1
|
de Vries MC, Hoeve-Bakker BJA, van den Beld MJC, Hendriks ACA, Harpal ASD, Noomen RCEA, Reubsaet FAG. Identification of Francisella tularensis Subspecies in a Clinical Setting Using MALDI-TOF MS: An In-House Francisella Library and Biomarkers. Microorganisms 2023; 11:microorganisms11040905. [PMID: 37110328 PMCID: PMC10146885 DOI: 10.3390/microorganisms11040905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Francisella tularensis is a zoonotic bacterium that is endemic in large parts of the world. It is absent in the standard library of the most applied matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) systems: the Vitek MS and the Bruker Biotyper system. The additional Bruker MALDI Biotyper Security library contains F. tularensis without subspecies differentiation. The virulence of F. tularensis differs between the subspecies. The F. tularensis subspecies (ssp.) tularensis is highly pathogenic, whereas the subspecies holarctica displays lower virulence and subspecies novicida and F. tularensis ssp. mediasiatica are hardly virulent. To differentiate the Francisellaceae and the F. tularensis-subspecies, an in-house Francisella library was built with the Bruker Biotyper system and validated together with the existing Bruker databases. In addition, specific biomarkers were defined based on the main spectra of the Francisella strains supplemented with in silico genome data. Our in-house Francisella library accurately differentiates the F. tularensis subspecies and the other Francisellaceae. The biomarkers correctly differentiate the various species within the genus Francisella and the F. tularensis subspecies. These MALDI-TOF MS strategies can successfully be applied in a clinical laboratory setting as a fast and specific method to identify F. tularensis to subspecies level.
Collapse
|
2
|
Borgschulte HS, Jacob D, Zeeh J, Scholz HC, Heuner K. Ulceroglandular form of tularemia after squirrel bite: a case report. J Med Case Rep 2022; 16:309. [PMID: 35974355 PMCID: PMC9381146 DOI: 10.1186/s13256-022-03510-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/27/2022] [Indexed: 11/18/2022] Open
Abstract
Background The diagnosis of tularemia is not often considered in Germany as the disease is still rare in this country. Nonetheless, Francisella tularensis, the causative agent of tularemia, can infect numerous animal species and should, therefore, not be neglected as a dangerous pathogen. Tularemia can lead to massively swollen lymph nodes and might even be fatal without antibiotic treatment. To our knowledge, the case described here is the first report of the disease caused by a squirrel bite in Germany. Case presentation A 59-year-old German woman with a past medical history of hypothyroidism and cutaneous lupus erythematosus presented at the emergency room at St. Katharinen Hospital with ongoing symptoms and a swollen right elbow persisting despite antibiotic therapy with cefuroxime for 7 days after she had been bitten (right hand) by a wild squirrel (Eurasian red squirrel). After another 7 days of therapy with piperacillin/tazobactam, laboratory analysis using real-time polymerase chain reaction (PCR) confirmed the suspected diagnosis of tularemia on day 14. After starting the recommended antibiotic treatment with ciprofloxacin, the patient recovered rapidly. Conclusion This is the first report of a case of tularemia caused by a squirrel bite in Germany. A naturally infected squirrel has recently been reported in Switzerland for the first time. The number of human cases of tularemia has been increasing over the last years and, therefore, tularemia should be taken into consideration as a diagnosis, especially in a patient bitten by an animal who also presents with headache, increasing pain, lymphadenitis, and fever, as well as impaired wound healing. The pathogen can easily be identified by a specific real-time PCR assay of wound swabs and/or by antibody detection, for example by enzyme-linked immunosorbent assay (ELISA), if the incident dates back longer than 2 weeks.
Collapse
Affiliation(s)
- Hannah Sophia Borgschulte
- Department of Internal Medicine 2, St. Katharinen-Hospital, Kapellenstr. 1-5, 50226, Frechen, Germany
| | - Daniela Jacob
- Division of Highly Pathogenic Microorganisms (ZBS 2), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Seestr. 10, 13353, Berlin, Germany
| | - Jörg Zeeh
- Department of Internal Medicine 2, St. Katharinen-Hospital, Kapellenstr. 1-5, 50226, Frechen, Germany
| | - Holger C Scholz
- Division of Highly Pathogenic Microorganisms (ZBS 2), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Seestr. 10, 13353, Berlin, Germany
| | - Klaus Heuner
- Division of Highly Pathogenic Microorganisms (ZBS 2), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Seestr. 10, 13353, Berlin, Germany.
| |
Collapse
|
3
|
In Vitro Antimicrobial Susceptibilities of Francisella tularensis subsp. holarctica Isolates from Tularemia Outbreaks That Occurred from the End of the 20th Century to the 2020s in Spain. Antibiotics (Basel) 2021; 10:antibiotics10080938. [PMID: 34438988 PMCID: PMC8389022 DOI: 10.3390/antibiotics10080938] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/13/2021] [Accepted: 07/28/2021] [Indexed: 11/17/2022] Open
Abstract
A collection of 177 Francisella tularensis subsp. holarctica clinical isolates (29 from humans and 148 from animals, mainly hares and voles) was gathered from diverse tularemia outbreaks in the Castilla y León region (northwestern Spain) that occurred from the end of the 20th century to the 2020s. Along with four F. tularensis subsp. holarctica reference strains, all of these clinical isolates were tested using a broth microdilution method to determine their susceptibility to 22 antimicrobial agents, including β-lactams, aminoglycosides and one member each of the tetracycline, glycylcycline, quinolone and sulphonamide classes. Many multi-resistance profiles were found among the tested isolates, but especially among those of human origin (all but two isolates showed resistance to at least 13 of 18 antimicrobial agents). Even so, all human isolates were susceptible to gentamicin and tobramycin, while more than 96% of animal isolates were susceptible to these two aminoglycosides. Ciprofloxacin showed activity against more than 92% of animal and human isolates. However, almost 21% of human isolates were resistant to tetracycline, and more than 65% were resistant to tigecycline. Finally, a quite similar activity to other F. tularensis subsp. holarctica isolates collected 20 years earlier in Spain was observed.
Collapse
|
4
|
Dehghan Esmat Abadi M, Motalebzadeh H, Barati M, Yaghobi M. Designing Two Synthetic Constructs for Real Time PCR Detection of Francisella tularensis and Ebola Virus. Avicenna J Med Biotechnol 2021; 13:92-97. [PMID: 34012525 PMCID: PMC8112141 DOI: 10.18502/ajmb.v13i2.5528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Background: Generally, timely diagnosis of micro-organisms is very important to prevent many diseases. Many methods can detect micro-organisms like culture-based methods and molecular methods. The molecular methods are usually preferred because they provide fast and reliable results. In some cases, microbial strains are not accessible, and there is no safety to work with them; therefore, synthetic constructs which are designed according to the available sequences in databases can be used as a positive control for detection of them. Methods: In this study, a synthetic construct was designed for molecular detection of Francisella tularensis (F. tularensis) and the Ebola virus by multiplex real-time PCR reaction. For this, sequences were taken from databases and then multiple alignments were done by software. Also, conventional PCR and two models of real-time PCR (SYBR green and TaqMan) were applied. Finally, multiplex real-time PCR was performed. Results: The synthetic construct was designed and used for conventional PCR and multiplex PCR. The results of common PCR showed a single band at 148 bp and 167 bp in 1.5% agarose gel stained by ethidium bromide for F. tularensis and Ebola virus, respectively. Also, a dual-band at 148 and 167 bp was observed in multiplex PCR. Results of real-time PCR showed a limit of detection about 0.1 pg of plasmid/μl. Conclusion: In conclusion, the designed construct can be used as a positive control for an accurate diagnosis of these micro-organisms without any biological danger for laboratory staff. So, this method is useful for diagnosis of these agents in food, water, and blood samples.
Collapse
Affiliation(s)
| | - Hesam Motalebzadeh
- Department of Medical Biotechnology, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Barati
- Department of Genetics, Faculty of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammadali Yaghobi
- Faculty of Chemistry and Chemical Engineering, Malek Ashtar University of Technology, Tehran, Iran
| |
Collapse
|
5
|
Glinšek Biškup U, Kogoj R, Korva M, Knap N, Cerar T, Knapič T, Petrovec M, Avšič-Županc T. Characterization of Tularemia Cases in Slovenia with Multiple-Locus Variable-Number Tandem Repeat Analysis. Vector Borne Zoonotic Dis 2021; 21:351-357. [PMID: 33601964 PMCID: PMC8086403 DOI: 10.1089/vbz.2020.2711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Francisella tularensis is the etiologic agent of tularemia, a bacterial zoonotic disease. The genome of F. tularensis shows a recent evolutionary change, especially in reservoirs. Variable number of tandem repeats (VNTR) is described as a high-speed molecular clock and can thus be used as a high-resolution typing system. The main objective of our study was to investigate the molecular diversity of F. tularensis strains and reveal possible sources of infection. Using real-time PCR targeting the ISFtu2 region, we successfully amplified targeted DNA in 13/31 Slovenian patients with a clinical diagnosis of tularemia, and with PCR targeting the fopA gene, we obtained 11/13 PCR products. Sequencing revealed that all samples were identified as F. tularensis subsp. holarctica. We successfully obtained one F. tularensis isolate from a lymph node aspirate by culture on chocolate agar. Our isolate was clustered into major clade B12 (subclade B43). We optimized VNTR typing to be used directly on clinical samples. Multiple-locus VNTR analysis (MLVA) revealed five unique MLVA types; 45.5% samples had the same MLVA type, another 27.3% shared a different MLVA type, and each of the remaining had a unique MLVA type. Most samples differed at only two VNTR markers (Ft-M03 and Ft-M06). Additionally, we investigated samples from small mammals (n = 532) and Ixodes ricinus ticks (n = 232) captured in the same geographical area in which patients with tularemia were found. No F. tularensis DNA was detected in samples of small mammals or I. ricinus ticks. The diversity of MLVA types in Slovenia was high, despite the small region, but most of the samples from the same region shared the same MLVA type. Our results suggest that MLVA is a useful tool for quick molecular characterization of F. tularensis directly from patient samples, especially when investigating geographically localized outbreaks.
Collapse
Affiliation(s)
- Urška Glinšek Biškup
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Rok Kogoj
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Miša Korva
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Nataša Knap
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tjaša Cerar
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tea Knapič
- Slovenian Museum of Natural History, Ljubljana, Slovenia
| | - Miroslav Petrovec
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tatjana Avšič-Županc
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
6
|
Virulence of Francisella tularensis Subspecies holarctica Biovar japonica and Phenotypic Change during Serial Passages on Artificial Media. Microorganisms 2020; 8:microorganisms8121881. [PMID: 33261098 PMCID: PMC7760542 DOI: 10.3390/microorganisms8121881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/25/2020] [Accepted: 11/25/2020] [Indexed: 01/01/2023] Open
Abstract
Francisella tularensis (F. tularensis) is the etiological agent of the zoonotic disease tularemia. F. tularensis subspecies holarctica biovar japonica has rarely been isolated in Japan and is considered to have moderate virulence, although the biological properties of fresh isolates have not been analyzed in detail. Here, we analyzed the virulence of two strains of F. tularensis subspecies holarctica biovar japonica (NVF1 and KU-1) and their phenotypic stability during serial passages in Eugon chocolate agar (ECA) and Chamberlain's chemically defined medium (CDM) based agar (CDMA). C57BL/6 mice intradermally inoculated with 101 colony-forming units of NVF1 or KU-1 died within 9 days, with a median time to death of 7.5 and 7 days, respectively. Both NVF1 and KU-1 strains passaged on ECA 10 times had comparable virulence prior to passaging, whereas strains passaged on ECA 20 times and on CDMA 50 times were attenuated. Attenuated strains had decreased viability in 0.01% H2O2 and lower intracellular growth rates, suggesting both properties are important for F. tularensis virulence. Additionally, passage on ECA of the KU-1 strains altered lipopolysaccharide antigenicity and bacterial susceptibility to β-lactam antibiotics. Our data demonstrate F. tularensis strain virulence in Japan and contribute to understanding phenotypic differences between natural and laboratory environments.
