1
|
Wolska-Gębarzewska M, Międzobrodzki J, Kosecka-Strojek M. Current types of staphylococcal cassette chromosome mec (SCC mec) in clinically relevant coagulase-negative staphylococcal (CoNS) species. Crit Rev Microbiol 2024; 50:1020-1036. [PMID: 37882662 DOI: 10.1080/1040841x.2023.2274841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/17/2023] [Indexed: 10/27/2023]
Abstract
Coagulase-negative staphylococci (CoNS) colonize human skin and mucosal membranes, which is why they are considered harmless commensal bacteria. Two species, Staphylococcus epidermidis and Staphylococcus haemolyticus belong to the group of CoNS species and are most frequently isolated from nosocomial infections, including device-associated healthcare-associated infections (DA-HAIs) and local or systemic body-related infections (FBRIs). Methicillin resistance, initially described in Staphylococcus aureus, has also been reported in CoNS species. It is mediated by the mecA gene within the staphylococcal cassette chromosome (SCCmec). SCCmec typing, primarily using PCR-based methods, has been employed as a molecular epidemiological tool. However, the introduction of whole genome sequencing (WGS) and next-generation sequencing (NGS) has enabled the identification and verification of new SCCmec types. This review describes the current distribution of SCCmec types, subtypes, and variants among CoNS species, including S. epidermidis, S. haemolyticus, and S. capitis. The literature review focuses on recent research articles from the past decade that discuss new combinations of SCCmec in coagulase-negative Staphylococcus. The high genetic diversity and gaps in CoNS SCCmec annotation rules underscore the need for an efficient typing system. Typing SCCmec cassettes in CoNS strains is crucial to continuously updating databases and developing a unified classification system.
Collapse
Affiliation(s)
- Mariola Wolska-Gębarzewska
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - Jacek Międzobrodzki
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Maja Kosecka-Strojek
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
2
|
Deepak SJ, Kannan P, Savariraj WR, Ayyasamy E, Tuticorin Maragatham Alagesan SK, Ravindran NB, Sundaram S, Mohanadasse NQ, Kang Q, Cull CA, Amachawadi RG. Characterization of Staphylococcus aureus isolated from milk samples for their virulence, biofilm, and antimicrobial resistance. Sci Rep 2024; 14:25635. [PMID: 39465266 PMCID: PMC11514165 DOI: 10.1038/s41598-024-75076-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 10/01/2024] [Indexed: 10/29/2024] Open
Abstract
The Staphylococcus aureus (S. aureus) one of the important food borne pathogen from milk, which was investigated in this study. The isolates were screened for antimicrobial resistance, enterotoxin genes, biofilm formation, spa typing, coagulase gene polymorphism and accessory gene regulator types. The prevalence of S. aureus in milk samples was 34.4% (89/259). Methicillin resistant S. aureus (MRSA) was found at 27% (24/89) of the isolates, were classified as community acquired based on SCCmec typing. The 24.71% (22/89) isolates demonstrated multiple antimicrobial resistance (MAR) pattern. However, none of the isolates carried vancomycin and mupirocin resistance genes. The isolates were positive for sea and sed enterotoxin genes and exhibited high frequency of biofilm formation. The High-Resolution Melting and conventional spa typing revealed that the isolates had both animal and community-associated S. aureus clustered origins. Coagulase gene polymorphism and agr typing demonstrated variable genotypic patterns. The finding of this study establishes the prevalence of community associated, enterotoxigenic, biofilm forming and antimicrobial resistance among S. aureus from milk in Chennai city. This emphasizing a potential threat to public health which needs a continuous monitoring system and strategies to mitigate their spread across the food chain and achieve food safety.
Collapse
Affiliation(s)
| | - Porteen Kannan
- Department of Veterinary Public Health and Epidemiology, Madras Veterinary College, TANUVAS, Chennai, 600 007, India.
| | - Wilfred Ruban Savariraj
- Department of Livestock Products and Technology, Veterinary College, KVAFSU, Bengaluru, 560 024, India
| | - Elango Ayyasamy
- Veterinary College and Research Institute, TANUVAS, Salem, 636 112, India
| | | | - Narendra Babu Ravindran
- Department of Livestock Products and Technology, Madras Veterinary College, TANUVAS, Chennai, 600 007, India
| | - Sureshkannan Sundaram
- Department of Veterinary Public Health and Epidemiology, Madras Veterinary College, TANUVAS, Chennai, 600 007, India
| | | | - Qing Kang
- Department of Statistics, Kansas State University, Manhattan, KS, 66506 0802, USA
| | - Charley A Cull
- Veterinary & Biomedical Research Center, Inc., Manhattan, KS, 66502 9007, USA
| | - Raghavendra G Amachawadi
- Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, KS, 66506 5606, USA.
| |
Collapse
|
3
|
Ribeiro ÁCDS, Santos FF, Valiatti TB, Lenzi MH, Santos INM, Neves RFB, Moses IB, Meneses JPD, Di Sessa RGDG, Salles MJ, Gales AC. Comparative in vitro activity of Delafloxacin and other antimicrobials against isolates from patients with acute bacterial skin, skin-structure infection and osteomyelitis. Braz J Infect Dis 2024; 28:103867. [PMID: 39305936 PMCID: PMC11490911 DOI: 10.1016/j.bjid.2024.103867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/06/2024] [Indexed: 10/12/2024] Open
Abstract
The aim of this study was to compare the in vitro activity of delafloxacin with other fluoroquinolones against bacterial pathogens recovered from inpatients with osteomyelitis, Acute Bacterial Skin and Skin-Structure Infections (ABSSSI). In total, 100 bacterial isolates (58 % Gram-negative and 42 % Gram-positive) recovered from inpatients between January and April 2021, were reidentified at species level by MALDI-TOF MS. Antimicrobial susceptibility testing was conducted using the broth microdilution method and the detection of biofilm formation was assessed through the microtiter plate assay. The screening for mecA was carried out by PCR, while mutations in the Quinolone Resistance Determining Regions (QRDR), specifically gyrA and parC, were analyzed using PCR followed by Sanger sequencing. Results showed that delafloxacin exhibited greater in vitro potency (at least 64-times) than the other tested fluoroquinolones (levofloxacin and ciprofloxacin) when evaluating Staphylococcus aureus (MIC50 ≤0.008 mg/L) and coagulase-negative Staphylococcus (MIC50 0.06 mg/L). Furthermore, delafloxacin (MIC50 0.25 mg/L) was at least 4 times more potent than other tested fluoroquinolones (MIC50 1 mg/L) against P. aeruginosa. No difference in delafloxacin activity (MIC50 0.03 mg/L) was observed against Enterobacter cloacae when compared with ciprofloxacin (MIC50 0.03 mg/L). Despite presenting low activity against K. pneumoniae isolates (22.2 %), delafloxacin exhibited twice the activity compared to both levofloxacin and ciprofloxacin. Delafloxacin also exhibited a strong activity (71.4 %‒85.7 %.) against biofilm producing bacterial pathogens tested in this study. Interestingly, 82.14 % of the staphylococci tested in this study harbored mecA gene. In addition, the gyrA and parC genes in fluoroquinolone-resistant Gram-negative isolates displayed different mutations (substitutions and deletions). Herein, we showed that delafloxacin was the most active fluoroquinolone against staphylococci (including MRSA) and P. aeruginosa when compared to other fluoroquinolones such as ciprofloxacin and levofloxacin.
Collapse
Affiliation(s)
- Ághata Cardoso da Silva Ribeiro
- Universidade Federal de São Paulo (UNIFESP), Escola Paulista de Medicinan (EPM), Departamento de Medicina Interna, Divisão de Doenças Infecciosas, Laboratório Alerta, São Paulo, SP, Brazil.
| | - Fernanda Fernandes Santos
- Universidade Federal de São Paulo (UNIFESP), Escola Paulista de Medicinan (EPM), Departamento de Medicina Interna, Divisão de Doenças Infecciosas, Laboratório Alerta, São Paulo, SP, Brazil
| | - Tiago Barcelos Valiatti
- Universidade Federal de São Paulo (UNIFESP), Escola Paulista de Medicinan (EPM), Departamento de Medicina Interna, Divisão de Doenças Infecciosas, Laboratório Alerta, São Paulo, SP, Brazil
| | - Michael Henrique Lenzi
- Universidade Federal de São Paulo (UNIFESP), Escola Paulista de Medicinan (EPM), Departamento de Medicina Interna, Divisão de Doenças Infecciosas, Laboratório Alerta, São Paulo, SP, Brazil
| | - Ingrid Nayara Marcelino Santos
- Universidade Federal de São Paulo (UNIFESP), Escola Paulista de Medicinan (EPM), Departamento de Medicina Interna, Divisão de Doenças Infecciosas, Laboratório Alerta, São Paulo, SP, Brazil
| | - Raíssa Fidelis Baêta Neves
- Universidade Federal de São Paulo (UNIFESP), Escola Paulista de Medicinan (EPM), Departamento de Medicina Interna, Divisão de Doenças Infecciosas, Laboratório Alerta, São Paulo, SP, Brazil
| | - Ikechukwu Benjamin Moses
- Universidade Federal de São Paulo (UNIFESP), Escola Paulista de Medicinan (EPM), Departamento de Medicina Interna, Divisão de Doenças Infecciosas, Laboratório Alerta, São Paulo, SP, Brazil; Ebonyi State University, Faculty of Science, Department of Applied Microbiology, Abakaliki, Nigeria
| | | | | | - Mauro José Salles
- Universidade Federal de São Paulo (UNIFESP), Escola Paulista de Medicinan (EPM), Departamento de Medicina Interna, Divisão de Doenças Infecciosas, Laboratório Alerta, São Paulo, SP, Brazil
| | - Ana Cristina Gales
- Universidade Federal de São Paulo (UNIFESP), Escola Paulista de Medicinan (EPM), Departamento de Medicina Interna, Divisão de Doenças Infecciosas, Laboratório Alerta, São Paulo, SP, Brazil
| |
Collapse
|
4
|
Talim J, Martins I, Messias C, Sabino H, Oliveira L, Pinto T, Albuquerque J, Cerqueira A, Dolores Í, Moreira B, Silveira R, Neves F, Rabello R. Multidrug-Resistant Staphylococcus aureus Colonizing Pigs and Farm Workers in Rio de Janeiro State, Brazil: Potential Interspecies Transmission of Livestock-Associated MRSA (LA-MRSA) ST398. Antibiotics (Basel) 2024; 13:767. [PMID: 39200067 PMCID: PMC11350785 DOI: 10.3390/antibiotics13080767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/08/2024] [Accepted: 08/11/2024] [Indexed: 09/01/2024] Open
Abstract
Multidrug-resistant (MDR) Staphylococcus aureus has been increasingly isolated from pigs and people in close contact with them, especially livestock-associated methicillin-resistant S. aureus (LA-MRSA). In this cross-sectional study, we investigated S. aureus colonization in pigs and farm workers, their resistance profile, and genetic background to estimate interspecies transmission potential within farms from Rio de Janeiro state, Brazil, between 2014 and 2019. We collected nasal swabs from 230 pigs and 27 workers from 16 and 10 farms, respectively. Five MDR strains were subjected to whole genome sequencing. Fourteen (6.1%) pigs and seven (25.9%) humans were colonized with S. aureus, mostly (64-71%) MDR strains. Resistance to clindamycin, erythromycin, penicillin, and tetracycline was the most common among the pig and human strains investigated. MDR strains shared several resistance genes [blaZ, dfrG, fexA, lsa(E), and tet(M)]. Pig and human strains recovered from the same farm shared the same genetic background and antimicrobial resistance profile. LA-MRSA ST398-SCCmecV-t011 was isolated from pigs in two farms and from a farm worker in one of them, suggesting interspecies transmission. The association between pig management practices and MDR S. aureus colonization might be investigated in additional studies.
Collapse
Affiliation(s)
- Joana Talim
- Department of Microbiology and Parasitology, Instituto Biomédico, Universidade Federal Fluminense, Niterói 24020-150, RJ, Brazil; (J.T.); (H.S.); (J.A.); (A.C.); (F.N.)
| | - Ianick Martins
- Faculty of Medicine, Universidade Federal Fluminense, Niterói 24033-900, RJ, Brazil;
| | - Cassio Messias
- Centro de Ciências Biológicas e da Natureza, Universidade Federal do Acre, Rio Branco 69915-900, AC, Brazil;
| | - Hellen Sabino
- Department of Microbiology and Parasitology, Instituto Biomédico, Universidade Federal Fluminense, Niterói 24020-150, RJ, Brazil; (J.T.); (H.S.); (J.A.); (A.C.); (F.N.)
| | - Laura Oliveira
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (L.O.); (T.P.); (B.M.)
| | - Tatiana Pinto
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (L.O.); (T.P.); (B.M.)
| | - Julia Albuquerque
- Department of Microbiology and Parasitology, Instituto Biomédico, Universidade Federal Fluminense, Niterói 24020-150, RJ, Brazil; (J.T.); (H.S.); (J.A.); (A.C.); (F.N.)
| | - Aloysio Cerqueira
- Department of Microbiology and Parasitology, Instituto Biomédico, Universidade Federal Fluminense, Niterói 24020-150, RJ, Brazil; (J.T.); (H.S.); (J.A.); (A.C.); (F.N.)
| | - Ítalo Dolores
- Departament of Clinical Medicine, Faculty of Medicine, Universidade de São Paulo, São Paulo 01246-903, SP, Brazil;
| | - Beatriz Moreira
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (L.O.); (T.P.); (B.M.)
| | - Renato Silveira
- Department of Morphology, Instituto Biomédico, Universidade Federal Fluminense, Niterói 24210-130, RJ, Brazil;
| | - Felipe Neves
- Department of Microbiology and Parasitology, Instituto Biomédico, Universidade Federal Fluminense, Niterói 24020-150, RJ, Brazil; (J.T.); (H.S.); (J.A.); (A.C.); (F.N.)
| | - Renata Rabello
- Department of Microbiology and Parasitology, Instituto Biomédico, Universidade Federal Fluminense, Niterói 24020-150, RJ, Brazil; (J.T.); (H.S.); (J.A.); (A.C.); (F.N.)
| |
Collapse
|
5
|
Boswihi SS, Alfouzan WA, Udo EE. Genomic profiling of methicillin-sensitive Staphylococcus aureus (MSSA) isolates in Kuwait hospitals. Front Microbiol 2024; 15:1361217. [PMID: 39086653 PMCID: PMC11288847 DOI: 10.3389/fmicb.2024.1361217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
Background Staphylococcus aureus is an important pathogen that causes mild to invasive infections in hospitals and the community. Although methicillin-susceptible Staphylococcus aureus (MSSA) isolates continue to cause different infections, there is no data on the genetic backgrounds of the MSSA colonizing or causing infections in Kuwait hospitals. This study aimed to investigate MSSA isolated from patients admitted to Kuwait hospitals for antibiotic resistance and genetic backgrounds to understand their clonal composition. Methods Consecutive MSSA isolates were collected from single patients during two surveillance periods in 2016 and 2021 in 13 public hospitals. The isolates were characterized using antibiogram, staphylococcal protein A (spa) typing, DNA microarray analysis, and multilocus sequence typing (MLST) using standard protocols. Results A total of 446 MSSA was cultured from different clinical samples in 2016 (n = 240) and 2021 (n = 206). All isolates were susceptible to vancomycin [minimum inhibitory concentration (MIC) ≤ 2 mg/L], teicoplanin (MIC ≤2 mg/L), linezolid (MIC ≤4 mg/L), ceftaroline (MIC ≤2 mg/L), rifampicin, and mupirocin but were resistant to erythromycin (21.3%), clindamycin (14.0%), gentamicin (3.8%), kanamycin (10.5%), fusidic acid (27.0%), tetracycline (6.9%), trimethoprim (23.1%), and ciprofloxacin (35.2%). Molecular typing identified 155 spa types, dominated by t127 (15.0%), t084 (5.4%), t3841 (5.4%), t267 (2.4%), t442 (2.2%), t091 (2.2%), t021 (2.2%), and t003 (2.2%); 31 clonal complexes (CCs); and 56 sequence types (STs). The majority of the isolates (n = 265; 59.4%) belonged to CC1 (20.6%), CC15 (10.9%), CC22 (5.1%), CC30 (7.6%), CC361 (10.1%), and CC398 (4.7%). Discussion The MSSA isolates belonged to diverse genetic backgrounds dominated by CC1, CC15, CC22, CC30, CC361, and CC398. The distribution of MSSA clones in 2016 and 2021 showed the stability of these clones over time. The study provides the first comprehensive data on the clonal distribution of MSSA in Kuwait hospitals.
Collapse
Affiliation(s)
- Samar S. Boswihi
- Department of Microbiology, College of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Wadha A. Alfouzan
- Department of Microbiology, College of Medicine, Kuwait University, Kuwait City, Kuwait
- Microbiology Unit, Department of Laboratories, Farwaniya Hospital, Farwaniya, Kuwait
| | - Edet E. Udo
- Department of Microbiology, College of Medicine, Kuwait University, Kuwait City, Kuwait
| |
Collapse
|
6
|
Sağlam M, Kılıç İH, Zer Y. Investigation of SCCmec types using the real time PCR method in cefoxitin-resistant Staphylococcus aureus isolates. Indian J Med Microbiol 2024; 50:100649. [PMID: 38876184 DOI: 10.1016/j.ijmmb.2024.100649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 03/29/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
BACKGROUND Methicillin-resistant Staphylococcus aureus (MRSA) is an important pathogen that can cause many community and hospital-acquired infections. This study was conducted to investigate the SCCmec gene types responsible for methicillin resistance in MRSA isolates isolated from hospitalised patients. MATERIAL AND METHODS MRSA isolates isolated from samples sent from various clinics to Gaziantep University Hospital Microbiology Laboratory between March 2021-January 2022 were included in the study. Bacteria were identified using by VITEK 2 automated system. Cefoxitin (FOX) resistance was determined by the disc diffusion method according to EUCAST standards. Cefoxitin resistance was confirmed by the Penicillin Binding Protein 2' latex agglutination test. Types of mecA, mecC, coa, nuc, Panton Valentin Leukocidin (PVL), ccrC2, class A mec, SCCmec types in isolates detected as MRSA were investigated by real-time PCR. RESULTS In this study, 116 isolates meeting the study criteria were examined. By detecting the nuc and coa genes in all isolates by PCR, the phenotypic identification of S.aureus was confirmed. While the mecA gene was detected in all MRSA isolates, no mecC gene was detected in any isolates. Detected SCCmec types were as follows; SCCmec Type 1 (2.6%), Type II (28.4%), Type III (12.9%), Type IVa (11.2%), Type IVb (3.4%), Type IVc (3.4%), Type IVg (12.1%), Type V (0.9%), Type VII (4.3%), Type VIII (18.1%), Type IX (0.9%), Type XII (1.7%). On the other hand, SCCmec Type VI, X, XI and XIII were not found in any isolate. It was determined that four of the MRSA isolates (3.4%) carried the PVL gene that two (50%) of these were found in SCCmec Type VIII. CONCLUSION Monitoring of FOX resistance is an effective and safe method for determination of MRSA isolates. The change in the mec gene causes resistance, which should be monitored regularly with molecular methods. Our study is the first study in Turkey.
