1
|
Ulucesme MC, Ozubek S, Aktas M. Molecular Prevalence and Genetic Diversity Based on Msp1a Gene of Anaplasma ovis in Goats from Türkiye. Life (Basel) 2023; 13:life13051101. [PMID: 37240746 DOI: 10.3390/life13051101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/30/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Anaplasma ovis is a tick-borne obligated intraerythrocytic bacterium that infects domestic sheep, goats, and wild ruminants. Recently, several studies have been carried out using 16S rRNA and msp4 genes to identify the genetic diversity of A. ovis. Instead of these genes, which are known to be highly stable among heterologous strains, Msp1a, which is accepted as a stable molecular marker to classify A. marginale strains, was used in A. ovis genetic diversity studies. The genetic diversity of A. ovis strains according to the Msp1a gene has not been extensively reported. Therefore, the purpose of this study was to examine the genetic diversity of A. ovis in goats specifically using analysis of the Msp1a gene. Blood samples were taken from the vena jugularis to the EDTA tubes from 293 randomly selected goats (apparently healthy) in the Antalya and Mersin provinces of Mediterranean region of Türkiye. The Msp1a gene of A. ovis was amplified in all DNA samples through the use of PCR, using a specific set of primers named AoMsp1aF and AoMsp1aR. Among the amplified products, well-defined bands with different band sizes were subjected to sequence analysis. The obtained sequence data were converted into amino acid sequences using an online bioinformatics program and the tandem regions were examined. The Msp1a gene of A. ovis was amplified in 46.1% (135 out of 293) of the goats. Through tandem analysis, five distinct tandems (Ao8, Ao18, Tr15-16-17) were identified, and it was found that three of these tandems (Tr15-16-17) were previously unknown and were therefore defined as new tandems. The study also involved examination of ticks from goats. It was observed that the goats in the area were infested with several tick species, including Rhipicephalus bursa (888/1091, 81.4%), R. turanicus (96/1091, 8.8%), Dermacentor raskemensis (92/1091, 8.4%), Hyalomma marginatum (9/1091, 0.8%), and R. sanguineus s.l. (6/1091, 0.5%). This study provides important data for understanding the genetic diversity and evolution of A. ovis based on tandem repeats in the Msp1a protein.
Collapse
Affiliation(s)
- Mehmet Can Ulucesme
- Department of Parasitology, Faculty of Veterinary Medicine, University of Firat, Elazig 23119, Türkiye
| | - Sezayi Ozubek
- Department of Parasitology, Faculty of Veterinary Medicine, University of Firat, Elazig 23119, Türkiye
| | - Munir Aktas
- Department of Parasitology, Faculty of Veterinary Medicine, University of Firat, Elazig 23119, Türkiye
| |
Collapse
|
2
|
Makgabo SM, Brayton KA, Biggs L, Oosthuizen MC, Collins NE. Temporal Dynamics of Anaplasma marginale Infections and the Composition of Anaplasma spp. in Calves in the Mnisi Communal Area, Mpumalanga, South Africa. Microorganisms 2023; 11:465. [PMID: 36838430 PMCID: PMC9966339 DOI: 10.3390/microorganisms11020465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/17/2023] Open
Abstract
Bovine anaplasmosis, caused by Anaplasma marginale, is one of the most important tick-borne diseases of cattle. Anaplasma marginale is known to be present in the Mnisi community, Mpumalanga Province, with frequent cases of anaplasmosis reported. This study investigated the infection dynamics in calves (n = 10) in two habitats in the study area over 12 months. A duplex real-time PCR assay targeting the msp1β gene of A. marginale and the groEL gene of A. centrale confirmed the presence of A. marginale in five calves in a peri-urban area from the first month, but in only two calves at the wildlife-livestock interface and only after six months. These results were confirmed by 16S rRNA microbiome analysis. Over 50 A. marginale msp1α genotypes were detected in the calves along with five novel Msp1a repeats. Calves in the peri-urban area were more likely to be infected with A. marginale than calves in the wildlife-livestock interface. Cattle management, acaricide treatment, and cattle density could explain differences in infection prevalence in the two areas. Our results revealed that most calves were superinfected by distinct A. marginale strains within the study period, indicating continuous challenge with multiple strains that should lead to robust immunity in the calves and endemic stability in the area.
Collapse
Affiliation(s)
- S. Marcus Makgabo
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort 0110, South Africa
| | - Kelly A. Brayton
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort 0110, South Africa
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164, USA
| | - Louise Biggs
- Department of Production Animal Studies, University of Pretoria, Onderstepoort 0110, South Africa
| | - Marinda C. Oosthuizen
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort 0110, South Africa
| | - Nicola E. Collins
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort 0110, South Africa
| |
Collapse
|
3
|
Lovett AC, Reppert EJ, Jaeger JR, Kang Q, Flowers MR, Bickmeier NP, Anantatat T, O'Day SC, Armstrong CL, Reif KE. Satisfactory breeding potential is transiently eliminated in beef bulls with clinical anaplasmosis. BMC Vet Res 2022; 18:381. [PMID: 36309670 PMCID: PMC9617051 DOI: 10.1186/s12917-022-03470-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/30/2022] [Accepted: 10/05/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Natural service breeding is common in U.S. cow-calf operations. Diseases impacting bull reproductive performance have significant economic consequences for producers. Anaplasmosis may be an underappreciated cause of poor reproductive performance in bulls. The primary systemic effects of bovine anaplasmosis including anemia, fever, and weight loss, can all result in unsatisfactory reproductive performance. The objective of this pilot study was to evaluate breeding soundness examination (BSE) outcomes and clinical changes in bulls during and upon resolution of clinical anaplasmosis. Anaplasma marginale-challenged bulls were observed for clinical disease and infection progression and changes in breeding soundness compared to uninfected control bulls for 16 weeks. RESULTS All Anaplasma marginale-challenged bulls were PCR-positive, seropositive, and showed clinical signs by 3-, 17-, and 24-days post-challenge, respectively. Clinical signs of anaplasmosis included pallor, icterus, fever (≥ 40.2 °C), and weight loss. Acute anemia was observed in all challenged bulls with PCV nadirs ≤ 18% and peak percent parasitized erythrocyte ≥ 50%. Decreased scrotal circumference and poor semen quality (e.g., increased percentage of abnormal spermatozoa, decreased progressively motile sperm), were initially observed within days after onset of clinical anaplasmosis signs and continued weeks beyond disease resolution. Control bulls remained negative for A. marginale. CONCLUSION This pilot study demonstrates that clinical anaplasmosis reduces breeding soundness in beef bulls. Anaplasmosis should be considered as a differential for bulls with decreased semen quality, especially within endemic areas. A 90 day or greater retest window is recommended for bulls of unsatisfactory breeding potential recently recovered from clinical anaplasmosis.
Collapse
Affiliation(s)
- Anne C Lovett
- Diagnostic Medicine/Pathobiology, Kansas State University, 66506, Manhattan, KS, USA
- Clinical Sciences, Kansas State University, 66506, Manhattan, KS, USA
| | - Emily J Reppert
- Clinical Sciences, Kansas State University, 66506, Manhattan, KS, USA
| | - John R Jaeger
- Western Kansas Agricultural Research and Extension Center, Kansas State University, 67601, Hays, KS, USA
| | - Qing Kang
- Statistics, Kansas State University, 66506, Manhattan, KS, USA
| | - Macy R Flowers
- Diagnostic Medicine/Pathobiology, Kansas State University, 66506, Manhattan, KS, USA
| | - Naemi P Bickmeier
- Diagnostic Medicine/Pathobiology, Kansas State University, 66506, Manhattan, KS, USA
| | - Tippawan Anantatat
- Diagnostic Medicine/Pathobiology, Kansas State University, 66506, Manhattan, KS, USA
| | - Shannon C O'Day
- Diagnostic Medicine/Pathobiology, Kansas State University, 66506, Manhattan, KS, USA
| | - Chance L Armstrong
- Veterinary Clinical Sciences, Louisiana State University, 70803, Baton Rouge, LA, USA
| | - Kathryn E Reif
- Diagnostic Medicine/Pathobiology, Kansas State University, 66506, Manhattan, KS, USA.
| |
Collapse
|
4
|
Gomez-Chamorro A, Hodžić A, King KC, Cabezas-Cruz A. Ecological and evolutionary perspectives on tick-borne pathogen co-infections. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2021; 1:100049. [PMID: 35284886 PMCID: PMC8906131 DOI: 10.1016/j.crpvbd.2021.100049] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/09/2021] [Accepted: 09/16/2021] [Indexed: 06/14/2023]
Abstract
Tick-borne pathogen co-infections are common in nature. Co-infecting pathogens interact with each other and the tick microbiome, which influences individual pathogen fitness, and ultimately shapes virulence, infectivity, and transmission. In this review, we discuss how tick-borne pathogens are an ideal framework to study the evolutionary dynamics of co-infections. We highlight the importance of inter-species and intra-species interactions in vector-borne pathogen ecology and evolution. We also propose experimental evolution in tick cell lines as a method to directly test the impact of co-infections on pathogen evolution. Experimental evolution can simulate in real-time the long periods of time involved in within-vector pathogen interactions in nature, a major practical obstacle to cracking the influence of co-infections on pathogen evolution and ecology.
Collapse
Affiliation(s)
- Andrea Gomez-Chamorro
- Department of Zoology, University of Oxford, Oxford, OX1 3SZ, UK
- Anses, INRAE, Ecole Nationale Vétérinaire D’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, F-94700, France
| | - Adnan Hodžić
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria
| | - Kayla C. King
- Department of Zoology, University of Oxford, Oxford, OX1 3SZ, UK
| | - Alejandro Cabezas-Cruz
- Anses, INRAE, Ecole Nationale Vétérinaire D’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, F-94700, France
| |
Collapse
|
5
|
Both co-infection and superinfection drive complex Anaplasma marginale strain structure in a natural transmission setting. Infect Immun 2021; 89:e0016621. [PMID: 34338549 DOI: 10.1128/iai.00166-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vector-borne pathogens commonly establish multi-strain infections, also called complex infections. How complex infections are established, either prior to or after the development of an adaptive immune response, termed co-infection or superinfection, respectively, has broad implications for the maintenance of genetic diversity, pathogen phenotype, epidemiology, and disease control strategies. Anaplasma marginale, a genetically diverse, obligate, intracellular tick-borne bacterial pathogen of cattle commonly establishes complex infections, particularly in regions with high transmission rates. Both co-infection and superinfection can be established experimentally, however it is unknown how complex infections develop in a natural transmission setting. To address this question, we introduced naïve animals into a herd in southern Ghana with high infection prevalence and high transmission pressure and tracked strain acquisition of A. marginale through time using multi-locus sequence typing. As expected, genetic diversity among strains was high and 97% of animals in the herd harboured multiple strains. All the introduced, naïve animals became infected, and three to four strains were typically detected in an individual animal prior to seroconversion, while one to two new strains were detected in an individual animal following seroconversion. On average, the number of strains acquired via superinfection was 16% less than those acquired via co-infection. Thus, while complex infections develop via both co-infection and superinfection, co-infection predominates in this setting. These findings have broad implications for the development of control strategies in high transmission settings.