Collapse
|
7
|
Jacob D, Barduhn A, Tappe D, Rauch J, Heuner K, Hierhammer D, vom Berge K, Riehm JM, Hanczaruk M, Böhm S, Böhmer MM, Konrad R, Bouschery B, Dauer M, Schichtl E, Hossain H, Grunow R. Outbreak of Tularemia in a Group of Hunters in Germany in 2018-Kinetics of Antibody and Cytokine Responses. Microorganisms 2020; 8:microorganisms8111645. [PMID: 33114188 PMCID: PMC7690809 DOI: 10.3390/microorganisms8111645] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/21/2020] [Accepted: 10/21/2020] [Indexed: 02/01/2023] Open
Abstract
In November 2018, an outbreak of tularemia occurred among hare hunters in Bavaria, Germany. At least one infected hare was confirmed as the source of infection. A number of hunting dogs showed elevated antibody titers to Francisella tularensis, but the absence of titer increases in subsequent samples did not point to acute infections in dogs. Altogether, 12 persons associated with this hare hunt could be diagnosed with acute tularemia by detection of specific antibodies. In nine patients, the antibody and cytokine responses could be monitored over time. Eight out of these nine patients had developed detectable antibodies three weeks after exposure; in one individual the antibody response was delayed. All patients showed an increase in various cytokines and chemokines with a peak for most mediators in the first week after exposure. Cytokine levels showed individual variations, with high and low responders. The kinetics of seroconversion has implications on serological diagnoses of tularemia.
Collapse
Affiliation(s)
- Daniela Jacob
- Robert Koch Institute, 13353 Berlin, Germany; (D.J.); (A.B.); (K.H.)
| | - Anne Barduhn
- Robert Koch Institute, 13353 Berlin, Germany; (D.J.); (A.B.); (K.H.)
| | - Dennis Tappe
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; (D.T.); (J.R.)
| | - Jessica Rauch
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; (D.T.); (J.R.)
| | - Klaus Heuner
- Robert Koch Institute, 13353 Berlin, Germany; (D.J.); (A.B.); (K.H.)
| | - Daniela Hierhammer
- Local Health Authority, 92421 Schwandorf, Bavaria, Germany; (D.H.); (K.v.B.)
| | - Katharina vom Berge
- Local Health Authority, 92421 Schwandorf, Bavaria, Germany; (D.H.); (K.v.B.)
| | - Julia M. Riehm
- Bavarian Health and Food Safety Authority, 85764 Oberschleißheim, Germany; (J.M.R.); (M.H.); (S.B.); (M.M.B.); (R.K.)
| | - Matthias Hanczaruk
- Bavarian Health and Food Safety Authority, 85764 Oberschleißheim, Germany; (J.M.R.); (M.H.); (S.B.); (M.M.B.); (R.K.)
| | - Stefanie Böhm
- Bavarian Health and Food Safety Authority, 85764 Oberschleißheim, Germany; (J.M.R.); (M.H.); (S.B.); (M.M.B.); (R.K.)
- Postgraduate Training for Applied Epidemiology (PAE), Robert Koch Institute, 13353 Berlin, Germany
- European Programme for Intervention Epidemiology Training (EPIET), European Centre for Disease Prevention and Control, 169 73 Solna, Sweden
| | - Merle M. Böhmer
- Bavarian Health and Food Safety Authority, 85764 Oberschleißheim, Germany; (J.M.R.); (M.H.); (S.B.); (M.M.B.); (R.K.)
- Institute of Social Medicine and Health Systems Research, Otto-von-Guericke-University, 39106 Magdeburg, Germany
| | - Regina Konrad
- Bavarian Health and Food Safety Authority, 85764 Oberschleißheim, Germany; (J.M.R.); (M.H.); (S.B.); (M.M.B.); (R.K.)
| | - Berit Bouschery
- Department of Medicine II, Klinikum St. Marien, 92224 Amberg, Germany; (B.B.); (M.D.)
| | - Marc Dauer
- Department of Medicine II, Klinikum St. Marien, 92224 Amberg, Germany; (B.B.); (M.D.)
- Department of Medicine II, Saarland University, 66421 Homburg, Germany
| | | | - Hamid Hossain
- Institute of Laboratory Medicine and Microbiology, Klinikum St. Marien, 92224 Amberg, Germany;
- Institute of Laboratory Medicine and Microbiology, Kliniken Nordoberpfalz AG, 92637 Weiden, Germany
| | - Roland Grunow
- Robert Koch Institute, 13353 Berlin, Germany; (D.J.); (A.B.); (K.H.)
- Correspondence:
| |
Collapse
|
8
|
Regoui S, Hennebique A, Girard T, Boisset S, Caspar Y, Maurin M. Optimized MALDI TOF Mass Spectrometry Identification of Francisella tularensis Subsp. holarctica. Microorganisms 2020; 8:microorganisms8081143. [PMID: 32731606 PMCID: PMC7464108 DOI: 10.3390/microorganisms8081143] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/17/2020] [Accepted: 07/27/2020] [Indexed: 12/29/2022] Open
Abstract
Francisella tularensis is a tier 1 agent causing the zoonosis tularemia. This highly infectious Gram-negative bacterium is occasionally isolated from human samples (especially blood samples) in routine clinical microbiology laboratories. A rapid and accurate method for identifying this pathogen is needed in order to optimize the infected patient’s healthcare management and prevent contamination of the laboratory personnel. MALDI TOF mass spectrometry has become the gold standard for the rapid identification of most human pathogens. However, F. tularensis identification using such technology and commercially available databases is currently considered unreliable. Real-time PCR-based methods for rapid detection and accurate identification of F. tularensis are not available in many laboratories. As a national reference center for tularemia, we developed a MALDI TOF database allowing accurate identification of the species F. tularensis and its differentiation from the closely related neighbor species F. tularensis subsp. novicida and F. philomiragia. The sensitivity and specificity of this database were validated by testing 71 F. tularensis strains and 165 strains from 63 species not belonging to the Francisella genus. We obtained accurate identification at the species level and differentiation of all the tested bacterial strains. In particular, F. tularensis could be accurately differentiated from other small Gram-negative bacilli occasionally isolated from human samples, including species of the HACEK group and Brucella melitensis.
Collapse
Affiliation(s)
- Sofiane Regoui
- Centre National de Référence des Francisella, Institut de Biologie et de Pathologie, Centre Hospitalier Universitaire Grenoble Alpes, 38043 Grenoble, France; (S.R.); (A.H.); (T.G.); (S.B.); (Y.C.)
| | - Aurélie Hennebique
- Centre National de Référence des Francisella, Institut de Biologie et de Pathologie, Centre Hospitalier Universitaire Grenoble Alpes, 38043 Grenoble, France; (S.R.); (A.H.); (T.G.); (S.B.); (Y.C.)
- Université Grenoble Alpes, Centre National de la Recherche Scientifique, Grenoble INP, CHU Grenoble Alpes, TIMC-IMAG, 38000 Grenoble, France
| | - Thomas Girard
- Centre National de Référence des Francisella, Institut de Biologie et de Pathologie, Centre Hospitalier Universitaire Grenoble Alpes, 38043 Grenoble, France; (S.R.); (A.H.); (T.G.); (S.B.); (Y.C.)
| | - Sandrine Boisset
- Centre National de Référence des Francisella, Institut de Biologie et de Pathologie, Centre Hospitalier Universitaire Grenoble Alpes, 38043 Grenoble, France; (S.R.); (A.H.); (T.G.); (S.B.); (Y.C.)
- Université Grenoble Alpes, Centre National de la Recherche Scientifique, Grenoble INP, CHU Grenoble Alpes, TIMC-IMAG, 38000 Grenoble, France
| | - Yvan Caspar
- Centre National de Référence des Francisella, Institut de Biologie et de Pathologie, Centre Hospitalier Universitaire Grenoble Alpes, 38043 Grenoble, France; (S.R.); (A.H.); (T.G.); (S.B.); (Y.C.)
- Université Grenoble Alpes, Centre National de la Recherche Scientifique, Grenoble INP, CHU Grenoble Alpes, TIMC-IMAG, 38000 Grenoble, France
| | - Max Maurin
- Centre National de Référence des Francisella, Institut de Biologie et de Pathologie, Centre Hospitalier Universitaire Grenoble Alpes, 38043 Grenoble, France; (S.R.); (A.H.); (T.G.); (S.B.); (Y.C.)
- Université Grenoble Alpes, Centre National de la Recherche Scientifique, Grenoble INP, CHU Grenoble Alpes, TIMC-IMAG, 38000 Grenoble, France
- Correspondence: ; Tel.: +33-476-769-594
| |
Collapse
|
9
|
Jacob D, Köppen K, Radonić A, Haldemann B, Zanger P, Heuner K, Grunow R. Molecular identification of the source of an uncommon tularaemia outbreak, Germany, autumn 2016. ACTA ACUST UNITED AC 2020; 24. [PMID: 31064636 PMCID: PMC6505183 DOI: 10.2807/1560-7917.es.2019.24.18.1800419] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Background In 2016, an uncommon outbreak of oropharyngeal tularaemia involving six human cases occurred in Germany, caused by drinking contaminated fresh must after a grape harvest. Aim We describe the details of laboratory investigations leading to identification of the outbreak strain, its characterisation by next generation sequencing (NGS) and the finding of the possible source of contamination. Methods We incubated wine samples in different media and on agar plates. NGS was performed on DNA isolated from young wine, sweet reserve and an outbreak case’s lymph node. A draft genome of the outbreak strain was generated. Vertebrate-specific PCRs using primers targeting the mitochondrial cytochrome b gene and product analyses by blast search were used to identify the putative source of must contamination. Results No bacterial isolate could be obtained. Analysis of the draft genome sequence obtained from the sweet reserve attributed this sequence to Francisella tularensis subsp. holarctica, belonging to the B.12/B.34 phylogenetic clade (erythromycin-resistant biovar II). In addition, the DNA sequence obtained from the case’s isolate supported our hypothesis that infection was caused by drinking contaminated must. The vertebrate-specific cytochrome b sequence derived from the young wine and the sweet reserve could be assigned to Apodemus sylvaticus (wood mouse), suggesting that a wood mouse infected with F. tularensis may have contaminated the must. Conclusion The discovered source of infection and the transmission scenario of F. tularensis in this outbreak have not been observed previously and suggest the need for additional hygienic precautionary measures when processing and consuming freshly pressed must.
Collapse
Affiliation(s)
- Daniela Jacob
- These authors contributed equally to this work.,Highly Pathogenic Microorganisms (ZBS 2), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Kristin Köppen
- Cellular Interactions of Bacterial Pathogens, ZBS 2, Robert Koch Institute, Berlin, Germany.,These authors contributed equally to this work
| | - Aleksandar Radonić
- Genome Sequencing (MF 2), Methodology and Research Infrastructure, Robert Koch Institute, Berlin, Germany
| | - Berit Haldemann
- Bioinformatics (MF 1), Methodology and Research Infrastructure, Robert Koch Institute, Berlin, Germany
| | - Philipp Zanger
- Heidelberg Institute of Global Health, Unit of Epidemiology and Biostatistics, University Hospitals, Heidelberg, Germany.,Department of Infectious Diseases, Medical Microbiology and Hygiene, University Hospitals, Heidelberg, Germany.,Federal State Agency for Consumer & Health Protection Rhineland-Palatinate, Koblenz, Germany
| | - Klaus Heuner
- Cellular Interactions of Bacterial Pathogens, ZBS 2, Robert Koch Institute, Berlin, Germany.,These authors contributed equally to this work
| | - Roland Grunow
- Highly Pathogenic Microorganisms (ZBS 2), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| |
Collapse
|
10
|
Appelt S, Köppen K, Radonić A, Drechsel O, Jacob D, Grunow R, Heuner K. Genetic Diversity and Spatial Segregation of Francisella tularensis Subspecies holarctica in Germany. Front Cell Infect Microbiol 2019; 9:376. [PMID: 31781515 PMCID: PMC6851236 DOI: 10.3389/fcimb.2019.00376] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/17/2019] [Indexed: 01/28/2023] Open
Abstract
Francisella tularensis is an intracellular pleomorphic bacterium and the causative agent of tularemia, a zoonotic disease with a wide host range. Among the F. tularensis subspecies, especially F. tularensis subsp. holarctica is of clinical relevance for European countries. The study presented herein focuses namely on genetic diversity and spatial segregation of F. tularensis subsp. holarctica in Germany, as still limited information is available. The investigation is based on the analysis of 34 F. tularensis subsp. holarctica isolates and one draft genome from an outbreak strain. The isolates were cultured from sample material being that of primarily human patients (n = 25) and free-living animals (n = 9). For six of 25 human isolates, epidemiological links between disease onset and tick bites could be established, confirming the importance of arthropod linked transmission of tularemia in Germany. The strains were assigned to three of four major F. tularensis subsp. holarctica clades: B.4, B.6, and B.12. Thereby, B.6 and B.12 clade members were predominantly found; only one human isolate was assigned to clade B.4. Also, it turned out that eight isolates which caused pneumonia in patients clustered into the B.6 clade. Altogether, eight different final subclades were assigned to clade B.6 (biovar I, erythromycin sensitive) and six to B.12 (biovar II, erythromycin resistant) in addition to one new final B.12 subclade. Moreover, for 13 human and 3 animal isolates, final subclade subdivisions were not assigned (B.12 subdivisions B.33 and B.34, and B.6 subdivision B.45) because official nomenclatures are not available yet. This gives credit to the genetic variability of F. tularensis subsp. holarctica strains in Germany. The results clearly point out that the given genetic diversity in Germany seems to be comparably high to that found in other European countries including Scandinavian regions. A spatial segregation of B.6 and B.12 strains was found and statistically confirmed, and B.12 clade members were predominantly found in eastern parts and B.6 members more in western to southern parts of Germany. The portion of B.12 clade members in northeastern parts of Germany was 78.5% and in southwestern parts 1.9%.
