1
|
Soll DR. White-opaque switching in Candida albicans: cell biology, regulation, and function. Microbiol Mol Biol Rev 2024; 88:e0004322. [PMID: 38546228 PMCID: PMC11332339 DOI: 10.1128/mmbr.00043-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024] Open
Abstract
SUMMARYCandida albicans remains a major fungal pathogen colonizing humans and opportunistically invading tissue when conditions are predisposing. Part of the success of C. albicans was attributed to its capacity to form hyphae that facilitate tissue invasion. However, in 1987, a second developmental program was discovered, the "white-opaque transition," a high-frequency reversible switching system that impacted most aspects of the physiology, cell architecture, virulence, and gene expression of C. albicans. For the 15 years following the discovery of white-opaque switching, its role in the biology of C. albicans remained elusive. Then in 2002, it was discovered that in order to mate, C. albicans had to switch from white to opaque, a unique step in a yeast mating program. In 2006, three laboratories simultaneously identified a putative master switch gene, which led to a major quest to elucidate the underlying mechanisms that regulate white-opaque switching. Here, the evolving discoveries related to this complicated phenotypic transition are reviewed in a quasi-chronological order not only to provide a historical perspective but also to highlight several unique characteristics of white-opaque switching, which are fascinating and may be important to the life history and virulence of this persistent pathogen. Many of these characteristics have not been fully investigated, in many cases, leaving intriguing questions unresolved. Some of these include the function of unique channeled pimples on the opaque cell wall, the capacity to form opaque cells in the absence of the master switch gene WOR1, the formation of separate "pathogenic" and "sexual" biofilms, and the possibility that a significant portion of natural strains colonizing the lower gastrointestinal tract may be in the opaque phase. This review addresses many of these characteristics with the intent of engendering interest in resolving questions that remain unanswered.
Collapse
Affiliation(s)
- David R. Soll
- Department of Biology, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
2
|
Alkhars N, Al Jallad N, Wu TT, Xiao J. Multilocus sequence typing of Candida albicans oral isolates reveals high genetic relatedness of mother-child dyads in early life. PLoS One 2024; 19:e0290938. [PMID: 38232064 PMCID: PMC10793898 DOI: 10.1371/journal.pone.0290938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 11/14/2023] [Indexed: 01/19/2024] Open
Abstract
Candida albicans is a pathogenic fungus recently recognized for its role in severe early childhood caries development (S-ECC). C. albicans oral colonization begins at birth, but the extent of the mother's involvement in yeast transmission to their children is unclear, therefore, this study used a prospective mother-infant cohort to investigate the maternal contribution of C. albicans oral colonization in early life. Oral samples were collected from 160 mother-child dyads during pregnancy and from birth to two years of life. We used whole-genome sequencing to obtain the genetic information of C. albicans isolates and examined the genetic relatedness of C. albicans between mothers and their children using Multilocus Sequence Typing. Multivariate statistical methods were used to identify factors associated with C. albicans' acquisition (horizontal and vertical transmissions). Overall, 227 C. albicans oral isolates were obtained from 93 (58.1%) of mother-child pairs. eBURST analysis revealed 16 clonal complexes, and UPGMA analysis identified 6 clades, with clade 1 being the most populated 124 isolates (54.6%). Significantly, 94% of mothers and children with oral C. albicans had highly genetically related strains, highlighting a strong maternal influence on children's C. albicans acquisition. Although factors such as race, ethnicity, delivery method, and feeding behaviors did not show a significant association with C. albicans vertical transmission, the mother's oral hygiene status reflected by plaque index (PI) emerged as a significant factor; Mothers with higher dental plaque accumulation (PI >=2) had a significantly increased risk of vertically transmitting C. albicans to their infants [odds ratio (95% confidence interval) of 8.02 (1.21, 53.24), p=0.03]. Furthermore, Black infants and those who attended daycare had an elevated risk of acquiring C. albicans through horizontal transmission (p <0.01). These findings highlight the substantial role of maternal transmission in the oral acquisition of C. albicans during early life. Incorporating screening for maternal fungal oral carriage and implementing oral health education programs during the perinatal stage may prove valuable in preventing fungal transmission in early infancy.