Collapse
|
6
|
Quantitative analysis of Anaplasma marginale acquisition and transmission by Dermacentor andersoni fed in vitro. Sci Rep 2020; 10:470. [PMID: 31949241 PMCID: PMC6965182 DOI: 10.1038/s41598-019-57390-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/29/2019] [Indexed: 02/03/2023] Open
Abstract
In this study, we describe a new in vitro tick feeding system that facilitates the study of ticks and tick-borne pathogens. To optimize the system, we used Dermacentor andersoni and Anaplasma marginale as a tick-pathogen interaction model. Ticks were fed on bovine blood containing 10-fold dilutions of the pathogen to determine the effect of dose on tick infection rate. After feeding on infected blood, ticks were transferred to uninfected blood to stimulate bacterial replication within the tick vector. During stimulation feeding, blood samples were collected daily to determine if infected ticks secreted viable A. marginale. The results demonstrated similar attachment rates between the first and second tick feeding. Tick midgut and salivary glands were infected with A. marginale. However, salivary gland infection rates decreased as the percentage of parasitized erythrocytes decreased during tick acquisition feeding. Bacteria recovered from the in vitro system were able to infect a naïve bovine host. Using the highly transmissible A. marginale St. Maries strain, we demonstrated that the artificial tick feeding system is a suitable tool to study tick-pathogen interactions and that A. marginale tick salivary gland infection is dose dependent. This work demonstrates the utility of an artificial tick feeding system to directly study the association between the number of acquired pathogens and transmissibility by ticks.
Collapse
|
7
|
Dynamics of repeat-associated plasticity in the aaap gene family in Anaplasma marginale. Gene X 2019; 721S:100010. [PMID: 32099970 PMCID: PMC7041399 DOI: 10.1016/j.gene.2019.100010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 02/08/2019] [Accepted: 02/14/2019] [Indexed: 11/23/2022] Open
Abstract
Anaplasmosis, the most prevalent tick-transmitted disease of cattle, is caused by the rickettsial intracellular parasite Anaplasma marginale. The pathogen replicates within a parasitophorous vacuole formed from the invagination of the erythrocyte membrane. Several strains of A. marginale form "tails" or "appendages" which are attached to, and extend out from, the cytoplasmic side of the parasitophorous vacuole. Genomic analysis of the parasite antigen distributed along the appendage led to the discovery of the aaap (Anaplasma appendage associated protein) gene family located within a highly plastic region in the genome. The aaap gene family consists of aaap and several alps (for aaap-like proteins), depending on the strain. These genes/proteins are characterized by repeat sequences. To investigate locus plasticity, different versions of the locus were cloned from the same strain as well as from different strains, sequenced and aligned to identify changes. Our findings show that repeat sequences both within and between genes facilitated rearrangement events within the locus. Structural variation of the locus in the St. Maries strain was further investigated during infection of different cellular environments, i.e., bovine erythrocytes and tick cells, with a reduction in subpopulations of the aaap locus within the tick as compared to erythrocytes. Interestingly, subpopulations bearing alternative locus structures began to arise again when the pathogen was transferred from the tick environment into a naïve calf. Additionally, the Aaap protein expression profile between blood and tick samples showed a regulatory shift, indicating a host-specific response. Alignment of the protein sequences from different species of Anaplasma reveals six similar repeating motifs that appear to be unique to a few species of Anaplasma. The role the aaap locus may play in the pathogenesis of the bovine host or in tick infection/transmission remains unknown; however, the changes in aaap locus subpopulations, locus structure, and protein expression indicate that these genes have a role in strain diversification.
Collapse
|
8
|
Fedorina EA, Arkhipova AL, Kosovskiy GY, Kovalchuk SN. Molecular survey and genetic characterization of Anaplasma marginale isolates in cattle from two regions of Russia. Ticks Tick Borne Dis 2019; 10:251-257. [DOI: 10.1016/j.ttbdis.2018.10.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/24/2018] [Accepted: 10/24/2018] [Indexed: 01/18/2023]
|
9
|
da Silva NB, Taus NS, Johnson WC, Mira A, Schnittger L, Valente JDM, Vidotto O, Masterson HE, Vieira TSWJ, Ueti MW, Vieira RFC. First report of Anaplasma marginale infection in goats, Brazil. PLoS One 2018; 13:e0202140. [PMID: 30102734 PMCID: PMC6089441 DOI: 10.1371/journal.pone.0202140] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 07/27/2018] [Indexed: 11/19/2022] Open
Abstract
Anaplasma marginale, the causative agent of bovine anaplasmosis, is a tick-borne bacterium that causes significant economic losses for cattle industries and is increasingly being detected in other animal species. Rhipicephalus microplus is the main vector of this bacterium and may be found parasitizing small ruminants. In northeastern Brazil, multispecies grazing is a common family subsistence practice on smallholder farms possibly facilitating interspecies transmission of pathogens. Considering that A. marginale infection has been previously molecularly described in sheep, this study has aimed to estimate the prevalence of A. marginale and factors associated with the infection in goats from northeastern Brazil. A total of 403 goat blood samples were included in the study. An epidemiological questionnaire was applied to each farm owner addressing age, gender, presence of ticks and multispecies grazing. All samples were screened for A. marginale- and A. ovis-infection using primers targeting the Anaplasma spp. msp4 gene. The identity of A. marginale in the blood was confirmed by PCR amplification of msp5 followed by sequencing. Anaplasma spp. were differentiated by sequencing of the repeat region of the msp1α gene. For the statistical analysis the Chi-square or the Fisher’s exact test was used to verify association of the individual factors (age, gender, presence of ticks, and multispecies grazing) with Anaplasma spp. infection. We report the first molecular detection of A. marginale in goats from northeastern Brazil, based on msp1α, msp4 and msp5 gene sequencing analysis. Sequencing of the detected A. marginale msp1α gene revealed the F repeat. Amblyomma parvum and R. microplus were found feeding on animals.
Collapse
Affiliation(s)
- Nayara B. da Silva
- Department of Veterinary Medicine, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Naomi S. Taus
- Animal Diseases Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Pullman, Washington, United States of America
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, United States of America
| | - Wendell C. Johnson
- Animal Diseases Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Pullman, Washington, United States of America
| | - Anabela Mira
- Institute of Pathobiology, Center of Research in Veterinary and Agronomic Sciences, INTA-Castelar, Argentina
| | - Leonhard Schnittger
- Institute of Pathobiology, Center of Research in Veterinary and Agronomic Sciences, INTA-Castelar, Argentina
| | - Jessica D. M. Valente
- Department of Veterinary Medicine, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Odilon Vidotto
- Department of Preventive Veterinary Medicine, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Hayley E. Masterson
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, United States of America
| | | | - Massaro W. Ueti
- Animal Diseases Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Pullman, Washington, United States of America
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, United States of America
- * E-mail: (MWU); (RFCV)
| | - Rafael F. C. Vieira
- Department of Veterinary Medicine, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
- * E-mail: (MWU); (RFCV)
| |
Collapse
|
10
|
Molecular evidence of the reservoir competence of water buffalo (Bubalus bubalis) for Anaplasma marginale in Cuba. VETERINARY PARASITOLOGY- REGIONAL STUDIES AND REPORTS 2018; 13:180-187. [PMID: 31014871 DOI: 10.1016/j.vprsr.2018.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 06/18/2018] [Accepted: 06/22/2018] [Indexed: 11/22/2022]
Abstract
Water buffalo (Bubalus bubalis) is a potential reservoir for Anaplasma marginale in livestock ecosystems of tropical countries. However, their participation in the epidemiological process of bovine anaplasmosis in endemic areas remains unclear. In the present study, the reservoir competence of water buffalo for A. marginale was explored by focusing on the analysis of rickettsemia levels in carrier animals, and the genetic characterization of A. marginale strains from cattle and buffalo. Eight groups of cattle and water buffaloes were randomly selected from cohabiting herds in four livestock ecosystems of Cuba, together with two control groups from unrelated cattle and buffalo herds. A total of 180 adult animals (88 water buffalo and 92 cattle) were sampled. Rickettsemia in carrier animals was determined by quantitative real-time PCR. The rickettsemia (parasitemia) levels in cattle were higher than in buffaloes, however the rickettsemia in buffalo may be enough to infect R. microplus ticks. The genetic diversity of A. marginale was assessed by strain characterization and phylogenetic analysis of 27 msp1α gene sequences. The results showed genetic similarity among strains from cattle and water buffalo, suggesting the occurrence of cross-species transmission.
Collapse
|
11
|
Hove P, Khumalo ZTH, Chaisi ME, Oosthuizen MC, Brayton KA, Collins NE. Detection and Characterisation of Anaplasma marginale and A. centrale in South Africa. Vet Sci 2018; 5:E26. [PMID: 29510496 PMCID: PMC5876571 DOI: 10.3390/vetsci5010026] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/27/2018] [Accepted: 02/28/2018] [Indexed: 01/11/2023] Open
Abstract
Bovine anaplasmosis is endemic in South Africa and it has a negative economic impact on cattle farming. An improved understanding of Anaplasma marginale and Anaplasma marginale variety centrale (A. centrale) transmission, together with improved tools for pathogen detection and characterisation, are required to inform best management practices. Direct detection methods currently in use for A. marginale and A. centrale in South Africa are light microscopic examination of tissue and organ smears, conventional, nested, and quantitative real-time polymerase chain reaction (qPCR) assays, and a reverse line blot hybridisation assay. Of these, qPCR is the most sensitive for detection of A. marginale and A. centrale in South Africa. Serological assays also feature in routine diagnostics, but cross-reactions prevent accurate species identification. Recently, genetic characterisation has confirmed that A. marginale and A. centrale are separate species. Diversity studies targeting Msp1a repeats for A. marginale and Msp1aS repeats for A. centrale have revealed high genetic variation and point to correspondingly high levels of variation in A. marginale outer membrane proteins (OMPs), which have been shown to be potential vaccine candidates in North American studies. Information on these OMPs is lacking for South African A. marginale strains and should be considered in future recombinant vaccine development studies, ultimately informing the development of regional or global vaccines.