Collapse
Affiliation(s)
- Sandra Appelt
- Centre for Biological Threats and Special Pathogens (ZBS2), Robert Koch Institute, Berlin, Germany
| | - Kristin Köppen
- Working Group Cellular Interactions of Bacterial Pathogens, ZBS2, Robert Koch Institute, Berlin, Germany
| | - Aleksandar Radonić
- Methodology and Research Infrastructure Genome Sequencing (MF2), Robert Koch Institute, Berlin, Germany
| | - Oliver Drechsel
- Bioinformatics (MF1), Robert Koch Institute, Berlin, Germany
| | - Daniela Jacob
- Centre for Biological Threats and Special Pathogens (ZBS2), Robert Koch Institute, Berlin, Germany
| | - Roland Grunow
- Centre for Biological Threats and Special Pathogens (ZBS2), Robert Koch Institute, Berlin, Germany
| | - Klaus Heuner
- Working Group Cellular Interactions of Bacterial Pathogens, ZBS2, Robert Koch Institute, Berlin, Germany
| |
Collapse
|
11
|
Formińska K, Wołkowicz T, Brodzik K, Stefanoff P, Gołąb E, Masny A, Osiak B, Cieślik P, Bielawska-Drózd A, Zasada AA. Genetic diversity of Francisella tularensis in Poland with comments on MLVA genotyping and a proposition of a novel rapid v4-genotyping. Ticks Tick Borne Dis 2019; 11:101322. [PMID: 31711731 DOI: 10.1016/j.ttbdis.2019.101322] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 10/15/2019] [Accepted: 10/25/2019] [Indexed: 01/05/2023]
Abstract
We investigated the genotypes of Francisella tularensis (F. tularensis) strains isolated in Poland during the period 1953-2013 and studied their genetic relationship to F. tularensis strains isolated in other countries using MLVA. We examined the mosquito and tick samples collected in Poland for the presence of F. tularensis DNA using PCR. Our results revealed a high genetic diversity among the strains of F. tularensis collected from Poland, suggesting that the bacterium is commonly found in the environment. However, we did not detect F. tularensis DNA in ticks and mosquitoes, showing that the arthropod bites might not be the main source of infection. We also propose the application of a practical assay called v4-genotyping that can be directly performed on the clinical and environmental samples. In addition, we discovered genetic variations among Schu S4 reference strains used in various laboratories and showed that MLVA analysis should not be based on amplicon sizes only because point mutations occurring within the MLVA loci might not always be manifested by a change in the amplicon size.
Collapse
Affiliation(s)
- Kamila Formińska
- National Institute of Public Health - National Institute of Hygiene, Warsaw, Poland
| | - Tomasz Wołkowicz
- National Institute of Public Health - National Institute of Hygiene, Warsaw, Poland
| | - Klaudia Brodzik
- National Institute of Public Health - National Institute of Hygiene, Warsaw, Poland
| | - Paweł Stefanoff
- National Institute of Public Health - National Institute of Hygiene, Warsaw, Poland
| | - Elżbieta Gołąb
- National Institute of Public Health - National Institute of Hygiene, Warsaw, Poland
| | - Aleksander Masny
- National Institute of Public Health - National Institute of Hygiene, Warsaw, Poland
| | | | - Piotr Cieślik
- Military Institute of Hygiene and Epidemiology, Puławy, Poland
| | | | | |
Collapse
|
12
|
Clinical characteristics in a sentinel case as well as in a cluster of tularemia patients associated with grape harvest. Int J Infect Dis 2019; 84:116-120. [PMID: 31071480 DOI: 10.1016/j.ijid.2019.04.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/26/2019] [Accepted: 04/29/2019] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Tularemia is caused by Francisella tularensis and can occasionally establish foodborne transmission. METHODS Patients were identified by active case detection through contact with the treating physicians and consent for publication was obtained. Clinical data were accumulated through a review of the patient charts. Serology, culture, and PCR methods were performed for confirmation of the diagnosis. CASE CLUSTER A 46-year-old patient was hospitalised in the University Hospital Frankfurt (a tertiary care hospital) for pharyngitis and cervical lymphadenitis with abscess. A diagnosis of tularemia was made serologically, but treatment with ciprofloxacin initially failed. F. tularensis was detected in pus from the lymph node using a specific real-time PCR. The use of RD1 PCR led to the identification of the subspecies holarctica. Antibiotic therapy with high-dose ciprofloxacin and gentamicin was administered and was subsequently changed to ciprofloxacin and rifampicin. During a must-tasting, five other individuals became infected with tularemia by ingestion of contaminated must. All patients required treatment durations of more than 14 days. CONCLUSIONS Mechanically harvested agricultural products, such as wine must, can be a source of infection, probably due to contamination with animal carcasses. The clinical course of tularemia can be complicated and prolonged and requires differentiated antibiotic treatment.
Collapse
|
13
|
Zulkifli SN, Rahim HA, Lau WJ. Detection of contaminants in water supply: A review on state-of-the-art monitoring technologies and their applications. SENSORS AND ACTUATORS. B, CHEMICAL 2018; 255:2657-2689. [PMID: 32288249 PMCID: PMC7126548 DOI: 10.1016/j.snb.2017.09.078] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 08/22/2017] [Accepted: 09/13/2017] [Indexed: 05/12/2023]
Abstract
Water monitoring technologies are widely used for contaminants detection in wide variety of water ecology applications such as water treatment plant and water distribution system. A tremendous amount of research has been conducted over the past decades to develop robust and efficient techniques of contaminants detection with minimum operating cost and energy. Recent developments in spectroscopic techniques and biosensor approach have improved the detection sensitivities, quantitatively and qualitatively. The availability of in-situ measurements and multiple detection analyses has expanded the water monitoring applications in various advanced techniques including successful establishment in hand-held sensing devices which improves portability in real-time basis for the detection of contaminant, such as microorganisms, pesticides, heavy metal ions, inorganic and organic components. This paper intends to review the developments in water quality monitoring technologies for the detection of biological and chemical contaminants in accordance with instrumental limitations. Particularly, this review focuses on the most recently developed techniques for water contaminant detection applications. Several recommendations and prospective views on the developments in water quality assessments will also be included.
Collapse
Affiliation(s)
| | - Herlina Abdul Rahim
- Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Woei-Jye Lau
- Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| |
Collapse
|
14
|
First Draft Genome Sequences of Three Strains of Francisella tularensis subsp. holarctica, Isolated from Hares and a Tick in France. GENOME ANNOUNCEMENTS 2017; 5:5/45/e00993-17. [PMID: 29122856 PMCID: PMC5679789 DOI: 10.1128/genomea.00993-17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Here, we report the complete genome sequences of three strains of Francisella tularensis subsp. holarctica (11-789-5S, 11-935-13S, and 11-930-9S), isolated from brown hares and a tick during a tularemia outbreak in France, where tularemia is endemic.
Collapse
|
15
|
Timofeev V, Bakhteeva I, Titareva G, Kopylov P, Christiany D, Mokrievich A, Dyatlov I, Vergnaud G. Russian isolates enlarge the known geographic diversity of Francisella tularensis subsp. mediasiatica. PLoS One 2017; 12:e0183714. [PMID: 28873421 PMCID: PMC5584958 DOI: 10.1371/journal.pone.0183714] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 08/09/2017] [Indexed: 11/18/2022] Open
Abstract
Francisella tularensis, a small Gram-negative bacterium, is capable of infecting a wide range of animals, including humans, and causes a plague-like disease called tularemia—a highly contagious disease with a high mortality rate. Because of these characteristics, F. tularensis is considered a potential agent of biological terrorism. Currently, F. tularensis is divided into four subspecies, which differ in their virulence and geographic distribution. Two of them, subsp. tularensis (primarily found in North America) and subsp. holarctica (widespread across the Northern Hemisphere), are responsible for tularemia in humans. Subsp. novicida is almost avirulent in humans. The fourth subspecies, subsp. mediasiatica, is the least studied because of its limited distribution and impact in human health. It is found only in sparsely populated regions of Central Asia. In this report, we describe the first focus of naturally circulating F. tularensis subsp. mediasiatica in Russia. We isolated and characterized 18 strains of this subspecies in the Altai region. All strains were highly virulent in mice. The virulence of subsp. mediasiatica in a vaccinated mouse model is intermediate between that of subsp. tularensis and subsp. holarctica. Based on a multiple-locus variable number tandem repeat analysis (MLVA), we show that the Altaic population of F. tularensis subsp. mediasiatica is genetically distinct from the classical Central Asian population, and probably is endemic to Southern Siberia. We propose to subdivide the mediasiatica subspecies into three phylogeographic groups, M.I, M.II and M.III.
Collapse
Affiliation(s)
- Vitalii Timofeev
- State Research Center for Applied Microbiology and Biotechnology (SRCAMB), Obolensk, Moscow Region, Russia
- * E-mail: (VT); (GV)
| | - Irina Bakhteeva
- State Research Center for Applied Microbiology and Biotechnology (SRCAMB), Obolensk, Moscow Region, Russia
| | - Galina Titareva
- State Research Center for Applied Microbiology and Biotechnology (SRCAMB), Obolensk, Moscow Region, Russia
| | - Pavel Kopylov
- State Research Center for Applied Microbiology and Biotechnology (SRCAMB), Obolensk, Moscow Region, Russia
| | - David Christiany
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette cedex, France
| | - Alexander Mokrievich
- State Research Center for Applied Microbiology and Biotechnology (SRCAMB), Obolensk, Moscow Region, Russia
| | - Ivan Dyatlov
- State Research Center for Applied Microbiology and Biotechnology (SRCAMB), Obolensk, Moscow Region, Russia
| | - Gilles Vergnaud
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette cedex, France
- * E-mail: (VT); (GV)
| |
Collapse
|
16
|
Morris BJ, Buse HY, Adcock NJ, Rice EW. A novel broth medium for enhanced growth of Francisella tularensis. Lett Appl Microbiol 2017; 64:394-400. [PMID: 28255998 DOI: 10.1111/lam.12725] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 02/22/2017] [Accepted: 02/23/2017] [Indexed: 12/23/2022]
Abstract
Francisella tularensis is a fastidious organism that requires a lengthy incubation time in liquid growth media for detection. The objective of this study was to develop a medium formulation using readily available supplements that enhanced early growth of F. tularensis. Francisella tularensis live vaccine strain was used to evaluate the growth responses for each of the media formulations tested. Growth in brain heart infusion broth supplemented with 2% Vitox, 10% Fildes and 1% histidine (BVFH) resulted in a significant increase in growth after 8 h incubation compared to other media formulations tested (P < 0·001). Virulent strains of F. tularensis grown in BVFH medium demonstrated similar enhanced early growth. Cell densities of 3·9-5·2 log10 CFU per ml were obtained after 24 h of growth in BVFH from a 1-2 cell ml-1 starting inoculum of the virulent Type A Schu4 strain, indicating the suitability of this medium in rapidly amplifying low starting titres of F. tularensis. Collectively, these results indicate that the novel formulation of the BVFH medium was capable of producing enhanced growth response for F. tularensis. SIGNIFICANCE AND IMPACT OF THE STUDY The need for rapid cultivation of Francisella tularensis is essential for detection and monitoring during natural outbreak events or intentional bioterrorism attacks. The addition of selected supplements into the base medium BHI (BVFH) developed in this study enhanced growth of F. tularensis Type A1, A2 and B strains compared to BHI alone. Growth of these organisms in BVFH will allow for improved response time should a natural or intentional contamination event occur.
