] [Accepted: 08/25/2013] [Indexed: 10/26/2022]
|
19
|
Oh Y, Han K, Seo HW, Park C, Chae C. Program of vaccination and antibiotic treatment to control polyserositis caused by Haemophilus parasuis under field conditions. CANADIAN JOURNAL OF VETERINARY RESEARCH = REVUE CANADIENNE DE RECHERCHE VETERINAIRE 2013; 77:183-190. [PMID: 24101794 PMCID: PMC3700443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/24/2012] [Accepted: 07/25/2012] [Indexed: 06/02/2023]
Abstract
The present study investigated the effects of vaccinating sows and piglets or piglets alone against Haemophilus parasuis on the prevalence of H. parasuis in nasal swabs, on the humoral and cellular immune responses, and on the production parameters of piglets at 3 Korean farms with a clinical history of polyserositis caused by H. parasuis. Piglets born to vaccinated or non-vaccinated sows were subdivided into 3 groups: vaccinated sows and vaccinated pigs (VS-VP), non-vaccinated sows and vaccinated pigs (NVS-VP), and non-vaccinated sows and non-vaccinated pigs (NVS-NVP). The proportion of piglets with positive nasal swabs was significantly lower (P < 0.05) in the vaccinated animals (VS-VP and NVS-VP groups) than in the non-vaccinated animals (NVS-NVP group) at 35 and 60 d of age at the 3 farms. The overall growth performance (from 7 to 60 d of age) of the vaccinated piglets was significantly better (P < 0.05) than that of the non-vaccinated piglets at the 3 farms. Piglets in the VS-VP group had significantly higher levels (P < 0.05) of H. parasuis-specific IgG antibodies, lymphocyte proliferation, and interferon-γ-secreting cells than piglets in the NVS-VP and NVS-NVP groups on days 1, 7, 21, 35, and 60 after birth at the 3 farms.
Collapse
Affiliation(s)
| | | | | | | | - Chanhee Chae
- Address all correspondence to Dr. Chanhee Chae; telephone: +82-2-880-1277; fax: +82-2-871-5821; e-mail:
| |
Collapse
|
20
|
Mullins MA, Register KB, Brunelle BW, Aragon V, Galofré-Mila N, Bayles DO, Jolley KA. A curated public database for multilocus sequence typing (MLST) and analysis of Haemophilus parasuis based on an optimized typing scheme. Vet Microbiol 2012; 162:899-906. [PMID: 23218953 DOI: 10.1016/j.vetmic.2012.11.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 11/09/2012] [Accepted: 11/13/2012] [Indexed: 11/17/2022]
Abstract
Haemophilus parasuis causes Glässer's disease and pneumonia in swine. Serotyping is often used to classify isolates but requires reagents that are costly to produce and not standardized or widely available. Sequence-based methods, such as multilocus sequence typing (MLST), offer many advantages over serotyping. An MLST scheme was previously proposed for H. parasuis but genome sequence data only recently available reveals the primers recommended, based on sequences of related bacteria, are not optimal. Here we report modifications to enhance the original method, including primer redesign to eliminate mismatches with H. parasuis sequences and to avoid regions of high sequence heterogeneity, standardization of primer T(m)s and identification of universal PCR conditions that result in robust and reproducible amplification of all targets. The modified typing method was applied to a collection of 127 isolates from North and South America, Europe and Asia. An alignment of the concatenated sequences obtained from seven target housekeeping genes identified 278 variable nucleotide sites that define 116 unique sequence types. A comparison of the original and modified methods using a subset of 86 isolates indicates little difference in overall locus diversity, discriminatory power or in the clustering of strains within Neighbor-Joining trees. Data from the optimized MLST were used to populate a newly created and publicly available H. parasuis database. An accompanying database designed to capture provenance and epidemiological information for each isolate was also created. The modified MLST scheme is highly discriminatory but more robust, reproducible and user-friendly than the original. The MLST database provides a novel resource for investigation of H. parasuis outbreaks and for tracking strain evolution.
Collapse
Affiliation(s)
- Michael A Mullins
- Virus and Prion Research Unit, USDA/Agricultural Research Service/National Animal Disease Center, 1920 Dayton Avenue, Ames, Iowa, 50010, United States
| | - Karen B Register
- Virus and Prion Research Unit, USDA/Agricultural Research Service/National Animal Disease Center, 1920 Dayton Avenue, Ames, Iowa, 50010, United States.
| | - Brian W Brunelle
- Food Safety and Enteric Pathogens Research Unit, USDA/Agricultural Research Service/National Animal Disease Center, 1920 Dayton Avenue, Ames, Iowa, 50010, United States
| | - Virginia Aragon
- Centre de Recerca en Sanitat Animal, Campus de la Universitat Autònoma de Barcelona, Barcelona, Spain; Institut de Recerca i Tecnologia Agroalimentàries, Barcelona, Spain
| | - Nuria Galofré-Mila
- Centre de Recerca en Sanitat Animal, Campus de la Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Darrell O Bayles
- Infectious Bacterial Diseases Research Unit, USDA/Agricultural Research Service/National Animal Disease Center, 1920 Dayton Avenue, Ames, Iowa, 50010, United States
| | - Keith A Jolley
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
21
|
Immunogenicity and protective efficacy of recombinant Haemophilus parasuis SH0165 putative outer membrane proteins. Vaccine 2012; 31:347-53. [PMID: 23149270 DOI: 10.1016/j.vaccine.2012.11.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2012] [Revised: 10/30/2012] [Accepted: 11/01/2012] [Indexed: 11/24/2022]
Abstract
Haemophilus parasuis (H. parasuis), the causative agent of swine polyserositis, polyarthritis, and meningitis, is one of the most important bacterial diseases of pigs worldwide. Little vaccines currently exist that have a significant effect on infections with all pathogenic serovars of H. parasuis. H. parasuis putative outer membrane proteins (OMPs) are potentially essential components of more effective vaccines. Recently, the genomic sequence of H. parasuis serovar 5 strain SH0165 was completed in our laboratory, which allow us to target OMPs for the development of recombinant vaccines. In this study, we focused on 10 putative OMPs and all the putative OMPs were cloned, expressed and purified as HIS fusion proteins. Primary screening for immunoprotective potential was performed in mice challenged with an LD50 challenge. Out of these 10 OMPs three fusion proteins rGAPDH, rOapA, and rHPS-0675 were found to be protective in a mouse model of H. parasuis infection. We further evaluated the immune responses and protective efficacy of rGAPDH, rOapA, and rHPS-0675 in pig models. All three proteins elicited humoral antibody responses and conferred different levels of protection against challenge with a lethal dose of H. parasuis SH0165 in pig models. In addition, the antisera against the three individual proteins and the synergistic protein efficiently inhibited bacterial growth in a whole blood assay. The data demonstrated that the three proteins showed high value individually and the combination of rGAPDH, rOapA, and rHPS-0675 offered the best protection. Our results indicate that rGAPDH, rOapA, and rHPS-0675 induced protection against H. parasuis SH0165 infection, which may facilitate the development of a multi-component vaccine.