Collapse
Affiliation(s)
- Paidashe Hove
- Vectors and Vector-borne Diseases Research Programme, Department of Veterinary Tropical Diseases, University of Pretoria, Pretoria 0110, South Africa.
- Biotechnology Platform, Agricultural Research Council, Onderstepoort, Pretoria 0110, South Africa.
| | - Zamantungwa T H Khumalo
- Vectors and Vector-borne Diseases Research Programme, Department of Veterinary Tropical Diseases, University of Pretoria, Pretoria 0110, South Africa.
- Biotechnology Platform, Agricultural Research Council, Onderstepoort, Pretoria 0110, South Africa.
| | - Mamohale E Chaisi
- Research and Scientific Services Department, National Zoological Gardens of South Africa; Pretoria 0001, South Africa.
| | - Marinda C Oosthuizen
- Vectors and Vector-borne Diseases Research Programme, Department of Veterinary Tropical Diseases, University of Pretoria, Pretoria 0110, South Africa.
| | - Kelly A Brayton
- Vectors and Vector-borne Diseases Research Programme, Department of Veterinary Tropical Diseases, University of Pretoria, Pretoria 0110, South Africa.
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164, USA.
| | - Nicola E Collins
- Vectors and Vector-borne Diseases Research Programme, Department of Veterinary Tropical Diseases, University of Pretoria, Pretoria 0110, South Africa.
| |
Collapse
|
12
|
Hove P, Chaisi ME, Brayton KA, Ganesan H, Catanese HN, Mtshali MS, Mutshembele AM, Oosthuizen MC, Collins NE. Co-infections with multiple genotypes of Anaplasma marginale in cattle indicate pathogen diversity. Parasit Vectors 2018; 11:5. [PMID: 29298712 PMCID: PMC5753507 DOI: 10.1186/s13071-017-2595-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 12/17/2017] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Only a few studies have examined the presence of Anaplasma marginale and Anaplasma centrale in South Africa, and no studies have comprehensively examined these species across the whole country. To undertake this country-wide study we adapted a duplex quantitative real-time PCR (qPCR) assay for use in South Africa but found that one of the genes on which the assay was based was variable. Therefore, we sequenced a variety of field samples and tested the assay on the variants detected. We used the assay to screen 517 cattle samples sourced from all nine provinces of South Africa, and subsequently examined A. marginale positive samples for msp1α genotype to gauge strain diversity. RESULTS Although the A. marginale msp1β gene is variable, the qPCR functions at an acceptable efficiency. The A. centrale groEL gene was not variable within the qPCR assay region. Of the cattle samples screened using the assay, 57% and 17% were found to be positive for A. marginale and A. centrale, respectively. Approximately 15% of the cattle were co-infected. Msp1α genotyping revealed 36 novel repeat sequences. Together with data from previous studies, we analysed the Msp1a repeats from South Africa where a total of 99 repeats have been described that can be attributed to 190 msp1α genotypes. While 22% of these repeats are also found in other countries, only two South African genotypes are also found in other countries; otherwise, the genotypes are unique to South Africa. CONCLUSIONS Anaplasma marginale was prevalent in the Western Cape, KwaZulu-Natal and Mpumalanga and absent in the Northern Cape. Anaplasma centrale was prevalent in the Western Cape and KwaZulu-Natal and absent in the Northern Cape and Eastern Cape. None of the cattle in the study were known to be vaccinated with A. centrale, so finding positive cattle indicates that this organism appears to be naturally circulating in cattle. A diverse population of A. marginale strains are found in South Africa, with some msp1α genotypes widely distributed across the country, and others appearing only once in one province. This diversity should be taken into account in future vaccine development studies.
Collapse
Affiliation(s)
- Paidashe Hove
- Vectors and Vector-borne Diseases Research Programme, Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
- Biotechnology Platform, Agricultural Research Council, Onderstepoort, Pretoria, South Africa
| | - Mamohale E. Chaisi
- Vectors and Vector-borne Diseases Research Programme, Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
- Research and Scientific Services Department, National Zoological Gardens of South Africa, Pretoria, South Africa
| | - Kelly A. Brayton
- Vectors and Vector-borne Diseases Research Programme, Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA USA
| | - Hamilton Ganesan
- Inqaba Biotechnical Industries, Hatfield, Pretoria, South Africa
| | - Helen N. Catanese
- School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA USA
| | - Moses S. Mtshali
- Research and Scientific Services Department, National Zoological Gardens of South Africa, Pretoria, South Africa
- Present Address: National Research Foundation, Brummeria, Pretoria, South Africa
| | - Awelani M. Mutshembele
- Research and Scientific Services Department, National Zoological Gardens of South Africa, Pretoria, South Africa
- Present Address: Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Marinda C. Oosthuizen
- Vectors and Vector-borne Diseases Research Programme, Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Nicola E. Collins
- Vectors and Vector-borne Diseases Research Programme, Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
13
|
Ramabu SS, Kgwatalala PM, Nsoso SJ, Gasebonwe S, Kgosiesele E. Anaplasma infection prevalence in beef and dairy cattle in the south east region of Botswana. VETERINARY PARASITOLOGY- REGIONAL STUDIES AND REPORTS 2017; 12:4-8. [PMID: 31014807 DOI: 10.1016/j.vprsr.2017.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 10/23/2017] [Accepted: 12/24/2017] [Indexed: 11/27/2022]
Abstract
Infection of cattle by the tick-borne intra-erythrocytic bacteria of the genus Anaplasma occurs worldwide. Nevertheless, prevalence rates in specific regions are still required to inform cattle farming management decisions. A study was carried out to determine Anaplasma infection prevalence in beef and dairy cattle in the south east region of Botswana. Two methods were used: competitive inhibition enzyme-linked immune-sorbent assay (cELISA) and conventional polymerase chain reaction (PCR). A total of 429 cattle consisting 207 beef and 222 dairy animals were sampled and tested. The prevalence was 91% and 31% by cELISA and PCR, respectively. A Z test revealed a statistical difference between the point prevalence as determined by cELISA compared to PCR (p=0). There was no statistical difference between the point prevalence of Anaplasma infection as determined by cELISA (p=0.45) between beef and dairy cattle. But there was a significant difference (p=0.001) between the animals by PCR with the prevalence in beef cattle nearly double that in dairy cattle. Individual herd prevalence ranged from 79% to 100% by cELISA, and 0 to 100% by PCR. Though not statistically significant sero-prevalence in both beef and dairy animals tended to be higher in urban/peri-urban areas compared to rural areas. The cELISA mean percentage inhibition (PI) for all cattle was found to be 58.6 (95% CI: 56.8-60.4). There was no statistically significant difference between the mean PI of sera from beef cattle (56.4 (95% CI: 54.1-58.7)) as compared to dairy cattle (60.7 (95%CI: 58.0-63.3)). However, there was a tendency towards statistical significance with beef animals having a lower PI value than dairy animals. Anaplasma infection was endemic in cattle in the south east region of Botswana with similar infection in beef and dairy animals. Further research should be done to identify the strains prevalent in the cattle herds.
Collapse
Affiliation(s)
- Solomon S Ramabu
- Department of Animal Science and Production, Botswana University of Agriculture and Natural Resources, Private Bag 0027, Gaborone, Botswana; Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA, United States.
| | - Patrick M Kgwatalala
- Department of Animal Science and Production, Botswana University of Agriculture and Natural Resources, Private Bag 0027, Gaborone, Botswana
| | - Shalaulani J Nsoso
- Department of Animal Science and Production, Botswana University of Agriculture and Natural Resources, Private Bag 0027, Gaborone, Botswana
| | - Sumbikane Gasebonwe
- Department of Animal Science and Production, Botswana University of Agriculture and Natural Resources, Private Bag 0027, Gaborone, Botswana
| | - Ednah Kgosiesele
- Department of Agricultural Engineering and Land Planning, Botswana University of Agriculture and Natural Resources, Private Bag 0027, Gaborone, Botswana
| |
Collapse
|
14
|
Ybañez AP, Mingala CN, Ybañez RHD. Historical review and insights on the livestock tick-borne disease research of a developing country: The Philippine scenario. Parasitol Int 2017; 67:262-266. [PMID: 29197596 DOI: 10.1016/j.parint.2017.11.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 11/26/2017] [Accepted: 11/29/2017] [Indexed: 11/28/2022]
Abstract
Tick-borne diseases (TBDs) remain to be a global animal health threat. Developing countries like the Philippines is not exempt to this. Despite the potential impact TBDs can give to these countries, local government initiatives and researches remain to be limited. In the Philippines, most epidemiological studies were confined only to specific areas, and predominantly in the Northern Area. Due to its unique geography and limited studies, the current nationwide status of most TBDs could not be clearly established. This review mainly covered published studies and presented challenges in the conduct of TBD research in the Philippines, which may be similar to other Southeast Asian or developing countries. To date, reported livestock TBD pathogens in the Philippines include Anaplasma, Babesia, Theileria, and Mycoplasma spp. With the ubiquitous presence of the Rhipicephalus microplus ticks in the country, it is highly probable that other pathogens transmitted by these vectors could be present. Despite studies on different TBDs in the livestock sector, the Philippine government has not yet heightened its efforts to implement tick control measures as part of the routine animal health program for local farmers. Further studies might be needed to determine the nationwide prevalence of TBDs and the presence of other possible tick species and TBD pathogens. The Philippine scenario may present situations that are similar to other developing countries.
Collapse
Affiliation(s)
- Adrian P Ybañez
- College of Veterinary Medicine at Barili Campus, Cebu Technological University, Barili, Cebu, Philippines.
| | - Claro N Mingala
- Animal Health Unit, Philippine Carabao Center National Headquarters and Gene Pool, Science City of Muñoz 3120, Nueva Ecija, Philippines; Scientific Career System, National Academy of Science and Technology, Department of Science and Technology, Taguig City 1631, Metro Manila, Philippines
| | - Rochelle Haidee D Ybañez
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| |
Collapse
|
15
|
Yang J, Han R, Liu Z, Niu Q, Guan G, Liu G, Luo J, Yin H. Insight into the genetic diversity of Anaplasma marginale in cattle from ten provinces of China. Parasit Vectors 2017; 10:565. [PMID: 29132409 PMCID: PMC5683237 DOI: 10.1186/s13071-017-2485-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 10/18/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Anaplasma marginale is an important tick-transmitted rickettsial pathogen of cattle, with worldwide distribution and an important economic impact. The genetic diversity of A. marginale strains has been extensively characterized in different geographical regions throughout the world, while information is limited on studies in China. This study was carried out to determine the prevalence and genetic diversity of A. marginale strains in cattle from ten provinces of China. METHODS A total of 557 blood samples from cattle were collected and screened for the occurrence of A. marginale by PCR based on the msp4 gene. The partial msp1a gene containing tandem repeat sequences was further amplified from msp4 positive samples. The Msp1a amino acid repeats were identified, and genetic variation of A. marginale strains was characterized based on the variation in the repeated portion of Msp1a. RESULTS Our results showed that 31.6% of 557 cattle were positive for A. marginale. The infection rates of A. marginale varied considerably from 0 to 96.9% in different sampling regions. Sequence analysis revealed that two msp4 sequence variants of A. marginale exist in cattle. One hundred and three msp1a sequences were obtained and permitted to identify 42 Msp1a tandem repeats, 21 of which were not previously published for A. marginale. Moreover, 61 A. marginale genotypes were identified based on the structure of Msp1a tandem repeats. CONCLUSIONS Anaplasma marginale is widely distributed in China and a high prevalence of infection was observed in cattle. The geographical strains of A. marginale were molecularly characterized based on the structure of Msp1a tandem repeats. Forty-two Msp1a tandem repeats and 61 genotypes of A. marginale were identified. This study, for the first time, revealed the genetic diversity of A. marginale strains in cattle in China.