Collapse
Affiliation(s)
- Naemah Alkhars
- Department of General Dental Practice, College of Dentistry, Health Science Center, Kuwait University, Safat, Kuwait
- Translational Biomedical Science Program, Clinical and Translational Science Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Nisreen Al Jallad
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Tong Tong Wu
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Jin Xiao
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, New York, United States of America
| |
Collapse
|
3
|
Domán M, Makrai L, Vásárhelyi B, Balka G, Bányai K. Molecular epidemiology of Candida albicans infections revealed dominant genotypes in waterfowls diagnosed with esophageal mycosis. Front Vet Sci 2023; 10:1215624. [PMID: 37456960 PMCID: PMC10344593 DOI: 10.3389/fvets.2023.1215624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/13/2023] [Indexed: 07/18/2023] Open
Abstract
Fungal infections of animals could yield significant economic losses, especially in the poultry industry, due to their adverse effects on growth, feed intake, digestion, and reproduction. Previous investigations showed that Candida albicans plays the main etiological role in the esophageal mycosis of birds. In this study, we used multilocus sequence typing (MLST) to determine the population structure and molecular epidemiology of C. albicans isolated from geese and ducks in Hungary. Interestingly, only three known genotypes were identified among investigated flocks, namely, diploid sequence type (DST) 840, DST 656, and DST 605, suggesting the intra-species transmission of these genotypes. Additionally, two novel allele combinations (new DSTs) were found that have not been previously submitted to the MLST database. Phylogenetic analysis of isolates revealed a close relationship between DST 656 and DST 605 as well as between the two newly identified genotypes (designated DST 3670 and DST 3671). Although isolates from birds belonged to minor clades in contrast with most human isolates, no species-specificity was observed. Poultry-derived isolates were group founders or closely related to group founders of clonal complexes, suggesting that C. albicans is exposed to lesser selective pressure in animal hosts. The increasing number of genetic information in the C. albicans MLST database could help to reveal the epidemiological characteristics and evolutionary pathways that are essential for disease prevention strategies.
Collapse
Affiliation(s)
- Marianna Domán
- Veterinary Medical Research Institute, Budapest, Hungary
- National Laboratory for Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, Budapest, Hungary
| | - László Makrai
- National Laboratory for Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, Budapest, Hungary
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, Budapest, Hungary
| | - Balázs Vásárhelyi
- Veterinary Diagnostic Directorate, National Food Chain Safety Office, Budapest, Hungary
| | - Gyula Balka
- National Laboratory for Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, Budapest, Hungary
- Department of Pathology, University of Veterinary Medicine, Budapest, Hungary
| | - Krisztián Bányai
- Veterinary Medical Research Institute, Budapest, Hungary
- National Laboratory for Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, Budapest, Hungary
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, Budapest, Hungary
| |
Collapse
|
4
|
Anderson FM, Visser ND, Amses KR, Hodgins-Davis A, Weber AM, Metzner KM, McFadden MJ, Mills RE, O’Meara MJ, James TY, O’Meara TR. Candida albicans selection for human commensalism results in substantial within-host diversity without decreasing fitness for invasive disease. PLoS Biol 2023; 21:e3001822. [PMID: 37205709 PMCID: PMC10234564 DOI: 10.1371/journal.pbio.3001822] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 06/01/2023] [Accepted: 04/12/2023] [Indexed: 05/21/2023] Open
Abstract
Candida albicans is a frequent colonizer of human mucosal surfaces as well as an opportunistic pathogen. C. albicans is remarkably versatile in its ability to colonize diverse host sites with differences in oxygen and nutrient availability, pH, immune responses, and resident microbes, among other cues. It is unclear how the genetic background of a commensal colonizing population can influence the shift to pathogenicity. Therefore, we examined 910 commensal isolates from 35 healthy donors to identify host niche-specific adaptations. We demonstrate that healthy people are reservoirs for genotypically and phenotypically diverse C. albicans strains. Using limited diversity exploitation, we identified a single nucleotide change in the uncharacterized ZMS1 transcription factor that was sufficient to drive hyper invasion into agar. We found that SC5314 was significantly different from the majority of both commensal and bloodstream isolates in its ability to induce host cell death. However, our commensal strains retained the capacity to cause disease in the Galleria model of systemic infection, including outcompeting the SC5314 reference strain during systemic competition assays. This study provides a global view of commensal strain variation and within-host strain diversity of C. albicans and suggests that selection for commensalism in humans does not result in a fitness cost for invasive disease.