Collapse
|
22
|
Fu S, Yuan F, Zhang M, Tan C, Chen H, Bei W. Cloning, expression and characterization of a cell wall surface protein, 6-phosphogluconate dehydrogenase, of Haemophilus parasuis. Res Vet Sci 2012; 93:57-62. [DOI: 10.1016/j.rvsc.2011.07.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 05/12/2011] [Accepted: 07/10/2011] [Indexed: 10/17/2022]
|
23
|
Zhang J, Xu C, Guo L, Shen H, Deng X, Ke C, Ke B, Zhang B, Li A, Ren T, Liao M. Prevalence and characterization of genotypic diversity of Haemophilus parasuis isolates from southern China. CANADIAN JOURNAL OF VETERINARY RESEARCH = REVUE CANADIENNE DE RECHERCHE VETERINAIRE 2012; 76:224-229. [PMID: 23277703 PMCID: PMC3384287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 08/19/2011] [Indexed: 06/01/2023]
Abstract
From September 2008 to December 2010, 112 Haemophilus parasuis strains were isolated from 536 pigs with clinical signs of Glässer's disease in South China, for a frequency of 21%. The 112 strains were subjected to serovar analysis by gel diffusion (GD) and indirect hemagglutination (IHA) tests and to genotype analysis by means of pulsed-field gel electrophoresis (PFGE). With a combination of the GD and IHA results, serovars 5 and 4 were found to be the most prevalent, at 23% and 17%, respectively, followed by serovars 2 (8%), 15 (7%), 13 (6%), and 12 (5%); 20% of the strains were nontypeable. The 112 strains were genetically diverse, with 85 genotypes identified (discriminatory index 0.992). The 89 typeable isolates belonged to 15 H. parasuis serovars displaying 63 different PFGE profiles. The 23 nontypeable strains displayed 22 different PFGE profiles. These findings confirmed that 15 serovars and diverse genotypes of H. parasuis were widely distributed in southern China.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Tao Ren
- Address all correspondence to Dr. Tao Ren or Dr. Ming Liao; telephone: +86 020 85280242; fax: +86 020 85280245; e-mail: or (M. Liao)
| | | |
Collapse
|
24
|
Zehr ES, Lavrov DV, Tabatabai LB. Comparison of Haemophilus parasuis reference strains and field isolates by using random amplified polymorphic DNA and protein profiles. BMC Microbiol 2012; 12:108. [PMID: 22703293 PMCID: PMC3499290 DOI: 10.1186/1471-2180-12-108] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 05/31/2012] [Indexed: 11/10/2022] Open
Abstract
Background Haemophilus parasuis is the causative agent of Glässer’s disease and is a pathogen of swine in high-health status herds. Reports on serotyping of field strains from outbreaks describe that approximately 30% of them are nontypeable and therefore cannot be traced. Molecular typing methods have been used as alternatives to serotyping. This study was done to compare random amplified polymorphic DNA (RAPD) profiles and whole cell protein (WCP) lysate profiles as methods for distinguishing H. parasuis reference strains and field isolates. Results The DNA and WCP lysate profiles of 15 reference strains and 31 field isolates of H. parasuis were analyzed using the Dice and neighbor joining algorithms. The results revealed unique and reproducible DNA and protein profiles among the reference strains and field isolates studied. Simpson’s index of diversity showed significant discrimination between isolates when three 10mer primers were combined for the RAPD method and also when both the RAPD and WCP lysate typing methods were combined. Conclusions The RAPD profiles seen among the reference strains and field isolates did not appear to change over time which may reflect a lack of DNA mutations in the genes of the samples. The recent field isolates had different WCP lysate profiles than the reference strains, possibly because the number of passages of the type strains may affect their protein expression.
Collapse
Affiliation(s)
- Emilie S Zehr
- Ruminant Diseases and Immunology, National Animal Disease Center, Agricultural Research Service, US Department of Agriculture, Ames, IA 50010, USA.
| | | | | |
Collapse
|
25
|
Zhou M, Zhang Q, Zhao J, Jin M. Haemophilus parasuis encodes two functional cytolethal distending toxins: CdtC contains an atypical cholesterol recognition/interaction region. PLoS One 2012; 7:e32580. [PMID: 22412890 PMCID: PMC3296717 DOI: 10.1371/journal.pone.0032580] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2011] [Accepted: 01/27/2012] [Indexed: 11/19/2022] Open
Abstract
Haemophilus parasuis is the causative agent of Glässer's disease of pigs, a disease associated with fibrinous polyserositis, polyarthritis and meningitis. We report here H. parasuis encodes two copies of cytolethal distending toxins (Cdts), which these two Cdts showed the uniform toxin activity in vitro. We demonstrate that three Cdt peptides can form an active tripartite holotoxin that exhibits maximum cellular toxicity, and CdtA and CdtB form a more active toxin than CdtB and CdtC. Moreover, the cellular toxicity is associated with the binding of Cdt subunits to cells. Further analysis indicates that CdtC subunit contains an atypical cholesterol recognition/interaction amino acid consensus (CRAC) region. The mutation of CRAC site resulted in decreased cell toxicity. Finally, western blot analysis show all the 15 H. parasuis reference strains and 109 clinical isolates expressed CdtB subunit, indicating that Cdt is a conservative putative virulence factor for H. parasuis. This is the first report of the molecular and cellular basis of Cdt host interactions in H. parasuis.