Collapse
Affiliation(s)
- Jifei Yang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu, 730046, People's Republic of China
| | - Rong Han
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu, 730046, People's Republic of China
| | - Zhijie Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu, 730046, People's Republic of China
| | - Qingli Niu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu, 730046, People's Republic of China
| | - Guiquan Guan
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu, 730046, People's Republic of China
| | - Guangyuan Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu, 730046, People's Republic of China
| | - Jianxun Luo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu, 730046, People's Republic of China
| | - Hong Yin
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu, 730046, People's Republic of China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, People's Republic of China.
| |
Collapse
|
16
|
Battilani M, De Arcangeli S, Balboni A, Dondi F. Genetic diversity and molecular epidemiology of Anaplasma. INFECTION GENETICS AND EVOLUTION 2017; 49:195-211. [PMID: 28122249 DOI: 10.1016/j.meegid.2017.01.021] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 01/18/2017] [Accepted: 01/19/2017] [Indexed: 11/25/2022]
Abstract
Anaplasma are obligate intracellular bacteria of cells of haematopoietic origin and are aetiological agents of tick-borne diseases of both veterinary and medical interest common in both tropical and temperate regions. The recent disclosure of their zoonotic potential has greatly increased interest in the study of these bacteria, leading to the recent reorganisation of Rickettsia taxonomy and to the possible discovery of new species belonging to the genus Anaplasma. This review is particularly focused on the common and unique characteristics of Anaplasma marginale and Anaplasma phagocytophilum, with an emphasis on genetic diversity and evolution, and the main distinguishing features of the diseases caused by the different Anaplasma spp. are described as well.
Collapse
Affiliation(s)
- Mara Battilani
- Department of Veterinary Medical Sciences, Alma Mater Studiorum - University of Bologna, Via Tolara di Sopra, 50, 40064 Ozzano Emilia, Bo, Italy.
| | - Stefano De Arcangeli
- Department of Veterinary Medical Sciences, Alma Mater Studiorum - University of Bologna, Via Tolara di Sopra, 50, 40064 Ozzano Emilia, Bo, Italy
| | - Andrea Balboni
- Department of Veterinary Medical Sciences, Alma Mater Studiorum - University of Bologna, Via Tolara di Sopra, 50, 40064 Ozzano Emilia, Bo, Italy
| | - Francesco Dondi
- Department of Veterinary Medical Sciences, Alma Mater Studiorum - University of Bologna, Via Tolara di Sopra, 50, 40064 Ozzano Emilia, Bo, Italy
| |
Collapse
|
17
|
Abstract
Antigenic variation is a strategy used by a broad diversity of microbial pathogens to persist within the mammalian host. Whereas viruses make use of a minimal proofreading capacity combined with large amounts of progeny to use random mutation for variant generation, antigenically variant bacteria have evolved mechanisms which use a stable genome, which aids in protecting the fitness of the progeny. Here, three well-characterized and highly antigenically variant bacterial pathogens are discussed: Anaplasma, Borrelia, and Neisseria. These three pathogens display a variety of mechanisms used to create the structural and antigenic variation needed for immune escape and long-term persistence. Intrahost antigenic variation is the focus; however, the role of these immune escape mechanisms at the population level is also presented.
Collapse
|
18
|
Anaplasma marginale: Diversity, Virulence, and Vaccine Landscape through a Genomics Approach. BIOMED RESEARCH INTERNATIONAL 2016; 2016:9032085. [PMID: 27610385 PMCID: PMC5005611 DOI: 10.1155/2016/9032085] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 07/26/2016] [Indexed: 12/23/2022]
Abstract
In order to understand the genetic diversity of A. marginale, several efforts have been made around the world. This rickettsia affects a significant number of ruminants, causing bovine anaplasmosis, so the interest in its virulence and how it is transmitted have drawn interest not only from a molecular point of view but also, recently, some genomics research have been performed to elucidate genes and proteins with potential as antigens. Unfortunately, so far, we still do not have a recombinant anaplasmosis vaccine. In this review, we present a landscape of the multiple approaches carried out from the genomic perspective to generate valuable information that could be used in a holistic way to finally develop an anaplasmosis vaccine. These approaches include the analysis of the genetic diversity of A. marginale and how this affects control measures for the disease. Anaplasmosis vaccine development is also reviewed from the conventional vaccinomics to genome-base vaccinology approach based on proteomics, metabolomics, and transcriptomics analyses reported. The use of these new omics approaches will undoubtedly reveal new targets of interest in the near future, comprising information of potential antigens and the immunogenic effect of A. marginale proteins.
Collapse
|
19
|
Catanese HN, Brayton KA, Gebremedhin AH. RepeatAnalyzer: a tool for analysing and managing short-sequence repeat data. BMC Genomics 2016; 17:422. [PMID: 27260942 PMCID: PMC4891823 DOI: 10.1186/s12864-016-2686-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 04/30/2016] [Indexed: 11/10/2022] Open
Abstract
Background Short-sequence repeats (SSRs) occur in both prokaryotic and eukaryotic DNA, inter- and intragenically, and may be exact or inexact copies. When heterogeneous SSRs are present in a given locus, we can take advantage of the pattern of different repeats to genotype strains based on the SSRs. Cataloguing and tracking these repeats can be difficult as diverse groups of researchers are involved in the identification of the repeats. Additionally, the task is error-prone when done manually. Results We developed RepeatAnalyzer, a new software tool capable of tracking, managing, analysing and cataloguing SSRs and genotypes using Anaplasma marginale as a model species. RepeatAnalyzer’s analysis capability includes novel metrics for measuring regional genetic diversity (corresponding to variety and regularity of SSR occurrence). As a part of its visualization capabilities, RepeatAnalyzer produces high quality maps of the geographic distribution of genotypes or SSRs over a region of interest. RepeatAnalyzer’s repeat identification functionality was validated for all SSRs and genotypes reported in 21 publications, using 380 A. marginale isolates gathered from the five publications within that list that provided access to their isolates. The tool produced accurate genotyping results in every case. In addition, it uncovered a number of errors in the published literature: 11 cases where SSRs were misreported, 5 cases where two different SSRs had been given the same name, and 16 cases where two or more names had been given to a single SSR. The analysis and visualization functionalities of the tool are demonstrated using several examples. Conclusions RepeatAnalyzer is a robust software tool that can be used for storing, managing, and analysing short-sequence repeats for the purpose of strain identification. The tool can be used for any set of SSRs regardless of species. When applied to A. marginale, our test case, we show that genotype lengths for a given region follow a normal distribution, while SSR frequencies follow a power-law-like distribution. Further, we find that over 90 % of repeats are 28 to 29 amino acids long, which is in agreement with conventional wisdom. Lastly, our analysis reveals that the most common edit distance is five or six, which is counter-intuitive since we expected that result to be closer to one, resulting from the simplest change from one repeat to another. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2686-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Helen N Catanese
- School of Electrical Engineering and Computer Science, Washington State University, Pullman, Washington, 99164, USA
| | - Kelly A Brayton
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, 99164, USA
| | - Assefaw H Gebremedhin
- School of Electrical Engineering and Computer Science, Washington State University, Pullman, Washington, 99164, USA.
| |
Collapse
|
20
|
Superinfection Exclusion of the Ruminant Pathogen Anaplasma marginale in Its Tick Vector Is Dependent on the Time between Exposures to the Strains. Appl Environ Microbiol 2016; 82:3217-3224. [PMID: 26994084 PMCID: PMC4959236 DOI: 10.1128/aem.00190-16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 03/15/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The remarkable genetic diversity of vector-borne pathogens allows for the establishment of superinfection in the mammalian host. To have a long-term impact on population strain structure, the introduced strains must also be transmitted by a vector population that has been exposed to the existing primary strain. The sequential exposure of the vector to multiple strains frequently prevents establishment of the second strain, a phenomenon termed superinfection exclusion. As a consequence, superinfection exclusion may greatly limit genetic diversity in the host population, which is difficult to reconcile with the high degree of genetic diversity maintained among vector-borne pathogens. Using Anaplasma marginale, a tick-borne bacterial pathogen of ruminants, we hypothesized that superinfection exclusion is temporally dependent and that longer intervals between strain exposures allow successful acquisition and transmission of a superinfecting strain. To test this hypothesis, we sequentially exposed Dermacentor andersoni ticks to two readily tick-transmissible strains of A. marginale The tick feedings were either immediately sequential or 28 days apart. Ticks were allowed to transmission feed and were individually assessed to determine if they were infected with one or both strains. The second strain was excluded from the tick when the exposure interval was brief but not when it was prolonged. Midguts and salivary glands of individual ticks were superinfected and transmission of both strains occurred only when the exposure interval was prolonged. These findings indicate that superinfection exclusion is temporally dependent, which helps to account for the differences in pathogen strain structure in tropical compared to temperate regions. IMPORTANCE Many vector-borne pathogens have marked genetic diversity, which influences pathogen traits such as transmissibility and virulence. The most successful strains are those that are preferentially transmitted by the vector. However, the factors that determine successful transmission of a particular strain are unknown. In the case of intracellular, bacterial, tick-borne pathogens, one potential factor is superinfection exclusion, in which colonization of ticks by the first strain of a pathogen it encounters prevents the transmission of a second strain. Using A. marginale, the most prevalent tick-borne pathogen of cattle worldwide, and its natural tick vector, we determined that superinfection exclusion occurs when the time between exposures to two strains is brief but not when it is prolonged. These findings suggest that superinfection exclusion may influence strain transmission in temperate regions, where tick activity is limited by season, but not in tropical regions, where ticks are active for long periods.