Collapse
Affiliation(s)
- Mustafa Sağlam
- Gaziantep University Institute of Natural and Applied Sciences, Department of Biology, 27310 Şehitkamil/Gaziantep, Turkey.
| | - İbrahim Halil Kılıç
- Gaziantep University Faculty of Arts and Science, Department of Biology, Gaziantep, Turkey.
| | - Yasemin Zer
- Gaziantep University Faculty of Medicine Department of Medical Microbiology, Gaziantep, Turkey.
| |
Collapse
|
7
|
Moses IB, Santos INM, Ribeiro ÁCDS, Santos FF, Cayô R, Gales AC. Co-resistance to methicillin and clindamycin among coagulase-negative staphylococci isolates recovered from pet food in Brazil. Int J Food Microbiol 2024; 418:110726. [PMID: 38704995 DOI: 10.1016/j.ijfoodmicro.2024.110726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/05/2024] [Accepted: 04/24/2024] [Indexed: 05/07/2024]
Abstract
Pet food have been considered as possible vehicles of bacterial pathogens. The sudden boom of the pet food industry due to the worldwide increase in companion animal ownership calls for pet food investigations. Herein, this study aimed to determine the frequency, antimicrobial susceptibility profile, and molecular characteristics of coagulase-negative staphylococci (CoNS) in different pet food brands in Brazil. Eighty-six pet food packages were screened for CoNS. All isolates were identified at species level by MALDI-TOF MS and species-specific PCR. Antimicrobial susceptibility testing was performed by disc diffusion and broth microdilution (vancomycin and teicoplanin only) methods. The D-test was used to screen for inducible clindamycin phenotype (MLS-B). SCCmec typing and detection of mecA, vanA, vanB, and virulence-encoding genes were done by PCR. A total of 16 (18.6 %) CoNS isolates were recovered from pet food samples. Isolates were generally multidrug-resistant (MDR). All isolates were completely resistant (100 %) to penicillin. Resistances (12.5 % - 75 %) were also observed for fluoroquinolones, sulfamethoxazole-trimethoprim, tetracycline, rifampicin, erythromycin, and tobramycin. Isolates were susceptible to vancomycin (MICs <0.25-1 μg/mL) and teicoplanin (MICs <0.25-4 μg/mL). Intriguingly, 3/8 (37.5 %) CoNS isolates with the ERYRCLIS antibiotype expressed MLS-B phenotype. All isolates harboured blaZ gene. Seven (43.8 %) isolates carried mecA; and among them, the SCCmec Type III was the most frequent (n = 5/7; 71.4 %). Isolates also harboured seb, see, seg, sej, sem, etb, tsst, pvl, and hla toxin virulence-encoding genes (6.3 % - 25 %). A total of 12/16 (75 %) isolates were biofilm producers, while the icaAB gene was detected in an S. pasteuri isolate. Herein, it is shown that pet food is a potential source of clinically important Gram-positive bacterial pathogens. To the best of our knowledge, this is the first report of MLS-B phenotype and MR-CoNS in pet food in Latin America.
Collapse
Affiliation(s)
- Ikechukwu Benjamin Moses
- Universidade Federal de São Paulo (UNIFESP), Laboratório Alerta, Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina (EPM), São Paul, SP, Brazil; Department of Applied Microbiology, Faculty of Sciences, Ebonyi State University, Abakaliki, Ebonyi, Nigeria; Antimicrobial Resistance Institute of São Paulo (ARIES), São Paulo, Brazil.
| | - Ingrid Nayara Marcelino Santos
- Antimicrobial Resistance Institute of São Paulo (ARIES), São Paulo, Brazil; Universidade Federal de São Paulo (UNIFESP), Laboratório Especial de Microbiologia Clínica (LEMC), Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina (EPM), São Paulo, SP, Brazil
| | - Ághata Cardoso da Silva Ribeiro
- Universidade Federal de São Paulo (UNIFESP), Laboratório Alerta, Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina (EPM), São Paul, SP, Brazil; Antimicrobial Resistance Institute of São Paulo (ARIES), São Paulo, Brazil
| | - Fernanda Fernandes Santos
- Universidade Federal de São Paulo (UNIFESP), Laboratório Alerta, Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina (EPM), São Paul, SP, Brazil; Antimicrobial Resistance Institute of São Paulo (ARIES), São Paulo, Brazil
| | - Rodrigo Cayô
- Universidade Federal de São Paulo (UNIFESP), Laboratório Alerta, Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina (EPM), São Paul, SP, Brazil; Antimicrobial Resistance Institute of São Paulo (ARIES), São Paulo, Brazil; Universidade Federal de São Paulo (UNIFESP), Laboratório de Imunologia e Microbiologia (LIB), Setor de Biologia Molecular, Microbiologia e Imunologia, Departamento de Ciências Biológicas (DCB), Instituto de Ciências Ambientais, Químicas e Farmacêuticas (ICAQF), Diadema, SP, Brazil
| | - Ana Cristina Gales
- Universidade Federal de São Paulo (UNIFESP), Laboratório Alerta, Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina (EPM), São Paul, SP, Brazil; Antimicrobial Resistance Institute of São Paulo (ARIES), São Paulo, Brazil; Universidade Federal de São Paulo (UNIFESP), Laboratório Especial de Microbiologia Clínica (LEMC), Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina (EPM), São Paulo, SP, Brazil
| |
Collapse
|
8
|
Beshiru A, Igbinosa IH, Akinnibosun O, Ogofure AG, Dunkwu-Okafor A, Uwhuba KE, Igbinosa EO. Characterization of resistance and virulence factors in livestock-associated methicillin-resistant Staphylococcus aureus. Sci Rep 2024; 14:13235. [PMID: 38853154 PMCID: PMC11163002 DOI: 10.1038/s41598-024-63963-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024] Open
Abstract
The study investigated the economic concerns associated with livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) in livestock (cow), examining its connection to severe infections, antimicrobial resistance (AMR), and virulence factors. The research, conducted in Edo State, Nigeria, analyzed 400 samples (200 rectal and 200 nasal swabs) collected between March 2018 and February 2019. MRSA prevalence was identified using conventional culture-based methods and polymerase chain reaction (PCR) techniques, revealing 63.5% (n = 254) for Staphylococcus aureus and 55% (n = 220) for MRSA. Of the 76 mecA-positive MRSA isolates, 64.5% (n = 49) exhibited multidrug resistance (MDR) while the remaining were sensitive to specific antimicrobials. Key virulence genes, such as PVL (81.6%; n = 62) and tsst-1 (44.7%; n = 34), were prevalent, along with AMR genes like mecC, tetM, ermA, ermC, vanA, and vanC. Staphylococcal chromosomal cassette mec (SCCmec) typing identified different types, notably II, IVa, and IVb. Biofilm formation, a crucial virulence factor varied in strength, is associated with icaA and icaB genes (p < 0.01). The findings highlighted substantial AMR and biofilm-forming capacity within LA-MRSA isolates, emphasizing the importance of ongoing surveillance for informed treatment strategies, AMR policies, and control measures against MDR staphylococcal infections.
Collapse
Affiliation(s)
- Abeni Beshiru
- Applied Microbial Processes & Environmental Health Research Group, Faculty of Life Sciences, University of Benin, PMB 1154, Benin City, 300283, Nigeria
- Department of Microbiology, College of Natural and Applied Sciences, Western Delta University, Oghara, Nigeria
| | - Isoken H Igbinosa
- Applied Microbial Processes & Environmental Health Research Group, Faculty of Life Sciences, University of Benin, PMB 1154, Benin City, 300283, Nigeria
- Department of Environmental Management & Toxicology, Faculty of Life Sciences, University of Benin, PMB 1154, Benin City, 300283, Nigeria
| | - Olajide Akinnibosun
- Applied Microbial Processes & Environmental Health Research Group, Faculty of Life Sciences, University of Benin, PMB 1154, Benin City, 300283, Nigeria
- Department of Microbiology, Faculty of Science, Federal University of Health Sciences, PMB 145, Otukpo, 927101, Otukpo, Nigeria
| | - Abraham G Ogofure
- Applied Microbial Processes & Environmental Health Research Group, Faculty of Life Sciences, University of Benin, PMB 1154, Benin City, 300283, Nigeria
| | - Afamefuna Dunkwu-Okafor
- Applied Microbial Processes & Environmental Health Research Group, Faculty of Life Sciences, University of Benin, PMB 1154, Benin City, 300283, Nigeria
| | - Kate E Uwhuba
- Department of Microbiology, College of Natural and Applied Sciences, Western Delta University, Oghara, Nigeria
| | - Etinosa O Igbinosa
- Applied Microbial Processes & Environmental Health Research Group, Faculty of Life Sciences, University of Benin, PMB 1154, Benin City, 300283, Nigeria.
| |
Collapse
|
9
|
Tang Y, Xiao N, Zou J, Mei Y, Yuan Y, Wang M, Wang Z, Zhou Y, Chen Y, Li S. Antibiotic resistance, biofilm formation, and molecular epidemiology of Staphylococcus aureus in a tertiary hospital in Xiangyang, China. Braz J Microbiol 2024; 55:1305-1315. [PMID: 38366298 PMCID: PMC11153456 DOI: 10.1007/s42770-024-01270-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 02/02/2024] [Indexed: 02/18/2024] Open
Abstract
Staphylococcus aureus is a common clinical pathogen that causes various human infections. The aim of this study was to investigate the antibiotic susceptibility pattern, molecular epidemiological characteristics, and biofilm formation ability of S. aureus isolates from clinical specimens in Xiangyang and to analyze the correlation among them. A total of 111 non-duplicate S. aureus isolates were collected from the Affiliated Hospital of Hubei University of Arts and Science. All isolates were tested for antibacterial susceptibility. Methicillin-resistant S. aureus (MRSA) was identified by the mecA gene PCR amplification. All isolates were analyzed to determine their biofilm-forming ability using the microplate method. The biofilm-related gene was determined using PCR. SCCmec, MLST, and spa types of MRSA strains were performed to ascertain the molecular characteristics. Among the 111 S. aureus isolates, 45 (40.5%) and 66 (59.5%) were MRSA and MSSA, respectively. The resistance of MRSA strains to the tested antibiotics was significantly stronger than that of MSSA strains. All isolates were able to produce biofilm with levels ranging from strong (28.9%, 18.2%), moderate (62.2%, 62.1%), to weak (8.9%, 19.7%). Strong biofilm formation was observed in MRSA strains than in MSSA strains, based on percentages. There were dynamic changes in molecular epidemic characteristics of MRSA isolates in Xiangyang. SCCmecIVa-ST22-t309, SCCmecIVa-ST59-t437, and SCCmecIVa-ST5-t2460 were currently the main epidemic clones in this region. SCCmecIVa-ST5-t2460 and SCCmecIVa/III-ST22-t309 have stronger antibiotic resistance than SCCmecIVa-ST59-t437 strains, with resistance to 6 ~ 8 detected non-β-lactam antibiotics. The molecular epidemic and resistance attributes of S. aureus should be timely monitored, and effective measures should be adopted to control the clinical infection and spread of the bacteria.
Collapse
Affiliation(s)
- Yitong Tang
- Medical College, Hubei University of Arts and Science, Xiangyang, 441053, China
| | - Na Xiao
- Medical College, Hubei University of Arts and Science, Xiangyang, 441053, China
| | - JiuMing Zou
- Xiangyang Central Hospital, The Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441021, China
| | - Yuling Mei
- Medical College, Hubei University of Arts and Science, Xiangyang, 441053, China
| | - Yue Yuan
- Medical College, Hubei University of Arts and Science, Xiangyang, 441053, China
| | - Menghuan Wang
- Medical College, Hubei University of Arts and Science, Xiangyang, 441053, China
| | - Zezhou Wang
- Medical College, Hubei University of Arts and Science, Xiangyang, 441053, China
| | - Yunjuan Zhou
- Medical College, Hubei University of Arts and Science, Xiangyang, 441053, China
| | - Yiyuan Chen
- Medical College, Hubei University of Arts and Science, Xiangyang, 441053, China
| | - Shichao Li
- Xiangyang Central Hospital, The Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441021, China.
| |
Collapse
|
10
|
Turchi B, Campobasso C, Nardinocchi A, Wagemans J, Torracca B, Lood C, Di Giuseppe G, Nieri P, Bertelloni F, Turini L, Ruffo V, Lavigne R, Di Luca M. Isolation and characterization of novel Staphylococcus aureus bacteriophage Hesat from dairy origin. Appl Microbiol Biotechnol 2024; 108:299. [PMID: 38619619 PMCID: PMC11018700 DOI: 10.1007/s00253-024-13129-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 03/05/2024] [Accepted: 03/27/2024] [Indexed: 04/16/2024]
Abstract
A novel temperate phage, named Hesat, was isolated by the incubation of a dairy strain of Staphylococcus aureus belonging to spa-type t127 with either bovine or ovine milk. Hesat represents a new species of temperate phage within the Phietavirus genus of the Azeredovirinae subfamily. Its genome has a length of 43,129 bp and a GC content of 35.11% and contains 75 predicted ORFs, some of which linked to virulence. This includes (i) a pathogenicity island (SaPln2), homologous to the type II toxin-antitoxin system PemK/MazF family toxin; (ii) a DUF3113 protein (gp30) that is putatively involved in the derepression of the global repressor Stl; and (iii) a cluster coding for a PVL. Genomic analysis of the host strain indicates Hesat is a resident prophage. Interestingly, its induction was obtained by exposing the bacterium to milk, while the conventional mitomycin C-based approach failed. The host range of phage Hesat appears to be broad, as it was able to lyse 24 out of 30 tested S. aureus isolates. Furthermore, when tested at high titer (108 PFU/ml), Hesat phage was also able to lyse a Staphylococcus muscae isolate, a coagulase-negative staphylococcal strain. KEY POINTS: • A new phage species was isolated from a Staphylococcus aureus bovine strain. • Pathogenicity island and PVL genes are encoded within phage genome. • The phage is active against most of S. aureus strains from both animal and human origins.
Collapse
Affiliation(s)
- Barbara Turchi
- Department of Veterinary Sciences, University of Pisa, Viale Delle Piagge 2, 56124, Pisa, Italy
| | - Claudia Campobasso
- Department of Biology, University of Pisa, Via San Zeno 37, 56127, Pisa, Italy
- Department of Biosystems, KU Leuven, Kasteelpark Arenberg 21, Box 2462, 3001, Louvain, Belgium
| | - Arianna Nardinocchi
- Department of Biology, University of Pisa, Via San Zeno 37, 56127, Pisa, Italy
| | - Jeroen Wagemans
- Department of Biosystems, KU Leuven, Kasteelpark Arenberg 21, Box 2462, 3001, Louvain, Belgium
| | - Beatrice Torracca
- Department of Veterinary Sciences, University of Pisa, Viale Delle Piagge 2, 56124, Pisa, Italy
| | - Cédric Lood
- Department of Biosystems, KU Leuven, Kasteelpark Arenberg 21, Box 2462, 3001, Louvain, Belgium
- Department of Microbial and Molecular Systems, Centre for Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, Box 2460, 3001, Leuven, Belgium
| | | | - Paola Nieri
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126, Pisa, Italy
| | - Fabrizio Bertelloni
- Department of Veterinary Sciences, University of Pisa, Viale Delle Piagge 2, 56124, Pisa, Italy
| | - Luca Turini
- Department of Veterinary Sciences, University of Pisa, Viale Delle Piagge 2, 56124, Pisa, Italy
| | - Valeria Ruffo
- Department of Veterinary Sciences, University of Pisa, Viale Delle Piagge 2, 56124, Pisa, Italy
| | - Rob Lavigne
- Department of Biosystems, KU Leuven, Kasteelpark Arenberg 21, Box 2462, 3001, Louvain, Belgium
| | - Mariagrazia Di Luca
- Department of Biology, University of Pisa, Via San Zeno 37, 56127, Pisa, Italy.
| |
Collapse
|
11
|
Preziuso S, Attili AR, Cuteri V. Methicillin-resistant staphylococci in clinical bovine mastitis: occurrence, molecular analysis, and biofilm production. Vet Res Commun 2024; 48:969-977. [PMID: 38036851 DOI: 10.1007/s11259-023-10268-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 11/23/2023] [Indexed: 12/02/2023]
Abstract
Staphylococcus aureus is an important pathogen that causes mastitis in cattle, and the emergence of methicillin-resistant S. aureus (MRSA) poses a threat to veterinary and human medicine. The aims of the study were to investigate the prevalence of MRSA and methicillin-resistant coagulase-negative staphylococci (MR-CoNS) isolated from clinical mastitis, their ability to form biofilms, and the antimicrobial susceptibility of S. aureus strains. In addition, the Staphylococcal Cassette Chromosome mec (SCCmec) type, spa type and the presence of Panton-Valentine Leucocidin in MRSA were evaluated. A total of 326 staphylococcal strains were screened by multiplex-PCR for S. aureus and Staphylococcus intermedius group (SIG) identification. The S. aureus strains (n = 163) were subjected to phenotypic testing for antimicrobial susceptibility and biofilm formation. Molecular analysis was performed on MRSA mecA-positive strains. Of 163 S. aureus isolates, 142 strains (87.1%) were resistant to at least one antibiotic, and all 19 MRSA strains were resistant to at least four out of five antibiotics tested. All S. aureus strains harboured the icaA gene and were biofilm producers. Nineteen MR-CoNS strains were also isolated. The most prevalent spa types among MRSA were t001 (57.9%) and t037 (31.6%), while one MRSA was type t008 and one was type t041. Most MRSA were SCCmec type I (63.2%) and III (31.6%) and only one strain was type IV. None of the MRSA isolates had the PVL gene. The prevalence of multidrug-resistant S. aureus in bovine mastitis is a serious concern. The finding of MRSA with spa types predominant in humans and infrequent in Italian cows and with SCCmec infrequently found in bovine milk or cheese suggest a human origin of these strains. The ability of MRSA and MR-CoNS involved in bovine mastitis to be transferred to humans and vice versa poses a public health concern.
Collapse
Affiliation(s)
- Silvia Preziuso
- School of Biosciences and Veterinary Medicine - University of Camerino, Via Circonvallazione, 93/95, 62024, Matelica, MC, Italy
| | - Anna-Rita Attili
- School of Biosciences and Veterinary Medicine - University of Camerino, Via Circonvallazione, 93/95, 62024, Matelica, MC, Italy
| | - Vincenzo Cuteri
- School of Biosciences and Veterinary Medicine - University of Camerino, Via Circonvallazione, 93/95, 62024, Matelica, MC, Italy.
| |
Collapse
|
12
|
Zhan Q, Teng G, Chen W, Yu X. High prevalence of ST5-SCCmec II-t311 clone of methicillin-resistant Staphylococcus aureus isolated from bloodstream infections in East China. BMC Microbiol 2024; 24:89. [PMID: 38491414 PMCID: PMC10943896 DOI: 10.1186/s12866-024-03232-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/21/2024] [Indexed: 03/18/2024] Open
Abstract
OBJECTIVES Methicillin-resistant Staphylococcus aureus (MRSA) is a challenging global health threat, resulting in significant morbidity and mortality worldwide. This study aims to determine the molecular characteristics and antimicrobial susceptibility of 263 MRSA isolates in Zhejiang Province, east China. METHODS From 2014 to 2019, a total of 263 MRSA isolates from bloodstream infections (BSIs) were collected from 6 hospitals in 4 cities in Zhejiang province, east China. Antimicrobial susceptibility tests were conducted according to the guidelines set forth by the Clinical and Laboratory Standards Institute (CLSI). To characterize and analyze these isolates, multilocus sequence typing (MLST), staphylococcal cassette chromosome mec (SCCmec) typing, staphylococcal protein A (spa) typing and virulence genes gene profiles were performed. RESULTS The most predominant clone was ST5-SCCmec II-t311, which accounted for 41.8% (110/263), followed by ST59 (44/263, 16.7%). Compared with non-ST5-II-t311 isolates, ST5-II-t311 isolates were more resistant to erythromycin, tetracycline, levofloxacin, moxifloxacin, and ciprofloxacin, but more susceptible to clindamycin. Moreover, the rates of multidrug resistance were higher in ST5-II-t311 isolates compared to the non-ST5-II-t311 isolates. In comparison to the non-ST5-II-t311 isolates, ST5-II-t311 isolates showed no significant difference in virulence genes detected. CONCLUSIONS MRSA ST5-II-t311 clone has become the most predominant clone in Zhejiang Province, east China and has higher rates of multidrug resistance than other isolates, that should be kept in mind when treating BSI. Moreover, MRSA ST59 clone shows an upward trend and has begun to spread into hospitals. Our findings highlight the importance of epidemiological studies of S. aureus carriage in the eastern region.