Collapse
Affiliation(s)
- B J Morris
- Pegasus Technical Services Inc., Cincinnati, OH, USA
| | - H Y Buse
- National Homeland Security Research Center, US Environmental Protection Agency, Cincinnati, OH, USA
| | - N J Adcock
- National Homeland Security Research Center, US Environmental Protection Agency, Cincinnati, OH, USA
| | - E W Rice
- National Homeland Security Research Center, US Environmental Protection Agency, Cincinnati, OH, USA
| |
Collapse
|
17
|
Hotta A, Fujita O, Uda A, Yamamoto Y, Sharma N, Tanabayashi K, Yamada A, Morikawa S. Virulence of representative Japanese Francisella tularensis and immunologic consequences of infection in mice. Microbiol Immunol 2017; 60:168-76. [PMID: 26853540 DOI: 10.1111/1348-0421.12363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 01/19/2016] [Accepted: 02/02/2016] [Indexed: 11/28/2022]
Abstract
Francisella tularensis, which causes tularemia, is widely distributed in the Northern hemisphere. F. tularensis strains isolated in Japan are genetically unique from non-Japanese strains; however, their phenotypic properties have not been well studied. Thus, mice were infected with representative Japanese strains of F. tularensis and their virulence and mouse immune responses to them assessed. Of four representative Japanese strains, the Ebina, Jap and Tsuchiya strains were susceptible to H2 O2 and did not grow well intracellularly. Only Yama strain grew intracellularly and was lethal to mice. Infection with Yama strain resulted in drastic increases in IFN-γ, CD4 and CD8 double-positive T cells and Th1 cells (CD3, CD4 and Tim3-positive cells), and a decrease in the ratio of CD8-positive CD4-negative T cells in mice. C57BL/6J mice that survived infection produced IgM antibodies to LPS and IgG2c antibodies to 43, 19 and 17 kDa proteinase K-sensitive components. These data are valuable for understanding the phenotypic properties of F. tularensis in Japan.
Collapse
Affiliation(s)
- Akitoyo Hotta
- Department of Veterinary Science, National Institute of Infectious Diseases, Toyama 1-23-1, Shinjuku, Tokyo 162-8640
| | - Osamu Fujita
- Department of Veterinary Science, National Institute of Infectious Diseases, Toyama 1-23-1, Shinjuku, Tokyo 162-8640
| | - Akihiko Uda
- Department of Veterinary Science, National Institute of Infectious Diseases, Toyama 1-23-1, Shinjuku, Tokyo 162-8640
| | - Yoshie Yamamoto
- Department of Veterinary Science, National Institute of Infectious Diseases, Toyama 1-23-1, Shinjuku, Tokyo 162-8640
| | - Neekun Sharma
- Department of Veterinary Science, National Institute of Infectious Diseases, Toyama 1-23-1, Shinjuku, Tokyo 162-8640.,United Graduate School of Veterinary Science Gifu University, 1-1 Yanagido, Gifu 501-1193
| | - Kiyoshi Tanabayashi
- Department of Veterinary Science, National Institute of Infectious Diseases, Toyama 1-23-1, Shinjuku, Tokyo 162-8640
| | - Akio Yamada
- Laboratory of Veterinary Public Health, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan
| | - Shigeru Morikawa
- Department of Veterinary Science, National Institute of Infectious Diseases, Toyama 1-23-1, Shinjuku, Tokyo 162-8640.,United Graduate School of Veterinary Science Gifu University, 1-1 Yanagido, Gifu 501-1193
| |
Collapse
|
18
|
Ranjbar R, Behzadi P, Mammina C. Respiratory Tularemia: Francisella Tularensis and Microarray Probe Designing. Open Microbiol J 2016; 10:176-182. [PMID: 28077973 PMCID: PMC5204066 DOI: 10.2174/1874285801610010176] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 10/02/2016] [Accepted: 10/06/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Francisella tularensis (F. tularensis) is the etiological microorganism for tularemia. There are different forms of tularemia such as respiratory tularemia. Respiratory tularemia is the most severe form of tularemia with a high rate of mortality; if not treated. Therefore, traditional microbiological tools and Polymerase Chain Reaction (PCR) are not useful for a rapid, reliable, accurate, sensitive and specific diagnosis. But, DNA microarray technology does. DNA microarray technology needs to appropriate microarray probe designing. OBJECTIVE The main goal of this original article was to design suitable long oligo microarray probes for detection and identification of F. tularensis. METHOD For performing this research, the complete genomes of F. tularensis subsp. tularensis FSC198, F. tularensis subsp. holarctica LVS, F. tularensis subsp. mediasiatica, F. tularensis subsp. novicida (F. novicida U112), and F. philomiragia subsp. philomiragia ATCC 25017 were studied via NCBI BLAST tool, GView and PanSeq Servers and finally the microarray probes were produced and processed via AlleleID 7.7 software and Oligoanalyzer tool, respectively. RESULTS In this in silico investigation, a number of long oligo microarray probes were designed for detecting and identifying F. tularensis. Among these probes, 15 probes were recognized as the best candidates for microarray chip designing. CONCLUSION Calibrated microarray probes reduce the biasis of DNA microarray technology as an advanced, rapid, accurate and cost-effective molecular diagnostic tool with high specificity and sensitivity. Professional microarray probe designing provides us with much more facility and flexibility regarding preparation of a microarray diagnostic chip.
Collapse
Affiliation(s)
- Reza Ranjbar
- Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Payam Behzadi
- Department of Microbiology, College of Basic Sciences, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
| | - Caterina Mammina
- Department of Sciences for Health Promotion and Mother-Child Care 'G. D'Alessandro, University of Palermo, Palermo, Italy
| |
Collapse
|
19
|
SCHULZE C, HEUNER K, MYRTENNÄS K, KARLSSON E, JACOB D, KUTZER P, GROßE K, FORSMAN M, GRUNOW R. High and novel genetic diversity of Francisella tularensis in Germany and indication of environmental persistence. Epidemiol Infect 2016; 144:3025-3036. [PMID: 27356883 PMCID: PMC9150394 DOI: 10.1017/s0950268816001175] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 05/11/2016] [Accepted: 05/22/2016] [Indexed: 11/06/2022] Open
Abstract
In Germany tularemia is a re-emerging zoonotic disease. Therefore, we investigated wild animals and environmental water samples for the presence and phylogenetic diversity of Francisella tularensis in the poorly studied Berlin/Brandenburg region. The phylogenomic analysis of three isolates from wild animals revealed three new subclades within the phylogenetic tree of F. tularensis [B.71 from a raccoon dog (Nyctereutes procyonoides); B.74 from a red fox (Vulpes vulpes), and B.75 from a Eurasian beaver (Castor fiber albicus)]. The results from histological, PCR, and genomic investigations on the dead beaver showed that the animal suffered from a systemic infection. Indications were found that the bacteria were released from the beaver carcass into the surrounding environment. We demonstrated unexpectedly high and novel phylogenetic diversity of F. tularensis in Germany and the fact that the bacteria persist in the environment for at least one climatic season. These findings support a broader host species diversity than previously known regarding Germany. Our data further support the assumption derived from previous serological studies of an underestimated frequency of occurrence of the pathogen in the environment and in wild animals. F. tularensis was isolated from animal species not previously reported as natural hosts in Germany.
Collapse
Affiliation(s)
- C. SCHULZE
- Landeslabor Berlin-Brandenburg, Frankfurt (Oder), Germany
| | - K. HEUNER
- Robert Koch Institute, Centre for Biological Threats and Special Pathogens, Division 2 (ZBS 2), Highly Pathogenic Microorganisms, Berlin, Germany
| | - K. MYRTENNÄS
- CBRN Defence and Security, Swedish Defence Research Agency (FOI), Umeå, Sweden
| | - E. KARLSSON
- CBRN Defence and Security, Swedish Defence Research Agency (FOI), Umeå, Sweden
| | - D. JACOB
- Robert Koch Institute, Centre for Biological Threats and Special Pathogens, Division 2 (ZBS 2), Highly Pathogenic Microorganisms, Berlin, Germany
| | - P. KUTZER
- Landeslabor Berlin-Brandenburg, Frankfurt (Oder), Germany
| | - K. GROßE
- Stadt Brandenburg an der Havel, Veterinär- und Lebensmittelüberwachungsamt, Germany
| | - M. FORSMAN
- CBRN Defence and Security, Swedish Defence Research Agency (FOI), Umeå, Sweden
| | - R. GRUNOW
- Robert Koch Institute, Centre for Biological Threats and Special Pathogens, Division 2 (ZBS 2), Highly Pathogenic Microorganisms, Berlin, Germany
| |
Collapse
|
20
|
Giles TA, Greenwood AD, Tsangaras K, Giles TC, Barrow PA, Hannant D, Abu-Median AB, Yon L. Detection of a Yersinia pestis gene homologue in rodent samples. PeerJ 2016; 4:e2216. [PMID: 27602258 PMCID: PMC4991868 DOI: 10.7717/peerj.2216] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 06/14/2016] [Indexed: 11/20/2022] Open
Abstract
A homologue to a widely used genetic marker, pla, for Yersinia pestis has been identified in tissue samples of two species of rat (Rattus rattus and Rattus norvegicus) and of mice (Mus musculus and Apodemus sylvaticus) using a microarray based platform to screen for zoonotic pathogens of interest. Samples were from urban locations in the UK (Liverpool) and Canada (Vancouver). The results indicate the presence of an unknown bacterium that shares a homologue for the pla gene of Yersinia pestis, so caution should be taken when using this gene as a diagnostic marker.
Collapse
Affiliation(s)
- Timothy A Giles
- School of Veterinary Medicine and Science, University of Nottingham, Loughborough, Leicestershire, United Kingdom
| | - Alex D Greenwood
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research,Berlin,Germany; Department of Veterinary Medicine, Freie Universität Berlin,Berlin,Germany
| | - Kyriakos Tsangaras
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research,Berlin,Germany; Department of Translational Genetics, Cyprus Institute of Neurology and Genetics,Nicosia,Cyprus
| | - Tom C Giles
- The Advanced Data Analysis Centre, University of Nottingham, Leicestershire, United Kingdom
| | - Paul A Barrow
- School of Veterinary Medicine and Science, University of Nottingham, Loughborough, Leicestershire, United Kingdom
| | - Duncan Hannant
- School of Veterinary Medicine and Science, University of Nottingham, Loughborough, Leicestershire, United Kingdom
| | - Abu-Bakr Abu-Median
- School of Veterinary Medicine and Science, University of Nottingham, Loughborough, Leicestershire, United Kingdom
| | - Lisa Yon
- School of Veterinary Medicine and Science, University of Nottingham, Loughborough, Leicestershire, United Kingdom
| |
Collapse
|
21
|
Lai XH, Zhao LF, Chen XM, Ren Y. Rapid Identification and Characterization of Francisella by Molecular Biology and Other Techniques. Open Microbiol J 2016; 10:64-77. [PMID: 27335619 PMCID: PMC4899538 DOI: 10.2174/1874285801610010064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 10/20/2015] [Accepted: 10/22/2015] [Indexed: 11/22/2022] Open
Abstract
Francisella tularensis is the causative pathogen of tularemia and a
Tier 1 bioterror agent on the CDC list. Considering the fact that some
subpopulation of the F. tularensis strains is more virulent, more
significantly associated with mortality, and therefore poses more threat to
humans, rapid identification and characterization of this subpopulation strains
is of invaluable importance. This review summarizes the up-to-date developments
of assays for mainly detecting and characterizing F. tularensis and a
touch of caveats of some of the assays.
Collapse
Affiliation(s)
- Xin-He Lai
- Institute of Inflammation & Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Institute of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Long-Fei Zhao
- College of Life Sciences, Key Laboratory of Plant-Microbe Interactions of Henan, Shangqiu Normal University, Shangqiu, Henan, 476000, PR China
| | - Xiao-Ming Chen
- Institute of Inflammation & Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Institute of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China ; Department of Pediatric Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yi Ren
- Institute of Inflammation & Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, USA
| |
Collapse
|
22
|
Moinet M, Decors A, Mendy C, Faure E, Durand B, Madani N. Spatio-temporal dynamics of tularemia in French wildlife: 2002-2013. Prev Vet Med 2016; 130:33-40. [PMID: 27435644 DOI: 10.1016/j.prevetmed.2016.05.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 05/12/2016] [Accepted: 05/30/2016] [Indexed: 11/19/2022]
Abstract
Tularemia, caused by Francisella tularensis, is endemic in France. The surveillance of this disease in wildlife is operated by the SAGIR Network and by the National Reference Laboratory for Tularemia. Wild animals found dead or dying collected by the SAGIR network are necropsied and when tularemia is suspected culture and/or PCR are performed to confirm the diagnosis. The aim of this study was to present the results of tularemia surveillance in wildlife and to investigate the spatial and temporal pattern of tularemia observed between the 2002-2003 and 2012-2013 hunting seasons in French wildlife. Fourty-one to 121 cases were collected each hunting season for a total of 693 confirmed cases and 46 additional suspected cases. The main species affected was the European Brown Hare (Lepus europaeus) but 4 rabbits (Oryctolagus cuniculus), 2 roe deer (Capreolus capreolus) and one wild boar (Sus scrofa) were also found positive. The Standard Mortality Ratio was mapped and Kulldorff's retrospective space-time scan statistic was implemented and allowed the detection of several clusters: the nationwide outbreak of 2007-2008; 2 clusters in northern and central-western France in high hare-abundance areas and another in North-eastern France where the abundance of hares is low. Our results confirm the usefulness of brown hare as a sentinel of environmental risk.