Collapse
|
21
|
Atif FA. Anaplasma marginale and Anaplasma phagocytophilum: Rickettsiales pathogens of veterinary and public health significance. Parasitol Res 2015; 114:3941-57. [PMID: 26346451 DOI: 10.1007/s00436-015-4698-2] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 08/24/2015] [Indexed: 11/28/2022]
Abstract
Anaplasma marginale and Anaplasma phagocytophilum are the most important tick-borne bacteria of veterinary and public health significance in the family Anaplasmataceae. The objective of current review is to provide knowledge on ecology and epidemiology of A. phagocytophilum and compare major similarities and differences of A. marginale and A. phagocytophilum. Bovine anaplasmosis is globally distributed tick-borne disease of livestock with great economic importance in cattle industry. A. phagocytophilum, a cosmopolitan zoonotic tick transmitted pathogen of wide mammalian hosts. The infection in domestic animals is generally referred as tick-borne fever. Concurrent infections exist in ticks, domestic and wild animals in same geographic area. All age groups are susceptible, but the prevalence increases with age. Movement of susceptible domestic animals from tick free non-endemic regions to disease endemic regions is the major risk factor of bovine anaplasmosis and tick-borne fever. Recreational activities or any other high-risk tick exposure habits as well as blood transfusion are important risk factors of human granulocytic anaplasmosis. After infection, individuals remain life-long carriers. Clinical anaplasmosis is usually diagnosed upon examination of stained blood smears. Generally, detection of serum antibodies followed by molecular diagnosis is usually recommended. There are problems of sensitivity and cross-reactivity with both the Anaplasma species during serological tests. Tetracyclines are the drugs of choice for treatment and elimination of anaplasmosis in animals and humans. Universal vaccine is not available for either A. marginale or A. phagocytophilum, effective against geographically diverse strains. Major control measures for bovine anaplasmosis and tick-borne fever include rearing of tick-resistant breeds, endemic stability, breeding Anaplasma-free herds, identification of regional vectors, domestic/wild reservoirs and control, habitat modification, biological control, chemotherapy, and vaccinations (anaplasmosis and/or tick vaccination). Minimizing the tick exposure activities, identification and control of reservoirs are important control measures for human granulocytic anaplasmosis.
Collapse
Affiliation(s)
- Farhan Ahmad Atif
- Department of Animal Sciences, University College of Agriculture, University of Sargodha, Sargodha, 40100, Pakistan.
| |
Collapse
|
22
|
Genetic diversity and molecular phylogeny of Anaplasma marginale studied longitudinally under natural transmission conditions in Rio de Janeiro, Brazil. Ticks Tick Borne Dis 2015; 6:499-507. [DOI: 10.1016/j.ttbdis.2015.04.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 03/26/2015] [Accepted: 04/08/2015] [Indexed: 11/18/2022]
|
23
|
Anaplasma marginale superinfection attributable to pathogen strains with distinct genomic backgrounds. Infect Immun 2014; 82:5286-92. [PMID: 25287920 DOI: 10.1128/iai.02537-14] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Strain superinfection occurs when a second pathogen strain infects a host already infected with a primary strain. The selective pressures that drive strain divergence, which underlies superinfection, and allow penetration of a new strain into a host population are critical knowledge gaps relevant to shifts in infectious disease epidemiology. In regions of endemicity with a high prevalence of infection, broad population immunity develops against Anaplasma marginale, a highly antigenically variant rickettsial pathogen, and creates strong selective pressure for emergence of and superinfection with strains that differ in their Msp2 variant repertoires. The strains may emerge either by msp2 locus duplication and allelic divergence on an existing genomic background or by introduction of a strain with a different msp2 allelic repertoire on a distinct genomic background. To answer this question, we developed a multilocus typing assay based on high-throughput sequencing of non-msp2 target loci to distinguish among strains with different genomic backgrounds. The technical error level was statistically defined based on the percentage of perfect sequence matches of clones of each target locus and validated using experimental single strains and strain pairs. Testing of A. marginale-positive samples from tropical regions where A. marginale infection is endemic identified individual infections that contained unique alleles for all five targeted loci. The data revealed a highly significant difference in the number of strains per animal in the tropical regions compared to infections in temperate regions and strongly supported the hypothesis that transmission of genomically distinct A. marginale strains predominates in high-prevalence areas of endemicity.
Collapse
|
24
|
Silva JB, Fonseca AH, Barbosa JD, Cabezas-Cruz A, de la Fuente J. Low genetic diversity associated with low prevalence of Anaplasma marginale in water buffaloes in Marajó Island, Brazil. Ticks Tick Borne Dis 2014; 5:801-4. [DOI: 10.1016/j.ttbdis.2014.06.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 05/21/2014] [Accepted: 06/04/2014] [Indexed: 10/25/2022]
|
25
|
Hairgrove TB, Craig TM, Budke CM, Rodgers SJ, Gill RJ. Seroprevalence of Anaplasma marginale in Texas cattle. Prev Vet Med 2014; 116:188-92. [PMID: 24931130 DOI: 10.1016/j.prevetmed.2014.05.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 05/09/2014] [Accepted: 05/19/2014] [Indexed: 01/28/2023]
Abstract
To our knowledge the seroprevalence of Anaplasma marginale in Texas has not been reported. The objective of this study was to estimate the point seroprevalence and spatial distribution of Texas cattle persistently infected with A. marginale. This was a cross-sectional observational study examining serum collected from 12,000 adult cattle marketed in 23 selected Texas auction markets during the second week of July 2011. A random subset of those cattle comprising 1835 individuals was evaluated for persistent infection with A. marginale using a commercial cELISA for antibody detection. The pooled apparent seroprevalence for cattle tested at auction markets across the state was 15.02% (95% CI: 11.02-19.53%), with markets in the western portion of the state demonstrating prevalence ⇒ 30%. The winter tick, Dermacentor albipictus is involved in the biological transfer of A. marginale and is prevalent in west Texas. Producers in endemic and non-endemic areas should be encouraged to determine the infection status of replacement cattle in order to implement effective management strategies for the control bovine anaplasmosis.
Collapse
Affiliation(s)
- Thomas B Hairgrove
- Texas A&M AgriLife Extension Service, Department of Animal Science, United States.
| | - Thomas M Craig
- College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, United States
| | - Christine M Budke
- College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, United States
| | - Sandy J Rodgers
- Texas A&M Veterinary Medical Diagnostic Laboratory, United States
| | - Ronald J Gill
- Texas A&M AgriLife Extension Service, Department of Animal Science, United States
| |
Collapse
|
26
|
Ybañez AP, Ybañez RHD, Claveria FG, Cruz-Flores MJ, Xuenan X, Yokoyama N, Inokuma H. High genetic diversity of Anaplasma marginale detected from Philippine cattle. J Vet Med Sci 2014; 76:1009-14. [PMID: 24717413 PMCID: PMC4143641 DOI: 10.1292/jvms.13-0405] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A total of 658 cattle in 6 provinces in the Philippines were screened for Anaplasma marginale infection by using a diagnostic heat-shock operon (groEL) gene-PCR assay. The screening-positive samples were further tested using the major surface antigen protein 1a (Msp1a) gene-PCR assay. Screening PCR results showed 130 cattle (19.8%) were positive for the A. marginale infection. Subsequent amplification using the Msp1a gene only showed 93 samples (14.1%) to be positive. In addition, 37 tandem-repeat structures, including 20 novel structures, and 41 distinct genotypes were identified. Interestingly, multiple infections of 4 different genotypes were also observed in A. marginale-infected cattle. The present study demonstrated the prevalence and characterization of diverse genotypes of A. marginale in the Philippine cattle.
Collapse
Affiliation(s)
- Adrian Patalinghug Ybañez
- Department of Clinical Veterinary Sciences, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | | | | | | | | | | | | |
Collapse
|
27
|
Brayton KA, Palmer GH, Brown WC. Genomic and proteomic approaches to vaccine candidate identification forAnaplasma marginale. Expert Rev Vaccines 2014; 5:95-101. [PMID: 16451111 DOI: 10.1586/14760584.5.1.95] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Outer membrane protein preparations have been demonstrated to elicit protective immunity for Anaplasma marginale. Attempts to recreate this protective immunity using known surface proteins have been unsuccessful; therefore, novel outer membrane proteins have been searched for using a proteomic/genomic approach. Annotation of the whole genome sequence identified 62 outer membrane protein candidates based on sequence similarity to known surface proteins. In a proteomics approach for the identification of immunostimulatory outer membrane proteins, outer membrane preparations that were separated on 2D gels were used to immunize calves . Antisera from the calves were used to detect immunoreactive proteins, which were then selected and subjected to mass spectrometric analyses. These data were mapped back to the annotated A. marginale genome and have identified several new outer membrane proteins that are vaccine candidates.
Collapse
Affiliation(s)
- Kelly A Brayton
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99163-7040, USA.
| | | | | |
Collapse
|
28
|
Palmer GH, Brayton KA. Antigenic variation and transmission fitness as drivers of bacterial strain structure. Cell Microbiol 2013; 15:1969-75. [PMID: 23941262 PMCID: PMC3836861 DOI: 10.1111/cmi.12182] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 08/05/2013] [Accepted: 08/08/2013] [Indexed: 11/29/2022]
Abstract
Shifts in microbial strain structure underlie both emergence of new pathogens and shifts in patterns of infection and disease of known agents. Understanding the selective pressures at a population level as well as the mechanisms at the molecular level represent significant gaps in our knowledge regarding microbial epidemiology. Highly antigenically variant pathogens, which are broadly represented among microbial taxa, are most commonly viewed through the mechanistic lens of how they evade immune clearance within the host. However, equally important are mechanisms that allow pathogens to evade immunity at the population level. The selective pressure of immunity at both the level of the individual host and the population is a driver of diversification within a pathogen strain. Using Anaplasma marginale as a model highly antigenically variable bacterial pathogen, we review how immunity selects for genetic diversification in alleles encoding outer membrane proteins both within and among strains. Importantly, genomic comparisons among strains isolated from diverse epidemiological settings elucidates the counterbalancing pressures for diversification and conservation, driven by immune escape and transmission fitness, respectively, and how these shape pathogen strain structure.