Collapse
Affiliation(s)
- Faith M. Anderson
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Noelle D. Visser
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Kevin R. Amses
- Department of Ecology and Evolution, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Andrea Hodgins-Davis
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Alexandra M. Weber
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Katura M. Metzner
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Michael J. McFadden
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Ryan E. Mills
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Matthew J. O’Meara
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Timothy Y. James
- Department of Ecology and Evolution, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Teresa R. O’Meara
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| |
Collapse
|
5
|
Sala A, Ardizzoni A, Spaggiari L, Vaidya N, van der Schaaf J, Rizzato C, Cermelli C, Mogavero S, Krüger T, Himmel M, Kniemeyer O, Brakhage AA, King BL, Lupetti A, Comar M, de Seta F, Tavanti A, Blasi E, Wheeler RT, Pericolini E. A New Phenotype in Candida-Epithelial Cell Interaction Distinguishes Colonization- versus Vulvovaginal Candidiasis-Associated Strains. mBio 2023; 14:e0010723. [PMID: 36856418 PMCID: PMC10128025 DOI: 10.1128/mbio.00107-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/09/2023] [Indexed: 03/02/2023] Open
Abstract
Vulvovaginal candidiasis (VVC) affects nearly 3/4 of women during their lifetime, and its symptoms seriously reduce quality of life. Although Candida albicans is a common commensal, it is unknown if VVC results from a switch from a commensal to pathogenic state, if only some strains can cause VVC, and/or if there is displacement of commensal strains with more pathogenic strains. We studied a set of VVC and colonizing C. albicans strains to identify consistent in vitro phenotypes associated with one group or the other. We find that the strains do not differ in overall genetic profile or behavior in culture media (i.e., multilocus sequence type [MLST] profile, rate of growth, and filamentation), but they show strikingly different behaviors during their interactions with vaginal epithelial cells. Epithelial infections with VVC-derived strains yielded stronger fungal proliferation and shedding of fungi and epithelial cells. Transcriptome sequencing (RNA-seq) analysis of representative epithelial cell infections with selected pathogenic or commensal isolates identified several differentially activated epithelial signaling pathways, including the integrin, ferroptosis, and type I interferon pathways; the latter has been implicated in damage protection. Strikingly, inhibition of type I interferon signaling selectively increases fungal shedding of strains in the colonizing cohort, suggesting that increased shedding correlates with lower interferon pathway activation. These data suggest that VVC strains may intrinsically have enhanced pathogenic potential via differential elicitation of epithelial responses, including the type I interferon pathway. Therefore, it may eventually be possible to evaluate pathogenic potential in vitro to refine VVC diagnosis. IMPORTANCE Despite a high incidence of VVC, we still have a poor understanding of this female-specific disease whose negative impact on women's quality of life has become a public health issue. It is not yet possible to determine by genotype or laboratory phenotype if a given Candida albicans strain is more or less likely to cause VVC. Here, we show that Candida strains causing VVC induce more fungal shedding from epithelial cells than strains from healthy women. This effect is also accompanied by increased epithelial cell detachment and differential activation of the type I interferon pathway. These distinguishing phenotypes suggest it may be possible to evaluate the VVC pathogenic potential of fungal isolates. This would permit more targeted antifungal treatments to spare commensals and could allow for displacement of pathogenic strains with nonpathogenic colonizers. We expect these new assays to provide a more targeted tool for identifying fungal virulence factors and epithelial responses that control fungal vaginitis.
Collapse
Affiliation(s)
- Arianna Sala
- Department of Surgical, Medical, Dental and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Andrea Ardizzoni
- Department of Surgical, Medical, Dental and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Luca Spaggiari
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy
| | - Nikhil Vaidya
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, Maine, USA
| | - Jane van der Schaaf
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, Maine, USA
| | - Cosmeri Rizzato
- Department of Translational Research and of New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Claudio Cermelli
- Department of Surgical, Medical, Dental and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Selene Mogavero
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Jena, Germany
| | - Thomas Krüger
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Jena, Germany
| | - Maximilian Himmel
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Jena, Germany
| | - Olaf Kniemeyer
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Jena, Germany
| | - Axel A. Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Jena, Germany
| | - Benjamin L. King
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, Maine, USA
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, Maine, USA
| | - Antonella Lupetti
- Department of Translational Research and of New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Manola Comar
- Institute for Maternal and Child Health—IRCCS Burlo Garofolo, Trieste, Italy
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Francesco de Seta
- Institute for Maternal and Child Health—IRCCS Burlo Garofolo, Trieste, Italy
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | | | - Elisabetta Blasi
- Department of Surgical, Medical, Dental and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Robert T. Wheeler
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, Maine, USA
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, Maine, USA
| | - Eva Pericolini
- Department of Surgical, Medical, Dental and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
6
|
Genetic Diversity of Human Fungal Pathogens. CURRENT CLINICAL MICROBIOLOGY REPORTS 2023. [DOI: 10.1007/s40588-023-00188-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
7
|
Abstract
Revealing the phylogenetic relationships of Candida krusei strains (sexual form Pichia kudriavzevii) is a prerequisite for understanding the evolution of its virulence-associated mechanisms and ecological lifestyles. Molecular phylogenetic analyses based on entire internal transcribed spacer region (ITS) and multilocus sequence typing (MLST) data were carried out with sequences available in public databases and Hungarian isolates from animals obtained for the study. The ITS haplotype network yielded a high frequency haplotype at the centre of the network (H1; n = 204) indicating that various selective pressure might resulted in population expansion from H1. MLST analysis identified three new genotypes among animal-derived isolates, therefore overall 203 sequence types were investigated to determine the population structure of C. krusei. The most commonly encountered sequence types were ST 17 and ST 67. Phylogenetic analyses showed diverse genetic construction of C. krusei population. Evidence of potential recombination events were also observed that might play some role in high intraspecies genetic variability among strains, however, the limited data of C. krusei genotypes from different countries prevented us to identify accurate evolutionary routes of commensal and pathogenic strains or species-specific lineages. Further expansion of C. krusei MLST database may promote the better understanding of the mixed evolutionary history of this species.