Collapse
Affiliation(s)
- Qing Zhan
- Infection Control Department, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People's Republic of China
| | - Gaoqin Teng
- Department of General Intensive Care Unit, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310003, People's Republic of China
| | - Weiwei Chen
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 31000, People's Republic of China.
| | - Xiao Yu
- NHC Key Laboratory of Pneumoconiosis, Shanxi Key Laboratory of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, 030001, People's Republic of China.
| |
Collapse
|
13
|
Trinh E, Batt LJ, Yue Q, Du R, Jones ST, Fielding LA. Bridging Flocculation of a Sterically Stabilized Cationic Latex as a Biosensor for the Detection of Microbial DNA after Amplification via PCR. Biomacromolecules 2024; 25:1629-1636. [PMID: 38361251 PMCID: PMC10934273 DOI: 10.1021/acs.biomac.3c01187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 02/17/2024]
Abstract
There is a high demand for rapid, sensitive, and accurate detection methods for pathogens. This paper demonstrates a method of detecting the presence of amplified DNA from a range of pathogens associated with serious infections including Gram-negative bacteria, Gram-positive bacteria, and viruses. DNA is amplified using a polymerase chain reaction (PCR) and consequently detected using a sterically stabilized, cationic polymer latex. The DNA induces flocculation of this cationic latex, which consequently leads to rapid sedimentation and a visible change from a milky-white dispersion to one with a transparent supernatant, presenting a clear visible change, indicating the presence of amplified DNA. Specifically, a number of different pathogens were amplified using conventional or qPCR, including Staphylococcus aureus, Escherichia coli, and Herpes Simplex Virus (HSV-2). This method was demonstrated to detect the presence of bacteria in suspension concentrations greater than 380 CFU mL-1 and diagnose the presence of specific genomes through primer selection, as exemplified using methicillin resistant and methicillin susceptible Staphylococcus aureus. The versatility of this methodology was further demonstrated by showing that false positive results do not occur when a PCR of fungal DNA from C. albicans is conducted using bacterial universal primers.
Collapse
Affiliation(s)
- Elisabeth Trinh
- Department
of Materials, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PL, United
Kingdom
| | - Lauren J. Batt
- Department
of Materials, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PL, United
Kingdom
- Henry
Royce Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Qi Yue
- Department
of Materials, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PL, United
Kingdom
- Henry
Royce Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Ruiling Du
- Department
of Materials, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PL, United
Kingdom
- Henry
Royce Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Samuel T. Jones
- Department
of Materials, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PL, United
Kingdom
- Henry
Royce Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
- School
of Chemistry, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Lee A. Fielding
- Department
of Materials, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PL, United
Kingdom
- Henry
Royce Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| |
Collapse
|
14
|
Abd El-Hamid MI, Ibrahim D, Elazab ST, Gad WM, Shalaby M, El-Neshwy WM, Alshahrani MA, Saif A, Algendy RM, AlHarbi M, Saleh FM, Alharthi A, Mohamed EAA. Tackling strong biofilm and multi-virulent vancomycin-resistant Staphylococcus aureus via natural alkaloid-based porous nanoparticles: perspective towards near future eradication. Front Cell Infect Microbiol 2024; 13:1287426. [PMID: 38282617 PMCID: PMC10811083 DOI: 10.3389/fcimb.2023.1287426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/16/2023] [Indexed: 01/30/2024] Open
Abstract
Introduction As a growing direction, nano-based therapy has become a successful paradigm used to address the phytogenic delivery-related problems in overcoming multivirulent vancomycin-resistant Staphylococcus aureus (VRSA) infection. Methods Hence, our aim was to develop and assess a novel nanocarrier system (mesoporous silica nanoparticles, MPS-NPs) for free berberine (Free-BR) as an antimicrobial alkaloid against strong biofilm-producing and multi-virulent VRSA strains using in vitro and in vivo mouse model. Results and discussion Our outcomes demonstrated vancomycin resistance in 13.7% of Staphylococcus aureus (S. aureus) strains categorized as VRSA. Notably, strong biofilm formation was observed in 69.2% of VRSA strains that were all positive for icaA gene. All strong biofilm-producing VRSA strains harbored a minimum of two virulence genes comprising clfA and icaA with 44.4% of them possessing all five virulence genes (icaA, tst, clfA, hla, and pvl), and 88.9% being multi-virulent. The study findings affirmed excellent in vitro antimicrobial and antibiofilm properties of BR-loaded MPS-NPs. Real-time quantitative reverse transcription PCR (qRT-PCR) assay displayed the downregulating role of BR-loaded MPS-NPs on strong biofilm-producing and multi-virulent VRSA strains virulence and agr genes in both in vitro and in vivo mice models. Additionally, BR-loaded MPS-NPs supplementation has a promising role in attenuating the upregulated expression of pro-inflammatory cytokines' genes in VRSA-infected mice with attenuation in pro-apoptotic genes expression resulting in reduced VRSA-induced apoptosis. In essence, the current study recommends the future scope of using BR-loaded MPS-NPs as auspicious alternatives for antimicrobials with tremendous antimicrobial, antibiofilm, anti-quorum sensing (QS), and anti-virulence effectiveness against problematic strong biofilm-producing and multi-virulent VRSA-associated infections.
Collapse
Affiliation(s)
- Marwa I. Abd El-Hamid
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Doaa Ibrahim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Sara T. Elazab
- Department of Pharmacology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Wafaa M. Gad
- Department of Bacteriology, Animal Health Research Institute (AHRI), Mansoura Branch, Agriculture Research Center, Mansoura, Egypt
| | - Marwa Shalaby
- Department of Bacteriology, Animal Health Research Institute (AHRI), Mansoura Branch, Agriculture Research Center, Mansoura, Egypt
| | - Wafaa M. El-Neshwy
- Department of Animal Medicine, Infectious Diseases, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | | | - Ahmed Saif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Reem M. Algendy
- Food Hygiene, Safety and Technology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Maha AlHarbi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Fayez M. Saleh
- Department of Medical Microbiology, Faculty of Medicine, University of Tabuk, Tabuk, Saudi Arabia
| | - Afaf Alharthi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Eman A. A. Mohamed
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
15
|
Pesset CM, Fonseca COD, Antunes M, Santos ALLD, Teixeira IM, Ferreira EDO, Penna B. Biofilm formation by Staphylococcus pseudintermedius on titanium implants. BIOFOULING 2024; 40:88-97. [PMID: 38407199 DOI: 10.1080/08927014.2024.2320721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 02/13/2024] [Indexed: 02/27/2024]
Abstract
Osteomyelitis often involves Staphylococcus spp. as the isolated genus in domestic animal cases. Implant-related infections, frequently associated with biofilm-forming microorganisms like staphylococci species, necessitate careful material selection. This study assessed biofilm formation by Staphylococcus pseudintermedius on titanium nuts used in veterinary orthopaedic surgery. Biofilm quantification employed safranin staining and spectrophotometric measurement, while bacterial counts were determined in colony-forming units (CFU). Scanning Electron Microscopy (SEM) evaluated the biofilm morphology on the surface of titanium nuts. All samples had CFU counts. Absorbance values that evidence biofilm formation were observed in seven of the eight samples tested. SEM images revealed robust bacterial colonization, and significant extracellular polymeric substance production, and the negative control displayed surface irregularities on the nut. Whole genome sequencing revealed accessory Gene Regulator (agr) type III in six samples, agr IV and agr II in two each. Genes encoding hlb, luk-S, luk-F, siet, se_int, and the icaADCB operon were identified in all sequenced samples. Other exfoliative toxins were absent. Biofilm formation by S. pseudintermedius was detected in all samples, indicating the susceptibility of orthopaedic titanium alloys to adhesion and biofilm formation by veterinary species. The biofilm formation capacity raises concerns about potential post-surgical complications and associated costs.
Collapse
Affiliation(s)
- Camilla Malcher Pesset
- Laboratory of Gram-Positive Cocci, Biomedical Institute, Federal Fluminense University, Niterói, Brazil
| | - Carolina O da Fonseca
- Laboratory of Gram-Positive Cocci, Biomedical Institute, Federal Fluminense University, Niterói, Brazil
| | - Milena Antunes
- Laboratory of Gram-Positive Cocci, Biomedical Institute, Federal Fluminense University, Niterói, Brazil
| | - Ana Luiza L Dos Santos
- Laboratory of Gram-Positive Cocci, Biomedical Institute, Federal Fluminense University, Niterói, Brazil
| | - Izabel Melo Teixeira
- Laboratory of Gram-Positive Cocci, Biomedical Institute, Federal Fluminense University, Niterói, Brazil
| | | | - Bruno Penna
- Laboratory of Gram-Positive Cocci, Biomedical Institute, Federal Fluminense University, Niterói, Brazil
| |
Collapse
|
16
|
Cranmer KD, Pant MD, Quesnel S, Sharp JA. Clonal Diversity, Antibiotic Resistance, and Virulence Factor Prevalence of Community Associated Staphylococcus aureus in Southeastern Virginia. Pathogens 2023; 13:25. [PMID: 38251333 PMCID: PMC10821353 DOI: 10.3390/pathogens13010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024] Open
Abstract
Staphylococcus aureus is a significant human pathogen with a formidable propensity for antibiotic resistance. Worldwide, it is the leading cause of skin and soft tissue infections (SSTI), septic arthritis, osteomyelitis, and infective endocarditis originating from both community- and healthcare-associated settings. Although often grouped by methicillin resistance, both methicillin-resistant (MRSA) and methicillin-sensitive (MSSA) strains are known to cause significant pathologies and injuries. Virulence factors and growing resistance to antibiotics play major roles in the pathogenicity of community-associated strains. In our study, we examined the genetic variability and acquired antibiograms of 122 S. aureus clinical isolates from SSTI, blood, and urinary tract infections originating from pediatric patients within the southeast region of Virginia, USA. We identified a suite of clinically relevant virulence factors and evaluated their prevalence within these isolates. Five genes (clfA, spA, sbi, scpA, and vwb) with immune-evasive functions were identified in all isolates. MRSA isolates had a greater propensity to be resistant to more antibiotics as well as significantly more likely to carry several virulence factors compared to MSSA strains. Further, the carriage of various genes was found to vary significantly based on the infection type (SSTI, blood, urine).
Collapse
Affiliation(s)
- Katelyn D. Cranmer
- Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Mohan D. Pant
- School of Health Professions, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Suzanne Quesnel
- Children’s Hospital of the King’s Daughters, Norfolk, VA 23507, USA
| | - Julia A. Sharp
- Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23507, USA
- School of Health Professions, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| |
Collapse
|
17
|
Wang W, Zhong Q, Cheng K, Tan L, Huang X. Molecular Characteristics, Antimicrobial Susceptibility, Biofilm-Forming Ability of Clinically Invasive Staphylococcus aureus Isolates. Infect Drug Resist 2023; 16:7671-7681. [PMID: 38144224 PMCID: PMC10743705 DOI: 10.2147/idr.s441989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/07/2023] [Indexed: 12/26/2023] Open
Abstract
Purpose This study aimed to investigate the molecular characteristics, antimicrobial resistance, and biofilm-forming ability of Staphylococcus aureus isolates from invasive infections. Methods A total of 92 non-repetitive S. aureus isolates from invasive infections were analyzed by Multi-locus Sequence Typing (MLST), spa typing, and chromosomal cassette mec (SCCmec) typing. Antibiotic susceptibility testing was performed using the disk diffusion and agar dilution methods. Biofilm-forming ability was assessed using crystal violet assay. The presence and expression of biofilm-associated genes were examined using PCR and RT-qPCR. Results Among the 55 Methicillin-resistant S. aureus (MRSA) and 41 Methicillin-sensitive S. aureus (MSSA) isolates, ST59 (43.6%) predominated in MRSA, while ST7 (39.0%) was most common in MSSA. As expected, MRSA exhibited higher antibiotic resistance rates compared to MSSA isolates. Biofilm formation assays revealed that the majority of isolates (88.5%) produced biofilms, with 26.0% classified as strong producers (OD570 ≥ 1.0) and 62.5% as weak producers (0.2 ≤ OD570<1.0). MSSA exhibited a higher biofilm-forming ability than MRSA (P < 0.01), with variations across clones. Notably, ST7 isolates displayed greater biofilm-forming ability than other sequence types (ST59, ST5, and ST239). RT-qPCR results revealed that ST7 isolates exhibited higher expression levels of icaA compared to other sequence types. Conclusion This study revealed significant molecular heterogeneity among invasive S. aureus isolates, with ST59 and ST7 as dominant clones. The strong biofilm-forming capacity of ST7 merits concern given its rising prevalence regionally. Continuous surveillance of emerging successful lineages is critical to help guide infection control strategies against invasive S. aureus infections.
Collapse
Affiliation(s)
- Weiguo Wang
- Department of Clinical Laboratory, The First Hospital of Nanchang, Nanchang, Jiangxi, People’s Republic of China
| | - Qiuxaing Zhong
- Department of Clinical Laboratory, The First Hospital of Nanchang, Nanchang, Jiangxi, People’s Republic of China
| | - Ke Cheng
- Department of Clinical Laboratory, The First Hospital of Nanchang, Nanchang, Jiangxi, People’s Republic of China
| | - Lili Tan
- Department of Clinical Laboratory, The First Hospital of Nanchang, Nanchang, Jiangxi, People’s Republic of China
| | - Xincheng Huang
- Department of Clinical Laboratory, The First Hospital of Nanchang, Nanchang, Jiangxi, People’s Republic of China
| |
Collapse
|
18
|
Vaculík O, Bernatová S, Rebrošová K, Samek O, Šilhan L, Růžička F, Šerý M, Šiler M, Ježek J, Zemánek P. Rapid identification of pathogens in blood serum via Raman tweezers in combination with advanced processing methods. BIOMEDICAL OPTICS EXPRESS 2023; 14:6410-6421. [PMID: 38420303 PMCID: PMC10898560 DOI: 10.1364/boe.503628] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/06/2023] [Accepted: 10/21/2023] [Indexed: 03/02/2024]
Abstract
Pathogenic microbes contribute to several major global diseases that kill millions of people every year. Bloodstream infections caused by these microbes are associated with high morbidity and mortality rates, which are among the most common causes of hospitalizations. The search for the "Holy Grail" in clinical diagnostic microbiology, a reliable, accurate, low cost, real-time, and easy-to-use diagnostic method, is one of the essential issues in clinical practice. These very critical conditions can be met by Raman tweezers in combination with advanced analysis methods. Here, we present a proof-of-concept study based on Raman tweezers combined with spectral mixture analysis that allows for the identification of microbial strains directly from human blood serum without user intervention, thus eliminating the influence of a data analyst.
Collapse
Affiliation(s)
- Ondřej Vaculík
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i., Královopolská 147, Brno, 61264, Czech Republic
| | - Silvie Bernatová
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i., Královopolská 147, Brno, 61264, Czech Republic
| | - Katarína Rebrošová
- Department of Microbiology, Faculty of Medicine of Masaryk University and St. Anne's, University Hospital, Pekařská 53, Brno, 65691, Czech Republic
| | - Ota Samek
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i., Královopolská 147, Brno, 61264, Czech Republic
| | - Lukáš Šilhan
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i., Královopolská 147, Brno, 61264, Czech Republic
| | - Filip Růžička
- Department of Microbiology, Faculty of Medicine of Masaryk University and St. Anne's, University Hospital, Pekařská 53, Brno, 65691, Czech Republic
| | - Mojmír Šerý
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i., Královopolská 147, Brno, 61264, Czech Republic
| | - Martin Šiler
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i., Královopolská 147, Brno, 61264, Czech Republic
| | - Jan Ježek
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i., Královopolská 147, Brno, 61264, Czech Republic
| | - Pavel Zemánek
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i., Královopolská 147, Brno, 61264, Czech Republic
| |
Collapse
|
19
|
García C, Hinostroza N, Gordillo V, Inchaustegui ML, Astocondor L, Chincha O, Alejos S, Olivera M, Bojórquez-Fernández D, Concha-Velasco F, Vásquez N, Castaneda-Sabogal A, Sullón P, Fernández V, Villegas-Chiroque M, López E, Hueda-Zavaleta M, Vidaurre A, Bocángel C, Barco E, Paricahua E, Zervos M, Jacobs J, Krapp F. Methicillin-Resistant Staphylococcus aureus Bloodstream Infections in Hospitalized Patients in Peru. Am J Trop Med Hyg 2023; 109:1118-1121. [PMID: 37722664 PMCID: PMC10622478 DOI: 10.4269/ajtmh.23-0054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 07/16/2023] [Indexed: 09/20/2023] Open
Abstract
There is a knowledge gap in the epidemiology of methicillin-resistant Staphylococcus aureus (MRSA) causing bloodstream infections (BSIs) in Peru. Through a surveillance study in 13 hospitals of 10 Peruvian regions (2017-2019), we assessed the proportion of MRSA among S. aureus BSIs as well as the molecular typing of the isolates. A total of 166 S. aureus isolates were collected, and 36.1% of them were MRSA. Of note, MRSA isolates with phenotypic and genetic characteristics of the hospital-associated Chilean-Cordobes clone (multidrug-resistant SCCmec I, non-Panton-Valentine leukocidin [PVL] producers) were most commonly found (70%), five isolates with genetic characteristics of community-associated MRSA (CA-MRSA)-SCCmec IV, PVL-producer-(8.3%) were seen in three separate regions. These results demonstrate that hospital-associated MRSA is the most frequent MRSA found in patients with BSIs in Peru. They also show the emergence of S. aureus with genetic characteristics of CA-MRSA. Further studies are needed to evaluate the extension of CA-MRSA dissemination in Peru.