Collapse
Affiliation(s)
- Guy H. Palmer
- Paul G. Allen School for Global Animal Health, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington 99164-7090
| | - Kelly A. Brayton
- Paul G. Allen School for Global Animal Health, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington 99164-7090
| |
Collapse
|
29
|
Borrelia hermsii acquisition order in superinfected ticks determines transmission efficiency. Infect Immun 2013; 81:2899-908. [PMID: 23716615 DOI: 10.1128/iai.00542-13] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Multilocus sequence typing of Borrelia hermsii isolates reveals its divergence into two major genomic groups (GG), but no differences in transmission efficiency or host pathogenicity are associated with these genotypes. To compare GGI and GGII in the tick-host infection cycle, we first determined if spirochetes from the two groups could superinfect the tick vector Ornithodoros hermsi. We infected mice with isolates from each group and fed ticks sequentially on these mice. We then fed the infected ticks on naive mice and measured GGI and GGII spirochete densities in vector and host, using quantitative PCR of genotype-specific chromosomal DNA sequences. Sequential feedings resulted in dual tick infections, showing that GGI or GGII primary acquisition did not block superinfection by a secondary agent. On transmission to naive mice at short intervals after acquisition, ticks with primary GGI and secondary GGII spirochete infections caused mixed GGI and GGII infections in mice. However, ticks with primary GGII and secondary GGI spirochete infections caused only GGII infections with all isolate pairs examined. At longer intervals after acquisition, the exclusion of GGI by GGII spirochetes declined and cotransmission predominated. We then examined GGI and GGII spirochetemia in mice following single inoculation and coinoculation by needle and found that GGI spirochete densities were reduced on multiple days when coinoculated with GGII. These findings indicate that dual GGI-GGII spirochete infections can persist in ticks and that transmission to a vertebrate host is dependent on the order of tick acquisition and the interval between acquisition and transmission events.
Collapse
|
30
|
Pierlé SA, Dark MJ, Dahmen D, Palmer GH, Brayton KA. Comparative genomics and transcriptomics of trait-gene association. BMC Genomics 2012. [PMID: 23181781 PMCID: PMC3542260 DOI: 10.1186/1471-2164-13-669] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Background The Order Rickettsiales includes important tick-borne pathogens, from Rickettsia rickettsii, which causes Rocky Mountain spotted fever, to Anaplasma marginale, the most prevalent vector-borne pathogen of cattle. Although most pathogens in this Order are transmitted by arthropod vectors, little is known about the microbial determinants of transmission. A. marginale provides unique tools for studying the determinants of transmission, with multiple strain sequences available that display distinct and reproducible transmission phenotypes. The closed core A. marginale genome suggests that any phenotypic differences are due to single nucleotide polymorphisms (SNPs). We combined DNA/RNA comparative genomic approaches using strains with different tick transmission phenotypes and identified genes that segregate with transmissibility. Results Comparison of seven strains with different transmission phenotypes generated a list of SNPs affecting 18 genes and nine promoters. Transcriptional analysis found two candidate genes downstream from promoter SNPs that were differentially transcribed. To corroborate the comparative genomics approach we used three RNA-seq platforms to analyze the transcriptomes from two A. marginale strains with different transmission phenotypes. RNA-seq analysis confirmed the comparative genomics data and found 10 additional genes whose transcription between strains with distinct transmission efficiencies was significantly different. Six regions of the genome that contained no annotation were found to be transcriptionally active, and two of these newly identified transcripts were differentially transcribed. Conclusions This approach identified 30 genes and two novel transcripts potentially involved in tick transmission. We describe the transcriptome of an obligate intracellular bacterium in depth, while employing massive parallel sequencing to dissect an important trait in bacterial pathogenesis.
Collapse
Affiliation(s)
- Sebastián Aguilar Pierlé
- Program in Genomics, Department of Veterinary Microbiology and Pathology, Paul G, Allen School for Global Animal Health, Washington State University, Pullman, WA 99164-7040, USA.
| | | | | | | | | |
Collapse
|
31
|
Ueti MW, Tan Y, Broschat SL, Castañeda Ortiz EJ, Camacho-Nuez M, Mosqueda JJ, Scoles GA, Grimes M, Brayton KA, Palmer GH. Expansion of variant diversity associated with a high prevalence of pathogen strain superinfection under conditions of natural transmission. Infect Immun 2012; 80:2354-60. [PMID: 22585962 PMCID: PMC3416468 DOI: 10.1128/iai.00341-12] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Accepted: 05/03/2012] [Indexed: 02/05/2023] Open
Abstract
Superinfection occurs when a second, genetically distinct pathogen strain infects a host that has already mounted an immune response to a primary strain. For antigenically variant pathogens, the primary strain itself expresses a broad diversity of variants over time. Thus, successful superinfection would require that the secondary strain express a unique set of variants. We tested this hypothesis under conditions of natural transmission in both temperate and tropical regions where, respectively, single-strain infections and strain superinfections of the tick-borne pathogen Anaplasma marginale predominate. Our conclusion that strain superinfection is associated with a significant increase in variant diversity is supported by progressive analysis of variant composition: (i) animals with naturally acquired superinfection had a statistically significantly greater number of unique variant sequences than animals either experimentally infected with single strains or infected with a single strain naturally, (ii) the greater number of unique sequences reflected a statistically significant increase in primary structural diversity in the superinfected animals, and (iii) the increase in primary structural diversity reflected increased combinations of the newly identified hypervariable microdomains. The role of population immunity in establishing temporal and spatial patterns of infection and disease has been well established. The results of the present study, which examined strain structure under conditions of natural transmission and population immunity, support that high levels of endemicity also drive pathogen divergence toward greater strain diversity.
Collapse
Affiliation(s)
- Massaro W. Ueti
- Animal Diseases Research Unit, USDA-ARS, Pullman, Washington, USA
| | - Yunbing Tan
- School of Electrical Engineering and Computer Science, Washington State University, Pullman, Washington, USA
| | - Shira L. Broschat
- School of Electrical Engineering and Computer Science, Washington State University, Pullman, Washington, USA
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| | | | - Minerva Camacho-Nuez
- Posgrado en Ciencias Genomicas, Universidad Autónoma de la Ciudad de Mexico, Mexico D.F., México
| | | | - Glen A. Scoles
- Animal Diseases Research Unit, USDA-ARS, Pullman, Washington, USA
| | - Matthew Grimes
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| | - Kelly A. Brayton
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, Washington, USA
| | - Guy H. Palmer
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, Washington, USA
| |
Collapse
|
32
|
Protection in the absence of exclusion between two Brazilian isolates of Anaplasma marginale in experimentally infected calves. Vet J 2010; 186:374-8. [DOI: 10.1016/j.tvjl.2009.09.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 08/08/2009] [Accepted: 09/15/2009] [Indexed: 11/23/2022]
|
33
|
|
34
|
Molecular epidemiology of bovine anaplasmosis with a particular focus in Mexico. INFECTION GENETICS AND EVOLUTION 2009; 9:1092-101. [PMID: 19786123 DOI: 10.1016/j.meegid.2009.09.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 09/15/2009] [Accepted: 09/21/2009] [Indexed: 11/21/2022]
Abstract
Bovine anaplasmosis, caused by the rickettsia Anaplasma marginale, has a worldwide distribution and is the cause of great economic losses in developing countries where it is highly endemic. Transmission is carried mainly by ixodid ticks: Dermacentor spp. and Rhipicephalus (Boophilus) spp. Mechanical transmission is important in disseminating the disease within and across herds. The relationship between the rickettsia, the host and the vector is complex. Several surface proteins (Msps) have been described with functions that span from adhesins towards the erythrocyte and tick cells to evasion of the immune system of the host through the generation of antigenic variants. Biologic transmission of A. marginale through Dermacentor ticks has been well studied but many questions are unresolved as to how this organism spreads within and across herds and little is known about the role Rhipicephalus (Boophilus) ticks play in transmission in the Americas. Mechanical transmission in the absence of ticks and lack of transmission through ticks are questions that need to be addressed. Phylogenetic studies of the rickettsia show wide antigenic and genetic mosaics which affects the design of new vaccines. In the present work we will discuss the molecular elements in the relationship between the rickettsia, the tick and the mammalian host associated to the distribution and persistence of the pathogen in nature.
Collapse
|
35
|
de la Fuente J, Kocan KM, Blouin EF, Zivkovic Z, Naranjo V, Almazán C, Esteves E, Jongejan F, Daffre S, Mangold AJ. Functional genomics and evolution of tick-Anaplasma interactions and vaccine development. Vet Parasitol 2009; 167:175-86. [PMID: 19819630 DOI: 10.1016/j.vetpar.2009.09.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The genus Anaplasma (Rickettsiales: Anaplasmataceae) includes several tick-transmitted pathogens that impact veterinary and human health. Tick-borne pathogens cycle between tick vectors and vertebrate hosts and their interaction is mediated by molecular mechanisms at the tick-pathogen interface. These mechanisms have evolved characteristics that involve traits from both the tick vector and the pathogen to insure their mutual survival. Herein, we review the information obtained from functional genomics and genetic studies to characterize the tick-Anaplasma interface and evolution of A. marginale and A. phagocytophilum. Anaplasma and tick genes and proteins involved in tick-pathogen interactions were characterized. The results of these studies demonstrated that common and Anaplasma species-specific molecular mechanism occur by which pathogen and tick cell gene expression mediates or limits Anaplasma developmental cycle and trafficking through ticks. These results have advanced our understanding of the biology of tick-Anaplasma interactions and have opened new avenues for the development of improved methods for the control of tick infestations and the transmission of tick-borne pathogens.
Collapse
Affiliation(s)
- José de la Fuente
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK 74078, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Kocan KM, de la Fuente J, Blouin EF, Coetzee JF, Ewing SA. The natural history of Anaplasma marginale. Vet Parasitol 2009; 167:95-107. [PMID: 19811876 DOI: 10.1016/j.vetpar.2009.09.012] [Citation(s) in RCA: 336] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The intracellular pathogen Anaplasma marginale (Rickettsiales: Anaplasmataceae), described by Sir Arnold Theiler in 1910, is endemic worldwide in tropical and subtropical areas. Infection of cattle with A. marginale causes bovine anaplasmosis, a mild to severe hemolytic disease that results in considerable economic loss to both dairy and beef industries. Transmission of A. marginale to cattle occurs biologically by ticks and mechanically by biting flies and by blood-contaminated fomites. Both male ticks and cattle hosts become persistently infected with A. marginale and serve as reservoirs of infection. While erythrocytes are the major site of infection in cattle, A. marginale undergoes a complex developmental cycle in ticks that begins by infection of gut cells, and transmission to susceptible hosts occurs from salivary glands during feeding. Major surface proteins (MSPs) play a crucial role in the interaction of A. marginale with host cells, and include adhesion proteins and MSPs from multigene families that undergo antigenic change and selection in cattle, thus contributing to maintenance of persistent infections. Many geographic strains of A. marginale have been identified worldwide, which vary in genotype, antigenic composition, morphology and infectivity for ticks. Isolates of A. marginale may be maintained by independent transmission events and a mechanism of infection/exclusion in cattle and ticks. The increasing numbers of A. marginale genotypes identified in some geographic regions most likely resulted from intensive cattle movement. However, concurrent A. marginale strain infections in cattle was reported, but these strains were more distantly related. Phylogenetic studies of selected geographic isolates of A. marginale, using msp4 and msp1alpha, provided information about the biogeography and evolution of A. marginale, and msp1alpha genotypes appear to have evolved under positive selection pressure. Live and killed vaccines have been used for control of anaplasmosis and both types of vaccines have advantages and disadvantages. Vaccines have effectively prevented clinical anaplasmosis in cattle but have failed to block A. marginale infection. Vaccines are needed that can prevent clinical disease and, simultaneously, prevent infection in cattle and ticks, thus eliminating these hosts as reservoirs of infection. Advances in genomics, proteomics, immunology and biochemical and molecular technologies during the last decade have been applied to research on A. marginale and related organisms, and the recent development of a cell culture system for A. marginale has provided a format for studying the pathogen/tick interface. Recent advancements and new research methodologies should provide additional opportunities for development of new strategies for control and prevention of bovine anaplasmosis.