Collapse
Affiliation(s)
- Marie Moinet
- Anses, Laboratoire Rage et Faune Sauvage de Nancy, Unité Surveillance et Eco-Epidémiologie des Animaux Sauvages, Technopôle Agricole et Vétérinaire - Bâtiment H, Domaine de Pixérécourt, CS 40009, 54220 Malzéville, France.
| | - Anouk Decors
- Office National de la Chasse et de la Faune Sauvage, Auffargis, France
| | - Christiane Mendy
- University Paris Est, Anses, Laboratoire de Santé Animale, Unité Zoonoses Bactériennes, Maisons-Alfort, France
| | - Eva Faure
- Fédération Nationale des Chasseurs, Issy-Les-Moulineaux, France
| | - Benoit Durand
- University Paris Est, Anses, Laboratoire de Santé Animale, Unité Epidémiologie, Maisons-Alfort, France
| | - Nora Madani
- University Paris Est, Anses, Laboratoire de Santé Animale, Unité Zoonoses Bactériennes, Maisons-Alfort, France
| |
Collapse
|
23
|
Gunnell MK, Robison RA, Adams BJ. Natural Selection in Virulence Genes of Francisella tularensis. J Mol Evol 2016; 82:264-78. [PMID: 27177502 DOI: 10.1007/s00239-016-9743-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Accepted: 04/29/2016] [Indexed: 02/06/2023]
Abstract
A fundamental tenet of evolution is that alleles that are under negative selection are often deleterious and confer no evolutionary advantage. Negatively selected alleles are removed from the gene pool and are eventually extinguished from the population. Conversely, alleles under positive selection do confer an evolutionary advantage and lead to an increase in the overall fitness of the organism. These alleles increase in frequency until they eventually become fixed in the population. Francisella tularensis is a zoonotic pathogen and a potential biothreat agent. The most virulent type of F. tularensis, Type A, is distributed across North America with Type A.I occurring mainly in the east and Type A.II appearing mainly in the west. F. tularensis is thought to be a genome in decay (losing genes) because of the relatively large number of pseudogenes present in its genome. We hypothesized that the observed frequency of gene loss/pseudogenes may be an artifact of evolution in response to a changing environment, and that genes involved in virulence should be under strong positive selection. To test this hypothesis, we sequenced and compared whole genomes of Type A.I and A.II isolates. We analyzed a subset of virulence and housekeeping genes from several F. tularensis subspecies genomes to ascertain the presence and extent of positive selection. Eleven previously identified virulence genes were screened for positive selection along with 10 housekeeping genes. Analyses of selection yielded one housekeeping gene and 7 virulence genes which showed significant evidence of positive selection at loci implicated in cell surface structures and membrane proteins, metabolism and biosynthesis, transcription, translation and cell separation, and substrate binding and transport. Our results suggest that while the loss of functional genes through disuse could be accelerated by negative selection, the genome decay in Francisella could also be the byproduct of adaptive evolution driven by complex interactions between host, pathogen, and thier environment, as evidenced by several of its virulence genes which are undergoing strong, positive selection.
Collapse
Affiliation(s)
- Mark K Gunnell
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, 84602, USA. .,Microbiology Branch, Life Sciences Division, Dugway Proving Ground, Dugway, UT, 84022, USA.
| | - Richard A Robison
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, 84602, USA
| | - Byron J Adams
- Department of Biology, Brigham Young University, Provo, UT, 84602, USA
| |
Collapse
|
24
|
Lu Y, Yu Y, Feng L, Li Y, He J, Zhu H, Duan Q, Song L. Phylogeography of Francisella tularensis from Tibet, China: Evidence for an asian origin and radiation of holarctica-type Tularemia. Ticks Tick Borne Dis 2016; 7:865-868. [PMID: 27150591 DOI: 10.1016/j.ttbdis.2016.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 04/07/2016] [Accepted: 04/07/2016] [Indexed: 10/22/2022]
Abstract
The geographical origin and radiation of holarctica-type tularemia, which has spread across the northern hemisphere, is open to scientific debate. Here, through phylogenetics, we show that five Tibetan Francisella tularensis isolates subsp. holarctica cluster between basal-positioned Japanese isolates and all other subspecies strains in the world, providing evidence for a previously unknown intermediate lineage next to the Japanese isolates. Importantly, identification of this new intermediate lineage complements current knowledge of tularemia epidemiology, supporting a geographical origin and radiation of the subsp. holarctica in Asia. In addition, thirteen Tibetan isolates belonging to a clade previously found only in North America and Scandinavia, further increases the diversity of holarctica strains in Asia. In summary, this study provides evidence for an Asian origin and radiation of holarctica-type tularemia.
Collapse
Affiliation(s)
- Yongfeng Lu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yonghui Yu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Le Feng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yanwei Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Jun He
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Hong Zhu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Qing Duan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.
| | - Lihua Song
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.
| |
Collapse
|
25
|
Karatuna O, Celebi B, Can S, Akyar I, Kilic S. The use of Matrix-assisted laser desorption ionization-time of flight mass spectrometry in the identification of Francisella tularensis. Bosn J Basic Med Sci 2016; 16:132-8. [PMID: 26773181 PMCID: PMC4852995 DOI: 10.17305/bjbms.2016.894] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 12/21/2015] [Accepted: 12/21/2015] [Indexed: 11/16/2022] Open
Abstract
Francisella tularensis is the cause of the zoonotic disease tularemia and is classified among highly pathogenic bacteria (HPB) due to its low infection dose and potential for airborne transmission. In the case of HBP, there is a pressing need for rapid, accurate and reliable identification. Phenotypic identification of Francisella species is inappropriate for clinical microbiology laboratories because it is time-consuming, hazardous and subject to variable interpretation. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) was recently evaluated as a useful tool for the rapid identification of a variety of microorganisms. In this study, we evaluated the use of MALDI-TOF MS for the rapid identification of Francisella tularensis and differentiation of its subspecies. Using national collection of Francisella isolates from the National Tularemia Reference Laboratory (Public Health Institution of Turkey, Ankara), a total of 75 clinical isolates were investigated by species and subspecies-specific polymerase chain reaction (PCR) test and MALDI-TOF MS. All isolates were originally identified as F. tularensis subsp. holarctica according to region of difference 1 (RD1) subspecies-specific PCR results. For all isolates MALDI-TOF MS provided results in concordance with subspecies-specific PCR analysis. Although PCR-based methods are effective in identifying Francisella species, they are labor-intensive and take longer periods of time to obtain the results when compared with MALDI-TOF MS. MALDI-TOF MS appeared to be a rapid, reliable and cost-effective identification technique for Francisella spp. Shorter analysis time and low cost make this an appealing new option in microbiology laboratories.
Collapse
Affiliation(s)
- Onur Karatuna
- Department of Medical Microbiology, Acibadem University School of Medicine, Icerenkoy Mh, Istanbul, Turkey.
| | | | | | | | | |
Collapse
|
26
|
Walters KA, Olsufka R, Kuestner RE, Wu X, Wang K, Skerrett SJ, Ozinsky A. Prior infection with Type A Francisella tularensis antagonizes the pulmonary transcriptional response to an aerosolized Toll-like receptor 4 agonist. BMC Genomics 2015; 16:874. [PMID: 26510639 PMCID: PMC4625460 DOI: 10.1186/s12864-015-2022-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 10/07/2015] [Indexed: 12/21/2022] Open
Abstract
Background Francisella infection attenuates immune cell infiltration and expression of selected pro-inflammatory cytokines in response to endogenous LPS, suggesting the bacteria is actively antagonizing at least some part of the response to Toll-like receptor 4 (TLR4) engagement. The ability of different Francisella strains to inhibit the ability of E. coli LPS to induce a pulmonary inflammatory response, as measured by gene expression profiling, was examined to define the scope of modulation and identify of inflammatory genes/pathways that are specifically antagonized by a virulent F. tularensis infection. Results Prior aerosol exposure to F. tularensis subsp. tularensis, but not the live attenuated strain (LVS) of F. tularensis subsp. holarctica or F. novicida, significantly antagonized the transcriptional response in the lungs of infected mice exposed to aerosolized E. coli LPS. The response to E. coli LPS was not completely inhibited, suggesting that the bacteria is targeting further downstream of the TLR4 molecule. Analysis of the promotors of LPS-responsive genes that were perturbed by Type A Francisella infection identified candidate transcription factors that were potentially modulated by the bacteria, including multiple members of the forkhead transcription factor family (FoxA1, Foxa2, FoxD1, Foxd3, Foxf2, FoxI1, Fox03, Foxq1), IRF1, CEBPA, and Mef2. The annotated functional roles of the affected genes suggested that virulent Francisella infection suppressed cellular processes including mRNA processing, antiviral responses, intracellular trafficking, and regulation of the actin cytoskeleton. Surprisingly, despite the broad overall suppression of LPS-induced genes by virulent Francisella, and contrary to what was anticipated from prior studies, Type A Francisella did not inhibit the expression of the majority of LPS-induced cytokines, nor the expression of many classic annotated inflammatory genes. Conclusions Collectively, this analysis demonstrates clear differences in the ability of different Francisella strains to modulate TLR4 signaling and identifies genes/pathways that are specifically targeted by virulent Type A Francisella. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2022-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Rachael Olsufka
- Division of Pulmonary and Critical Care Medicine, University of Washington, Seattle, WA, 98104, USA.
| | - Rolf E Kuestner
- Institute for Systems Biology, 401 Terry Ave. N, Seattle, WA, 98109, USA.
| | - Xiagang Wu
- Institute for Systems Biology, 401 Terry Ave. N, Seattle, WA, 98109, USA.
| | - Kai Wang
- Institute for Systems Biology, 401 Terry Ave. N, Seattle, WA, 98109, USA.
| | - Shawn J Skerrett
- Division of Pulmonary and Critical Care Medicine, University of Washington, Seattle, WA, 98104, USA.
| | - Adrian Ozinsky
- Institute for Systems Biology, 401 Terry Ave. N, Seattle, WA, 98109, USA.
| |
Collapse
|
27
|
Tezer H, Ozkaya-Parlakay A, Aykan H, Erkocoglu M, Gülhan B, Demir A, Kanik-Yuksek S, Tapisiz A, Polat M, Kara S, Devrim I, Kilic S. Tularemia in children, Turkey, September 2009-November 2012. Emerg Infect Dis 2015; 21:1-7. [PMID: 25529639 PMCID: PMC4285238 DOI: 10.3201/eid2101.131127] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Tularemia, a zoonotic disease caused by Francisella tularensis, is found throughout most of the Northern Hemisphere. It is not well known and is often misdiagnosed in children. Our aim with this study was to evaluate the diagnosis, treatment, and prognosis for 100 children with tularemia in Turkey. The mean patient age was 10.1 ± 3.5 years (range 3-18 years), and most (63%) patients were male. The most common physical signs and laboratory findings were cervical lymphadenopathy (92%) and elevated erythrocyte sedimentation rate (89%). Treatment response was higher and rate of relapse lower for children 5-10 years of age than for those in other age groups. Associated with treatment failure were female sex, treatment delay of ≥16 days, and use of doxycycline. Tularemia is endemic to Turkey, and the number of cases has been increasing among children as well as adults.