Collapse
Affiliation(s)
- Coralith García
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Facultad de Medicina, Universidad Peruana Cayetano Heredia, Lima, Peru
- Departamento de Enfermedades Infecciosas, Tropicales y Dermatológicas, Hospital Cayetano Heredia, Lima, Peru
| | - Noemí Hinostroza
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Valeria Gordillo
- Facultad de Medicina, Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | - Lizeth Astocondor
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Omayra Chincha
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Departamento de Enfermedades Infecciosas, Tropicales y Dermatológicas, Hospital Cayetano Heredia, Lima, Peru
| | - Saúl Alejos
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Marco Olivera
- Servicio de Infectología y Medicina Tropical, Hospital María Auxiliadora, Lima, Peru
| | | | - Fátima Concha-Velasco
- Departamento de Medicina, Hospital Antonio Lorena, Cusco, Peru
- Escuela Profesional de Medicina Humana, Universidad Nacional San Antonio Abad del Cusco, Cusco, Peru
| | - Nancy Vásquez
- Departamento de Apoyo al Diagnóstico, Hospital Antonio Lorena, Cusco, Peru
| | - Alex Castaneda-Sabogal
- Departamento de Medicina, Hospital Base Víctor Lazarte Echegaray de EsSalud, La Libertad, Peru
- Facultad de Medicina Humana, Universidad Privada Antenor Orrego, Trujillo, Peru
| | - Pedro Sullón
- Departamento de Especilaidades Médicas, Hospital Hipólito Unanue, Lima, Peru
| | - Víctor Fernández
- Departamento de Medicina, Hospital Belén de Trujillo, La Libertad, Peru
| | | | - Enrique López
- Departamento de Medicina Hospital Regional de Loreto Felipe Santiago Arriola Iglesias, Loreto, Peru
| | - Miguel Hueda-Zavaleta
- Faculty of Health Sciences, Universidad Privada de Tacna, Tacna, Peru
- Departamento de Medicina, Hospital III Daniel Alcides Carrión–EsSalud Tacna, Tacna, Peru
| | - Ana Vidaurre
- Departamento de Medicina, Hospital III EsSalud Chimbote, Ancash, Peru
| | - César Bocángel
- Departamento de Medicina Hospital Goyeneche de Arequipa, Arequipa, Peru
| | - Evelyn Barco
- Departamento de Patología Clínica, Hospital Regional II-2 José Alfredo Mendoza Olavarría, Tumbes, Peru
| | - Eduardo Paricahua
- Departamento de Medicina, Hospital Santa Rosa de Puerto Maldonado, Madre de Dios, Peru
| | - Marcus Zervos
- Infectious Disease Division, Henry Ford Health System, Detroit, Michigan
| | - Jan Jacobs
- Institute of Tropical Medicine, Antwerp, Belgium
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Belgium
| | - Fiorella Krapp
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Facultad de Medicina, Universidad Peruana Cayetano Heredia, Lima, Peru
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Belgium
| |
Collapse
|
20
|
Sreejisha M, Shenoy MS, Shenoy MS, Dhanashree B, Chakrapani M, Bhat KG. Molecular and Clinical Features of Heterogeneous Vancomycin-Intermediate Staphylococcus aureus in Tertiary Care Hospitals in South India. Sultan Qaboos Univ Med J 2023; 23:447-454. [PMID: 38090245 PMCID: PMC10712385 DOI: 10.18295/squmj.3.2023.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/05/2023] [Accepted: 03/14/2023] [Indexed: 03/31/2023] Open
Abstract
Objectives This study aimed to detect heterogeneous vancomycin-intermediate Staphylococcus aureus (hVISA) among methicillin-resistant S. aureus (MRSA) isolated from healthcare-associated infections and identify staphylococcal cassette chromosome mec (SCCmec) types. Methods This study was conducted from February 2019 to March 2020 and included patients admitted in 4 tertiary care hospitals in Karnataka, India. Isolation and identification of MRSA were done using standard bacteriological methods. Antimicrobial susceptibility testing was done using Kirby-Bauer disc diffusion; macrolide-lincosamide-streptogramin B phenotypes were identified using the D test. The minimum inhibitory concentration (MIC) of vancomycin was determined using agar dilution. hVISA were confirmed by the modified population analysis profile-area under the curve test. SCCmec types and the Panton-Valentine leukocidin (pvl) gene were detected using multiplex polymerase chain reaction. Results Of 220 MRSA stains, 14 (6.4%) were hVISA. None of the MRSA isolates was vancomycin-intermediate or -resistant and all hVISA were susceptible to linezolid and teicoplanin. The macrolide-streptogramin B phenotype was present in 42.9% of hVISA; 92.9% of the hVISA strains had vancomycin MIC in the range of 1-2 μg/mL. Majority of the hVISA and vancomycin-susceptible MRSA were isolated from patients with skin and soft tissue infections. SCCmec III and IV were present in 50% and 35.7% of hVISA, respectively; 14.3% of the hVISA harboured SCCmec V. Conclusion The prevalence rate of hVISA among MRSA was 6.4%. Therefore, MRSA strains should be tested for hVISA before starting vancomycin treatment. None of the isolates was vancomycin-intermediate or -resistant and all the hVISA strains were susceptible to linezolid and teicoplanin. The majority of the hVISA were isolated from patients with skin and soft tissue infections and harboured SCCmec III and IV.
Collapse
Affiliation(s)
- M. Sreejisha
- Department of Microbiology, Kasturba Medical College, Mangalore, (A constituent unit of Manipal Academy of Higher Education, Manipal), Karnataka, India
| | - M. Shalini Shenoy
- Department of Microbiology, Kasturba Medical College, Mangalore, (A constituent unit of Manipal Academy of Higher Education, Manipal), Karnataka, India
| | - M. Suchitra Shenoy
- Department of Microbiology, Kasturba Medical College, Mangalore, (A constituent unit of Manipal Academy of Higher Education, Manipal), Karnataka, India
| | - B. Dhanashree
- Department of Microbiology, Kasturba Medical College, Mangalore, (A constituent unit of Manipal Academy of Higher Education, Manipal), Karnataka, India
| | - M. Chakrapani
- Department of Medicine, Kasturba Medical College, Mangalore, (A constituent unit of Manipal Academy of Higher Education, Manipal), Karnataka, India
| | - K. Gopalakrishna Bhat
- Department of Microbiology, Kasturba Medical College, Mangalore, (A constituent unit of Manipal Academy of Higher Education, Manipal), Karnataka, India
| |
Collapse
|
21
|
Kim YK, Eom Y, Kim E, Chang E, Bae S, Jung J, Kim MJ, Chong YP, Kim SH, Choi SH, Lee SO, Kim YS. Molecular Characteristics and Prevalence of Rifampin Resistance in Staphylococcus aureus Isolates from Patients with Bacteremia in South Korea. Antibiotics (Basel) 2023; 12:1511. [PMID: 37887212 PMCID: PMC10604019 DOI: 10.3390/antibiotics12101511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/27/2023] [Accepted: 10/02/2023] [Indexed: 10/28/2023] Open
Abstract
Rifampin resistance (RIF-R) in Staphylococcus aureus (S. aureus) with rpoB mutations as one of its resistance mechanisms has raised concern about clinical treatment and infection prevention strategies. Data on the prevalence and molecular epidemiology of RIF-R S. aureus blood isolates in South Korea are scarce. We used broth microdilution to investigate RIF-R prevalence and analyzed the rpoB gene mutation in 1615 S. aureus blood isolates (772 methicillin-susceptible and 843 methicillin-resistant S. aureus (MRSA)) from patients with bacteremia, between 2008 and 2017. RIF-R prevalence and antimicrobial susceptibility were determined. Multilocus sequence typing was used to characterize the isolate's molecular epidemiology; Staphylococcus protein A (spa), staphylococcal cassette chromosome mec (SCCmec), and rpoB gene mutations were detected by PCR. Among 52 RIF-R MRSA isolates out of 57 RIF-R S. aureus blood isolates (57/1615, 0.4%; 5 methicillin-susceptible and 52 MRSA), ST5 (44/52, 84.6%), SCCmec IIb (40/52, 76.9%), and spa t2460 (27/52, 51.9%) were predominant. rpoB gene mutations with amino acid substitutions showed that A477D (17/48, 35.4%) frequently conferred high-level RIF resistance (MIC > 128 mg/L), followed by H481Y (4/48, 8.3%). RIF-R S. aureus blood isolates in South Korea have unique molecular characteristics and are closely associated with rpoB gene mutations. RIF-R surveillance through S. aureus-blood isolate epidemiology could enable effective therapeutic management.
Collapse
Affiliation(s)
- Yong Kyun Kim
- Department of Internal Medicine, Division of Infectious Diseases, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang 14068, Republic of Korea;
- Division of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea; (E.C.); (J.J.); (M.J.K.); (Y.P.C.); (S.-H.K.); (S.-H.C.); (S.-O.L.)
| | - Yewon Eom
- Center for Antimicrobial Resistance and Microbial Genetics, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea; (Y.E.); (E.K.); (S.B.)
- Asan Medical Center, Asan Institute for Life Science, Seoul 05505, Republic of Korea
| | - Eunsil Kim
- Center for Antimicrobial Resistance and Microbial Genetics, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea; (Y.E.); (E.K.); (S.B.)
- Asan Medical Center, Asan Institute for Life Science, Seoul 05505, Republic of Korea
| | - Euijin Chang
- Division of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea; (E.C.); (J.J.); (M.J.K.); (Y.P.C.); (S.-H.K.); (S.-H.C.); (S.-O.L.)
| | - Seongman Bae
- Division of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea; (E.C.); (J.J.); (M.J.K.); (Y.P.C.); (S.-H.K.); (S.-H.C.); (S.-O.L.)
- Center for Antimicrobial Resistance and Microbial Genetics, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea; (Y.E.); (E.K.); (S.B.)
| | - Jiwon Jung
- Division of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea; (E.C.); (J.J.); (M.J.K.); (Y.P.C.); (S.-H.K.); (S.-H.C.); (S.-O.L.)
| | - Min Jae Kim
- Division of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea; (E.C.); (J.J.); (M.J.K.); (Y.P.C.); (S.-H.K.); (S.-H.C.); (S.-O.L.)
| | - Yong Pil Chong
- Division of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea; (E.C.); (J.J.); (M.J.K.); (Y.P.C.); (S.-H.K.); (S.-H.C.); (S.-O.L.)
| | - Sung-Han Kim
- Division of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea; (E.C.); (J.J.); (M.J.K.); (Y.P.C.); (S.-H.K.); (S.-H.C.); (S.-O.L.)
| | - Sang-Ho Choi
- Division of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea; (E.C.); (J.J.); (M.J.K.); (Y.P.C.); (S.-H.K.); (S.-H.C.); (S.-O.L.)
| | - Sang-Oh Lee
- Division of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea; (E.C.); (J.J.); (M.J.K.); (Y.P.C.); (S.-H.K.); (S.-H.C.); (S.-O.L.)
| | - Yang Soo Kim
- Division of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea; (E.C.); (J.J.); (M.J.K.); (Y.P.C.); (S.-H.K.); (S.-H.C.); (S.-O.L.)
- Center for Antimicrobial Resistance and Microbial Genetics, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea; (Y.E.); (E.K.); (S.B.)
| |
Collapse
|
22
|
Chang YH, Huang YC, Chen HC, Ma DHK, Yeh LK, Hung KH, Hsiao CH. Molecular and Phenotypic Characterization of Ocular Methicillin-Resistant Staphylococcus epidermidis Isolates in Taiwan. Invest Ophthalmol Vis Sci 2023; 64:33. [PMID: 37862027 PMCID: PMC10599164 DOI: 10.1167/iovs.64.13.33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 10/01/2023] [Indexed: 10/21/2023] Open
Abstract
Purpose Staphylococcus epidermidis, a commensal, has emerged as an important opportunistic pathogen, particularly methicillin-resistant S. epidermidis (MRSE). The mechanism behind this transformation remains unclear. This study aimed to investigate the molecular and phenotypic characteristics of MRSE isolated from healthy conjunctiva and ocular infections. Methods We collected MRSE isolates from two groups: healthy conjunctiva from patients undergoing cataract surgeries and ocular infections at our hospital. Genotypic analysis included pulsed-field gel electrophoresis (PFGE), multilocus sequence typing (MLST), staphylococcal cassette chromosome mec (SCCmec), and biofilm-related genes (icaA, aap, and bhp). Additionally, phenotypic data on biofilm production and antibiotic susceptibility were recorded. Results A total of 86 isolates, including 42 from healthy conjunctiva and 44 from ocular infections, were analyzed. MLST identified 21 sequence types (STs), with ST59 being the most frequent (n = 33, 39.5%), followed by ST130 (n = 10, 11.6%), ST57 (n = 6, 7.0%), and ST2 (n = 6, 7.0%). All isolates were categorized in 23 PFGE types, and SCCmec IV was the most prevalent SCCmec type (n = 52, 60.5%). The two sources of isolates exhibited overlapping molecular types and phenotypic traits, although the ocular infection isolates exhibited significantly higher multidrug resistance compared to healthy conjunctiva isolates (P = 0.032). When contrasting ST59 with non-ST59, ST59 displayed a significantly higher presence of aap (100%) and bhp (69.7%) while lacking icaA (0%). ST59 also showed lower susceptibility to fluoroquinolones compared to non-ST59 (42.4%-54.5% vs. 75.5%-83.0%; P < 0.01). Conclusions MRSE isolates from healthy conjunctiva and ocular infections demonstrated a degree of resemblance. Specific strains, notably ST59, exhibited distinctive characterizations.
Collapse
Affiliation(s)
- Yin-Hsi Chang
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yhu-Chering Huang
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Hung-Chi Chen
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - David H. K. Ma
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Lung-Kun Yeh
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Kuo-Hsuan Hung
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ching-Hsi Hsiao
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
23
|
Abdullahi IN, Lozano C, Simón C, Zarazaga M, Torres C. Within-Host Diversity of Coagulase-Negative Staphylococci Resistome from Healthy Pigs and Pig Farmers, with the Detection of cfr-Carrying Strains and MDR- S. borealis. Antibiotics (Basel) 2023; 12:1505. [PMID: 37887206 PMCID: PMC10604674 DOI: 10.3390/antibiotics12101505] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023] Open
Abstract
The ecology and diversity of resistome in coagulase-negative staphylococci (CoNS) from healthy pigs and pig farmers are rarely available as most studies focused on the livestock-associated methicillin-resistant S. aureus. This study aims to characterize the antimicrobial resistance (AMR) mechanisms, intra-host species diversity (more than one species in a host), and intra-species AMR diversity (same species with more than one AMR profile) in CoNS recovered from the nasal cavities of healthy pigs and pig farmers. One-hundred-and-one CoNS strains previously recovered from 40 pigs and 10 pig farmers from four Spanish pig farms were tested to determine their AMR profiles. Non-repetitive strains were selected (n = 75) and their AMR genes, SCCmec types, and genetic lineages were analyzed by PCR/sequencing. Of the non-repetitive strains, 92% showed a multidrug resistance (MDR) phenotype, and 52% were mecA-positive, which were associated with SCCmec types V (46.2%), IVb (20.5%), and IVc (5.1%). A total of 28% of the pigs and pig farmers had intra-host species diversity, while 26% had intra-species AMR diversity. High repertoires of AMR genes were detected, including unusual ones such as tetO, ermT, erm43, and cfr. Most important was the detection of cfr (in S. saprophyticus and S. epidermidis-ST16) in pigs and pig farmers; whereas MDR-S. borealis strains were identified in pig farmers. Pig-to-pig transmission of CoNS with similar AMR genes and SCCmec types was detected in 42.5% of pigs. The high level of multidrug, within-host, and intra-species resistome diversity in the nasal CoNS highlights their ability to be AMR gene reservoirs in healthy pigs and pig farmers. The detection of MDR-S. borealis and linezolid-resistant strains underscore the need for comprehensive and continuous surveillance of MDR-CoNS at the pig farm level.
Collapse
Affiliation(s)
- Idris Nasir Abdullahi
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006 Logroño, Spain; (I.N.A.); (C.L.); (M.Z.)
| | - Carmen Lozano
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006 Logroño, Spain; (I.N.A.); (C.L.); (M.Z.)
| | - Carmen Simón
- Faculty of Veterinary Medicine, University of Zaragoza, 50001 Zaragoza, Spain;
| | - Myriam Zarazaga
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006 Logroño, Spain; (I.N.A.); (C.L.); (M.Z.)
| | - Carmen Torres
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006 Logroño, Spain; (I.N.A.); (C.L.); (M.Z.)
| |
Collapse
|
24
|
Hong X, Zhou S, Dai X, Xie D, Cai Y, Zhao G, Li B. Molecular typing and characterization of Staphylococcus aureus isolates from burn wound infections in Fujian, China. Front Microbiol 2023; 14:1236497. [PMID: 37799609 PMCID: PMC10547878 DOI: 10.3389/fmicb.2023.1236497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/30/2023] [Indexed: 10/07/2023] Open
Abstract
Background Staphylococcus aureus (S. aureus) is the most common causative agent of burn wound infection, that often leads to high morbidity and mortality. However, there is not enough knowledge about the molecular epidemiology and antimicrobial susceptibility of S. aureus isolates from burn wound infections in Fujian, China. Methods Between 2016 and 2021, 90 S. aureus isolates were collected from burn wound infections in Fujian, China, including 59 methicillin-resistant (MRSA) strains and 31 methicillin-susceptible (MSSA) strains. These were investigated for molecular characteristics, virulence genes, biofilms, and antimicrobial susceptibility. All the isolates were genotyped by multilocus sequence typing (MLST), spa typing, agr typing, and SCCmec typing. Conventional PCR was performed for the detection of virulence genes. Biofilm formation capacity was assessed by tissue culture plate assay (TCP). The antimicrobial susceptibility of the isolates was evaluated using the dilution method. Results In total, 37 sequence types (ST) and 34 Staphylococcal protein A (spa) types (including a new type named spa-t20720) were identified based on multilocus sequence typing (MLST) and spa typing, respectively. CC8-ST239-t030-agrI-SCCmecIII (57.6%,34/59) and CC7-ST7-t091-agrI (16.1%, 5/31) represented the main clone of MRSA and MSSA isolates, respectively. Antibiotic susceptibility testing identified a significant difference in resistance rates between ST239 and non-ST239 isolates (p < 0.05). Twelve virulence genes were detected, of which the most common were icaA and icaD (both 100%), followed by icaB and icaC (both 96.7%), icaR (95.6%), lukED (81.1%), lukAB (62.2%), pvl (50%), hlgBC (26.7%), and eta (4.4%). Moreover, lukAB, hlgBC, agrI, and agrIII were significantly correlated with burn severity (p < 0.05). MRSA isolates were less likely, compared with MSSA isolates, to carry pvl, lukAB, and hlgBC (p < 0.05). A new spa type, t20720, was identified that contains pvl, lukED, lukAB, hlgBC, icaA, icaB, icaC, icaD, and icaR genes and has strong biofilm formation ability. Conclusion CC8-ST239-t030-agrI-SCCmecIII and CC7-ST-7-t091-agrI were the prevalent molecular signatures of MRSA and MSSA isolates from burn wound infections in Fujian, China, respectively. The newly identified spa-t20720 isolate, which carries a wide range of virulence genes and has strong biofilm formation ability, requires special clinical attention.
Collapse
Affiliation(s)
- Xiaolan Hong
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fujian, China
- Department of Clinical Laboratory, The 910 Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Fujian, China
| | - Shaobo Zhou
- Department of Clinical Laboratory, The 910 Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Fujian, China
| | - Xubo Dai
- Department of Clinical Laboratory, The 910 Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Fujian, China
| | - Dandan Xie
- Department of Clinical Laboratory, The 910 Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Fujian, China
| | - Yuanyuan Cai
- Department of Clinical Laboratory, The 910 Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Fujian, China
| | - Guimei Zhao
- Department of Clinical Laboratory, The 910 Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Fujian, China
| | - Bin Li
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fujian, China
| |
Collapse
|
25
|
Hwang YJ. Comparing the Phylogenetic Distribution of Multilocus Sequence Typing, Staphylococcal Protein A, and Staphylococcal Cassette Chromosome Mec Types in Methicillin-Resistant Staphylococcus Aureus (MRSA) in Korea from 1994 to 2020. Antibiotics (Basel) 2023; 12:1397. [PMID: 37760694 PMCID: PMC10525390 DOI: 10.3390/antibiotics12091397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Staphylococcus aureus (S. aureus) bacteremia is one of the most frequent and severe bacterial infections worldwide. Methicillin-resistant Staphylococcus aureus (MRSA) is a serious human pathogen that can cause a wide variety of infections. Comparative genetic analyses have shown that despite the existence of a vast number of genotypes, genotypes are restricted to certain geographical locations. By comparing multilocus sequence typing (MLST) and SCCmec types from 1994 to 2020, the present study intended to discover which genotype genes were related to MRSA infections. MLST, Staphylococcus aureus protein A (spa), and SCCmec typings were performed to determine their relationship during those years. Results revealed that MRSA isolates in the Republic of Korea were distributed among all major staphylococcal cassette chromosome mec (SCCmec) types. The majority of SCCmec isolates belonged to SCCmec type II and type IV. The majority of MLST had the sequence type (ST) 72, 239, 8, or 188. By contrast, minorities belonged to ST22 (SCCmec IV), ST772 (SCCmec V), and ST672 (SCCmec V) genotypes. The SCCmec type was determined for various types. The spa type was dispersed, seemingly regardless of its multidrug resistance property. The MLST type was found to be similar to the existing typical type. These results showed some correlations between resistance characteristics and types according to the characteristics of the MLST types distributed, compared to previous papers. Reports on genotype distribution of MLST and SCCmec types in MRSA are rare. These results show a clear distribution of MLST and SCCmec types of MRSA from 1994 to 2020 in the Republic of Korea.