Collapse
Affiliation(s)
- Katherine M Kocan
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK 74078-2007, USA.
| | | | | | | | | |
Collapse
|
37
|
Estrada-Peña A, Naranjo V, Acevedo-Whitehouse K, Mangold AJ, Kocan KM, de la Fuente J. Phylogeographic analysis reveals association of tick-borne pathogen, Anaplasma marginale, MSP1a sequences with ecological traits affecting tick vector performance. BMC Biol 2009; 7:57. [PMID: 19723295 PMCID: PMC2741432 DOI: 10.1186/1741-7007-7-57] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Accepted: 09/01/2009] [Indexed: 11/24/2022] Open
Abstract
Background The tick-borne pathogen Anaplasma marginale, which is endemic worldwide, is the type species of the genus Anaplasma (Rickettsiales: Anaplasmataceae). Rhipicephalus (Boophilus) microplus is the most important tick vector of A. marginale in tropical and subtropical regions of the world. Despite extensive characterization of the genetic diversity in A. marginale geographic strains using major surface protein sequences, little is known about the biogeography and evolution of A. marginale and other Anaplasma species. For A. marginale, MSP1a was shown to be involved in vector-pathogen and host-pathogen interactions and to have evolved under positive selection pressure. The MSP1a of A. marginale strains differs in molecular weight because of a variable number of tandem 23-31 amino acid repeats and has proven to be a stable marker of strain identity. While phylogenetic studies of MSP1a repeat sequences have shown evidence of A. marginale-tick co-evolution, these studies have not provided phylogeographic information on a global scale because of the high level of MSP1a genetic diversity among geographic strains. Results In this study we showed that the phylogeography of A. marginale MSP1a sequences is associated with world ecological regions (ecoregions) resulting in different evolutionary pressures and thence MSP1a sequences. The results demonstrated that the MSP1a first (R1) and last (RL) repeats and microsatellite sequences were associated with world ecoregion clusters with specific and different environmental envelopes. The evolution of R1 repeat sequences was found to be under positive selection. It is hypothesized that the driving environmental factors regulating tick populations could act on the selection of different A. marginale MSP1a sequence lineages, associated to each ecoregion. Conclusion The results reported herein provided the first evidence that the evolution of A. marginale was linked to ecological traits affecting tick vector performance. These results suggested that some A. marginale strains have evolved under conditions that support pathogen biological transmission by R. microplus, under different ecological traits which affect performance of R. microplus populations. The evolution of other A. marginale strains may be linked to transmission by other tick species or to mechanical transmission in regions where R. microplus is currently eradicated. The information derived from this study is fundamental toward understanding the evolution of other vector-borne pathogens.
Collapse
|
38
|
Ruybal P, Moretta R, Perez A, Petrigh R, Zimmer P, Alcaraz E, Echaide I, Torioni de Echaide S, Kocan KM, de la Fuente J, Farber M. Genetic diversity of Anaplasma marginale in Argentina. Vet Parasitol 2009; 162:176-80. [DOI: 10.1016/j.vetpar.2009.02.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Revised: 02/03/2009] [Accepted: 02/04/2009] [Indexed: 10/21/2022]
|
39
|
Molad T, Fleidrovich L, Mazuz M, Fish L, Leibovitz B, Krigel Y, Shkap V. Genetic diversity of major surface protein 1a of Anaplasma marginale in beef cattle. Vet Microbiol 2009; 136:54-60. [DOI: 10.1016/j.vetmic.2008.10.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2008] [Revised: 10/22/2008] [Accepted: 10/24/2008] [Indexed: 12/01/2022]
|
40
|
Independence of Anaplasma marginale strains with high and low transmission efficiencies in the tick vector following simultaneous acquisition by feeding on a superinfected mammalian reservoir host. Infect Immun 2009; 77:1459-64. [PMID: 19188360 PMCID: PMC2663170 DOI: 10.1128/iai.01518-08] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Strain superinfection occurs when a second pathogen strain infects a host already carrying a primary strain. Anaplasma marginale superinfection occurs when the second strain carries a variant repertoire different from that of the primary strain, and the epidemiologic consequences depend on the relative efficiencies of tick-borne transmission of the two strains. Following strain superinfection in the reservoir host, we tested whether the presence of two A. marginale (sensu lato) strains that differed in transmission efficiency altered the transmission phenotypes in comparison to those for single-strain infections. Dermacentor andersoni ticks were fed on animals superinfected with the Anaplasma marginale subsp. centrale vaccine strain (low transmission efficiency) and the A. marginale St. Maries strain (high transmission efficiency). Within ticks that acquired both strains, the St. Maries strain had a competitive advantage and replicated to significantly higher levels than the vaccine strain. The St. Maries strain was subsequently transmitted to naïve hosts by ticks previously fed either on superinfected animals or on animals singly infected with the St. Maries strain, consistent with the predicted transmission phenotype of this strain and the lack of interference due to the presence of a competing low-efficiency strain. The vaccine strain was not transmitted by either singly infected or coinfected ticks, consistent with the predicted transmission phenotype and the lack of enhancement due to the presence of a high-efficiency strain. These results support the idea that the strain predominance in regions of endemicity is mediated by the intrinsic transmission efficiency of specific strains regardless of occurrence of superinfection.
Collapse
|
41
|
Rodríguez Camarillo SD, García Ortiz MA, Rojas Ramírez EE, Cantó Alarcón GJ, Preciado de la Torre JF, Rosario Cruz R, Ramos Aragón JA, Aboytes Torres R. Anaplasma marginale Yucatan (Mexico) Strain. Assessment of low virulence and potential use as a live vaccine. Ann N Y Acad Sci 2009; 1149:98-102. [PMID: 19120183 DOI: 10.1196/annals.1428.067] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Anaplasma marginale Yucatan strain was found to have low virulence in cattle. We studied the virulence of this isolate by experimental inoculation of 113 susceptible cattle at increasing doses, after which only one animal required treatment for clinical disease. Subsequently, 104 cattle received a live vaccine of this strain by inoculation, which induced immunoprotection after heterologous challenged exposure with a different A. marginale isolate. In this study 14% of the immunized cattle required treatment as compared with the control nonimmunized cattle, in which 56% required treatment. The A. marginale vaccine strains used for the immunization studies had MSP1a variable regions that were different from those used for the challenge exposure.
Collapse
Affiliation(s)
- Sergio D Rodríguez Camarillo
- Centro de Investigaciones Disciplinarias, en Parasitología Veterinaria, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentació, Jiutepec, Morelos, Méxcio
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Genetic diversity of Anaplasma marginale strains from an outbreak of bovine anaplasmosis in an endemic area. Vet Parasitol 2008; 158:103-9. [DOI: 10.1016/j.vetpar.2008.08.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Revised: 08/27/2008] [Accepted: 08/27/2008] [Indexed: 11/20/2022]
|
43
|
Quantitative differences in salivary pathogen load during tick transmission underlie strain-specific variation in transmission efficiency of Anaplasma marginale. Infect Immun 2008; 77:70-5. [PMID: 18955472 DOI: 10.1128/iai.01164-08] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The relative fitness of arthropod-borne pathogens within the vector can be a major determinant of pathogen prevalence within the mammalian host population. Strains of the tick-borne rickettsia Anaplasma marginale differ markedly in transmission efficiency, with a consequent impact on pathogen strain structure. We have identified two A. marginale strains with significant differences in the transmission phenotype that is effected following infection of the salivary gland. We have proposed competing hypotheses to explain the phenotypes: (i) both strains are secreted equally, but there is an intrinsic difference in infectivity for the mammalian host, or (ii) one strain is secreted at a significantly higher level and thus represents delivery of a greater pathogen dose. Quantitative analysis of pathogen replication and secretion revealed that the high-efficiency St. Maries strain replicated to a 10-fold-higher titer and that a significantly greater percentage of infected ticks secreted A. marginale into the saliva and did so at a significantly higher level than for the low-efficiency Israel vaccine strain. Furthermore, the transmission phenotype of the vaccine strain could be restored to that of the St. Maries strain simply by increasing the delivered pathogen dose, either by direct inoculation of salivary gland organisms or by increasing the number of ticks during transmission feeding. We identified morphological differences in the colonization of each strain within the salivary glands and propose that these reflect strain-specific differences in replication and secretion pathways linked to the vector-pathogen interaction.
Collapse
|
44
|
Tick-borne transmission of two genetically distinct Anaplasma marginale strains following superinfection of the mammalian reservoir host. Infect Immun 2008; 76:4066-70. [PMID: 18573892 DOI: 10.1128/iai.00594-08] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Strain superinfection affects the dynamics of epidemiological spread of pathogens through a host population. Superinfection has recently been shown to occur for two genetically distinct strains of the tick-borne pathogen Anaplasma marginale that encode distinctly different surface protein variants. Superinfected animals could serve as a reservoir for onward transmission of both strains if the tick vector is capable of acquiring and transmitting both strains. Whether competition among strains during development within the tick vector, which requires sequential invasion and replication events, limits colonization and subsequent transmission to a single strain is unknown. We tested this possibility by acquisition feeding Dermacentor andersoni ticks on a reservoir host superinfected with the genetically distinct St. Maries and EMPhi strains. Although the St. Maries strain consistently maintained higher bacteremia levels in the mammalian host and the EMPhi strain had an early advantage in colonization of the tick salivary glands, individual ticks were coinfected, and there was successful transmission of both strains. These results indicate that a genetically distinct A. marginale strain capable of superinfecting the mammalian host can subsequently be cotransmitted and become established within the host population despite the presence of an existing established strain.