Collapse
|
28
|
Giles T, Yon L, de Bree F, Bossers A, Hannant D, Barrow P, Abu-Median AB. Development of a DNA-based microarray for the detection of zoonotic pathogens in rodent species. Mol Cell Probes 2015; 29:427-437. [PMID: 26188129 PMCID: PMC7127396 DOI: 10.1016/j.mcp.2015.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 07/14/2015] [Accepted: 07/14/2015] [Indexed: 11/30/2022]
Abstract
The demand for diagnostic tools that allow simultaneous screening of samples for multiple pathogens is increasing because they overcome the limitations of other methods, which can only screen for a single or a few pathogens at a time. Microarrays offer the advantages of being capable to test a large number of samples simultaneously, screening for multiple pathogen types per sample and having comparable sensitivity to existing methods such as PCR. Array design is often considered the most important process in any microarray experiment and can be the deciding factor in the success of a study. There are currently no microarrays for simultaneous detection of rodent-borne pathogens. The aim of this report is to explicate the design, development and evaluation of a microarray platform for use as a screening tool that combines ease of use and rapid identification of a number of rodent-borne pathogens of zoonotic importance. Nucleic acid was amplified by multiplex biotinylation PCR prior to hybridisation onto microarrays. The array sensitivity was comparable to standard PCR, though less sensitive than real-time PCR. The array presented here is a prototype microarray identification system for zoonotic pathogens that can infect rodent species. We have developed a microarray to detect zoonotic pathogens in rodent species. The design stage of a microarray experiment is crucial for a successful experiment. We examined the difference between amplification methods prior to hybridisation.
Collapse
Affiliation(s)
- Timothy Giles
- University of Nottingham, Nottingham, United Kingdom.
| | - Lisa Yon
- University of Nottingham, Nottingham, United Kingdom.
| | | | | | | | - Paul Barrow
- University of Nottingham, Nottingham, United Kingdom.
| | | |
Collapse
|
29
|
Karadenizli A, Forsman M, Şimşek H, Taner M, Öhrman C, Myrtennäs K, Lärkeryd A, Johansson A, Özdemir L, Sjödin A. Genomic analyses of Francisella tularensis strains confirm disease transmission from drinking water sources, Turkey, 2008, 2009 and 2012. ACTA ACUST UNITED AC 2015; 20. [PMID: 26062561 DOI: 10.2807/1560-7917.es2015.20.21.21136] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Waterborne epidemics of tularaemia caused by Francisella tularensis are increasingly reported in Turkey. We have used whole genome sequencing to investigate if F. tularensis isolated from patients could be traced back to drinking water sources. Tonsil swabs from 33 patients diagnosed with oropharyngeal tularaemia in three outbreaks and 140 water specimens were analysed. F. tularensis subsp. holarctica was confirmed by microagglutination and PCR in 12 patients and five water specimens. Genomic analysis of three pairs of patient and water isolates from outbreaks in Sivas, Çorum, and Kocaeli showed the isolates to belong to two new clusters of the F. tularensis B.12 genetic clade. The clusters were defined by 19 and 15 single nucleotide polymorphisms (SNPs) in a multiple alignment based on 507 F. tularensis genomes. One synonymous SNP was chosen as a new canonical SNP (canSNP) for each cluster for future use in diagnostic assays. No SNP was identified between the genomes from the patient–water pair of isolates from Kocaeli, one SNP between the pair of isolates from Sivas, whereas the pair from Çorum differed at seven SNPs. These results illustrate the power of whole genome sequencing for tracing F. tularensis patient isolates back to their environmental source.
Collapse
Affiliation(s)
- A Karadenizli
- Department of Medical Microbiology, Kocaeli University, Kocaeli, Turkey
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Evolution and population genomics of the Lyme borreliosis pathogen, Borrelia burgdorferi. Trends Genet 2015; 31:201-7. [PMID: 25765920 DOI: 10.1016/j.tig.2015.02.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 02/12/2015] [Accepted: 02/13/2015] [Indexed: 11/22/2022]
Abstract
Population genomic studies have the potential to address many unresolved questions about microbial pathogens by facilitating the identification of genes underlying ecologically important traits, such as novel virulence factors and adaptations to humans or other host species. Additionally, this framework improves estimations of population demography and evolutionary history to accurately reconstruct recent epidemics and identify the molecular and environmental factors that resulted in the outbreak. The Lyme disease bacterium, Borrelia burgdorferi, exemplifies the power and promise of the application of population genomics to microbial pathogens. We discuss here the future of evolutionary studies in B. burgdorferi, focusing on the primary evolutionary forces of horizontal gene transfer, natural selection, and migration, as investigations transition from analyses of single genes to genomes.
Collapse
|
31
|
Lamont EA, Wang P, Enomoto S, Borewicz K, Abdallah A, Isaacson RE, Sreevatsan S. A combined enrichment and aptamer pulldown assay for Francisella tularensis detection in food and environmental matrices. PLoS One 2014; 9:e114622. [PMID: 25536105 PMCID: PMC4275185 DOI: 10.1371/journal.pone.0114622] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 11/11/2014] [Indexed: 11/18/2022] Open
Abstract
Francisella tularensis, a Gram-negative bacterium and causative agent of tularemia, is categorized as a Class A select agent by the Centers for Disease Control and Prevention due to its ease of dissemination and ability to cause disease. Oropharyngeal and gastrointestinal tularemia may occur due to ingestion of contaminated food and water. Despite the concern to public health, little research is focused on F. tularensis detection in food and environmental matrices. Current diagnostics rely on host responses and amplification of F. tularensis genetic elements via Polymerase Chain Reaction; however, both tools are limited by development of an antibody response and limit of detection, respectively. During our investigation to develop an improved culture medium to aid F. tularensis diagnostics, we found enhanced F. tularensis growth using the spent culture filtrate. Addition of the spent culture filtrate allowed for increased detection of F. tularensis in mixed cultures of food and environmental matrices. Ultraperformance liquid chromatography (UPLC)/MS analysis identified several unique chemicals within the spent culture supernatant of which carnosine had a matching m/z ratio. Addition of 0.625 mg/mL of carnosine to conventional F. tularensis medium increased the growth of F. tularensis at low inoculums. In order to further enrich F. tularensis cells, we developed a DNA aptamer cocktail to physically separate F. tularensis from other bacteria present in food and environmental matrices. The combined enrichment steps resulted in a detection range of 1-106 CFU/mL (starting inoculums) in both soil and lettuce backgrounds. We propose that the two-step enrichment process may be utilized for easy field diagnostics and subtyping of suspected F. tularensis contamination as well as a tool to aid in basic research of F. tularensis ecology.
Collapse
Affiliation(s)
- Elise A. Lamont
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Ping Wang
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Shinichiro Enomoto
- Department of Biology, University of Utah, Salt Lake City, Utah, United States of America
| | - Klaudyna Borewicz
- Molecular Ecology Group, Wageningen University, Dreijenplen 10, 6703HB, Wageningen, Netherlands
| | - Ahmed Abdallah
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Richard E. Isaacson
- Department of Veterinary Biomedical Sciences, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Srinand Sreevatsan
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota, United States of America
- Department of Veterinary Biomedical Sciences, University of Minnesota, St. Paul, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
32
|
Ariza-Miguel J, Johansson A, Fernández-Natal MI, Martínez-Nistal C, Orduña A, Rodríguez-Ferri EF, Hernández M, Rodríguez-Lázaro D. Molecular investigation of tularemia outbreaks, Spain, 1997-2008. Emerg Infect Dis 2014; 20:754-61. [PMID: 24750848 PMCID: PMC4012790 DOI: 10.3201/eid2005.130654] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Tularemia outbreaks occurred in northwestern Spain in 1997-1998 and 2007-2008 and affected >1,000 persons. We assessed isolates involved in these outbreaks by using pulsed-field gel electrophoresis with 2 restriction enzymes and multilocus variable number tandem repeat analysis of 16 genomic loci of Francisella tularensis, the cause of this disease. Isolates were divided into 3 pulsotypes by pulsed-field gel electrophoresis and 8 allelic profiles by multilocus variable number tandem repeat analysis. Isolates obtained from the second tularemia outbreak had the same genotypes as isolates obtained from the first outbreak. Both outbreaks were caused by genotypes of genetic subclade B.Br:FTNF002-00, which is widely distributed in countries in central and western Europe. Thus, reemergence of tularemia in Spain was not caused by the reintroduction of exotic strains, but probably by persistence of local reservoirs of infection.
Collapse
|
33
|
Fournier PE, Dubourg G, Raoult D. Clinical detection and characterization of bacterial pathogens in the genomics era. Genome Med 2014; 6:114. [PMID: 25593594 PMCID: PMC4295418 DOI: 10.1186/s13073-014-0114-2] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The availability of genome sequences obtained using next-generation sequencing (NGS) has revolutionized the field of infectious diseases. Indeed, more than 38,000 bacterial and 5,000 viral genomes have been sequenced to date, including representatives of all significant human pathogens. These tremendous amounts of data have not only enabled advances in fundamental biology, helping to understand the pathogenesis of microorganisms and their genomic evolution, but have also had implications for clinical microbiology. Here, we first review the current achievements of genomics in the development of improved diagnostic tools, including those that are now available in the clinic, such as the design of PCR assays for the detection of microbial pathogens, virulence factors or antibiotic-resistance determinants, or the design of optimized culture media for 'unculturable' pathogens. We then review the applications of genomics to the investigation of outbreaks, either through the design of genotyping assays or the direct sequencing of the causative strains. Finally, we discuss how genomics might change clinical microbiology in the future.
Collapse
Affiliation(s)
- Pierre-Edouard Fournier
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UM63, CNRS7278, IRD198, InsermU1095, Institut hospitalo-universitaire Méditerranée-Infection, Aix-Marseille University, Faculté de Medecine, 27 Blvd Jean Moulin, Marseille, 13385, cedex 5 France
| | - Gregory Dubourg
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UM63, CNRS7278, IRD198, InsermU1095, Institut hospitalo-universitaire Méditerranée-Infection, Aix-Marseille University, Faculté de Medecine, 27 Blvd Jean Moulin, Marseille, 13385, cedex 5 France
| | - Didier Raoult
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UM63, CNRS7278, IRD198, InsermU1095, Institut hospitalo-universitaire Méditerranée-Infection, Aix-Marseille University, Faculté de Medecine, 27 Blvd Jean Moulin, Marseille, 13385, cedex 5 France
| |
Collapse
|
34
|
Wahab T, Birdsell DN, Hjertqvist M, Mitchell CL, Wagner DM, Keim PS, Hedenström I, Löfdahl S. Insights to genetic characterization tools for epidemiological tracking of Francisella tularensis in Sweden. PLoS One 2014; 9:e112167. [PMID: 25401326 PMCID: PMC4234373 DOI: 10.1371/journal.pone.0112167] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 09/29/2014] [Indexed: 11/19/2022] Open
Abstract
Tularaemia, caused by the bacterium Francisella tularensis, is endemic in Sweden and is poorly understood. The aim of this study was to evaluate the effectiveness of three different genetic typing systems to link a genetic type to the source and place of tularemia infection in Sweden. Canonical single nucleotide polymorphisms (canSNPs), MLVA including five variable number of tandem repeat loci and PmeI-PFGE were tested on 127 F. tularensis positive specimens collected from Swedish case-patients. All three typing methods identified two major genetic groups with near-perfect agreement. Higher genetic resolution was obtained with canSNP and MLVA compared to PFGE; F. tularensis samples were first assigned into ten phylogroups based on canSNPs followed by 33 unique MLVA types. Phylogroups were geographically analysed to reveal complex phylogeographic patterns in Sweden. The extensive phylogenetic diversity found within individual counties posed a challenge to linking specific genetic types with specific geographic locations. Despite this, a single phylogroup (B.22), defined by a SNP marker specific to a lone Swedish sequenced strain, did link genetic type with a likely geographic place. This result suggests that SNP markers, highly specific to a particular reference genome, may be found most frequently among samples recovered from the same location where the reference genome originated. This insight compels us to consider whole-genome sequencing (WGS) as the appropriate tool for effectively linking specific genetic type to geography. Comparing the WGS of an unknown sample to WGS databases of archived Swedish strains maximizes the likelihood of revealing those rare geographically informative SNPs.