Collapse
Affiliation(s)
- You-Jin Hwang
- Department of Biomedical Engineering, Gachon University, Incheon 21936, Republic of Korea; or ; Tel.: +82-032-820-4545; Fax: +82-032-820-4449
- Department of Health Sciences and Technology (GAIHST), Gachon University, Incheon 21999, Republic of Korea
| |
Collapse
|
26
|
Khodabux RMJ, Mariappan S, Sekar U. Spectrum of Virulence Factors in Clinical Isolates of Staphylococcus aureus and Prevalence of SCCmec Types in Methicillin-Resistant Staphylococcus aureus in a Tertiary Care Center. J Lab Physicians 2023; 15:450-461. [PMID: 37564222 PMCID: PMC10411210 DOI: 10.1055/s-0043-1764483] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 01/03/2023] [Indexed: 03/29/2023] Open
Abstract
Background Methicillin-resistant Staphylococcus aureus (MRSA) is a widely recognized multidrug-resistant bacteria presenting a major therapeutic challenge to clinicians. Staphylococcus aureus possesses a number of pathogenicity factors that attribute to the severity of infections. This study was undertaken to investigate the common virulence genes in clinical isolates of Staphylococcus aureus , determine their antimicrobial susceptibility profile, and to characterize the staphylococcal cassette chromosome mec (SCCmec) types among MRSA in a tertiary care center. Materials and Methods A total of 133 clinical isolates were included in this study. Susceptibility to various antibiotics was determined by disc diffusion method. Methicillin resistance was screened using cefoxitin disc; m ecA and mecC genes were detected using polymerase chain reaction (PCR). PCR was done to detect 12 virulence factors such as hla , hlb , fnbA , fnbB , sea , seb , sec , icaA , clfA , tst , pvl, and eta . SCCmec typing was done by multiplex PCR. Results Of the 133 clinical isolates, 54 (40.6%) were MRSA. The most common virulence gene detected was hlb (61.6%), hla (39%), and fnbA (37%). SCCmec type I was the most predominant. Mortality rate of 6.7% was observed among patients with staphylococcal infections. Univariate analysis of mortality associated virulence genes did not reveal any significant association between virulence genes and mortality. Conclusion The distribution of virulence genes is similar in both MRSA and methicillin-sensitive Staphylococcus aureus . MRSA belongs to the SCCmec types I to IV. Possession of multiple virulence factors and multidrug resistance profile makes Staphylococcus aureus a formidable pathogen in clinical settings.
Collapse
Affiliation(s)
- Rhea Michelle J. Khodabux
- Department of Microbiology, Sri Ramachandra Institute of Higher Education and Research (SRIHER), Porur, Chennai, Tamil Nadu, India
| | - Shanthi Mariappan
- Department of Microbiology, Sri Ramachandra Institute of Higher Education and Research (SRIHER), Porur, Chennai, Tamil Nadu, India
| | - Uma Sekar
- Department of Microbiology, Sri Ramachandra Institute of Higher Education and Research (SRIHER), Porur, Chennai, Tamil Nadu, India
| |
Collapse
|
27
|
Martínez JRW, Planet PJ, Spencer-Sandino M, Rivas L, Díaz L, Moustafa AM, Quesille-Villalobos A, Riquelme-Neira R, Alcalde-Rico M, Hanson B, Carvajal LP, Rincón S, Reyes J, Lam M, Calderon JF, Araos R, García P, Arias CA, Munita JM. Dynamics of the MRSA Population in a Chilean Hospital: a Phylogenomic Analysis (2000-2016). Microbiol Spectr 2023; 11:e0535122. [PMID: 37338398 PMCID: PMC10433796 DOI: 10.1128/spectrum.05351-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/29/2023] [Indexed: 06/21/2023] Open
Abstract
The global dissemination of methicillin-resistant Staphylococcus aureus (MRSA) is associated with the emergence and establishment of clones in specific geographic areas. The Chilean-Cordobes clone (ChC) (ST5-SCCmecI) has been the predominant MRSA clone in Chile since its first description in 1998, despite the report of other emerging MRSA clones in recent years. Here, we characterize the evolutionary history of MRSA from 2000 to 2016 in a Chilean tertiary health care center using phylogenomic analyses. We sequenced 469 MRSA isolates collected between 2000 and 2016. We evaluated the temporal trends of the circulating clones and performed a phylogenomic reconstruction to characterize the clonal dynamics. We found a significant increase in the diversity and richness of sequence types (STs; Spearman r = 0.8748, P < 0.0001) with a Shannon diversity index increasing from 0.221 in the year 2000 to 1.33 in 2016, and an effective diversity (Hill number; q = 2) increasing from 1.12 to 2.71. The temporal trend analysis revealed that in the period 2000 to 2003 most of the isolates (94.2%; n = 98) belonged to the ChC clone. However, since then, the frequency of the ChC clone has decreased over time, accounting for 52% of the collection in the 2013 to 2016 period. This decline was accompanied by the rise of two emerging MRSA lineages, ST105-SCCmecII and ST72-SCCmecVI. In conclusion, the ChC clone remains the most frequent MRSA lineage, but this lineage is gradually being replaced by several emerging clones, the most important of which is clone ST105-SCCmecII. To the best of our knowledge, this is the largest study of MRSA clonal dynamics performed in South America. IMPORTANCE Methicillin-resistant Staphylococcus aureus (MRSA) is a major public health pathogen that disseminates through the emergence of successful dominant clones in specific geographic regions. Knowledge of the dissemination and molecular epidemiology of MRSA in Latin America is scarce and is largely based on small studies or more limited typing techniques that lack the resolution to represent an accurate description of the genomic landscape. We used whole-genome sequencing to study 469 MRSA isolates collected between 2000 and 2016 in Chile providing the largest and most detailed study of clonal dynamics of MRSA in South America to date. We found a significant increase in the diversity of MRSA clones circulating over the 17-year study period. Additionally, we describe the emergence of two novel clones (ST105-SCCmecII and ST72-SCCmecVI), which have been gradually increasing in frequency over time. Our results drastically improve our understanding of the dissemination and update our knowledge about MRSA in Latin America.
Collapse
Affiliation(s)
- José R. W. Martínez
- Genomics & Resistant Microbes (GeRM), ICIM, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
- Multidisciplinary Initiative for Collaborative Research On Bacterial Resistance (MICROB-R), Santiago, Chile
| | - Paul J. Planet
- Division of Pediatric Infectious Diseases, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- American Museum of Natural History, New York, New York, USA
| | - Maria Spencer-Sandino
- Genomics & Resistant Microbes (GeRM), ICIM, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
- Multidisciplinary Initiative for Collaborative Research On Bacterial Resistance (MICROB-R), Santiago, Chile
| | - Lina Rivas
- Genomics & Resistant Microbes (GeRM), ICIM, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
- Multidisciplinary Initiative for Collaborative Research On Bacterial Resistance (MICROB-R), Santiago, Chile
| | - Lorena Díaz
- Genomics & Resistant Microbes (GeRM), ICIM, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
- Multidisciplinary Initiative for Collaborative Research On Bacterial Resistance (MICROB-R), Santiago, Chile
- Molecular Genetics and Antimicrobial Resistance Unit, Universidad El Bosque, Bogotá, Colombia
| | - Ahmed M. Moustafa
- Division of Pediatric Infectious Diseases, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Ana Quesille-Villalobos
- Genomics & Resistant Microbes (GeRM), ICIM, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
- Multidisciplinary Initiative for Collaborative Research On Bacterial Resistance (MICROB-R), Santiago, Chile
| | - Roberto Riquelme-Neira
- Genomics & Resistant Microbes (GeRM), ICIM, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
- Multidisciplinary Initiative for Collaborative Research On Bacterial Resistance (MICROB-R), Santiago, Chile
- Núcleo de Investigaciones Aplicadas en Ciencias Veterinarias y Agronómicas, Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Santiago, Chile
| | - Manuel Alcalde-Rico
- Genomics & Resistant Microbes (GeRM), ICIM, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
- Multidisciplinary Initiative for Collaborative Research On Bacterial Resistance (MICROB-R), Santiago, Chile
- Grupo de Resistencia a los Antibióticos en Bacterias Patógenas y Ambientales (GRABPA), Pontificia Univ. Católica de Valparaíso, Valparaiso, Chile
| | - Blake Hanson
- Center for Antimicrobial Resistance and Microbial Genomics, Univ. of Texas Health Science Center, McGovern Medical School, Houston, Texas, USA
| | - Lina P. Carvajal
- Molecular Genetics and Antimicrobial Resistance Unit, Universidad El Bosque, Bogotá, Colombia
| | - Sandra Rincón
- Molecular Genetics and Antimicrobial Resistance Unit, Universidad El Bosque, Bogotá, Colombia
| | - Jinnethe Reyes
- Molecular Genetics and Antimicrobial Resistance Unit, Universidad El Bosque, Bogotá, Colombia
| | - Marusella Lam
- Departamento de Laboratorios Clínicos, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan F. Calderon
- Centro de Genética y Genómica Instituto de Ciencias e Innovación en Medicina Facultad de Medicina Clínica Alemana Universidad Del Desarrollo, Santiago, Chile
- Research Center for the Development of Novel Therapeutic Alternatives for Alcohol Use Disorders, Santiago, Chile
| | - Rafael Araos
- Genomics & Resistant Microbes (GeRM), ICIM, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
- Multidisciplinary Initiative for Collaborative Research On Bacterial Resistance (MICROB-R), Santiago, Chile
| | - Patricia García
- Multidisciplinary Initiative for Collaborative Research On Bacterial Resistance (MICROB-R), Santiago, Chile
- Departamento de Laboratorios Clínicos, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - César A. Arias
- Division of Infectious Diseases, Houston Methodist Hospital, Houston, Texas, USA
- Center for Infectious Diseases, Houston Methodist Research Institution, Houston, Texas, USA
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - José M. Munita
- Genomics & Resistant Microbes (GeRM), ICIM, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
- Multidisciplinary Initiative for Collaborative Research On Bacterial Resistance (MICROB-R), Santiago, Chile
- Hospital Padre Hurtado, Santiago, Chile
| |
Collapse
|
28
|
Jadhav V, Bhakare M, Paul A, Deshpande S, Mishra M, Apte-Deshpande A, Gupta N, Jadhav SV. Molecular characterization of typing and subtyping of Staphylococcal cassette chromosome SCC mec types I to V in methicillin-resistant Staphylococcus aureus from clinical isolates from COVID-19 patients. IRANIAN JOURNAL OF MICROBIOLOGY 2023; 15:482-491. [PMID: 38045708 PMCID: PMC10692970 DOI: 10.18502/ijm.v15i4.13502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Background and Objectives Methicillin resistance is acquired by the bacterium due to mecA gene which codes for penicillin-binding protein (PBP2a) having low affinity for β-lactam antibiotics. mecA gene is located on a mobile genetic element called staphylococcal cassette chromosome mec (SCCmec). SCCmec genomic island comprises two site-specific recombinase genes namely ccrA and ccrB [cassette chromosome recombinase] accountable for mobility. Currently, SCCmec elements are classified into types I, II, III, IV and V based on the nature of the mec and ccr gene complexes and are further classified into subtypes according to variances in their J region DNA. SSCmec type IV has been found in community-acquired isolates with various genetic backgrounds. The present study was undertaken to categorize the types of SCCmec types and subtypes I, II, III, IVa, b, c, d, and V and PVL genes among clinical MRSA isolates from COVID-19 confirmed cases. Materials and Methods Based on the Microbiological and Molecular (mecA gene PCR amplification) confirmation of MRSA isolated from 500 MRSA SCCmec clinical samples, 144 cultures were selected for multiplex analysis. The multiplex PCR method developed by Zhang et al. was adapted with some experimental alterations to determine the specific type of these isolates. Results Of the total 500 MRSA, 144 MRSA (60 were CA-MRSA and 84 were HA-MRSA) were selected for characterization of novel multiplex PCR assay for SSCmec Types I to V in MRSA. Molecular characterization of multiplex PCR analysis revealed results compare to the phenotypic results. Of the 60 CA-MRSA; in 56 MRSA strains type IVa was found and significantly defined as CA-MRSA while 4 strains showed mixed gens subtypes. Type II, III, IA, and V were present in overall 84 HA-MRSA. Molecular subtyping was significantly correlated to define molecularly as CA-MRSA and HA-MRSA however 15 (10%) strains showed mixed genes which indicates the alarming finding of changing epidemiology of CA-MRSA and HA-MRSA as well. Conclusion We have all witnessed of COVID-19 pandemic, and its mortality was mostly associated with co-morbid conditions and secondary infections of MDR pathogens. Rapid detections of causative agents of these superbugs with their changing epidemiology by investing in typing and subtyping clones are obligatory. We have described an assay designed for targeting SSCmec types and subtypes I, II, III, IVa,V according to the current updated SCCmec typing system. Changing patterns of molecular epidemiology has been observed by this newly described assay.
Collapse
Affiliation(s)
- Vivekanand Jadhav
- Department of Microbiology, LNCT Medical College and Sewakunj Hospital, Madhya Pradesh, India
| | - Meenakshi Bhakare
- Department of Respiratory Medicine, Symbiosis Medical College for Women (SMCW) and Symbiosis University Hospital and Research Centre (SUHRC), Maharashtra, India
| | - Arundhuti Paul
- Department of Microbiology, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research, New Delhi, India
| | - Sumedh Deshpande
- Department of Biotechnology, Central Dogma Pvt. Ltd, Maharashtra, India
| | - Madhusmita Mishra
- Department of Biotechnology, Central Dogma Pvt. Ltd, Maharashtra, India
| | | | - Neetu Gupta
- Department of Microbiology, Symbiosis Medical College for Women (SMCW) and Symbiosis University Hospital and Research Centre (SUHRC), Maharashtra, India
| | - Savita V Jadhav
- Department of Microbiology, LNCT Medical College and Sewakunj Hospital, Madhya Pradesh, India
| |
Collapse
|
29
|
Garrine M, Costa SS, Messa A, Massora S, Vubil D, Ácacio S, Nhampossa T, Bassat Q, Mandomando I, Couto I. Antimicrobial resistance and clonality of Staphylococcus aureus causing bacteraemia in children admitted to the Manhiça District Hospital, Mozambique, over two decades. Front Microbiol 2023; 14:1208131. [PMID: 37555065 PMCID: PMC10406509 DOI: 10.3389/fmicb.2023.1208131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/04/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND Staphylococcus aureus is one of the main causes of bacteraemia, associated with high mortality, mainly due to the occurrence of multidrug resistant (MDR) strains. Data on antibiotic susceptibility and genetic lineages of bacteraemic S. aureus are still scarce in Mozambique. The study aims to describe the antibiotic susceptibility and clonality of S. aureus isolated from blood cultures of children admitted to the Manhiça District Hospital over two decades (2001-2019). METHODS A total of 336 S. aureus isolates detected in blood cultures of children aged <5 years were analyzed for antibiotic susceptibility by disk diffusion or minimal inhibitory concentration, and for the presence of resistance determinants by PCR. The clonality was evaluated by SmaI-PFGE, spa typing, and MLST. The SCCmec element was characterized by SCCmec typing. RESULTS Most S. aureus (94%, 317/336) were resistant to at least one class of antibiotics, and one quarter (25%) showed a MDR phenotype. High rates of resistance were detected to penicillin (90%) and tetracycline (48%); followed by erythromycin/clindamycin (25%/23%), and co-trimoxazole (11%), while resistance to methicillin (MRSA strains) or gentamicin was less frequent (≤5%). The phenotypic resistance to distinct antibiotics correlated well with the corresponding resistance determinants (Cohen's κ test: 0.7-1.0). Molecular typing revealed highly diverse clones with predominance of CC5 (17%, 58/336) and CC8 (16%), followed by CC15 (11%) and CC1 (11%). The CC152, initially detected in 2001, re-emerged in 2010 and became predominant throughout the remaining surveillance period, while other CCs (CC1, CC5, CC8, CC15, CC25, CC80, and CC88) decreased over time. The 16 MRSA strains detected belonged to clones t064-ST612/CC8-SCCmecIVd (69%, 11/16), t008-ST8/CC8-SCCmecNT (25%, 4/16) and t5351-ST88/CC88-SCCmecIVa (6%, 1/16). Specific clonal lineages were associated with extended length of stay and high in-hospital mortality. CONCLUSION We document the circulation of diverse MDR S. aureus causing paediatric bacteraemia in Manhiça district, Mozambique, requiring a prompt recognition of S. aureus bacteraemia by drug resistant clones to allow more targeted clinical management of patients.
Collapse
Affiliation(s)
- Marcelino Garrine
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Lisbon, Portugal
| | - Sofia Santos Costa
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Lisbon, Portugal
| | - Augusto Messa
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Sérgio Massora
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Delfino Vubil
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Sozinho Ácacio
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- Instituto Nacional de Saúde (INS), Ministério da Saúde, Maputo, Mozambique
| | - Tacilta Nhampossa
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- Instituto Nacional de Saúde (INS), Ministério da Saúde, Maputo, Mozambique
| | - Quique Bassat
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
- ICREA, Barcelona, Spain
- Department of Pediatrics, Hospital Sant Joan de Déu, Universitat de Barcelona, Esplugues, Barcelona, Spain
- CIBER de Epidemiología y Salud Pública, Instituto de Salud Carlos III, Madrid, Spain
| | - Inacio Mandomando
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- Instituto Nacional de Saúde (INS), Ministério da Saúde, Maputo, Mozambique
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | - Isabel Couto
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Lisbon, Portugal
| |
Collapse
|
30
|
Szczuka E, Wesołowska M, Krawiec A, Kosicki JZ. Staphylococcal species composition in the skin microbiota of domestic pigeons (Columba livia domestica). PLoS One 2023; 18:e0287261. [PMID: 37436966 DOI: 10.1371/journal.pone.0287261] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 06/01/2023] [Indexed: 07/14/2023] Open
Abstract
Staphylococci are a natural component of the skin microbiota of many organisms, including humans and birds. As opportunistic pathogens, they can cause a variety of infections in humans. The close contact between domestic pigeons and their owners provide an opportunity for exchange of skin-associated bacteria. In this study, 41 healthy racing pigeons were tested. Staphylococci were detected on the skin of each bird (41/41, 100%). Isolates were identified at the species level using matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS). The diversity of the Staphylococcus species was relatively high and coagulase-negative staphylococci (CoNS) were predominantly isolated. In total, ten different staphylococcal species were identified. S. lentus (19/41, 46.3%) was noted most frequently. The pigeon skin was also inhabited by S. xylosus (6/41, 14.6%), S. equorum (4/41, 9.8%), S. hyicus (3/41, 7.3%), S. intermedius (2/41, 4.9%), S. sciuri (2/41, 4.9%), S. vitulinus (2/41, 4.9%), S. lugdunensis (1/41, 2.4%), S. hominis (1/41, 2.4%), and S. auricularis (1/41, 2.4%). Our results indicate that domestic pigeons may carry pathogens with zoonotic potential. All strains were susceptible to 12 antibiotics (ciprofloxacin, clindamycin chloramphenicol, erythromycin, fosfomycin, gentamicin, levofloxacin, norfloxacin, rifampicin, tobramycin, trimethoprim/sulfamethoxazole, vancomycin) representing 8 different classes. None isolate displayed a multidrug-resistant phenotype. Resistance to tetracycline (6/41, 14.6%) and to penicillin (4/41, 9.7%) was shown. The mecA gene was not detected in the examined strains and no methicillin-resistant staphylococci were found on the skin of the healthy pigeons.