Collapse
|
8
|
Fayez MM, Swelum AA, Alharbi NK, AlRokban AH, Almubarak A, Almubarak AH, Alaql F, Ahmed AE. Multilocus Sequence Typing and Antifungal Susceptibility of Candida albicans Isolates From Milk and Genital Tract of Dromedary Camel. Front Vet Sci 2022; 9:905962. [PMID: 35873700 PMCID: PMC9305711 DOI: 10.3389/fvets.2022.905962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/02/2022] [Indexed: 11/21/2022] Open
Abstract
Multilocus sequence typing (MLST) was used to study the genetic diversity and population structure of 48 Candida albicans (C. albicans) isolates from the udder or genital tract of apparently healthy or diseased camels. This study aimed also to determine the frequency of C. albicans isolates in the genital tract and udder of healthy or diseased female dromedary camels. A total of 240 mature dromedary camels (230 females and 10 males) were categorized based on the clinical examination of gentile tract and udder into five groups [fertile females (n = 70), infertile females (n = 115), healthy udder (n = 15), mastitis (n = 30), and fertile males (n = 10)]. Swabs were collected from male and female genital tracts of dromedary camels and milk samples were collected from healthy and diseased udders. C. albicans was isolated from 20% of the samples. The frequency of isolation was significantly higher (p < 0.00001) in disease camels (75%) compared with apparently healthy camels (25%). Most of C. albicans was isolated from infertile female genitalia (62.50%) which was significantly higher than that isolated from fertile female genitalia (16.67%). Multilocus sequence (MLS) analysis identified seven different diploid sequence types (DSTs) including DST2, DST50, DST62, DST69, DST124, DST142, and DST144. The most frequently identified DTS was DST69 (13/48) which significantly higher (p ≤ 0.05) than DST2, DST62, and DST124. The frequency of identification of DST50, DST142, and DST 144 was significantly higher (p ≤ 0.05) than DST62. DST62 and DST124 were isolated only from diseased camels. DST62 was isolated only from mastitic milk. DST124 was isolated only from infertile female genitalia. The percentage of DST50 and DST 142 was significantly higher in diseased camels (infertile females) than in the apparently healthy ones (fertile females). DST2 and DST50 were isolated only from female genitalia of apparent health and diseased camels. The C. albicans isolated from diseased camels had significantly higher biofilm formation, hydrophobicity, phospholipase, proteinase, and hemolysin activities compared with the isolates from apparent healthy camels. All isolates were sensitive to amphotericin B, itraconazole, micafungin, posaconazole and voriconazole. In conclusion, the present study represents the first molecular typing of C. albicans in samples isolated from milk and the genital tract of the dromedary camel. MLST is a useful tool for studying the epidemiology and evolution of C. albicans. Early identification of Candida species and attention to Candida virulence factors and their antifungal susceptibility patterns is very important for establishing strategies to control and/or prevent candidiasis by novel therapeutic management. Amphotericin B, itraconazole, micafungin, posaconazole, or voriconazole can be efficient in treatment of candidiasis.
Collapse
Affiliation(s)
- Mahmoud M. Fayez
- Department of Bacteriology, Veterinary Serum and Vaccine Research Institute, Ministry of Agriculture, Cairo, Egypt
- Al Ahsa Laboratory, Ministry of Agriculture Kingdom of Saudi Arabia, Al Ahsa, Saudi Arabia
| | - Ayman A. Swelum
- Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Nada K. Alharbi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ahlam H. AlRokban
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Abdullah Almubarak
- Al Ahsa Laboratory, Ministry of Agriculture Kingdom of Saudi Arabia, Al Ahsa, Saudi Arabia
| | - Ameen H. Almubarak
- Al Ahsa Laboratory, Ministry of Agriculture Kingdom of Saudi Arabia, Al Ahsa, Saudi Arabia
| | - Fanan Alaql
- Riyadh Veterinary Diagnostic Lab, Ministry of Environment, Water and Agriculture, Riyadh, Saudi Arabia
| | - Ahmed E. Ahmed
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
- Department of Theriogenology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| |
Collapse
|
9
|
Mba IE, Nweze EI, Eze EA, Anyaegbunam ZKG. Genome plasticity in Candida albicans: A cutting-edge strategy for evolution, adaptation, and survival. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 99:105256. [PMID: 35231665 DOI: 10.1016/j.meegid.2022.105256] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/12/2021] [Accepted: 02/22/2022] [Indexed: 12/15/2022]
Abstract
Candida albicans is the most implicated fungal species that grows as a commensal or opportunistic pathogen in the human host. It is associated with many life-threatening infections, especially in immunocompromised persons. The genome of Candida albicans is very flexible and can withstand a wide assortment of variations in a continuously changing environment. Thus, genome plasticity is central to its adaptation and has long been of considerable interest. C. albicans has a diploid heterozygous genome that is highly dynamic and can display variation from small to large scale chromosomal rearrangement and aneuploidy, which have implications in drug resistance, virulence, and pathogenicity. This review presents an up-to-date overview of recent genomic studies involving C. albicans. It discusses the accumulating evidence that shows how mitotic recombination events, ploidy dynamics, aneuploidy, and loss of heterozygosity (LOH) influence evolution, adaptation, and survival in C. albicans. Understanding the factors that affect the genome is crucial for a proper understanding of species and rapid development and adjustment of therapeutic strategies to mitigate their spread.