Collapse
Affiliation(s)
- Mingguang Zhou
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Hubei, People's Republic of China
| | - Qiang Zhang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Hubei, People's Republic of China
| | - Jianping Zhao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Hubei, People's Republic of China
| | - Meilin Jin
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Hubei, People's Republic of China
- * E-mail:
| |
Collapse
|
26
|
Assavacheep P, Assavacheep A, Turni C. Detection of a putative hemolysin operon, hhdBA, of Haemophilus parasuis from pigs with Glässer disease. J Vet Diagn Invest 2012; 24:339-43. [DOI: 10.1177/1040638711435805] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The aim of the current study was to investigate whether polymerase chain reaction amplification of 16S ribosomal (r)RNA and a putative hemolysin gene operon, hhdBA, can be used to monitor live pigs for the presence of Haemophilus parasuis and predict the virulence of the strains present. Nasal cavity swabs were taken from 30 live, healthy, 1- to 8-week-old pigs on a weekly cycle from a commercial Thai nursery pig herd. A total of 27 of these pigs (90%) tested positive for H. parasuis as early as week 1 of age. None of the H. parasuis–positive samples from healthy pigs was positive for the hhdBA genes. At the same pig nursery, swab samples from nasal cavity, tonsil, trachea, and lung, and exudate samples from pleural/peritoneal cavity were taken from 30 dead pigs displaying typical pathological lesions consistent with Glässer disease. Twenty-two of 140 samples (15.7%) taken from 30 diseased pigs yielded a positive result for H. parasuis. Samples from the exudate (27%) yielded the most positive results, followed by lung, tracheal swab, tonsil, and nasal swab, respectively. Out of 22 positive samples, 12 samples (54.5%) harbored hhdA and/or hhdB genes. Detection rates of hhdA were higher than hhdB. None of the H. parasuis–positive samples taken from nasal cavity of diseased pigs tested positive for hhdBA genes. More work is required to determine if the detection of hhdBA genes is useful for identifying the virulence potential of H. parasuis field isolates.
Collapse
Affiliation(s)
- Pornchalit Assavacheep
- Department of Veterinary Medicine, Faculty of Veterinary Science, Chulalongkorn University, Pathumwan, Bangkok, Thailand (P Assavacheep)
- Department of Animal Husbandry, Faculty of Veterinary Science, Chulalongkorn University, Pathumwan, Bangkok, Thailand (A Assavacheep)
- The University of Queensland, Queensland Alliance for Agriculture and Food Innovation, Dutton Park, Queensland, Australia (Turni)
| | - Anongnart Assavacheep
- Department of Veterinary Medicine, Faculty of Veterinary Science, Chulalongkorn University, Pathumwan, Bangkok, Thailand (P Assavacheep)
- Department of Animal Husbandry, Faculty of Veterinary Science, Chulalongkorn University, Pathumwan, Bangkok, Thailand (A Assavacheep)
- The University of Queensland, Queensland Alliance for Agriculture and Food Innovation, Dutton Park, Queensland, Australia (Turni)
| | - Conny Turni
- Department of Veterinary Medicine, Faculty of Veterinary Science, Chulalongkorn University, Pathumwan, Bangkok, Thailand (P Assavacheep)
- Department of Animal Husbandry, Faculty of Veterinary Science, Chulalongkorn University, Pathumwan, Bangkok, Thailand (A Assavacheep)
- The University of Queensland, Queensland Alliance for Agriculture and Food Innovation, Dutton Park, Queensland, Australia (Turni)
| |
Collapse
|
27
|
Xu Z, Yue M, Zhou R, Jin Q, Fan Y, Bei W, Chen H. Genomic characterization of Haemophilus parasuis SH0165, a highly virulent strain of serovar 5 prevalent in China. PLoS One 2011; 6:e19631. [PMID: 21611187 PMCID: PMC3096633 DOI: 10.1371/journal.pone.0019631] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 04/11/2011] [Indexed: 11/19/2022] Open
Abstract
Haemophilus parasuis can be either a commensal bacterium of the porcine respiratory tract or an opportunistic pathogen causing Glässer's disease, a severe systemic disease that has led to significant economical losses in the pig industry worldwide. We determined the complete genomic sequence of H. parasuis SH0165, a highly virulent strain of serovar 5, which was isolated from a hog pen in North China. The single circular chromosome was 2,269,156 base pairs in length and contained 2,031 protein-coding genes. Together with the full spectrum of genes detected by the analysis of metabolic pathways, we confirmed that H. parasuis generates ATP via both fermentation and respiration, and possesses an intact TCA cycle for anabolism. In addition to possessing the complete pathway essential for the biosynthesis of heme, this pathogen was also found to be well-equipped with different iron acquisition systems, such as the TonB system and ABC-type transport complexes, to overcome iron limitation during infection and persistence. We identified a number of genes encoding potential virulence factors, such as type IV fimbriae and surface polysaccharides. Analysis of the genome confirmed that H. parasuis is naturally competent, as genes related to DNA uptake are present. A nine-mer DNA uptake signal sequence (ACAAGCGGT), identical to that found in Actinobacillus pleuropneumoniae and Mannheimia haemolytica, followed by similar downstream motifs, was identified in the SH0165 genome. Genomic and phylogenetic comparisons with other Pasteurellaceae species further indicated that H. parasuis was closely related to another swine pathogenic bacteria A. pleuropneumoniae. The comprehensive genetic analysis presented here provides a foundation for future research on the metabolism, natural competence and virulence of H. parasuis.