Collapse
Affiliation(s)
- Ewa Szczuka
- Department of Microbiology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Maria Wesołowska
- Department of Microbiology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Adrianna Krawiec
- Department of Microbiology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Jakub Z Kosicki
- Department of Avian Biology and Ecology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
31
|
Millette G, Séguin DL, Isabelle C, Chamberland S, Lucier JF, Rodrigue S, Cantin AM, Malouin F. Staphylococcus aureus Small-Colony Variants from Airways of Adult Cystic Fibrosis Patients as Precursors of Adaptive Antibiotic-Resistant Mutations. Antibiotics (Basel) 2023; 12:1069. [PMID: 37370388 PMCID: PMC10294822 DOI: 10.3390/antibiotics12061069] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Prototypic Staphylococcus aureus and their small-colony variants (SCVs) are predominant in cystic fibrosis (CF), but the interdependence of these phenotypes is poorly understood. We characterized S. aureus isolates from adult CF patients over several years. Of 18 S. aureus-positive patients (58%), 13 (72%) were positive for SCVs. Characterization included genotyping, SCCmec types, auxotrophy, biofilm production, antibiotic susceptibilities and tolerance, and resistance acquisition rates. Whole-genome sequencing revealed that several patients were colonized with prototypical and SCV-related clones. Some clonal pairs showed acquisition of aminoglycoside resistance that was not explained by aminoglycoside-modifying enzymes, suggesting a mutation-based process. The characteristics of SCVs that could play a role in resistance acquisition were thus investigated further. For instance, SCV isolates produced more biofilm (p < 0.05) and showed a higher survival rate upon exposure to ciprofloxacin and vancomycin compared to their prototypic associated clones. SCVs also developed spontaneous rifampicin resistance mutations at a higher frequency. Accordingly, a laboratory-derived SCV (ΔhemB) acquired resistance to ciprofloxacin and gentamicin faster than its parent counterpart after serial passages in the presence of sub-inhibitory concentrations of antibiotics. These results suggest a role for SCVs in the establishment of persistent antibiotic-resistant clones in adult CF patients.
Collapse
Affiliation(s)
- Guillaume Millette
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (G.M.); (D.L.S.); (C.I.); (S.C.); (J.-F.L.); (S.R.)
| | - David Lalonde Séguin
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (G.M.); (D.L.S.); (C.I.); (S.C.); (J.-F.L.); (S.R.)
| | - Charles Isabelle
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (G.M.); (D.L.S.); (C.I.); (S.C.); (J.-F.L.); (S.R.)
| | - Suzanne Chamberland
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (G.M.); (D.L.S.); (C.I.); (S.C.); (J.-F.L.); (S.R.)
| | - Jean-François Lucier
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (G.M.); (D.L.S.); (C.I.); (S.C.); (J.-F.L.); (S.R.)
| | - Sébastien Rodrigue
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (G.M.); (D.L.S.); (C.I.); (S.C.); (J.-F.L.); (S.R.)
| | - André M. Cantin
- Service de Pneumologie, Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada;
| | - François Malouin
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (G.M.); (D.L.S.); (C.I.); (S.C.); (J.-F.L.); (S.R.)
| |
Collapse
|
32
|
Oluduro AO, Adesiyan YM, Omoboye OO, Odeyemi AT. Phenotypic and molecular characterization of Staphylococcus aureus from mobile phones in Nigeria. AIMS Microbiol 2023; 9:402-418. [PMID: 37649800 PMCID: PMC10462460 DOI: 10.3934/microbiol.2023021] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 09/01/2023] Open
Abstract
The presence of Staphylococcus aureus, a normal human flora on cellphones of different professionals in Ile-Ife was investigated with a view to determining their antibiotic susceptibility profile and nature of resistance and virulence genes. One hundred swab samples were collected aseptically from mobile phones of various users based on their profession. Surfaces of the mobile phones were swabbed and the streak plate method was used to isolate colonies showing characteristic golden yellow on mannitol salt agar plates. These isolates were further identified using standard microbiological methods. The antibiotic susceptibility of the isolates was determined using Kirby-Bauer's disk diffusion technique. Molecular detection of nuc, mecA and pvl genes in some isolates was carried out by polymerase chain reaction technique. All the 36 isolates obtained in this study were 100% resistant to amoxicillin and augmentin; the isolates also displayed 55.6%, 44.4% and 41.7% resistance to ceftriazone, erythromycin and chloramphenicol, respectively. Based on resistance to oxacillin, prevalence of methicillin resistant Staphylococcus aureus (MRSA) was 11.1%. Only one S. aureus was positive for plasmid analysis. MecA gene was genetically confirmed in four (4) out of the 16 suspected phenotypic MRSA strains, nuc gene was confirmed in all 28 isolates investigated, while there was no pvl gene in the strains investigated. Mobile phones harbor multiple antibiotics resistant S. aureus, which are responsible for important diseases in humans and could be difficult to manage with antibiotics thereby posing serious health risks.
Collapse
Affiliation(s)
- Anthonia O. Oluduro
- Department of Microbiology, Obafemi Awolowo University, Ile-Ife, 220005, Nigeria
| | - Yetunde M. Adesiyan
- Department of Microbiology, Obafemi Awolowo University, Ile-Ife, 220005, Nigeria
| | - Olumide O. Omoboye
- Department of Microbiology, Obafemi Awolowo University, Ile-Ife, 220005, Nigeria
| | - Adebowale T. Odeyemi
- Landmark University SDG Groups 2 and 3; Department of Food Sciences and Microbiology, Landmark University, Omu-Aran, Kwara State, Nigeria
| |
Collapse
|
33
|
Bertelloni F, Cagnoli G, Bresciani F, Scotti B, Lazzerini L, Marcucci M, Colombani G, Ebani VV. Antimicrobial Resistant Coagulase-Negative Staphylococci Carried by House Flies ( Musca domestica) Captured in Swine and Poultry Farms. Antibiotics (Basel) 2023; 12:antibiotics12040636. [PMID: 37106998 PMCID: PMC10135123 DOI: 10.3390/antibiotics12040636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 04/29/2023] Open
Abstract
House flies (Musca domestica) are very diffuse insects attracted by biological materials. They are abundantly present in farm environments and can frequently come in contact with animals, feed, manure, waste, surfaces, and fomites; consequently, these insects could be contaminated, carry, and disperse several microorganisms. The aim of this work was to evaluate the presence of antimicrobial-resistant staphylococci in house flies collected in poultry and swine farms. Thirty-five traps were placed in twenty-two farms; from each trap, 3 different kinds of samples were tested: attractant material present in the traps, the body surface of house flies and the body content of house flies. Staphylococci were detected in 72.72% of farms, 65.71% of traps and 43.81% of samples. Only coagulase-negative staphylococci (CoNS) were isolated, and 49 isolates were subjected to an antimicrobial susceptibility test. Most of the isolates were resistant to amikacin (65.31%), ampicillin (46.94%), rifampicin (44.90%), tetracycline (40.82%) and cefoxitin (40.82%). Minimum Inhibitory concentration assay allowed to confirm 11/49 (22.45%) staphylococci as methicillin-resistant; 4 of them (36.36%) carried the mecA gene. Furthermore, 53.06% of the isolates were classified as multidrug-resistant (MDR). Higher levels of resistance and multidrug resistance were detected in CoNS isolated from flies collected in poultry farms than in swine farms. Therefore, house flies could carry MDR and methicillin-resistant staphylococci, representing a possible source of infection for animals and humans.
Collapse
Affiliation(s)
- Fabrizio Bertelloni
- Department of Veterinary Science, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy
| | - Giulia Cagnoli
- Department of Veterinary Science, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy
| | - Flavio Bresciani
- Department of Veterinary Science, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy
| | - Bruno Scotti
- Sede Sicurezza Alimentare e Sanità Pubblica Veterinaria, Zona Versilia, Azienda Usl Toscana Nord Ovest, Via Martiri di S. Anna 12, 55045 Pietrasanta, Italy
| | - Luca Lazzerini
- Sede Sicurezza Alimentare e Sanità Pubblica Veterinaria, Zona Versilia, Azienda Usl Toscana Nord Ovest, Via Martiri di S. Anna 12, 55045 Pietrasanta, Italy
| | - Marco Marcucci
- Sede Sicurezza Alimentare e Sanità Pubblica Veterinaria, Zona Valle del Serchio, Azienda Usl Toscana Nord Ovest, Via IV Novembre 10, 55027 Gallicano, Italy
| | - Giuseppe Colombani
- Sede Sicurezza Alimentare e Sanità Pubblica Veterinaria, Zona Valle del Serchio, Azienda Usl Toscana Nord Ovest, Via IV Novembre 10, 55027 Gallicano, Italy
| | | |
Collapse
|
34
|
Grazul M, Balcerczak E, Sienkiewicz M. Analysis of the Presence of the Virulence and Regulation Genes from Staphylococcus aureus ( S. aureus) in Coagulase Negative Staphylococci and the Influence of the Staphylococcal Cross-Talk on Their Functions. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:5155. [PMID: 36982064 PMCID: PMC10049693 DOI: 10.3390/ijerph20065155] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/08/2023] [Accepted: 03/12/2023] [Indexed: 06/18/2023]
Abstract
Coagulase-negative staphylococci (CoNS) are increasingly becoming a public health issue worldwide due to their growing resistance to antibiotics and common involvement in complications related to invasive surgical procedures, and nosocomial and urinary tract infections. Their behavior either as a commensal or a pathogen is a result of strict regulation of colonization and virulence factors. Although functionality of virulence factors and processes involved in their regulation are quite well understood in S. aureus, little is known about them in CoNS species. Therefore, the aim of our studies was to check if clinical CoNS strains may contain virulence factors and genes involved in resistance to methicillin, that are homologous to S. aureus. Moreover, we checked the presence of elements responsible for regulation of genes that encode virulence factors typical for S. aureus in tested isolates. We also investigated whether the regulation factors produced by one CoNS isolate can affect virulence activity of other strains by co-incubation of tested isolates with supernatant from other isolates. Our studies confirmed the presence of virulence factor and regulatory genes attributed to S. aureus in CoNS isolates and indicated that one strain with an active agr gene is able to affect biofilm formation and δ-toxin activity of strains with inactive agr genes. The cognition of prevalence and regulation of virulence factors as well as antibiotic resistance of CoNS isolates is important for better control and treatment of CoNS infections.
Collapse
Affiliation(s)
- Magdalena Grazul
- Department of Pharmaceutical Microbiology and Microbiological Diagnostics, Medical University of Lodz, Muszynskiego 1 Street, 90-151 Lodz, Poland
| | - Ewa Balcerczak
- Laboratory of Molecular Diagnostics and Pharmacogenomics, Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Medical University of Lodz, Muszynskiego 1 Street, 90-151 Lodz, Poland
| | - Monika Sienkiewicz
- Department of Pharmaceutical Microbiology and Microbiological Diagnostics, Medical University of Lodz, Muszynskiego 1 Street, 90-151 Lodz, Poland
| |
Collapse
|
35
|
Raddaoui A, Chebbi Y, Bouchami O, Frigui S, Messadi AA, Achour W, Thabet L. Dissemination of epidemic ST239/ST241-t037-agrI-SCCmecIII methicillin-resistant Staphylococcus aureus in a Tunisian trauma burn intensive care unit. Acta Microbiol Immunol Hung 2023; 70:52-60. [PMID: 36525058 DOI: 10.1556/030.2022.01884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/18/2022] [Indexed: 12/16/2022]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is an important pathogen causing health care-infections in the world, especially in burns. The aim of this study was to assess the extent of dissemination of MRSA isolated from burn patients in Burn Intensive Care Unit in Tunisia and to evaluate the frequency of virulence and antibiotics resistance genes. Among the 72 S. aureus isolates analyzed in the study, 54% were MRSA. The majority of MRSA (94.8%) were multidrug resistant and they had a high resistance rates to kanamycin (94.8%), tobramycin (90%), tetracycline (94.8%) and ciprofloxacin and rifampicin (87%, each). The gene aac(6')-Ie-aph(2″)-Ia conferring resistance to kanamycine and tobtamycin were detected in all isolates and the aph(3')-Ia gene conferring resistance to gentamicin were detected in 2.8% of resistant isolates. Tetracycline resistance genes tet(M), tet(K) and tet(L) were detected in 100%, 10.8% and 2.8% of the isolates, respectively. The SCCmec type III and the agr type I were the most predominant (69.2% and 90%, respectively). The 27 SCCmecIII-agrI isolates were clustered into two PFGE types A and B. The two representative isolates of PFGE clusters A and B belonged to ST239-t037 and ST241-t037 respectively. As conclusion, our results showed a high prevalence of MRSA in trauma burn intensive care unit belonging to two multidrug resistant clones ST239/ST241-agrI-t037-SCCmecIII MRSA. We also demonstrated that MRSA was disseminated between burn patients.
Collapse
Affiliation(s)
- Anis Raddaoui
- 1Laboratory Ward, National Bone Marrow Transplant Center, 1006, Tunis, Tunisia.,2Faculty of Medicine of Tunis, Tunis El Manar University, LR18ES39, 1006, Tunis, Tunisia
| | - Yosra Chebbi
- 1Laboratory Ward, National Bone Marrow Transplant Center, 1006, Tunis, Tunisia.,2Faculty of Medicine of Tunis, Tunis El Manar University, LR18ES39, 1006, Tunis, Tunisia
| | - Ons Bouchami
- 3Laboratory of Bacterial Evolutionand Molecular Epidemiology, Instituto de Tecnologia Química e Biológica (ITQB-NOVA) António Xavier, 2780-157, Oeiras, Portugal
| | - Siwar Frigui
- 1Laboratory Ward, National Bone Marrow Transplant Center, 1006, Tunis, Tunisia.,2Faculty of Medicine of Tunis, Tunis El Manar University, LR18ES39, 1006, Tunis, Tunisia
| | - Amen Allah Messadi
- 4Burns Intensive Care Unit, Traumatology and Great Burned Center, 2074, Ben Arous, Tunisia
| | - Wafa Achour
- 1Laboratory Ward, National Bone Marrow Transplant Center, 1006, Tunis, Tunisia.,2Faculty of Medicine of Tunis, Tunis El Manar University, LR18ES39, 1006, Tunis, Tunisia
| | - Lamia Thabet
- 5Laboratory Ward, Traumatology and Great Burned Center, 2074, Ben Arous, Tunisia
| |
Collapse
|
36
|
Ibraheim HK, Madhi KS, Baqer GK, Gharban HAJ. Effectiveness of raw bacteriocin produced from lactic acid bacteria on biofilm of methicillin-resistant Staphylococcus aureus. Vet World 2023; 16:491-499. [PMID: 37041833 PMCID: PMC10082751 DOI: 10.14202/vetworld.2023.491-499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/18/2023] [Indexed: 04/13/2023] Open
Abstract
Background and Aim Probiotics are proven beneficial to health since they enhance immunity against dangerous pathogens and increase resistance to illness. Bacteriocin produced by lactic acid bacteria (LAB), demonstrates a broad inhibitory spectrum and therapeutic potential. This study aimed to isolate LAB-producing bacteriocin and investigate the effect of crude bacteriocin on biofilm from methicillin-resistant Staphylococcus aureus (MRSA). Materials and Methods This study used randomly collected 80 white soft local cheeses (40 each from cows and sheep) from different supermarkets in Basrah Province. The obtained samples were cultured and the bacterial suspension of S. aureus was prepared at 1.5 × 108 cells/mL. The crude bacteriocin extracted from LAB was obtained, and the tube was dried and inverted to detect the biofilm loss at the bottom. Results There were 67 (83.75%) LAB isolates. Among 40 milk samples collected directly and indirectly, there were 36 (83.33%). Staphylococcus aureus isolates based on conventional bacteriological analysis and biochemical tests. Molecular testing was conducted to identify LAB and MRSA. Depending on genotypic results, the effect of white soft local cheese (cows and sheep) and the amplification results of the 16S rRNA gene were detected in 46 LAB isolates from white soft local cheese from cows and sheep. Based on the molecular identification of the mecA, results on Staphylococcus determined that only 2 of 36 isolates of S. aureus carried the mecA. Moreover, there were 26 (86.66%) isolates (MRSA) from samples of raw milk from local markets and subclinical mastitis in cows. The ability of LAB isolates was tested. The effects of bacteriocin production on preventing biofilm growth and formation were investigated. Results demonstrated that bacteriocin has high activity. Microtiter plates applied to investigate the ability of S. aureus to produce biofilms revealed that all isolates were either weak or moderate biofilm producers, with neither non-biofilm nor strong biofilm producers found among the tested isolates. Conclusion Lactic acid bacteria demonstrate a high ability to produce bacteriocin. Crude bacteriocin from LAB has a restrictive effect on biofilms produced by MRSA; thus, it can be used to reduce the pathogenicity of this bacterium.
Collapse
Affiliation(s)
- Hanaa Khaleel Ibraheim
- Department of Microbiology, College of Veterinary Medicine, University of Basrah, Basrah, Iraq
- Corresponding author: Hanaa Khaleel Ibraheim, e-mail: Co-authors: KSM: , GKB: , HAJG:
| | - Khadeeja S. Madhi
- Department of Microbiology, College of Medicine, University of Basrah, Basrah, Iraq
| | - Gaida K. Baqer
- Department of Microbiology, College of Medicine, University of Basrah, Basrah, Iraq
| | - Hasanain A. J. Gharban
- Department of Internal and Preventive Veterinary Medicine, College of Veterinary Medicine, University of Wasit, Wasit, Iraq
| |
Collapse
|
37
|
Phenotypic and Genotypic Characterization of Macrolide-Lincosamide-Streptogramin Resistance in Staphylococcus aureus Isolates from Bovine and Human. ACTA VET-BEOGRAD 2023. [DOI: 10.2478/acve-2023-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
Abstract
In this study, penicillin, oxacillin, and macrolide-lincosamide-streptogramin (MLS) resistance in S. aureus strains that were isolated from bovine mastitis cases, and human patients were investigated. Inducible clindamycin resistance (iML) was not found in 30 bovine isolates, while it was detected in 3 (10%) of 30 human isolates. MIC90 values of penicillin, oxacillin and macrolide-lincosamides (ML) were 2, 0.19, >256 µg/ml in bovine isolates and were 3, 3 and 0.19-1.5 µg/ml in human isolates, respectively. Streptogramin resistance was not found in both bovine and human isolates. Although the mecA gene was detected in all of the oxacillin resistant isolates, blaZ gene could not be detected in penicillin resistant isolates. The erm(B) gene was detected in 5 (38.6%) of 13 ML-resistant bovine isolates, and the mph(C) gene was detected in 2 (66.66%) of 3 human isolates. As a result, resistance to penicillin and oxacillin was found to be higher in human S. aureus isolates, while ML resistance was found to be higher in bovine isolates in this investigation. It was concluded that the presence of genes in extra-chromosomal elements associated to penicillin and macrolide resistance should be investigated. The data obtained from this study will contribute to the studies on antimicrobial susceptibility in the field of human and veterinary medicine.