Collapse
Affiliation(s)
| | | | | | - Zikora Kizito Glory Anyaegbunam
- Institution for Drug-Herbal Medicine-Excipient-Research and Development, Faculty of Pharmaceutical Sciences, Nsukka, Nigeria
| |
Collapse
|
10
|
Zhu Y, Fang C, Shi Y, Shan Y, Liu X, Liang Y, Huang L, Liu X, Liu C, Zhao Y, Fan S, Zhang X. Candida albicans Multilocus Sequence Typing Clade I Contributes to the Clinical Phenotype of Vulvovaginal Candidiasis Patients. Front Med (Lausanne) 2022; 9:837536. [PMID: 35433756 PMCID: PMC9010739 DOI: 10.3389/fmed.2022.837536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/18/2022] [Indexed: 01/12/2023] Open
Abstract
Candida albicans is the most frequent fungal species responsible for vulvovaginal candidiasis (VVC), which exhibits distinct genetic diversity that is linked with the clinical phenotype. This study aimed to assess the genotypes and clinical characteristics of different C. albicans isolates from VVC patients. Based on multilocus sequence typing (MLST), clade 1 was identified as the largest C. albicans group, which appeared most frequently in recurrent VVC and treatment failure cases. Further study of antifungal susceptibility demonstrated that MLST clade 1 strains presented significantly higher drug resistance ability than non-clade 1 strains, which result from the overexpression of MDR1. The mRNA and protein expression levels of virulence-related genes were also significantly higher in clade 1 isolates than in non-clade 1 isolates. Proteomic analysis indicated that the protein stabilization pathway was significantly enriched in clade 1 strains and that RPS4 was a central regulator of proteins involved in stress resistance, adherence, and DNA repair, which all contribute to the resistance and virulence of MLST clade 1 strains. This study was the first attempt to compare the correlation mechanisms between C. albicans MLST clade 1 and non-clade 1 strains and the clinical phenotype, which is of great significance for VVC classification and treatment.
Collapse
Affiliation(s)
- Yuxia Zhu
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Shenzhen PKU-HKUST Medical Center, Institute of Obstetrics and Gynecology, Shenzhen, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecological Disease, Shenzhen, China
| | | | - Yu Shi
- Clinical College of Peking University Shenzhen Hospital, Anhui Medical University, Hefei, China
| | - Yingying Shan
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Shenzhen PKU-HKUST Medical Center, Institute of Obstetrics and Gynecology, Shenzhen, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecological Disease, Shenzhen, China
| | - Xiaoping Liu
- Department of Laboratory Science, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yiheng Liang
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Shenzhen PKU-HKUST Medical Center, Institute of Obstetrics and Gynecology, Shenzhen, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecological Disease, Shenzhen, China
| | - Liting Huang
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Shenzhen PKU-HKUST Medical Center, Institute of Obstetrics and Gynecology, Shenzhen, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecological Disease, Shenzhen, China
| | - Xinyang Liu
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Shenzhen PKU-HKUST Medical Center, Institute of Obstetrics and Gynecology, Shenzhen, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecological Disease, Shenzhen, China
| | - Chunfeng Liu
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Shenzhen PKU-HKUST Medical Center, Institute of Obstetrics and Gynecology, Shenzhen, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecological Disease, Shenzhen, China
| | - Yin Zhao
- Research Institute of Huazhong University of Science and Technology in Shenzhen, Shenzhen, China
| | - Shangrong Fan
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Shenzhen PKU-HKUST Medical Center, Institute of Obstetrics and Gynecology, Shenzhen, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecological Disease, Shenzhen, China
- Shangrong Fan
| | - Xiaowei Zhang
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Shenzhen PKU-HKUST Medical Center, Institute of Obstetrics and Gynecology, Shenzhen, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecological Disease, Shenzhen, China
- *Correspondence: Xiaowei Zhang
| |
Collapse
|
11
|
Salehipour K, Aboutalebian S, Charsizadeh A, Ahmadi B, Mirhendi H. Differentiation of Candida albicans complex species isolated from invasive and non-invasive infections using HWP1 gene size polymorphism. Curr Med Mycol 2022; 7:34-38. [PMID: 35028483 PMCID: PMC8740857 DOI: 10.18502/cmm.7.2.7034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/25/2021] [Accepted: 06/30/2021] [Indexed: 12/27/2022] Open
Abstract