Collapse
Affiliation(s)
- Zhuofei Xu
- State Key Laboratory of Agricultural Microbiology, Division of Animal Infectious Disease, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Min Yue
- State Key Laboratory of Agricultural Microbiology, Division of Animal Infectious Disease, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Rui Zhou
- State Key Laboratory of Agricultural Microbiology, Division of Animal Infectious Disease, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Qi Jin
- State Key Laboratory for Molecular Virology and Genetic Engineering, Institute of Pathogen Biology, Chinese Academy of Medical Sciences, Beijing, China
| | - Yang Fan
- State Key Laboratory for Molecular Virology and Genetic Engineering, Institute of Pathogen Biology, Chinese Academy of Medical Sciences, Beijing, China
| | - Weicheng Bei
- State Key Laboratory of Agricultural Microbiology, Division of Animal Infectious Disease, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, Division of Animal Infectious Disease, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
28
|
CHU YF, GAO PC, ZHAO P, HE Y, ZHANG NZ, LIU YS, LIU JX, LU ZX. Genotyping of Haemophilus Parasuis Isolated from Northwest China Using PCR-RFLP Based on the ompA Gene. J Vet Med Sci 2011; 73:337-43. [DOI: 10.1292/jvms.10-0296] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Yue-Feng CHU
- Key Laboratory of Grazing Animal Diseases of Ministry of Agriculture, Key Laboratory of Animal Virology of Ministry of Agriculture, State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences
| | - Peng-Chen GAO
- Key Laboratory of Grazing Animal Diseases of Ministry of Agriculture, Key Laboratory of Animal Virology of Ministry of Agriculture, State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences
| | - Ping ZHAO
- Key Laboratory of Grazing Animal Diseases of Ministry of Agriculture, Key Laboratory of Animal Virology of Ministry of Agriculture, State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences
| | - Yin HE
- Key Laboratory of Grazing Animal Diseases of Ministry of Agriculture, Key Laboratory of Animal Virology of Ministry of Agriculture, State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences
| | - Nian-Zhang ZHANG
- Key Laboratory of Grazing Animal Diseases of Ministry of Agriculture, Key Laboratory of Animal Virology of Ministry of Agriculture, State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences
| | - Yong-Sheng LIU
- Key Laboratory of Grazing Animal Diseases of Ministry of Agriculture, Key Laboratory of Animal Virology of Ministry of Agriculture, State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences
| | - Ji-Xing LIU
- Key Laboratory of Grazing Animal Diseases of Ministry of Agriculture, Key Laboratory of Animal Virology of Ministry of Agriculture, State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences
| | - Zhong-Xin LU
- Key Laboratory of Grazing Animal Diseases of Ministry of Agriculture, Key Laboratory of Animal Virology of Ministry of Agriculture, State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences
| |
Collapse
|
29
|
Martín de la Fuente A, Carpintero R, Rodríguez Ferri E, Álava M, Lampreave F, Gutiérrez Martín C. Acute-phase protein response in pigs experimentally infected with Haemophilus parasuis. Comp Immunol Microbiol Infect Dis 2010; 33:455-65. [DOI: 10.1016/j.cimid.2008.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
Sow vaccination modulates the colonization of piglets by Haemophilus parasuis. Vet Microbiol 2010; 145:315-20. [DOI: 10.1016/j.vetmic.2010.04.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 03/31/2010] [Accepted: 04/08/2010] [Indexed: 11/21/2022]
|
31
|
Hong M, Ahn J, Yoo S, Hong J, Lee E, Yoon I, Jung JK, Lee H. Identification of novel immunogenic proteins in pathogenic Haemophilus parasuis based on genome sequence analysis. Vet Microbiol 2010; 148:89-92. [PMID: 20817421 DOI: 10.1016/j.vetmic.2010.07.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 07/21/2010] [Accepted: 07/23/2010] [Indexed: 11/17/2022]
Abstract
Haemophilus parasuis causes contagious porcine Glässer's disease, which is occurring worldwide and leads to severe losses in the pig industry. To identify novel antigen candidates against this disease, 22 surface-exposed or secreted proteins were selected from the annotated H. parasuis genome by reverse vaccinology strategy. Expression of these proteins in Escherichia coli was attempted. Immunogenicity of the expressed candidates was assessed using Western blot analysis with mouse-derived antiserum prepared with whole bacteria of H. parasuis serovar 4 or 5. Three ABC-type transporters (OppA, YfeA and PlpA) and 1 curli protein assembly (CsgG) were identified as potent immunogenic proteins. The proteins show cross-reactions when tested with sera raised against serovars 4 and 5 of H. parasuis.
Collapse
Affiliation(s)
- Minhee Hong
- Biotechnology Process Engineering Center, KRIBB, Daejeon 305-600, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Macedo NR, Oliveira SR, Lage AP, Santos JL, Araújo MR, Guedes RMC. ERIC-PCR genotyping of Haemophilus parasuis isolates from Brazilian pigs. Vet J 2010; 188:362-4. [PMID: 20580292 DOI: 10.1016/j.tvjl.2010.05.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 05/21/2010] [Accepted: 05/23/2010] [Indexed: 10/19/2022]
Abstract
Among 63 Haemophilus parasuis isolates from 17 Brazilian pig herds, 33 genotypes were identified by enterobacterial repetitive intergenic consensus (ERIC)-PCR, with a diversity index of 0.96. Eight serovars were detected, with serovar 4 (15.9%) being most frequent; 60.3% of isolates were non-typeable. There was no strong association between site of isolation and genotype or serovar.