Collapse
|
38
|
Oliveira AMD, Anjos Szczerepa MMD, Bronharo Tognim MC, Abreu Filho BAD, Cardozo-Filho L, Gomes RG, Bergamasco R. Moringa oleifera seed oil extracted by pressurized n-propane and its effect against Staphylococcus aureus biofilms. ENVIRONMENTAL TECHNOLOGY 2023; 44:1083-1098. [PMID: 34704544 DOI: 10.1080/09593330.2021.1994653] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
Staphylococcus aureus is often associated worldwide with foodborne illnesses, and the elimination of biofilms formed by this bacterium from industrial surfaces is very challenging. To date, there have been few attempts to investigate plant oils obtained by recent green technologies, applied against biofilms on usual surfaces of the food industry and bacteria isolated from such environment. Therefore, this study evaluated the activity of Moringa oleifera seed oil (MOSO), extracted with pressurized n-propane, against standard and environmental S. aureus biofilms. Additionally, a genotypic and phenotypic study of the environmental S. aureus was proposed. It was found that this bacterium was a MSSA (methicillin-sensitive S. aureus), a carrier of icaA and icaD genes that has strong adhesion (OD550=1.86 ± 0.19) during biofilm formation. The use of pressurized n-propane as a solvent was efficient in obtaining MOSO, achieving a yield of 60.9%. Gas chromatography analyses revealed the presence of a rich source of fatty acids in MOSO, mainly oleic acid (62.47%), behenic acid (10.5%) and palmitic acid (7.32%). On polystyrene surface, MOSO at 0.5% and 1% showed inhibitory and bactericidal activity, respectively, against S. aureus biofilms. MOSO at 1% allowed a maximum reduction of 2.38 log UFC/cm² of S. aureus biofilms formed on PVC (polyvinyl chloride) surface. Scanning electron microscopy showed disturbances on the surface of S. aureus after exposure to MOSO. These unprecedented findings suggest that MOSO extracted with pressurized n-propane is potentially capable of inhibiting biofilms of different S. aureus strains, thus, contributing to microbiological safety during food processing.
Collapse
Affiliation(s)
| | | | | | | | - Lúcio Cardozo-Filho
- Department of Chemical Engineering, State University of Maringa, Maringa, Brazil
| | | | - Rosângela Bergamasco
- Department of Chemical Engineering, State University of Maringa, Maringa, Brazil
| |
Collapse
|
39
|
National surveillance of antimicrobial susceptibilities to ceftaroline, dalbavancin, telavancin, tedizolid, eravacycline, omadacycline, and other comparator antibiotics, and genetic characteristics of bacteremic Staphylococcus aureus isolates in adults: Results from the Surveillance of Multicenter Antimicrobial Resistance in Taiwan (SMART) program in 2020. Int J Antimicrob Agents 2023; 61:106745. [PMID: 36758774 DOI: 10.1016/j.ijantimicag.2023.106745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 01/25/2023] [Accepted: 01/28/2023] [Indexed: 02/10/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) causes invasive infections and is associated with community-acquired infections (CAIs) and hospital-associated infections (HAIs). In 2020, 315 S. aureus isolates, including 145 methicillin-susceptible S. aureus (MSSA) and 170 MRSA, mainly associated with bacteremia and mostly CAIs, were collected from 16 hospitals in different regions of Taiwan. Minimum inhibitory concentrations (MICs) were determined using the Sensititre™ complete automated AST system. Staphylococcal cassette chromosome mec (SCCmec) types were analysed using multiplex polymerase chain reaction. The median age of patients infected with MRSA was significantly higher than that of patients infected with MSSA (72.5 years vs. 67.0 years, P=0.027). MIC50/MIC90 values of eravacycline and omadacycline were 0.06/0.12, and 0.25/0.5, respectively. Of the MRSA isolates, 4.1% presented susceptible dose-dependence to ceftaroline, most of which (85.7%) were HAI- and Panton-Valentine leukocidin (PVL)-negative. Among the MRSA isolates, 7.1% were not susceptible to telavancin and tedizolid (mainly type IV, PVL-negative, and CAI), 0.6% were not susceptible to daptomycin (type III, PVL-negative, and HAI), and 1.8% were not susceptible to quinupristin/dalfopristin (three isolates were type III, IV, and VT, respectively, and all were PVL-negative), but all were susceptible to dalbavancin. In conclusion, patients with bacteremia caused by MRSA were older than those with bacteremia caused by MSSA, SCCmec type IV was more predominant in CAI than in HAI, and MRSA isolates not susceptible to novel anti-MRSA antimicrobials belonged to types II, III, or IV. Further studies that include comprehensive demographics and more detailed descriptions of other antimicrobial-resistant genes are urgently needed.
Collapse
|
40
|
Martínez JRW, Planet PJ, Maria SS, Lina R, Lorena D, Ana QV, Roberto RN, Manuel AR, Blake H, Carvajal LP, Sandra R, Jinnethe R, Marusella L, Rafael A, Patricia G, Arias CA, Munita JM. Dynamics of the MRSA Population in A Chilean Hospital: A Phylogenomic Analysis (2000-2016). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.06.526811. [PMID: 36798318 PMCID: PMC9934535 DOI: 10.1101/2023.02.06.526811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
The global dissemination of methicillin-resistant Staphylococcus aureus (MRSA) is associated with the emergence and establishment of clones in specific geographic areas. The Chilean-Cordobes clone (ChC) (ST5-SCC mec I) has been the predominant MRSA clone in Chile since its first description in 1998, despite the report of other emerging MRSA clones in the last years. Here, we characterize the evolutionary history of MRSA from 2000 to 2016 in a Chilean tertiary healthcare center using phylogenomic analyses. We sequenced 469 MRSA isolates collected between 2000-2016 in a tertiary healthcare center in Chile. We evaluated the temporal trends of the circulating clones and performed a phylogenomic reconstruction to characterize the clonal dynamics. We found a significant increase in the diversity and richness of sequence types (STs; Spearman r=0.8748, p<0.0001) with a Shannon diversity index increasing from 0.221 in the year 2000 to 1.33 in 2016. The temporal trend analysis revealed that in the period 2000-2003 most of the isolates (94.2%; n=98) belonged to the ChC clone. However, since then, the frequency of the ChC clone has decreased over time, accounting for 52% of the collection in the 2013-2016 period. This decline was accompanied by the rise of two emerging MRSA lineages, ST105-SCC mec II and ST72-SCC mec VI. In conclusion, the ChC clone remains the most frequent MRSA lineage in Chile. However, this lineage is gradually being replaced by several emerging clones, the most important of which is clone ST105-SCC mec II. To the best of our knowledge, this is the largest study of MRSA clonal dynamics performed in South America. Importance Methicillin-resistant Staphylococcus aureus (MRSA) is a major public health pathogen that disseminates through the emergence of successful dominant clones in specific geographic regions. Knowledge of the dissemination and molecular epidemiology of MRSA in Latin America is scarce and is largely based on small studies or classical typing techniques with several limitations to depict an accurate description of their genomic landscape. We used whole-genome sequencing to study 469 MRSA isolates collected between 2000-2016 in Chile to provide the largest and most detailed study of clonal dynamics of MRSA carried out in South America to date. We found a significant increase in the diversity of MRSA clones circulating over the 17-year study period. Additionally, we describe the emergence of two novel clones (ST105-SCCmecII and ST72-SCCmecVI), which have been gradually increasing their frequency over time. Our results drastically improve our understanding of the dissemination and update our knowledge about MRSA in Latin America.
Collapse
|
41
|
Hernández-Alomía F, Bastidas-Caldes C, Ballesteros I, Tenea GN, Jarrín-V. P, Molina CA, Castillejo P. Beta-Lactam Antibiotic Resistance Genes in the Microbiome of the Public Transport System of Quito, Ecuador. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1900. [PMID: 36767267 PMCID: PMC9914694 DOI: 10.3390/ijerph20031900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/13/2023] [Accepted: 01/14/2023] [Indexed: 06/18/2023]
Abstract
Multidrug-resistant bacteria present resistance mechanisms against β-lactam antibiotics, such as Extended-Spectrum Beta-lactamases (ESBL) and Metallo-β-lactamases enzymes (MBLs) which are operon encoded in Gram-negative species. Likewise, Gram-positive bacteria have evolved other mechanisms through mec genes, which encode modified penicillin-binding proteins (PBP2). This study aimed to determine the presence and spread of β-lactam antibiotic resistance genes and the microbiome circulating in Quito's Public Transport (QTP). A total of 29 station turnstiles were swabbed to extract the surface environmental DNA. PCRs were performed to detect the presence of 13 antibiotic resistance genes and to identify and to amplify 16S rDNA for barcoding, followed by clone analysis, Sanger sequencing, and BLAST search. ESBL genes blaTEM-1 and blaCTX-M-1 and MBL genes blaOXA-181 and mecA were detected along QPT stations, blaTEM being the most widely spread. Two subvariants were found for blaTEM-1, blaCTX-M-1, and blaOXA-181. Almost half of the circulating bacteria found at QPT stations were common human microbiota species, including those classified by the WHO as pathogens of critical and high-priority surveillance. β-lactam antibiotic resistance genes are prevalent throughout QPT. This is the first report of blaOXA-181 in environmental samples in Ecuador. Moreover, we detected a new putative variant of this gene. Some commensal coagulase-negative bacteria may have a role as mecA resistance reservoirs.
Collapse
Affiliation(s)
- Fernanda Hernández-Alomía
- Grupo de Investigación en Biodiversidad, Medio Ambiente y Salud (BIOMAS), Universidad de Las Américas, Quito 170125, Ecuador
| | - Carlos Bastidas-Caldes
- One Health Research Group, Universidad de las Américas, Quito 170125, Ecuador
- Programa de Doctorado en Salud Pública y Animal, Universidad de Extremadura, 10003 Cáceres, Spain
| | - Isabel Ballesteros
- Grupo de Investigación en Biodiversidad, Medio Ambiente y Salud (BIOMAS), Universidad de Las Américas, Quito 170125, Ecuador
- Departamento de Genética, Fisiología y Microbiología, Facultad de Biología, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Gabriela N. Tenea
- Biofood and Nutraceutics Research and Development Group, Faculty of Engineering in Agricultural and Environmental Sciences, Universidad Técnica del Norte, Ibarra 100150, Ecuador
| | - Pablo Jarrín-V.
- Dirección de Innovación, Instituto Nacional de Biodiversidad, Quito 170525, Ecuador
| | - C. Alfonso Molina
- Instituto de Investigación en Zoonosis (CIZ), Universidad Central del Ecuador, Quito 170521, Ecuador
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Central del Ecuador, Quito 170521, Ecuador
| | - Pablo Castillejo
- Grupo de Investigación en Biodiversidad, Medio Ambiente y Salud (BIOMAS), Universidad de Las Américas, Quito 170125, Ecuador
| |
Collapse
|
42
|
M S, Mulki SS, Shenoy S, Dhanashree B, M C, Bhat G. Heterogeneous Vancomycin Intermediate Staphylococcus aureus Infections in Diabetic and Non-Diabetic Patients - A Hospital-Based Comparative Study. Infect Drug Resist 2023; 16:9-17. [PMID: 36636375 PMCID: PMC9830051 DOI: 10.2147/idr.s393415] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/23/2022] [Indexed: 01/06/2023] Open
Abstract
Purpose To study the infections caused by methicillin resistant Staphylococcus aureus (MRSA) with emphasis on heterogeneous vancomycin intermediate S. aureus (hVISA) in diabetic and non-diabetic patients and their comparison. Patients and Methods S. aureus strains isolated from diabetic and non-diabetic patients admitted in four tertiary care hospitals in Coastal Karnataka, South India, were tested for methicillin resistance and included in the present study. Demographic and clinical data of the patients were collected using structured proforma. Antimicrobial susceptibility testing was done using the Kirby-Bauer disc diffusion method, and MLSB phenotypes were identified using the D-test. The minimum inhibitory concentration (MIC) of vancomycin was determined using agar dilution. MRSA isolates were tested for hVISA using vancomycin screen agar and population analysis profile - area under the curve (PAP-AUC) test. Statistical analysis of the results was done using the chi-square test. SPSS version 29.0 was used for this purpose. Results Out of 665 strains of S. aureus isolated, 220 (33.1%) were MRSA. Of these 220 MRSA strains, 122 (55.5%) and 98 (44.5%) were isolated from diabetic and non-diabetic patients, respectively. There was no significant difference in the antimicrobial resistance patterns of MRSA strains isolated from diabetic and non-diabetic patients. Foot infections and osteomyelitis caused by MRSA were significantly more among diabetic patients. Out of 220 strains of MRSA, 14 (6.4%) were hVISA. The rates of hVISA among MRSA isolated from diabetic and non-diabetic were 9.0% and 3.1%, respectively. This difference was statistically not significant. Conclusion The rate of hVISA among all MRSA isolates was 6.4%. The risk of hVISA infection was three times more in diabetic patients. The results emphasize the importance of the detection of hVISA among MRSA isolates especially from diabetic patients.
Collapse
Affiliation(s)
- Sreejisha M
- Department of Microbiology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 575001, India
| | - Shalini Shenoy Mulki
- Department of Microbiology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 575001, India
| | - Suchitra Shenoy
- Department of Microbiology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 575001, India
| | - Biranthabail Dhanashree
- Department of Microbiology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 575001, India
| | - Chakrapani M
- Department of Medicine, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 575001, India
| | - Gopalakrishna Bhat
- Department of Microbiology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 575001, India,Correspondence: Gopalakrishna Bhat, Department of Microbiology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India, Tel +91 9480424729, Email
| |
Collapse
|
43
|
Whitaker CDO, Chamon RC, de Oliveira TLR, Nouér SA, Dos Santos KRN. Systemic infection caused by the methicillin-resistant Staphylococcus aureus USA300-LV lineage in a Brazilian child previously colonized. Braz J Infect Dis 2023; 27:102737. [PMID: 36608934 PMCID: PMC9905938 DOI: 10.1016/j.bjid.2022.102737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/29/2022] [Accepted: 12/19/2022] [Indexed: 01/05/2023] Open
Abstract
The methicillin-resistant Staphylococcus aureus (MRSA) USA300-Latin American variant (USA300-LV) lineage is well documented in northern Latin American countries. It has replaced established clones in hospital environments. We herein report a systemic infection caused by a USA300-LV isolate in a 15-year-old boy, from a low-income area of Rio de Janeiro, previously colonized by the same strain. During hospital stay, seven pvl-positive MRSA USA300-LV isolates were recovered by nasal swab, blood and abscess secretion. The patient underwent intravenous vancomycin, daptomycin, and oral sulfamethoxazole/trimethoprim, and was discharged after 45 days after full recovery. This is the first documented case of a community-acquired MRSA infection caused by the USA300-LV variant in Brazil in a previously colonized adolescent with no history of recent travel outside of Rio de Janeiro. The need for improved surveillance programs to detect MRSA colonization in order to control the spread of hypervirulent lineages among community and hospital settings is highlighted.
Collapse
Affiliation(s)
- Carolina de Oliveira Whitaker
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Departamento de Microbiologia Médica, Laboratório de Infecção Hospitalar, Rio de Janeiro, RJ, Brazil
| | - Raiane Cardoso Chamon
- Universidade Federal Fluminense, Faculdade de Medicina, Departamento de Patologia, Niterói, RJ, Brazil; Universidade Federal Fluminense, Hospital Universitário Antônio Pedro, Unidade de Pesquisa Clínica, Laboratório de Microbiologia, Niterói, RJ, Brazil.
| | - Tamara Lopes Rocha de Oliveira
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Departamento de Microbiologia Médica, Laboratório de Infecção Hospitalar, Rio de Janeiro, RJ, Brazil
| | - Simone Aranha Nouér
- Universidade Federal do Rio de Janeiro, Hospital Universitário Clementino Fraga Filho, Faculdade de Medicina, Rio de Janeiro, RJ, Brazil
| | - Kátia Regina Netto Dos Santos
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Departamento de Microbiologia Médica, Laboratório de Infecção Hospitalar, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
44
|
Villarreal-Salazar V, Mendoza-Olazarán S, Flores-Treviño S, Garza-González E, Bocanegra-Ibarias P, Morfín-Otero R, Camacho-Ortiz A, Rodríguez-Noriega E, Villarreal-Treviño L. Rapid methicillin resistance detection and subspecies discrimination in Staphylococcus hominis clinical isolates by MALDI-TOF MS. Indian J Med Microbiol 2023; 41:83-89. [PMID: 36123270 DOI: 10.1016/j.ijmmb.2022.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 06/06/2022] [Accepted: 08/14/2022] [Indexed: 11/05/2022]
Abstract
PURPOSE Staphylococcus hominis is a coagulase-negative opportunistic pathogen responsible for implanted medical device infections. Rapid identification and virulence factors detection are crucial for appropriate antimicrobial therapy. We aimed to search protein biomarker peaks for rapid classification of antibiotic resistance and subspecies of S. hominis using MALDI-TOF MS. METHODS S. hominis clinical isolates (n = 148) were screened for subspecies differentiation by novobiocin resistance. Biofilm composition and formation were determined by detachment assay and crystal violet staining, respectively. Antibiotic susceptibility was performed by the broth microdilution method. The search for potential biomarkers peaks was enabled by ClinProTools 3.0, flexAnalysis 3.4, and Biotools 3.2 for statistical analysis, peak visualization, and protein/peptide alignment, respectively. RESULTS Of 148 isolates, 12.16% were classified as S. hominis subsp. novobiosepticus, 77.77% were biofilm producers, and ˃ 50% were multidrug-resistant. Two potential biomarker peaks, 8975 m/z and 9035 m/z were detected for the discrimination of methicillin resistance with a sensitivity of 96.72%. The following peaks were detected for subspecies differentiation: 2582 m/z, 2823 m/z, and 2619 m/z with 88.89-98.28% of sensitivity. CONCLUSIONS We found potential biomarker peaks to predict methicillin resistance and discriminate S. hominis subspecies during routine MALDI-TOF MS identification in a clinical setting to enable better antibiotic treatment.