Background and Purpose Taxonomy of Candida is controversial and has changed due to the investigation of the novel species. Candida africana and Candida dubliniensis are new members of the C. albicans complex that are currently gaining both clinical and epidemiologic significance. This study aimed to report the prevalence of C. africana among the strains isolated from patients using hyphal wall protein 1 (HWP1) gene size polymorphism. Materials and Methods In total, 235 yeasts confirmed as C. albicans complex based on chromogenic media and internal transcribed spacers sequencing isolated from various clinical forms of invasive and non-invasive candidiasis mainly candidemia were re-identified using HWP1 gene polymorphisms. The HWP1-polymerase chain reaction amplicons were re-confirmed by sequencing and BLAST analysis. Results Based on the HWP1 gene size polymorphism, 223 strains were identified as C. albicans (94.89%) from which 7 isolates produced two DNA fragments (850 and 941 bp). The C. dubliniensis (n=4, 1.7%), C. africana (n=1, 0.42%), and mix of C. albicans and C. africana (n=7, 2.97%) were also identified. Conclusion It can be said that C. albicans remains the most common Candida species, while C. dubliniensis and C. africana are rarely found among the patient isolates. Due to limited information on the molecular epidemiology of this novel yeast, more studies using molecular methods are recommended.
Collapse
Affiliation(s)
- Kourosh Salehipour
- Department of Medical Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shima Aboutalebian
- Department of Medical Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Arezoo Charsizadeh
- Immunology, Asthma, and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahram Ahmadi
- Department of Medical Laboratory Sciences, Faculty of Paramedical, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Hossein Mirhendi
- Department of Medical Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.,Core Facilities Research Laboratory, Mycology Reference Laboratory, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
12
|
Mishra A, Forche A, Anderson MZ. Parasexuality of Candida Species. Front Cell Infect Microbiol 2021; 11:796929. [PMID: 34966696 PMCID: PMC8711763 DOI: 10.3389/fcimb.2021.796929] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/19/2021] [Indexed: 12/03/2022] Open
Abstract
While most fungi have the ability to reproduce sexually, multiple independent lineages have lost meiosis and developed parasexual cycles in its place. Emergence of parasexual cycles is particularly prominent in medically relevant fungi from the CUG paraphyletic group of Candida species. Since the discovery of parasex in C. albicans roughly two decades ago, it has served as the model for Candida species. Importantly, parasex in C. albicans retains hallmarks of meiosis including genetic recombination and chromosome segregation, making it a potential driver of genetic diversity. Furthermore, key meiotic genes play similar roles in C. albicans parasex and highlights parallels between these processes. Yet, the evolutionary role of parasex in Candida adaptation and the extent of resulting genotypic and phenotypic diversity remain as key knowledge gaps in this facultative reproductive program. Here, we present our current understanding of parasex, the mechanisms governing its regulation, and its relevance to Candida biology.
Collapse
Affiliation(s)
- Abhishek Mishra
- Department of Microbiology, The Ohio State University, Columbus, OH, United States
| | - Anja Forche
- Department of Biology, Bowdoin College, Brunswick, ME, United States
| | - Matthew Z Anderson
- Department of Microbiology, The Ohio State University, Columbus, OH, United States.,Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
13
|
Szarvas J, Rebelo AR, Bortolaia V, Leekitcharoenphon P, Schrøder Hansen D, Nielsen HL, Nørskov-Lauritsen N, Kemp M, Røder BL, Frimodt-Møller N, Søndergaard TS, Coia JE, Østergaard C, Westh H, Aarestrup FM. Danish Whole-Genome-Sequenced Candida albicans and Candida glabrata Samples Fit into Globally Prevalent Clades. J Fungi (Basel) 2021; 7:jof7110962. [PMID: 34829249 PMCID: PMC8622182 DOI: 10.3390/jof7110962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 11/16/2022] Open
Abstract
Candida albicans and Candida glabrata are opportunistic fungal pathogens with increasing incidence worldwide and higher-than-expected prevalence in Denmark. We whole-genome sequenced yeast isolates collected from Danish Clinical Microbiology Laboratories to obtain an overview of the Candida population in the country. The majority of the 30 C. albicans isolates were found to belong to three globally prevalent clades, and, with one exception, the remaining isolates were also predicted to cluster with samples from other geographical locations. Similarly, most of the eight C. glabrata isolates were predicted to be prevalent subtypes. Antifungal susceptibility testing proved all C. albicans isolates to be susceptible to both azoles and echinocandins. Two C. glabrata isolates presented azole-resistant phenotypes, yet all were susceptible to echinocandins. There is no indication of causality between population structure and resistance phenotypes for either species.