Collapse
Affiliation(s)
- Nubia Resende Macedo
- Veterinary School, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, P.O. Box 567, Belo Horizonte, Brazil
| | | | | | | | | | | |
Collapse
|
33
|
Characterization and comparative analysis of the genes encoding Haemophilus parasuis outer membrane proteins P2 and P5. J Bacteriol 2009; 191:5988-6002. [PMID: 19633080 DOI: 10.1128/jb.00469-09] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Haemophilus parasuis is a swine pathogen of significant industry concern, but little is known about how the organism causes disease. A related human pathogen, Haemophilus influenzae, has been better studied, and many of its virulence factors have been identified. Two of these, outer membrane proteins P2 and P5, are known to have important virulence properties. The goals of this study were to identify, analyze, and compare the genetic relatedness of orthologous genes encoding P2 and P5 proteins in a diverse group of 35 H. parasuis strains. Genes encoding P2 and P5 proteins were detected in all H. parasuis strains evaluated. The predicted amino acid sequences for both P2 and P5 proteins exhibit considerable heterogeneity, particularly in regions corresponding to predicted extracellular loops. Twenty-five variants of P2 and 17 variants of P5 were identified. The P2 proteins of seven strains were predicted to contain a highly conserved additional extracellular loop compared to the remaining strains and to H. influenzae P2. Antigenic-site predictions coincided with predicted extracellular loop regions of both P2 and P5. Neighbor-joining trees constructed using P2 and P5 sequences predicted divergent evolutionary histories distinct from those predicted by a multilocus sequence typing phylogeny based on partial sequencing of seven housekeeping genes. Real-time reverse transcription-PCR indicated that both genes are expressed in all of the strains.
Collapse
|
34
|
Zhang B, Tang C, Yang FL, Yue H. Molecular cloning, sequencing and expression of the outer membrane protein A gene from Haemophilus parasuis. Vet Microbiol 2008; 136:408-10. [PMID: 19135811 DOI: 10.1016/j.vetmic.2008.11.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Revised: 11/11/2008] [Accepted: 11/28/2008] [Indexed: 11/18/2022]
|
35
|
Bouchet B, Vanier G, Jacques M, Gottschalk M. Interactions of Haemophilus parasuis and its LOS with porcine brain microvascular endothelial cells. Vet Res 2008; 39:42. [PMID: 18387279 DOI: 10.1051/vetres:2008019] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Accepted: 03/27/2008] [Indexed: 11/14/2022] Open
Abstract
Haemophilus parasuis is a swine pathogen that causes Glässer's disease, which is characterized by polyserositis and meningitis. The pathogenesis of the H. parasuis infection is poorly understood. To cause meningitis, H. parasuis has to cross the blood-brain barrier (BBB) to gain access to the central nervous system (CNS). We recently showed that H. parasuis adheres to and invades porcine brain microvascular endothelial cells (PBMEC). The aim of this study was to evaluate the role of H. parasuis lipooligosaccharide (LOS) in the adhesion to PBMEC and to determine if H. parasuis (and/or its LOS) is able to induce apoptosis and activation of PBMEC. Results showed that adhesion of H. parasuis to PBMEC was partially mediated by LOS. Moreover, H. parasuis induces caspase-3-mediated apoptosis of PBMEC in a time--and dose--dependent manner, but its LOS did not seem to be involved in such a process. Furthermore, H. parasuis and, to a lesser extent, its LOS, was able to induce the release of IL-8 and IL-6 by PBMEC. Field strains of H. parasuis serotypes 4 and 5 induced similar levels of these inflammatory mediators. Our data suggest that H. parasuis uses cellular adhesion, induction of apoptosis and up-regulation of inflammatory mediators as mechanisms to invade the CNS via the BBB, and that LOS would play a certain but limited role in such pathological process.
Collapse
Affiliation(s)
- Bénédicte Bouchet
- Groupe de Recherche sur les Maladies Infectieuses du Porc and Centre de Recherche en Infectiologie porcine, Faculté de médecine vétérinaire, Université de Montréal, 3200 Sicotte, St-Hyacinthe, Qc, J2S 2M2, Canada
| | | | | | | |
Collapse
|
36
|
Olvera A, Segalés J, Aragón V. Update on the diagnosis of Haemophilus parasuis infection in pigs and novel genotyping methods. Vet J 2006; 174:522-9. [PMID: 17175186 DOI: 10.1016/j.tvjl.2006.10.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2006] [Revised: 09/15/2006] [Accepted: 10/20/2006] [Indexed: 11/24/2022]
Abstract
Haemophilus parasuis causes Glässer's disease as well as a number of other diseases in pigs. The diagnosis of H. parasuis-associated disease is usually established by clinical signs, pathological findings and bacterial isolation but diagnosis is complicated by the existence of non-virulent strains and the early colonisation of the upper respiratory tract of healthy piglets. Moreover, several strains can be found on a farm and even within a single animal so it is important to determine the specific strain that is causing the clinical outbreak. Recently, genotyping methods have been developed with the goal of correlating genotype with the degree of virulence of H. parasuis strains. The association between genotype and virulence in H. parasuis is challenging due to the lack of knowledge of the complete genomic sequence and virulence factors of this bacterium.