Collapse
Affiliation(s)
- Verónica Villarreal-Salazar
- Laboratorio de Microbiología General, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Av. Pedro de Alba S/N, Col. Ciudad Universitaria, 66450, San Nicolás de los Garza, Nuevo León, México
| | - Soraya Mendoza-Olazarán
- Servicio de Gastroenterología, Hospital Universitario "Dr. José E. González" y Facultad de Medicina, Universidad Autónoma de Nuevo León, Av. Francisco I, Madero Pte. S/N Monterrey y Av. Gonzalitos, Col. Mitras Centro, 64460, Monterrey, Nuevo León, México
| | - Samantha Flores-Treviño
- Servicio de Infectología, Hospital Universitario "Dr. José E. González", Universidad Autónoma de Nuevo León, Av. Francisco I, Madero Pte. S/N Monterrey y Av. Gonzalitos, Col. Mitras Centro, 64460, Monterrey, Nuevo León, México
| | - Elvira Garza-González
- Servicio de Infectología, Hospital Universitario "Dr. José E. González", Universidad Autónoma de Nuevo León, Av. Francisco I, Madero Pte. S/N Monterrey y Av. Gonzalitos, Col. Mitras Centro, 64460, Monterrey, Nuevo León, México
| | - Paola Bocanegra-Ibarias
- Servicio de Infectología, Hospital Universitario "Dr. José E. González", Universidad Autónoma de Nuevo León, Av. Francisco I, Madero Pte. S/N Monterrey y Av. Gonzalitos, Col. Mitras Centro, 64460, Monterrey, Nuevo León, México
| | - Rayo Morfín-Otero
- Hospital Civil de Guadalajara "Fray Antonio Alcalde" y el Instituto de Patólogía Infecciosa y Experimental, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Jalisco, México
| | - Adrián Camacho-Ortiz
- Servicio de Infectología, Hospital Universitario "Dr. José E. González", Universidad Autónoma de Nuevo León, Av. Francisco I, Madero Pte. S/N Monterrey y Av. Gonzalitos, Col. Mitras Centro, 64460, Monterrey, Nuevo León, México
| | - Eduardo Rodríguez-Noriega
- Hospital Civil de Guadalajara "Fray Antonio Alcalde" y el Instituto de Patólogía Infecciosa y Experimental, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Jalisco, México
| | - Licet Villarreal-Treviño
- Laboratorio de Microbiología General, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Av. Pedro de Alba S/N, Col. Ciudad Universitaria, 66450, San Nicolás de los Garza, Nuevo León, México.
| |
Collapse
|
45
|
Igbinosa EO, Beshiru A, Igbinosa IH, Ogofure AG, Ekundayo TC, Okoh AI. Prevalence, multiple antibiotic resistance and virulence profile of methicillin-resistant Staphylococcus aureus (MRSA) in retail poultry meat from Edo, Nigeria. Front Cell Infect Microbiol 2023; 13:1122059. [PMID: 36936767 PMCID: PMC10017849 DOI: 10.3389/fcimb.2023.1122059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
Introduction Staphylococcus aureus causes staphylococcal food poisoning and several difficult-to-treat infections. The occurrence and dissemination of methicillin-resistance S. aureus (MRSA) in Nigeria is crucial and well documented in hospitals. However, findings on MRSA from meat in the country are yet to be adequately reported. The current study determined the prevalence, virulence profile and antibiogram characteristics of MRSA from a raw chicken product from retail outlets within Edo. Methods A total of 368 poultry meat samples were assessed for MRSA using a standard culture-based approach and characterized further using a molecular method. The antimicrobial susceptibility profile of the isolates was determined using the disc diffusion method. The biofilm profile of the isolates was assayed via the crystal violet microtitre-plate method. Virulence and antimicrobial resistance genes were screened using polymerase chain reaction via specific primers. Results Of the samples tested, 110 (29.9%) were positive for MRSA. All the isolates were positive for deoxyribonuclease (DNase), coagulase and beta-hemolysis production. Biofilm profile revealed 27 (24.55%) weak biofilm formers, 18 (16.36%) moderate biofilm formers, and 39 (35.45%) strong biofilm formers. The isolates harboured 2 and ≤17 virulence genes. Enterotoxin gene profiling revealed that 100 (90.9%) isolates harboured one or more genes. Resistance against the tested antibiotics followed the order: tetracycline 64(58.2%), ciprofloxacin 71(64.6%), trimethoprim 71(64.6%) and rifampin 103(93.6%). A total of 89 isolates were multidrug-resistant, while 3 isolates were resistant to all 22 antibiotics tested. The isolates harboured antimicrobial-resistant determinants such as methicillin-resistant gene (mecA), tetracycline resistance genes (tetK, tetL), erythromycin resistance genes (ermA, ermC), trimethoprim resistance gene (dfrK). All the staphylococcal cassette chromosome mec (SCCmec) IVa and SCCmec V positive isolates harboured the Panton-Valentine Leukocidin Gene (PVL). Conclusion In conclusion, S. aureus was resistant to commonly used antibiotics; a concern to public health concerning the transmission of these pathogens after consuming these highlight the significance of antimicrobial and enterotoxigenic monitoring of S. aureus in food chains.
Collapse
Affiliation(s)
- Etinosa O. Igbinosa
- Applied Microbial Processes and Environmental Health Research Group, Faculty of Life Sciences, University of Benin, Benin City, Nigeria
- Stellenosch Institute for Advanced Study (STIAS), Wallenberg Research Centre at Stellenbosch University, Stellenbosch, South Africa
- *Correspondence: Etinosa O. Igbinosa,
| | - Abeni Beshiru
- Applied Microbial Processes and Environmental Health Research Group, Faculty of Life Sciences, University of Benin, Benin City, Nigeria
- Stellenosch Institute for Advanced Study (STIAS), Wallenberg Research Centre at Stellenbosch University, Stellenbosch, South Africa
- Department of Microbiology, College of Natural and Applied Sciences, Western Delta University, Oghara, Nigeria
| | - Isoken H. Igbinosa
- Applied Microbial Processes and Environmental Health Research Group, Faculty of Life Sciences, University of Benin, Benin City, Nigeria
- Department of Environmental Management and Toxicology, Faculty of Life Sciences, University of Benin, Benin City, Nigeria
| | - Abraham G. Ogofure
- Applied Microbial Processes and Environmental Health Research Group, Faculty of Life Sciences, University of Benin, Benin City, Nigeria
| | - Temitope C. Ekundayo
- South African Medical Research Council (SAMRC) Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, Eastern Cape, South Africa
- Department of Microbiology, University of Medical Sciences, Ondo City, Ondo, Nigeria
| | - Anthony I. Okoh
- South African Medical Research Council (SAMRC) Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, Eastern Cape, South Africa
- Department of Environmental Health Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
46
|
Kholaseh S, Derakhshan S, Abedini M. A comparative study on antibiotic resistance and virulence properties of Staphylococcus aureus isolated from hospitalized patients and hospital environment. Am J Infect Control 2022:S0196-6553(22)00868-9. [PMID: 36566986 DOI: 10.1016/j.ajic.2022.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND We compared the characteristics of clinical Staphylococcus aureus and S. aureus isolated from environmental surfaces in 3 hospitals. METHODS Clinical S. aureus isolates were collected from hospitalized patients. Environmental surfaces were sampled from the rooms of patients infected with S. aureus. After identifying rooms with the target organism, 3-5 high-touch surfaces in patient care areas were sampled using swabs before room cleaning by environmental services. S. aureus isolates were subjected to genotyping, antimicrobial susceptibility testing, and virulence determinant screening. The isolates were analyzed for integron content and sequences of variable region amplification products. RESULTS There were epidemiologically unrelated 79 clinical and 62 environmental S. aureus isolates. Overall, 11.4% of clinical and 59.7% of environmental isolates were methicillin-resistant. The environmental and clinical S. aureus exhibited very different virulence profiles: 79% of the environmental isolates were negative for virulence genes compared to 2.5% of clinical isolates (P < .001). Environmental isolates were more resistant to antibiotics compared to clinical isolates. Class 1 integrons were only detected in 7 of 62 environmental isolates, of which 3 isolates had integrons with cysteine synthase cassette, 1 had aadA1, and 1 had an unknown cassette. CONCLUSION These data indicate the different characteristics between environmental and clinical S. aureus, which may reflect different reservoirs from which the 2 groups acquired the strains.
Collapse
Affiliation(s)
- Sareh Kholaseh
- Student Research Committee, Kurdistan University of Medical Sciences, Kurdistan, Sanandaj, Iran
| | - Safoura Derakhshan
- Liver and Digestive Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Kurdistan, Sanandaj, Iran; Lung Diseases and Allergy Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Kurdistan, Sanandaj, Iran.
| | - Masoumeh Abedini
- Department of Infectious Diseases, Kurdistan University of Medical Sciences, Kurdistan, Sanandaj, Iran
| |
Collapse
|
47
|
Yang S, Wang B, Li J, Zhao X, Zhu Y, Sun Q, Liu H, Wen X. Genetic Diversity, Antibiotic Resistance, and Virulence Gene Features of Methicillin-Resistant Staphylococcus aureus Epidemics in Guiyang, Southwest China. Infect Drug Resist 2022; 15:7189-7206. [PMID: 36514797 PMCID: PMC9741838 DOI: 10.2147/idr.s392434] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022] Open
Abstract
Purpose Methicillin-resistant Staphylococcus aureus (MRSA) is one of the most common pathogens of community- and hospital-acquired infections, and its prevalence is increasing globally. Guiyang is the capital city of Guizhou Province, Southwest China; as the transport and tourism centre of Southwest China, Guizhou Province is bordered by Yunnan, Sichuan, Chongqing, and Guangxi Provinces. Although MRSA prevalence is increasing, little is known about its aspects in the area. The purpose of this study was to analyse MRSA molecular characteristics, antimicrobial resistance, and virulence genes in Guiyang. Methods In total, 209 MRSA isolates from four hospitals (2019-2020) were collected and analysed by antimicrobial susceptibility testing and molecular classification by the MLST, spa, and SCCmec typing methods. Isolate antibiotic resistance rates were detected by a drug susceptibility assays. PCR amplification was used to detect the virulence gene-carrying status. Results Twenty-four STs, including 4 new STs (ST7346, ST7347, ST7348, and ST7247) and 3 new allelic mutations, were identified based on MLST. The major prevalent ST type and clone complex were ST59 (49.8%) and CC59 (62.7%), respectively. Spa type t437 (42.1%) and SCCmec IV (55.5%) were identified by spa and SCCmec typing methods as the most important types. Drug sensitivity data showed that the multidrug resistance rate was 79.0%. There were significant differences in multidrug resistance rates and virulence gene-carrying rates for seb, hla, hlb, cna and bap between ST59 and non-ST59 types. Conclusion ST59-SCCmecIV-t437 is a major epidemic clone in Guiyang that should be monitored by local medical and health institutions. The situation differs from other adjacent or middle provinces of China, which may be due to the special geographical location of the region and the trend in antibiotic use or lifestyle. This study provides empirical evidence for local medical and health departments to prevent and control the spread of MRSA.
Collapse
Affiliation(s)
- SuWen Yang
- School of Basic Medical Sciences, Basic Medical School, Guizhou Medical University, Guiyang, 550025, People’s Republic of China,Engineering Research Centre of Medical Biotechnology, Guizhou Medical University, Guiyang, Guizhou, 550025, People’s Republic of China,People’s Hospital of Kaiyang, Guiyang, 550300, People’s Republic of China
| | - Bing Wang
- Engineering Research Centre of Medical Biotechnology, Guizhou Medical University, Guiyang, Guizhou, 550025, People’s Republic of China,Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, Guizhou, 550025, People’s Republic of China,School of Biology and Engineering, Guizhou Medical University, Guiyang, Guizhou, 550025, People’s Republic of China
| | - Jing Li
- Department of Microbial Immunology, The First Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, People’s Republic of China
| | - Xue Zhao
- Department of Clinical Laboratory, The First People’s Hospital of Guiyang, Guiyang, 550002, People’s Republic of China
| | - Yan Zhu
- Department of Clinical Laboratory, The Fourth People’s Hospital of Guiyang, Guiyang, 550002, People’s Republic of China
| | - Qian Sun
- Department of Emergency Medicine, The First People’s Hospital of Guiyang, Guiyang, 550002, People’s Republic of China
| | - HongMei Liu
- Engineering Research Centre of Medical Biotechnology, Guizhou Medical University, Guiyang, Guizhou, 550025, People’s Republic of China,Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, Guizhou, 550025, People’s Republic of China,School of Biology and Engineering, Guizhou Medical University, Guiyang, Guizhou, 550025, People’s Republic of China
| | - XiaoJun Wen
- School of Basic Medical Sciences, Basic Medical School, Guizhou Medical University, Guiyang, 550025, People’s Republic of China,Correspondence: XiaoJun Wen; HongMei Liu, Guizhou Medical University, Guiyang, 550025, People’s Republic of China, Email ;
| |
Collapse
|
48
|
Arfaoui A, Sallem RB, Fernández-Fernández R, Eguizábal P, Dziri R, Abdullahi IN, Sayem N, Ben Khelifa Melki S, Ouzari HI, Torres C, Klibi N. Methicillin-Resistant Staphylococcus aureus from Diabetic Foot Infections in a Tunisian Hospital with the First Detection of MSSA CC398-t571. Antibiotics (Basel) 2022; 11:antibiotics11121755. [PMID: 36551412 PMCID: PMC9774551 DOI: 10.3390/antibiotics11121755] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/26/2022] [Accepted: 12/02/2022] [Indexed: 12/07/2022] Open
Abstract
This study sought to analyze the antimicrobial resistant phenotypes and genotypes as well as the virulence content of S. aureus isolates recovered from patients with diabetic foot infections (DFIs) in a Tunisian hospital. Eighty-three clinical samples of 64 patients were analyzed, and bacterial isolates were identified by MALDI-TOF. The antimicrobial resistance phenotypes were determined by the Kirby-Bauer disk diffusion susceptibility test. Resistance and virulence genes, agr profile, spa and SCCmec types were determined by PCR and sequencing. S. aureus was detected in 14 of the 64 patients (21.9%), and 15 S. aureus isolates were recovered. Six out of the fifteen S. aureus isolates were methicillin-resistant (MRSA, mecA-positive) (40%). The isolates harbored the following resistance genes (number of isolates): blaZ (12), erm(B) (2), erm(A) (1), msrA (2), tet(M) (2), tet(K) (3), tet(L) (1), aac(6')-aph(2″) (2), ant(4″) (1) and fexA (1). The lukS/F-PV and tst genes were detected in three isolates. Twelve different spa-types were identified and assigned to seven clonal complexes with the predominance of agr-type III. Furthermore, the SCCmec types III, IV and V were found among the MRSA isolates. Moreover, one MSSA CC398-t571-agr-III isolate was found; it was susceptible to all antimicrobial agents and lacked luk-S/F-PV, tst, eta and etb genes. This is the first report on the prevalence and molecular characterization of S. aureus from DFIs and also the first detection of the MSSA-CC398-t571 clone in human infections in Tunisia. Our findings indicated a high prevalence S. aureus in DFIs with genetic diversity among the MSSA and MRSA isolates.
Collapse
Affiliation(s)
- Ameni Arfaoui
- Laboratory of Microorganisms and Active Biomolecules, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 1068, Tunisia
| | - Rym Ben Sallem
- Laboratory of Microorganisms and Active Biomolecules, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 1068, Tunisia
| | | | - Paula Eguizábal
- Biochemistry and Molecular Biology, University of La Rioja, 26006 Logroño, Spain
| | - Raoudha Dziri
- Laboratory of Microorganisms and Active Biomolecules, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 1068, Tunisia
| | | | - Noureddine Sayem
- Service of Biology, Carthagene International Hospital of Tunisia, Tunis 1082, Tunisia
| | | | - Hadda-Imen Ouzari
- Laboratory of Microorganisms and Active Biomolecules, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 1068, Tunisia
| | - Carmen Torres
- Biochemistry and Molecular Biology, University of La Rioja, 26006 Logroño, Spain
| | - Naouel Klibi
- Laboratory of Microorganisms and Active Biomolecules, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 1068, Tunisia
- Correspondence: ; Tel.: +216-70860553
| |
Collapse
|
49
|
Lee CY, Fang YP, Wu TH, Chang YF, Sung CH. Sequence types 8, 59, and 45 methicillin resistant Staphylococcus aureus as the predominant strains causing skin and soft tissue infections in Taiwan's prisons and jails. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2022; 55:1239-1245. [PMID: 34635424 DOI: 10.1016/j.jmii.2021.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/19/2021] [Accepted: 08/26/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND Methicillin-resistant Staphylococcus aureus (MRSA) is the predominant cause of skin and soft tissue infections (SSTIs), which is a problem in prisons and jails. We conducted this study to understand MRSA molecular characteristics among inmates with SSTIs, and we chose MRSA isolates from a community hospital as a comparison. METHODS A total of 219 MRSA isolates from three custodial facilities and 134 isolates from a community hospital in Taiwan were collected in the 2017 calendar year. MRSA isolates were investigated molecularly by staphylococcal chromosome cassette mec (SCCmec) type, mupirocin, and chlorhexidine genotypical resistance, and multi-locus sequence typing (ST). RESULTS Of the 219 MRSA isolates from custodial facilities, SCCmec IV was the most prevalent type (65.3%), followed by type VT (32.4%) and type V (1.8%). Regarding sequence types, ST59 (36.4%), 8 (35.3%), and 45 (17.9%) were the leading three predominant types out of 184 selected MRSA isolates, and ST45 MRSA was more prevalent in custodial facilities (p = 0.019). The antimicrobial resistance rates varied for different MRSA strains, with ST45 MRSA having the lowest rates of resistance to most antimicrobials. Overall, 91.5% of isolates carried mupA gene and 25.8% were positive for qacA/B gene, this was independent of the MRSA sequence types. CONCLUSIONS ST59, ST8, and ST45 MRSA are the leading three MRSA strains causing SSTIs in Taiwan, 2017, but the molecular distribution varied distinctly between the custodial facilities and hospital settings. The genotypical mupirocin resistance rate is quite high in this study. The frequency of chlorhexidine resistance gene is relatively low, especially in MRSA isolates from custodial facilities.
Collapse
Affiliation(s)
- Chun Yi Lee
- Department of Pediatrics, Chang Bing Show Chwan Memorial Hospital, Changhua, Taiwan.
| | - Yu Ping Fang
- Department of Pediatrics, Chang Bing Show Chwan Memorial Hospital, Changhua, Taiwan
| | - Tsung Hua Wu
- Department of Pediatrics, Changhua Show Chwan Memorial Hospital, Changhua, Taiwan
| | - Yu Feng Chang
- Department of Clinical Laboratory, Chang Bing Show Chwan Memorial Hospital, Changhua, Taiwan
| | - Chia Hsing Sung
- Department of Clinical Laboratory, Chang Bing Show Chwan Memorial Hospital, Changhua, Taiwan
| |
Collapse
|
50
|
Platenik MO, Archer L, Kher L, Santoro D. Prevalence of mecA, mecC and Panton-Valentine-Leukocidin Genes in Clinical Isolates of Coagulase Positive Staphylococci from Dermatological Canine Patients. Microorganisms 2022; 10:2239. [PMID: 36422308 PMCID: PMC9695408 DOI: 10.3390/microorganisms10112239] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/05/2022] [Accepted: 11/09/2022] [Indexed: 09/07/2024] Open
Abstract
Coagulase positive Staphylococci (CoPS) are the leading cause of canine cutaneous and otic infections. Virulence factors associated with Staphylococci include the expression of mec and panton-valentine leukocidin (pvl) genes. Methicillin-resistance (MR) is commonly associated with mecA gene expression, although a recently identified variant, mecC, has been reported. This study aims to evaluate the prevalence of mecA, mecC and pvl genes in 232 clinical isolates of CoPS collected from dogs with pyoderma. A multiplex PCR, and Kirby-Bauer disk diffusion susceptibility test for cefoxitin was performed for all isolates. PBP2a agglutination test was performed on 127 isolates. Standard MRSA isolates were used as positive controls. The mecA gene was identified in 149/232 isolates (64.2%): 116 S. pseudintermedius, 30 S. coagulans and three S. aureus. The pvl gene was present in only 1 isolate of S. pseudintermedius (0.4%), whereas no isolates carried the mecC gene. 34 isolates were resistant to cefoxitin (14.6%) and they were all mecA positive. The results of this study show an MR prevalence of 64.2% confirming concerns about antibiotic resistance in veterinary medicine. In conclusion, this is the first study analyzing the prevalence of mecC and pvl in comparison to mecA, in a large cohort of CoPS clinical isolates from dogs with pyoderma. A multimodal surveillance on the prevalence of mecC and pvl in veterinary medicine is essential to appropriate antimicrobial management.
Collapse
Affiliation(s)
| | | | | | - Domenico Santoro
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, 2015 SW 16th Avenue, Gainesville, FL 32610, USA
| |
Collapse
|