Collapse
Affiliation(s)
- Judit Szarvas
- Division for Global Surveillance, National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (A.R.R.); (V.B.); (P.L.); (F.M.A.)
- Correspondence:
| | - Ana Rita Rebelo
- Division for Global Surveillance, National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (A.R.R.); (V.B.); (P.L.); (F.M.A.)
| | - Valeria Bortolaia
- Division for Global Surveillance, National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (A.R.R.); (V.B.); (P.L.); (F.M.A.)
| | - Pimlapas Leekitcharoenphon
- Division for Global Surveillance, National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (A.R.R.); (V.B.); (P.L.); (F.M.A.)
| | | | - Hans Linde Nielsen
- Department of Clinical Microbiology, Aalborg University Hospital, 9100 Aalborg, Denmark;
| | | | - Michael Kemp
- Department of Clinical Microbiology, Odense University Hospital, 5000 Odense, Denmark;
| | - Bent Løwe Røder
- Department of Clinical Microbiology, Slagelse Hospital, 4200 Slagelse, Denmark;
| | | | | | - John Eugenio Coia
- Department of Clinical Microbiology, Sydvestjysk Hospital, 6700 Esbjerg, Denmark;
| | - Claus Østergaard
- Department of Clinical Microbiology, Vejle Hospital, 7100 Vejle, Denmark;
| | - Henrik Westh
- Department of Clinical Microbiology, Hvidovre Hospital, 2650 Hvidovre, Denmark;
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Frank Møller Aarestrup
- Division for Global Surveillance, National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (A.R.R.); (V.B.); (P.L.); (F.M.A.)
| |
Collapse
|
14
|
Genetic diversity and molecular epidemiology of Candida albicans from vulvovaginal candidiasis patients. INFECTION GENETICS AND EVOLUTION 2021; 92:104893. [PMID: 33964472 DOI: 10.1016/j.meegid.2021.104893] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 04/10/2021] [Accepted: 05/03/2021] [Indexed: 01/11/2023]
Abstract
Candida albicans (C. albicans) is a common cause of vulvovaginal candidiasis (VVC). In this paper, the genetic diversity and molecular epidemiology of 173C. albicans strains were investigated by multilocus sequence typing (MLST). A total of 52 diploid sequence types (DSTs) were recognized, and 27 (51.9%) of which have not been reported in the MLST database. Genotyping was performed on the multiple isolates collected from patients with recurrent VVC (RVVC, referring to VVC which attacks more than 4 times in one year) in different acute infectious phases. The results showed that 59.1% (26/44) of the patients suffered a relapse, with DST 79 (65.4%) as the dominant genotype. The etiology of the remaining 40.9% (18/44) of patients was reinfection, and the main genotypes included DST 79 (33.3%), DST 124 (8.6%) and DST 1895 (8.6%). DST 79 (45%) and DST 1395 (7.5%) were the main isolates of VVC patients, while DST 79 (24.1%), DST 727 (6.9%), DST 732 (6.9%) and DST 1867 (6.9%) were the main types of healthy volunteers. The results of the genotypes between RVVC patients and other groups were statistically different. Furthermore, cluster analysis was carried out on 1468 isolates, among which 1337 were downloaded from the MLST database, 130 were divided into 8 Clades in the present study and the remaining one was taken as a singleton. 92.3% isolates from relapse patients, 58.3% isolates from re-infected patients, 77.5% isolates from VVC patients and 51.7% isolates from volunteers were distributed in Clade 1. The analysis of the genotypes of multiple isolates from RVVC patients further demonstrated that point mutation and loss of heterozygosity contributed to the microevolution of C. albicans.