Collapse
Affiliation(s)
- Tara Wahab
- Public Health Agency of Sweden, Department of Microbiology, Stockholm, Sweden
| | - Dawn N. Birdsell
- Northern Arizona University, Center for Microbial Genetics and Genomics, Flagstaff, AZ, United States of America
| | - Marika Hjertqvist
- Public Health Agency of Sweden, Department of Microbiology, Stockholm, Sweden
| | - Cedar L. Mitchell
- Northern Arizona University, Center for Microbial Genetics and Genomics, Flagstaff, AZ, United States of America
| | - David M. Wagner
- Northern Arizona University, Center for Microbial Genetics and Genomics, Flagstaff, AZ, United States of America
| | - Paul S. Keim
- Northern Arizona University, Center for Microbial Genetics and Genomics, Flagstaff, AZ, United States of America
| | - Ingela Hedenström
- Public Health Agency of Sweden, Department of Microbiology, Stockholm, Sweden
| | - Sven Löfdahl
- Public Health Agency of Sweden, Department of Microbiology, Stockholm, Sweden
| |
Collapse
|
35
|
TaqMan real-time PCR assays for single-nucleotide polymorphisms which identify Francisella tularensis and its subspecies and subpopulations. PLoS One 2014; 9:e107964. [PMID: 25238067 PMCID: PMC4169575 DOI: 10.1371/journal.pone.0107964] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 08/18/2014] [Indexed: 01/01/2023] Open
Abstract
Francisella tularensis, the etiologic agent of tularemia and a Class A Select Agent, is divided into three subspecies and multiple subpopulations that differ in virulence and geographic distribution. Given these differences, there is a need to rapidly and accurately determine if a strain is F. tularensis and, if it is, assign it to subspecies and subpopulation. We designed TaqMan real-time PCR genotyping assays using eleven single nucleotide polymorphisms (SNPs) that were potentially specific to closely related groups within the genus Francisella, including numerous subpopulations within F. tularensis species. We performed extensive validation studies to test the specificity of these SNPs to particular populations by screening the assays across a set of 565 genetically and geographically diverse F. tularensis isolates and an additional 21 genetic near-neighbor (outgroup) isolates. All eleven assays correctly determined the genetic groups of all 565 F. tularensis isolates. One assay differentiates F. tularensis, F. novicida, and F. hispaniensis from the more genetically distant F. philomiragia and Francisella-like endosymbionts. Another assay differentiates F. tularensis isolates from near neighbors. The remaining nine assays classify F. tularensis-confirmed isolates into F. tularensis subspecies and subpopulations. The genotyping accuracy of these nine assays diminished when tested on outgroup isolates (i.e. non F. tularensis), therefore a hierarchical approach of assay usage is recommended wherein the F. tularensis-specific assay is used before the nine downstream assays. Among F. tularensis isolates, all eleven assays were highly sensitive, consistently amplifying very low concentrations of DNA. Altogether, these eleven TaqMan real-time PCR assays represent a highly accurate, rapid, and sensitive means of identifying the species, subspecies, and subpopulation of any F. tularensis isolate if used in a step-wise hierarchical scheme. These assays would be very useful in clinical, epidemiological, and/or forensic investigations involving F. tularensis.
Collapse
|
36
|
Ozer EA, Allen JP, Hauser AR. Characterization of the core and accessory genomes of Pseudomonas aeruginosa using bioinformatic tools Spine and AGEnt. BMC Genomics 2014; 15:737. [PMID: 25168460 PMCID: PMC4155085 DOI: 10.1186/1471-2164-15-737] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 08/22/2014] [Indexed: 12/11/2022] Open
Abstract
Background Pseudomonas aeruginosa is an important opportunistic pathogen responsible for many infections in hospitalized and immunocompromised patients. Previous reports estimated that approximately 10% of its 6.6 Mbp genome varies from strain to strain and is therefore referred to as “accessory genome”. Elements within the accessory genome of P. aeruginosa have been associated with differences in virulence and antibiotic resistance. As whole genome sequencing of bacterial strains becomes more widespread and cost-effective, methods to quickly and reliably identify accessory genomic elements in newly sequenced P. aeruginosa genomes will be needed. Results We developed a bioinformatic method for identifying the accessory genome of P. aeruginosa. First, the core genome was determined based on sequence conserved among the completed genomes of twelve reference strains using Spine, a software program developed for this purpose. The core genome was 5.84 Mbp in size and contained 5,316 coding sequences. We then developed an in silico genome subtraction program named AGEnt to filter out core genomic sequences from P. aeruginosa whole genomes to identify accessory genomic sequences of these reference strains. This analysis determined that the accessory genome of P. aeruginosa ranged from 6.9-18.0% of the total genome, was enriched for genes associated with mobile elements, and was comprised of a majority of genes with unknown or unclear function. Using these genomes, we showed that AGEnt performed well compared to other publically available programs designed to detect accessory genomic elements. We then demonstrated the utility of the AGEnt program by applying it to the draft genomes of two previously unsequenced P. aeruginosa strains, PA99 and PA103. Conclusions The P. aeruginosa genome is rich in accessory genetic material. The AGEnt program accurately identified the accessory genomes of newly sequenced P. aeruginosa strains, even when draft genomes were used. As P. aeruginosa genomes become available at an increasingly rapid pace, this program will be useful in cataloging the expanding accessory genome of this bacterium and in discerning correlations between phenotype and accessory genome makeup. The combination of Spine and AGEnt should be useful in defining the accessory genomes of other bacterial species as well. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-737) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Egon A Ozer
- Department of Medicine, Division of Infectious Diseases, Northwestern University, 645 North Michigan Avenue, Suite 900, Chicago, IL 60611, USA.
| | | | | |
Collapse
|
37
|
Origgi FC, Frey J, Pilo P. Characterisation of a new group of Francisella tularensis subsp. holarctica in Switzerland with altered antimicrobial susceptibilities, 1996 to 2013. ACTA ACUST UNITED AC 2014; 19. [PMID: 25080140 DOI: 10.2807/1560-7917.es2014.19.29.20858] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Molecular analysis of Francisella tularensis subsp. holarctica isolates from humans and animals revealed the presence of two subgroups belonging to the phylogenetic groups B.FTNF002-00 and B.13 in Switzerland. This finding suggests a broader spread of this group in Europe than previously reported. Until recently, only strains belonging to the Western European cluster (group B.FTNF002-00) had been isolated from tularaemia cases in Switzerland. The endemic strains belonging to group B.FTNF002-00 are sensitive to erythromycin, in contrast to the strains of the newly detected group B.13 that are resistant to this antibiotic. All the strains tested were susceptible to ciprofloxacin, streptomycin, gentamicin, nalidixic acid and chloramphenicol but showed reduced susceptibility to tetracycline when tested in a growth medium supplemented with divalent cations. The data show a previously undetected spread of group B.13 westwards in Europe, associated with changes in the antibiotic resistance profile relevant to treatment of tularaemia.
Collapse
Affiliation(s)
- F C Origgi
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | | | | |
Collapse
|
38
|
Identification of mechanisms for attenuation of the FSC043 mutant of Francisella tularensis SCHU S4. Infect Immun 2014; 82:3622-35. [PMID: 24935978 DOI: 10.1128/iai.01406-13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Previously, we identified a spontaneous, essentially avirulent mutant, FSC043, of the highly virulent strain SCHU S4 of Francisella tularensis subsp. tularensis. We have now characterized the phenotype of the mutant and the mechanisms of its attenuation in more detail. Genetic and proteomic analyses revealed that the pdpE gene and most of the pdpC gene were very markedly downregulated and, as previously demonstrated, that the strain expressed partially deleted and fused fupA and fupB genes. FSC043 showed minimal intracellular replication and induced no cell cytotoxicity. The mutant showed delayed phagosomal escape; at 18 h, colocalization with LAMP-1 was 80%, indicating phagosomal localization, whereas the corresponding percentages for SCHU S4 and the ΔfupA mutant were <10%. However, a small subset of the FSC043-infected cells contained up to 100 bacteria with LAMP-1 colocalization of around 30%. The unusual intracellular phenotype was similar to that of the ΔpdpC and ΔpdpC ΔpdpE mutants. Complementation of FSC043 with the intact fupA and fupB genes did not affect the phenotype, whereas complementation with the pdpC and pdpE genes restored intracellular replication and led to marked virulence. Even higher virulence was observed after complementation with both double-gene constructs. After immunization with the FSC043 strain, moderate protection against respiratory challenge with the SCHU S4 strain was observed. In summary, FSC043 showed a highly unusual intracellular phenotype, and based on our findings, we hypothesize that the mutation in the pdpC gene makes an essential contribution to the phenotype.
Collapse
|
39
|
Adcock NJ, Morris BJ, Rice EW. Acid resistance in Francisella tularensis. Microbiologyopen 2014; 3:133-8. [PMID: 24399669 PMCID: PMC3937736 DOI: 10.1002/mbo3.151] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 11/04/2013] [Accepted: 11/18/2013] [Indexed: 01/26/2023] Open
Abstract
Francisella tularensis, the etiologic agent of tularemia, can survive under acidic conditions. Tularemia can be acquired by several routes, including by ingestion of contaminated food or water. While acid resistance is usually associated with a low oral infective dose (ID), the ID for gastrointestinal illness is quite high. In this study, four strains of F. tularensis ssp. tularensis (type A) and four strains of F. tularensis ssp. holarctica (type B) were examined for innate acid resistance and the ability to survive in synthetic gastric fluid (SGF) under in vitro conditions similar to passage through the human stomach. Survival for all strains was significantly less in pH 2.5 SGF than in pH 2.5 phosphate-buffered saline and pH 4.0 SGF. Attenuated strains were consistently less resistant. Type B strains are most often associated with waterborne outbreaks and were examined after storage in natural water. Low-nutrient preadaptation resulted in increased resistance. Although F. tularensis can persist under certain acidic conditions, it is sensitive to conditions replicating the fasting human stomach. This may help explain the high ID required for gastrointestinal infections.
Collapse
Affiliation(s)
| | | | - Eugene W Rice
- U.S. Environmental Protection AgencyCincinnati, Ohio
| |
Collapse
|
40
|
Ramakrishnan G, Sen B. The FupA/B protein uniquely facilitates transport of ferrous iron and siderophore-associated ferric iron across the outer membrane of Francisella tularensis live vaccine strain. MICROBIOLOGY-SGM 2013; 160:446-457. [PMID: 24307666 DOI: 10.1099/mic.0.072835-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Francisella tularensis is a highly infectious Gram-negative pathogen that replicates intracellularly within the mammalian host. One of the factors associated with virulence of F. tularensis is the protein FupA that mediates high-affinity transport of ferrous iron across the outer membrane. Together with its paralogue FslE, a siderophore-ferric iron transporter, FupA supports survival of the pathogen in the host by providing access to the essential nutrient iron. The FupA orthologue in the attenuated live vaccine strain (LVS) is encoded by the hybrid gene fupA/B, the product of an intergenic recombination event that significantly contributes to attenuation of the strain. We used (55)Fe transport assays with mutant strains complemented with the different paralogues to show that the FupA/B protein of LVS retains the capacity for high-affinity transport of ferrous iron, albeit less efficiently than FupA of virulent strain Schu S4. (55)Fe transport assays using purified siderophore and siderophore-dependent growth assays on iron-limiting agar confirmed previous findings that FupA/B also contributes to siderophore-mediated ferric iron uptake. These assays further demonstrated that the LVS FslE protein is a weaker siderophore-ferric iron transporter than the orthologue from Schu S4, and may be a result of the sequence variation between the two proteins. Our results indicate that iron-uptake mechanisms in LVS differ from those in Schu S4 and that functional differences in the outer membrane iron transporters have distinct effects on growth under iron limitation.
Collapse
Affiliation(s)
- Girija Ramakrishnan
- Department of Medicine, Division of Infectious Disease and International Health, University of Virginia, Charlottesville, VA 22901, USA
| | - Bhaswati Sen
- Department of Medicine, Division of Infectious Disease and International Health, University of Virginia, Charlottesville, VA 22901, USA
| |
Collapse
|
41
|
Origgi FC, Wu N, Pilo P. Francisella tularensis infection in a stone marten (Martes foina) without classic pathological lesions consistent with tularemia. J Vet Diagn Invest 2013; 25:519-21. [PMID: 23674461 DOI: 10.1177/1040638713489124] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The current report describes the isolation and typing of a strain of Francisella tularensis, the causative agent of tularemia, from the spleen of a stone marten (Martes foina) showing no classic lesions consistent with the disease. The identification of this bacterium, belonging to the World Health Organization risk 3 category and considered to have a low infectious dose, could be performed only because of an ongoing project screening F. tularensis in the environment sensu lato. The findings described herein should alert diagnostic laboratories of the possible presence of F. tularensis in clinical samples in countries where tularemia is endemic even in cases with no consistent anamnesis and from unsuspected animal species.