Collapse
Affiliation(s)
- Alex Olvera
- Centre de Recerca en Sanitat Animal (CReSA), Campus de Bellaterra, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | | |
Collapse
|
37
|
Lancashire JF, Turni C, Blackall PJ, Jennings MP. Rapid and efficient screening of a Representational Difference Analysis library using reverse Southern hybridisation: identification of genetic differences between Haemophilus parasuis isolates. J Microbiol Methods 2006; 68:326-30. [PMID: 17084930 DOI: 10.1016/j.mimet.2006.09.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2006] [Accepted: 09/12/2006] [Indexed: 11/25/2022]
Abstract
Representational Difference Analysis (RDA) is an established technique used for isolation of specific genetic differences between or within bacterial species. This method was used to investigate the genetic basis of serovar-specificity and the relationship between serovar and virulence in Haemophilus parasuis. An RDA clone library of 96 isolates was constructed using H. parasuis strains H425(P) (serovar 12) and HS1967 (serovar 4). To screen such a large clone library to determine which clones are strain-specific would typically involved separately labelling each clone for use in Southern hybridisation against genomic DNA from each of the strains. In this study, a novel application of reverse Southern hybridisation was used to screen the RDA library: genomic DNA from each strain was labelled and used to probe the library to identify strain-specific clones. This novel approach represents a significant improvement in methodology that is rapid and efficient.
Collapse
Affiliation(s)
- John F Lancashire
- School of Molecular and Microbial Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | | | | | | |
Collapse
|
38
|
del Río ML, Martín CBG, Navas J, Gutiérrez-Muñiz B, Rodríguez-Barbosa JI, Rodríguez Ferri EF. aroA gene PCR-RFLP diversity patterns in Haemophilus parasuis and Actinobacillus species. Res Vet Sci 2005; 80:55-61. [PMID: 15936788 DOI: 10.1016/j.rvsc.2005.03.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2004] [Revised: 02/01/2005] [Accepted: 03/11/2005] [Indexed: 11/22/2022]
Abstract
The Haemophilus parasuis aroA gene encodes 5-enolpyruvylshikimate-3-phosphate synthase and participates in the aromatic amino acids and the folic acid universal metabolic pathway of bacteria. The application of aroA-based PCR-RFLP methodology yields a significant degree of diversity in H. parasuis and Actinobacillus species. PCR amplification of the aroA gene rendered a 1,067-bp fragment in all 15 H. parasuis serovars, and also in Actinobacillus pleuropneumoniae serotypes 1-12, Actinobacillus lignieresii, Actinobacillus equuli, Actinobacillus porcinus, Actinobacillus rossii, Actinobacillus suis, Actinobacillus ureae, Actinobacillus minor and Actinobacillus indolicus. Sau3AI and RsaI digestions of the aroA PCR products rendered seven different restriction fragment length polymorphism (RFLP) patterns: group I (H. parasuis serovars 1, 2, 4-6, and 8-15, A. porcinus and A. ureae), group II (H. parasuis serovars 3 and 7, and A. pleuropneumoniae serotypes 1, 4, 5, 9, 11 and 12), group III (A. lignieresii), group IV (A. pleuropneumoniae serotype 7), group V (A. pleuropneumoniae serotypes 2, 3, 6 and 8, A. equuli, A. rossii, A. minor and A. indolicus), group VI (A. suis) and group VII (A. pleuropneumoniae serotype 10). This is the first report describing the presence of aroA gene in H. parasuis, A. lignieresii, A. porcinus, A. rossii, A. suis, A. ureae, A. minor and A. indolicus and the data presented here demonstrates a significant degree of aroA genetic diversity in H. parasuis and species of the genus Actinobacillus.
Collapse
Affiliation(s)
- M L del Río
- Microbiology and Immunology Section, Department of Animal Health, University of Leon, Faculty of Veterinary Medicine, Campus de Vegazana, 24001 Leon, Spain
| | | | | | | | | | | |
Collapse
|
39
|
Del Rio ML, Navas-Mendez J, Gutierrez-Martin CB, Rodriguez-Barbosa JI, Rodriguez-Ferri EF. Identification of sulI allele of dihydropteroate synthase by representational difference analysis in Haemophilus parasuis serovar 2. Lett Appl Microbiol 2005; 40:436-42. [PMID: 15892739 DOI: 10.1111/j.1472-765x.2005.01686.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS Identification of genes differentially present in Haemophilus parasuis serovar 2 by representational difference analysis (RDA). METHODS AND RESULTS Bacterial genomic DNA was extracted, cleaved with Sau3AI and ligated to oligonucleotide adapter pair. The optimal tester (H. parasuis serovar 2)/driver ratio (H. parasuis serovars 1, 3 and 5) for the hybridization was established and the mixture was hybridized, and amplified by PCR. The products were cloned and transformed into Escherichia coli TOP10 cells and checked for specificity by Southern blotting analysis. The RDA subtractive technique yielded six bands ranging from 1500 to 200 bp, which were cloned into pCR II-TOPO vector and 40 clones were analysed. A fragment of 369 bp was specific for H. parasuis serovar 2, and showed 99% homology to sulI gene encoding for dihydropteroate synthase (dhps). The dhps gene conferring sulfonamide resistance was detected in H. parasuis serovar 2 but was absent in serovars 1, 3, 5 and in most of the Actinobacillus pleuropneumoniae serotypes (except serotype 7). CONCLUSION sulI allele of dihydropteroate synthase has been identified in H. parasuis serovar 2 by RDA technique. SIGNIFICANCE AND IMPACT OF THE STUDY The RDA technique seems to be an useful method for the identification of genes that are differentially present in H. parasuis, a respiratory pathogen of veterinary interest.