Collapse
|
45
|
Dynamic transmission of numerous Anaplasma phagocytophilum genotypes among lambs in an infected sheep flock in an area of anaplasmosis endemicity. J Clin Microbiol 2008; 46:1686-91. [PMID: 18367562 PMCID: PMC2395098 DOI: 10.1128/jcm.02068-07] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The transmission dynamics of Anaplasma phagocytophilum strains circulating within juvenile members of a sheep flock grazing on an Ixodes ricinus-infested pasture in southern Norway were monitored. PCR-based detection of the bacterial p44 fragments in the blood of 16 lambs sampled weekly for 16 weeks following their release into pasture revealed rickettsemia in all animals, with an increasing proportion of infected animals as the survey progressed. Comparison of partial msp4 sequences obtained from infected blood samples revealed 24 distinct genotypes, some of which were repeatedly encountered, occurring in up to six sheep over a 14-week period, whereas others were observed only once. Individual sheep were infected by up to five distinct genotypes, with a specific genotype being encountered for between one and three consecutive weeks, and in some sheep, genotypes detected early in the study were also present in later samples. In general, detection of A. phagocytophilum by PCR correlated well with the observation of infected neutrophils in blood smears. Together these results reveal a previously unrecognized diversity of A. phagocytophilum strains simultaneously circulating within an infected population in an area of endemicity and are consistent with a remarkably dynamic transmission of strains among infected animals.
Collapse
|
46
|
Shkap V, Leibovitz B, Krigel Y, Molad T, Fish L, Mazuz M, Fleiderovitz L, Savitsky I. Concomitant infection of cattle with the vaccine strain Anaplasma marginale ss centrale and field strains of A. marginale. Vet Microbiol 2008; 130:277-84. [PMID: 18387757 DOI: 10.1016/j.vetmic.2008.02.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Revised: 02/14/2008] [Accepted: 02/20/2008] [Indexed: 10/22/2022]
Abstract
Bovine anaplasmosis, caused by Anaplasma marginale, the intraerythrocytic rickettsia, is controlled by vaccination with live Anaplasma marginale ss centrale (A. centrale), a subspecies of relatively low pathogenicity. We have experimentally demonstrated that an animal primarily infected with A. marginale, or with the related vaccine subspecies A. centrale can be infected with the heterologous subspecies, and carries both bacteria. The co-infection was detected in experimentally cross-infected calves for up to 3 months after the last inoculation with the heterologous subspecies. The occurrence of characteristic cyclic rickettsemia of A. centrale and A. marginale was observed by examination of Giemsa-stained blood smears, or by the presence of specific rickettsial DNA confirmed in PCR assays based on specific msp1a and msp4 for A. marginale, and on specifically designed msp3 and msp4 primers for A. centrale. Sequence analysis of msp4-specific fragments for each subspecies revealed the presence of dual infection in both calves on days 30 and 60 after cross-inoculation with the heterologous Anaplasma subspecies. The experimental cross-infection of calves clearly demonstrated that the concept of "infection exclusion" does not apply to Anaplasma infection in cattle; as there was no infection exclusion of A. marginale in A. centrale-infected cattle, and vice versa. The present results confirmed our previous findings that cattle grazing in an anaplasmosis-endemic field were subject to concomitant infection with both the vaccine A. centrale and the field A. marginale strains.
Collapse
Affiliation(s)
- Varda Shkap
- Division of Parasitology, Kimron Veterinary Institute, Bet Dagan, Israel.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Futse JE, Brayton KA, Dark MJ, Knowles DP, Palmer GH. Superinfection as a driver of genomic diversification in antigenically variant pathogens. Proc Natl Acad Sci U S A 2008; 105:2123-7. [PMID: 18252822 PMCID: PMC2538888 DOI: 10.1073/pnas.0710333105] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Indexed: 11/18/2022] Open
Abstract
A new pathogen strain can penetrate an immune host population only if it can escape immunity generated against the original strain. This model is best understood with influenza viruses, in which genetic drift creates antigenically distinct strains that can spread through host populations despite the presence of immunity against previous strains. Whether this selection model for new strains applies to complex pathogens responsible for endemic persistent infections, such as anaplasmosis, relapsing fever, and sleeping sickness, remains untested. These complex pathogens undergo rapid within-host antigenic variation by using sets of chromosomally encoded variants. Consequently, immunity is developed against a large repertoire of variants, dramatically changing the scope of genetic change needed for a new strain to evade existing immunity and establish coexisting infection, termed strain superinfection. Here, we show that the diversity in the alleles encoding antigenic variants between strains of a highly antigenically variant pathogen was equal to the diversity within strains, reflecting equivalent selection for variants to overcome immunity at the host population level as within an individual host. This diversity among strains resulted in expression of nonoverlapping variants that allowed a new strain to evade immunity and establish superinfection. Furthermore, we demonstrated that a single distinct allele allows strain superinfection. These results indicate that there is strong selective pressure to increase the diversity of the variant repertoire beyond what is needed for persistence within an individual host and provide an explanation, competition at the host population level, for the large genomic commitment to variant gene families in persistent pathogens.
Collapse
Affiliation(s)
- James E Futse
- Program in Vector-Borne Diseases, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | | | | | | | | |
Collapse
|
48
|
Lankester MW, Scandrett WB, Golsteyn-Thomas EJ, Chilton NC, Gajadhar AA. Experimental transmission of bovine anaplasmosis (caused by Anaplasma marginale) by means of Dermacentor variabilis and D. andersoni (Ixodidae) collected in western Canada. CANADIAN JOURNAL OF VETERINARY RESEARCH = REVUE CANADIENNE DE RECHERCHE VETERINAIRE 2007; 71:271-277. [PMID: 17955901 PMCID: PMC1940274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/15/2006] [Accepted: 10/26/2006] [Indexed: 05/25/2023]
Abstract
Canadian cattle are free of bovine anaplasmosis, with the exception of 4 isolated incursions since 1968, which were eradicated. It is not known why the disease has not become established in regions of Canada adjacent to the United States where it is endemic. To assess the vector competence of wild-caught ticks in cattle-rearing regions, Dermacentor variabilis and D. andersoni were collected in western Canada and fed on calves experimentally infected with Anaplasma marginale (St. Maries strain). The 2 tick species were equally competent in transmitting A. marginale to splenectomized calves, all 15 tick-exposed calves becoming infected. The prepatent periods in 13 calves ranged from 18 to 26 d and did not vary in relation to the numbers of ticks fed or the duration of transmission feedings. The unusually long prepatent periods in 2 calves (45 and 55 d) were probably due to concomitant Eperythrozoon infection. This study clearly demonstrated that tick species present in western Canada are competent vectors of bovine anaplasmosis. Potential barriers, including climate, must be considered in developing strategies to prevent A. marginale from becoming established in anaplasmosis-free regions.
Collapse
Affiliation(s)
| | | | | | | | - Alvin A. Gajadhar
- Address all correspondence and reprint requests to Dr. Alvin Gajadhar; telephone: (306) 975-5344; fax: (306) 975-5711; e-mail:
| |
Collapse
|
49
|
Ueti MW, Reagan JO, Knowles DP, Scoles GA, Shkap V, Palmer GH. Identification of midgut and salivary glands as specific and distinct barriers to efficient tick-borne transmission of Anaplasma marginale. Infect Immun 2007; 75:2959-64. [PMID: 17420231 PMCID: PMC1932854 DOI: 10.1128/iai.00284-07] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Understanding the determinants of efficient tick-borne microbial transmission is needed to better predict the emergence of highly transmissible pathogen strains and disease outbreaks. Although the basic developmental cycle of Anaplasma and Ehrlichia spp. within the tick has been delineated, there are marked differences in the ability of specific strains to be efficiently tick transmitted. Using the highly transmissible St. Maries strain of Anaplasma marginale in Dermacentor andersoni as a positive control and two unrelated nontransmissible strains, we identified distinct barriers to efficient transmission within the tick. The Mississippi strain was unable to establish infection at the level of the midgut epithelium despite successful ingestion of infected blood following acquisition feeding on a bacteremic animal host. This inability to colonize the midgut epithelium prevented subsequent development within the salivary glands and transmission. In contrast, A. marginale subsp. centrale colonized the midgut and then the salivary glands, replicating to a titer indistinguishable from that of the highly transmissible St. Maries strain and at least 100 times greater than that previously associated with successful transmission. Nonetheless, A. marginale subsp. centrale was not transmitted, even when a large number of infected ticks was used for transmission feeding. These results establish that there are at least two specific barriers to efficient tick-borne transmission, the midgut and salivary glands, and highlight the complexity of the pathogen-tick interaction.
Collapse
Affiliation(s)
- Massaro W Ueti
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164-7040, USA.
| | | | | | | | | | | |
Collapse
|
50
|
Mtshali MS, de la Fuente J, Ruybal P, Kocan KM, Vicente J, Mbati PA, Shkap V, Blouin EF, Mohale NE, Moloi TP, Spickett AM, Latif AA. Prevalence and Genetic Diversity of Anaplasma marginale Strains in Cattle in South Africa. Zoonoses Public Health 2007; 54:23-30. [PMID: 17359443 DOI: 10.1111/j.1863-2378.2007.00998.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bovine anaplasmosis, caused by the tick-borne rickettsia Anaplasma marginale, is endemic in South Africa and results in considerable economic loss to the cattle industry. This study was designed to characterize strains of A. marginale at the molecular level from cattle raised in communal and commercial farms in the north-eastern and south-western regions of the Free State Province, South Africa, that varied in rainfall and vegetation. Seroprevalence to A. marginale was determined in 755 cattle by an Anaplasma spp. competitive enzyme-linked immunosorbent assay and ranged from 44% to 98% and was similar in both regions. While Anaplasma centrale was not targeted in this study, A. marginale infections were identified by species-specific msp1alpha polymerase chain reaction in 129 of 215 of the samples studied. Similar genetic diversity of A. marginale strains was found in both the north-eastern and south-western regions. The sequences of 29 A. marginalemsp1alpha amplicons from South African strains revealed considerable genetic diversity providing 14 new repeat sequences. However, 42% of MSP1a repeat sequences were not unique to this region. These results indicated the presence of common genotypes between South African, American and European strains of A. marginale. Cattle movement between different parts of South Africa was suggested by the presence of identical A. marginale MSP1a genotypes in north-eastern and south-western regions of the Free State Province. Control strategies for anaplasmosis in South Africa should therefore be designed to be protective against genetically heterogeneous strains of A. marginale.
Collapse
Affiliation(s)
- M S Mtshali
- Parasitology Research Program, QwaQwa Campus, University of the Free State, Private Bag X13, Phuthaditjhaba 9866, South Africa
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|