Collapse
Affiliation(s)
- Francesco C Origgi
- Institute for Veterinary Bacteriology, Vetsuisse Faculty, Bern, Switzerland
| | | | | |
Collapse
|
42
|
Sammak RL, Rejmanek DD, Roth TM, Christe KL, Chomel BB, Foley JE. Investigation of tularemia outbreak after natural infection of outdoor-housed rhesus macaques (Macaca mulatta) with Francisella tularensis. Comp Med 2013; 63:183-190. [PMID: 23582425 PMCID: PMC3625059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 11/20/2012] [Accepted: 11/27/2012] [Indexed: 06/02/2023]
Abstract
In the summer and fall of 2010, a series of outdoor-housed rhesus macaques were diagnosed with tularemia. PCR analysis or positive culture confirmed 11 cases, and 9 additional animals with similar clinical signs responded to empiric antibiotic treatment. A serosurvey conducted in the 9 mo after the outbreak found 53% (43 of 81 macaques) seropositivity in the southern outdoor colony, which had an average population of 700 animals. A prospective survey of small mammal reservoirs and arthropod vectors was conducted during the late summer and fall of 2011. PCR analyses of tissues from all 135 mice, 18 ground squirrels, 1 rat, 3 raccoons, 2 cats, and 3 jackrabbits and their fleas were negative for DNA of Francisella tularensis. Conventional PCR evaluation of stored DNA from affected macaques identified the causative organism as F. tularensis subsp. holartica. DNA evaluated from historic cases of tularemia in nonhuman primates confirmed that the organism that infected the colony during the late 1980s likewise was F. tularensis subsp. holartica. The macaque tularemia epizootic of 2010 appears to have been an extreme example of the periodic resurgence of tularemia. No evidence of rodent disease was found in the immediate vicinity during the 2011 interepizootic period. The concurrent widespread seropositivity (53%) and low incidence of clinical disease (2.7%) in 2010 suggests that this strain of Francisella has low pathogenicity in macaques.
Collapse
Affiliation(s)
- Rebecca L Sammak
- California National Primate Research Center, University of California, Davis, California, USA.
| | | | | | | | | | | |
Collapse
|
43
|
Mohapatra NP, Soni S, Rajaram MVS, Strandberg KL, Gunn JS. Type A Francisella tularensis acid phosphatases contribute to pathogenesis. PLoS One 2013; 8:e56834. [PMID: 23457625 PMCID: PMC3574111 DOI: 10.1371/journal.pone.0056834] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Accepted: 01/15/2013] [Indexed: 12/02/2022] Open
Abstract
Different Francisella spp. produce five or six predicted acid phosphatases (AcpA, AcpB, AcpC, AcpD, HapA and HapB). The genes encoding the histidine acid phosphatases (hapA, hapB) and acpD of F. tularensis subsp. Schu S4 strain are truncated or disrupted. However, deletion of HapA (FTT1064) in F. tularensis Schu S4 resulted in a 33% reduction in acid phosphatase activity and loss of the four functional acid phosphatases in F. tularensis Schu S4 (ΔABCH) resulted in a>99% reduction in acid phosphatase activity compared to the wild type strain. All single, double and triple mutants tested, demonstrated a moderate decrease in mouse virulence and survival and growth within human and murine phagocytes, whereas the ΔABCH mutant showed >3.5-fold decrease in intramacrophage survival and 100% attenuation of virulence in mouse. While the Schu S4 ΔABCH strain was attenuated in the mouse model, it showed only limited protection against wild type challenge. F. tularensis Schu S4 failed to stimulate reactive oxygen species production in phagocytes, whereas infection by the ΔABCH strain stimulated 5- and 56-fold increase in reactive oxygen species production in neutrophils and human monocyte-derived macrophages, respectively. The ΔABCH mutant but not the wild type strain strongly co-localized with p47phox and replicated in macrophages isolated from p47phox knockout mice. Thus, F. tularensis Schu S4 acid phosphatases, including the truncated HapA, play a major role in intramacrophage survival and virulence of this human pathogen.
Collapse
Affiliation(s)
- Nrusingh P. Mohapatra
- Department of Microbial Infection and Immunity, Center for Microbial Interface Biology, The Ohio State University, Columbus, Ohio, United States of America
| | - Shilpa Soni
- Department of Microbial Infection and Immunity, Center for Microbial Interface Biology, The Ohio State University, Columbus, Ohio, United States of America
| | - Murugesan V. S. Rajaram
- Department of Microbial Infection and Immunity, Center for Microbial Interface Biology, The Ohio State University, Columbus, Ohio, United States of America
| | - Kristi L. Strandberg
- Department of Microbial Infection and Immunity, Center for Microbial Interface Biology, The Ohio State University, Columbus, Ohio, United States of America
| | - John S. Gunn
- Department of Microbial Infection and Immunity, Center for Microbial Interface Biology, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
44
|
Jackson J, McGregor A, Cooley L, Ng J, Brown M, Ong CW, Darcy C, Sintchenko V. Francisella tularensis subspecies holarctica, Tasmania, Australia, 2011. Emerg Infect Dis 2013; 18:1484-6. [PMID: 22931809 PMCID: PMC3437722 DOI: 10.3201/eid1809.111856] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We report a case of ulceroglandular tularemia that developed in a woman after she was bitten by a ringtail possum (Pseudocheirus peregrinus) in a forest in Tasmania, Australia. Francisella tularensis subspecies holarctica was identified. This case indicates the emergence of F. tularensis type B in the Southern Hemisphere.
Collapse
|
45
|
Kiliç S, Celebi B, Acar B, Ataş M. In vitro susceptibility of isolates of Francisella tularensis from Turkey. ACTA ACUST UNITED AC 2012; 45:337-41. [PMID: 23249114 DOI: 10.3109/00365548.2012.751125] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Tularemia is an infection caused by Francisella tularensis, which has a wide distribution in the northern hemisphere and diverse clinical manifestations. For decades, the drug of choice for the treatment of tularemia has been streptomycin, with tetracycline and chloramphenicol being used as alternatives. The purpose of the present study was to determine the in vitro antimicrobial susceptibility of a large panel of geographically diverse F. tularensis isolates from Turkey against traditional and newer antimicrobial agents. METHODS The antibiotic susceptibilities of 250 F. tularensis strains were examined using the Epsilometer test for 9 antimicrobial agents. Each isolate was identified by conventional and molecular techniques. RESULTS All the strains were confirmed biochemically and using a combination of species- and subspecies-specific polymerase chain reaction (PCR) assays to be F. tularensis subsp. holarctica. One isolate was assigned to F. tularensis subsp. holarctica biovar japonica based on erythromycin susceptibility, an ability to ferment glycerol, and the nucleotide sequence of the region of difference 1 (RD1). All strains were susceptible to aminoglycosides (streptomycin and gentamicin), tetracyclines (tetracycline and doxycycline), chloramphenicol, 2 fluoroquinolones (ciprofloxacin and levofloxacin), and rifampicin. In addition, all isolates except 1 had a minimal inhibitory concentration (MIC) for erythromycin of > 256 μg/ml. CONCLUSIONS Since the fluoroquinolones showed the lowest MIC values and have advantages such as excellent bioavailability and activity, availability of oral formulations, and lower toxicities, they represent candidate therapeutic options in the first-line treatment of tularemia. To the best of our knowledge, this is the first report of the presence of F. tularensis subsp. holarctica biovar japonica outside Japan.
Collapse
Affiliation(s)
- Selçuk Kiliç
- National Tularemia Reference Laboratory, Public Health Institution of Turkey, Ankara.
| | | | | | | |
Collapse
|
46
|
Gunnell MK, Lovelace CD, Satterfield BA, Moore EA, O’Neill KL, Robison RA. A multiplex real-time PCR assay for the detection and differentiation of Francisella tularensis subspecies. J Med Microbiol 2012; 61:1525-1531. [DOI: 10.1099/jmm.0.046631-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Mark K. Gunnell
- Microbiology Branch, Life Sciences Division, Dugway Proving Ground, Dugway, UT 84022, USA
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| | - Charity D. Lovelace
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| | - Benjamin A. Satterfield
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| | - Emily A. Moore
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| | - Kim L. O’Neill
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| | - Richard A. Robison
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
47
|
Detection of Francisella tularensis-specific antibodies in patients with tularemia by a novel competitive enzyme-linked immunosorbent assay. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 20:9-16. [PMID: 23114700 DOI: 10.1128/cvi.00516-12] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A novel competitive enzyme-linked immunosorbent assay (cELISA) was developed and evaluated for detection of antibodies against Francisella tularensis in humans. The assay is based on the ability of serum antibodies to inhibit the binding of monoclonal antibodies (MAbs) directed against F. tularensis lipopolysaccharide antigens. The assay was evaluated using serum samples of tularemia patients, inactivated F. tularensis-immunized rabbits, and F. tularensis-infected mice. Antibodies against F. tularensis were successfully detected in serum samples of tularemia patients as well as the immunized and infected animals. The cELISA method was compared to indirect ELISA (iELISA) and the commonly used microagglutination test (MA) using serum samples of 19 tularemia patients and 50 healthy individuals. The sensitivity and specificity of cELISA were 93.9 and 96.1%, respectively, in comparison to the iELISA. MA was less sensitive than cELISA with a sensitivity and specificity of only 81.8 and 98.0%, respectively. A high degree of correlation (R(2) = 0.8226) was observed between cELISA and iELISA results. The novel cELISA developed in this study appears to be highly sensitive and specific for serodiagnosis of human tularemia. The potential of the MAb-based cELISA to be used in both human and animal samples emphasizes its usefulness for serological survey of tularemia among multiple animal species.
Collapse
|
48
|
Bulut OC, Dyckhoff G, Splettstoesser W, Nemeth J, Klauschen F, Penzel R, Plinkert PK, Simon C, Weichert W, Stenzinger A. Unmasked: when a clinically malignant disease turns out infectious. A rare case of tularemia. Int J Surg Pathol 2012; 21:76-81. [PMID: 22674915 DOI: 10.1177/1066896912448424] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This article reports on a 62-year-old man, who presented with cervical mass and rather nonspecific symptoms. The medical history and clinical workup initially favored a malignant disease such as a carcinoma of unknown primary as the underlying cause. Eventually, the patient was diagnosed with a granulomatous lymphadenitis caused by Francisella tularensis subsp holarctica. Tularemia is a rare disease in Western Europe and can present in multiple ways encompassing almost asymptomatic infections and fatal disease. A rapid diagnosis is often hampered by nonspecific symptoms and the generally low prevalence and incidence of this disease in endemic countries. This case report also provides a comprehensive review of the literature on cervical tularemia and discusses the differential diagnoses.
Collapse
|
49
|
Wangen IH, Karlsbakk E, Einen ACB, Ottem KF, Nylund A, Mortensen S. Fate of Francisella noatunensis, a pathogen of Atlantic cod Gadus morhua, in blue mussels Mytilus edulis. DISEASES OF AQUATIC ORGANISMS 2012; 98:63-72. [PMID: 22422130 DOI: 10.3354/dao02427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Francisellosis, caused by the bacterium Francisella noatunensis, is one of the most severe diseases affecting farmed cod, and has caused great economic loss for the cod farming industry in Norway. We studied the fate of F. noatunensis in the marine environment, focusing on the role of blue mussels. In experimental challenges, waterborne F. noatunensis was rapidly filtered by the blue mussel and transported to the digestive diverticulae. The bacteria passed through the entire digestive system. Intraperitoneal injection of cod with suspensions prepared from faeces collected from challenged mussels resulted in the development of francisellosis in the recipients, demonstrating that some bacteria were alive and infective when shed in mussel faeces. Bacterial clearance from the mussels was relatively fast, and no evidence was found, suggesting that the bacterium is capable of persisting or multiplying in the mussel tissues. A cohabitation experiment with cod and mussels previously exposed to F. noatunensis did not lead to infection in cod. A direct transmission from contaminated mussels to cod was thus not demonstrated; however, faeces particles with infective bacteria may play a role in the transmission of the bacterium in marine food chains.
Collapse
|
50
|
Fournier PE, Raoult D. Prospects for the future using genomics and proteomics in clinical microbiology. Annu Rev Microbiol 2012; 65:169-88. [PMID: 21639792 DOI: 10.1146/annurev-micro-090110-102922] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The availability of genome sequences has revolutionized the fields of microbiology and infectious diseases. Indeed, more than 1,000 bacterial genomes and 3,000 viral genomes, including representatives of all significant human pathogens, have been sequenced to date. Owing to this tremendous amount of data, genomes are regarded as chimeras of sequence fragments from various origins. Coupled with novel proteomic analyses, genome sequencing has also resulted in unprecedented advances in pathogen diagnosis and genotyping and in the detection of virulence and antibiotic resistance. Herein, we review current achievements of genomics and proteomics and discuss potential developments for clinical microbiology laboratories.
Collapse
Affiliation(s)
- Pierre-Edouard Fournier
- Unité de Recherche sur les Maladies Infectieuses Tropicales et Emergentes, Université de la Méditerranée, Marseille Cedex 5, 13385 France.
| | | |
Collapse
|