Collapse
Affiliation(s)
- M L Del Rio
- Department of Animal Health, School of Veterinary Medicine, Microbiology and Immunology Section, Faculty of Veterinary Medicine, University of León, León, Spain
| | | | | | | | | |
Collapse
|
40
|
del Río ML, Gutiérrez-Martín CB, Rodríguez-Barbosa JI, Navas J, Rodríguez-Ferri EF. Identification and characterization of the TonB region and its role in transferrin-mediated iron acquisition in Haemophilus parasuis. ACTA ACUST UNITED AC 2005; 45:75-86. [PMID: 15985226 DOI: 10.1016/j.femsim.2005.02.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2005] [Revised: 02/11/2005] [Accepted: 02/16/2005] [Indexed: 11/22/2022]
Abstract
Haemophilus parasuis is the causative agent of Glässer's disease, which is responsible for considerable economic losses in the pig-rearing industry. The aim of the study reported here was the identification, sequencing and molecular characterization of the TonB region that includes tonB, exbBD, and tbpBA genes in H. parasuis. In addition, two fusion proteins were generated. One of them (pGEX-6P-1-GST-TbpB) contained the first 501 amino acids of H. parasuis TbpB protein, while the second (pBAD-Thio-TbpB-V5-His) included the first 102 amino acids of H. parasuis TbpB N-terminus domain. A panel of 14 hybridomas secreting monoclonal antibodies was raised against the two recombinant TbpB fusion proteins. Furthermore, to assess whether the expression of the H. parasuis ExbB, TbpB, and TbpA proteins was upregulated under conditions of restricted availability of iron, a rabbit polyclonal antibody against H. parasuis TbpB-His fusion protein was produced. A rabbit polyclonal antibody against serotype 7 of Actinobacillus pleuropneumoniae ExbB and TbpA proteins was also used for the detection of the homologous proteins in H. parasuis. Overall, the data indicate that H. parasuis, like other members of the Pasteurellaceae family, possesses the genetic elements of the TonB region for iron acquisition and the transferrin-binding proteins encoded under this region are upregulated under restricted iron availability.
Collapse
Affiliation(s)
- María Luisa del Río
- Microbiology and Immunology Section, Department of Animal Health, School of Veterinary Medicine, University of Leon, Campus de Vegazana s/n, 24071 Leon, Spain
| | | | | | | | | |
Collapse
|
41
|
Turni C, Blackall PJ. Comparison of the indirect haemagglutination and gel diffusion test for serotyping Haemophilus parasuis. Vet Microbiol 2005; 106:145-51. [PMID: 15737484 DOI: 10.1016/j.vetmic.2004.12.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2004] [Revised: 11/18/2004] [Accepted: 12/21/2004] [Indexed: 11/18/2022]
Abstract
The aim of this study was to compare the use of indirect haemagglutination (IHA) and gel diffusion (GD) tests for serotyping Haemophilus parasuis by the Kielstein-Rapp-Gabrielson (KRG) scheme. All 15 serovar reference strains, 72 Australian field isolates, nine Chinese field isolates, and seven isolates from seven experimentally infected pigs were evaluated with both tests. With the IHA test, 14 of the 15 reference strains were correctly serotyped-with serovar 10 failing to give a titre with serovar 10 antiserum. In the GD test, 13 reference strains were correctly serotyped-with antigen from serovars 7 and 8 failing to react with any antiserum. The IHA methodology serotyped a total of 45 of 81 field isolates while the GD methodology serotyped a total of 48 isolates. For 29 isolates, the GD and IHA methods gave discordant results. It was concluded that the IHA is a good additional test for the serotyping of H. parasuis by the KRG scheme if the GD methodology fails to provide a result or shows unusual cross-reactions.
Collapse
Affiliation(s)
- C Turni
- Department of Primary Industries and Fisheries Queensland, Animal Research Institute, Locked Mail Bag No 4, Moorooka, Qld 4105, Australia.
| | | |
Collapse
|
42
|
Tadjine M, Mittal KR, Bourdon S, Gottschalk M. Development of a new serological test for serotyping Haemophilus parasuis isolates and determination of their prevalence in North America. J Clin Microbiol 2004; 42:839-40. [PMID: 14766867 PMCID: PMC344452 DOI: 10.1128/jcm.42.2.839-840.2004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Haemophilus parasuis causes polyserositis in swine. Fifteen serovars have been characterized by immunodiffusion test, but many field strains are not typeable. Isolates (n = 300) of H. parasuis from animals in North America were serotyped by a new indirect hemagglutination test. The test was rapid and effective for serotyping of H. parasuis, and serovars 4, 5, 13, and 7 were the most prevalent serotypes.
Collapse
Affiliation(s)
- M Tadjine
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Sainte-Hyacinthe, Québec, Canada J2S 7C6
| | | | | | | |
Collapse
|
43
|
Oliveira S, Pijoan C. Computer-based analysis of Haemophilus parasuis protein fingerprints. CANADIAN JOURNAL OF VETERINARY RESEARCH = REVUE CANADIENNE DE RECHERCHE VETERINAIRE 2004; 68:71-5. [PMID: 14979439 PMCID: PMC1142133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
The present study aimed to compare the whole-cell protein profiles of Haemophilus parasuis field isolates by using a computer-based analysis, and evaluate the relationship between polyacrylamide gel electrophoresis (PAGE) type and virulence potential based on isolation site. A dendrogram clustering isolates with similar protein profiles was generated. Haemophilus parasuis isolates were grouped into 2 major PAGE type groups. The PAGE type II isolates were characterized by the presence of major proteins with molecular weights varying from between 36 and 38 kDa and included 90.7% of the isolates recovered from systemic sites, such as pleura, pericardium, peritoneum, lymph nodes, joints, and brain. Isolates classified as PAGE type I were characterized by the absence of this group of proteins and included 83.4% of the isolates recovered from the upper respiratory tract of healthy animals. The present study further corroborates the existence of a unique group of major proteins in potentially virulent H. parasuis isolates.
Collapse
Affiliation(s)
- Simone Oliveira
- Department of Clinical and Population Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota 55108, USA.
| | | |
Collapse
|
44
|
Lichtensteiger CA, Vimr ER. Purification and renaturation of membrane neuraminidase from Haemophilus parasuis. Vet Microbiol 2003; 93:79-87. [PMID: 12591209 DOI: 10.1016/s0378-1135(02)00443-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Haemophilus parasuis, which causes polyserositis, polysynovitis, meningitis, septicemia, and pneumonia in pigs, has emerged as an increasing problem in modern swine production systems. Co-factors for and the pathogenesis of H. parasuis disease are not defined. One of the potential virulence factors of H. parasuis is its neuraminidase (sialidase). While purifying the H. parasuis neuraminidase from the membrane fraction, we developed a protocol to renature enzymatic activity after enzyme preparations were resolved electrophorectically in denaturing polyacrylamide gels. The H. parasuis neuraminidase co-resolved with recombinant neuraminidase of Vibrio cholera; thus its apparent molecular mass is 82 kilodalton (kDa). The H. parasuis neuraminidase was associated with the membrane fraction and the purification protocol removed over 99% of the H. parasuis cell protein while retaining over 90% of the neuraminidase activity. Purified protein will provide another avenue to clone the neuraminidase gene that has been refractory to cloning and the protocol will be a means to purify recombinant protein.
Collapse
Affiliation(s)
- Carol A Lichtensteiger
- Department of Pathobiology, Veterinary Diagnostic Laboratory, University of Illinois Urbana-Champaign Campus, 2001 South Lincoln Avenue, Urbana, IL 61802, USA.
| | | |
Collapse
|
45
|
Oliveira S, Blackall PJ, Pijoan C. Characterization of the diversity of Haemophilus parasuis field isolates by use of serotyping and genotyping. Am J Vet Res 2003; 64:435-42. [PMID: 12693533 DOI: 10.2460/ajvr.2003.64.435] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To characterize the genetic diversity of Haemophilus parasuis field isolates with regard to serovar, herd of origin, and site of isolation. SAMPLE POPULATION Isolates of H parasuis obtained from pigs in 15 North American herds and multi-farm systems. PROCEDURE 98 H parasuis isolates were genotyped with the enterobacterial repetitive intergeneic consensus based-polymerase chain reaction (ERIC-PCR) technique and serotyped via agar gel precipitation test. Genomic fingerprints were analyzed and dendrograms were constructed to identify strains from the same serovar group, herd of origin, or isolation site and to evaluate the genetic variability within these categories. RESULTS Serovar 4 (39%) and nontypeable (NT) isolates (27%) were most prevalent. Thirty-four distinct strains were identified among the 98 isolates, using a 90% similarity cutoff. Strains from serovar 4 and NT isolates had high genetic diversity (12 and 18 strains, respectively). One to 3 major clusters of prevalent strains could be identified in most of the evaluated herds. Haemophilus parasuis strains isolated from the upper respiratory tract were either serovar 3 or NT isolates. Potentially virulent strains (isolated from systemic sites) were either serovars 1, 2, 4, 5, 12, 13, or 14, or NT isolates. CONCLUSIONS AND CLINICAL RELEVANCE Although H parasuis had high genetic diversity overall, only a few strains caused disease in these herds. The ERIC-PCR technique was more discriminative than serotyping, and a broad genetic variety was observed within particular serovar groups.
Collapse
Affiliation(s)
- Simone Oliveira
- Department of Clinical and Population Sciences, University of Minnesota, Saint Paul, MN 55108, USA
| | | | | |
Collapse
|
46
|
Del Río ML, Gutiérrez CB, Rodríguez Ferri EF. Value of indirect hemagglutination and coagglutination tests for serotyping Haemophilus parasuis. J Clin Microbiol 2003; 41:880-2. [PMID: 12574306 PMCID: PMC149707 DOI: 10.1128/jcm.41.2.880-882.2003] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An indirect hemagglutination test (IHA) and a coagglutination test (CA) were evaluated using saline, boiled, and autoclaved extracts for serotyping Haemophilus parasuis. CA showed several cross-reactions, whereas IHA gave rise to specific reactions, with minor exceptions. IHA was further compared with the immunodiffusion test (the "gold standard") for the serotyping of 67 field isolates. As a conclusion, IHA is recommended as a useful method for sensitive and specific serotyping of H. parasuis.
Collapse
Affiliation(s)
- M L Del Río
- Department of Animal Health, Faculty of Veterinary Medicine, León, Spain
| | | | | |
Collapse
|
47
|
Oliveira S, Batista L, Torremorell M, Pijoan C. Experimental colonization of piglets and gilts with systemic strains of Haemophilus parasuis and Streptococcus suis to prevent disease. CANADIAN JOURNAL OF VETERINARY RESEARCH = REVUE CANADIENNE DE RECHERCHE VETERINAIRE 2001; 65:161-7. [PMID: 11480521 PMCID: PMC1189670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
Haemophilus parasuis and Streptococcus suis are both major causes of losses during the nursery period, especially in herds using the segregated early weaning system. In this system, only a few piglets may be colonized with the herd's prevalent systemic strain, which results in infection of naive penmates late in the nursery. In view of these factors, the objectives of this study were: (1) to evaluate the early colonization of piglets with the farm's prevalent systemic strain of H. parasuis and S. suis as an alternative method for disease prevention; and (2) to evaluate 2 different protocols for experimental colonization: direct colonization of piglets and colonization of piglets through nose-to-nose contact with inoculated sows. Haemophilus parasuis and S. suis isolates recovered from diseased nursery pigs were characterized by the rep-PCR technique and the herd's prevalent strains were used for colonization. Piglets in the experimentally colonized groups were inoculated at 5 days of age by the oral route using a spray pump. Sows were colonized at 2 weeks prior to farrowing using a similar protocol. Although both colonization protocols were successful in getting the piglets colonized, direct inoculation of 5-day-old piglets with the herd's systemic strains of H. parasuis and S. suis tended to be more effective in reducing the morbidity and the mortality than the colonization of piglets by nose-to-nose contact with inoculated sows.
Collapse
Affiliation(s)
- S Oliveira
- Department of Clinical and Population Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul 55108, USA
| | | | | | | |
Collapse
|