Collapse
|
15
|
Molecular Diversity and Genetic Relatedness of Candida albicans Isolates from Birds in Hungary. Mycopathologia 2021; 186:237-244. [PMID: 33512664 PMCID: PMC8106574 DOI: 10.1007/s11046-021-00527-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/10/2021] [Indexed: 10/29/2022]
Abstract
The molecular epidemiology of Candida albicans infections in animals has been rarely studied. In this study, multilocus sequence typing was used to characterise the genetic diversity and population structure of 24 avian origin C. albicans isolates collected from different birds with candidiasis and compared to human isolates. Fourteen diploid sequence types (DSTs) including six new DSTs were determined. Cluster analysis revealed that isolates grouped into 8 clades. Bird isolates mainly belonged to minor clades and Clade 15 with DST 172 was the most common (11 isolates; 45.8%). The remaining isolates were clustered into Clade 7 (5 isolates; 20.8%), Clade 10 (4 isolates; 16.6%), Clade 8 (2 isolates; 8.3%), Clade 4 (1 isolate; 4.2%) and Clade 16 (1 isolate; 4.2%). Unweighted pair group method with arithmetic averages (UPGMA) and eBURST analyses showed that the genetic construction of avian origin C. albicans population is fairly diverse. Although species-specific lineages were not found, some degree of separation in the evolution of bird and human strains could be observed.
Collapse
|
16
|
Wang H, Li X, Wang D, Li C, Wang Y, Diao Y, Tang Y. Isolation, identification and genotyping of Candida albicans from Landes geese. Transbound Emerg Dis 2021; 69:349-359. [PMID: 33417748 DOI: 10.1111/tbed.13985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 12/28/2020] [Accepted: 01/05/2021] [Indexed: 11/29/2022]
Abstract
In May 2018, Landes geese raised in Weifang, Shandong Province, China, developed a disease characterized by thickened oesophageal mucosa and white, round ulcers. Based on pathogen isolation and identification, differential culture and morphological observations, Candida albicans (C. albicans) was identified as the causative pathogen from the oesophagus of infected geese, and artificial infection experiments were then performed using the isolated strains. In experimental reproduction, the symptoms of infected geese were consistent with those of natural infection, and gosling morbidity and mortality were 75% and 60%, respectively. Re-isolation of the strain from the dead goslings confirmed C. albicans as the causative pathogen of oesophageal ulcers. We further performed internal transcribed space rDNA sequence analysis, ABC genotyping and multi-locus sequence typing analysis. We observed 100% sequence similarity between the two strains, designated as WFCL and WFLQ, which were isolated from different regions, with 100% homology between the strains isolated in the present study and the human-origin C. albicans strains isolated previously from China. The goose-origin strains isolated in this study and the human-origin C. albicans isolates were included in the same branch in phylogenetic trees analysis, indicating that the strain responsible for oesophageal ulcer in geese is closely related to human-origin C. albicans. In addition, based on eBURST analysis of sequence types, goose-origin C. albicans strains were relatively independent in terms of population evolution. To the best of our knowledge, this is the first detailed report on goose oesophageal ulceration caused by C. albicans infection in geese. Considering that C. albicans is an important zoonotic pathogen, this study provides a reference for further studies on avian C. albicans infections and is important for ensuring public health and safety.
Collapse
Affiliation(s)
- Hongzhi Wang
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, China
| | - Xudong Li
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, China
| | - Dongxue Wang
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, China
| | - Chong Li
- Hebei Provincial Center of Animal Disease Control and Prevention, Shijiazhuang, China
| | - Yuanyuan Wang
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Youxiang Diao
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, China
| | - Yi Tang
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, China
| |
Collapse
|
17
|
Aspartyl Proteinase and Phospholipase Activities of Candida albicans Isolated From Oropharyngeal Candidiasis in Head and Neck Cancer Patients. Jundishapur J Microbiol 2020. [DOI: 10.5812/jjm.105200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background: Candida albicans is one of the most important members of the human normal flora that can cause opportunistic fungal infections. Hydrolytic enzymes are one of the main virulence factors in the pathogenesis of Candida species. Objectives: This study was carried out to determine proteolytic activities, and their related gene expressions in C. albicans isolates obtained from oropharyngeal candidiasis in head and neck cancer patients. Methods: Thirty-two C. albicans clinical isolates were included in this study. Secreted aspartyl protease and phospholipase activities were analyzed by appropriate agar media and precipitation zones. The expression levels of SAP1, 3 and PLB1, 2 genes were evaluated by real-time PCR. Results: All the 32 isolates exhibited proteinase activity while 28 of them showed phospholipase activity. All the strains possessed all SAPs genes; however, PLBs genes were not expressed in four isolates. Conclusions: Our findings demonstrated that the clinical strains of C. albicans had strong proteolytic activity and high expression levels of the pertaining genes.
Collapse
|
18
|
Sadeghi G, Mousavi SF, Ebrahimi-Rad M, Mirabzadeh-Ardekani E, Eslamifar A, Shams-Ghahfarokhi M, Jahanshiri Z, Razzaghi-Abyaneh M. In vivo and in vitro Pathogenesis and Virulence Factors of Candida albicans Strains Isolated from Cutaneous Candidiasis. IRANIAN BIOMEDICAL JOURNAL 2020; 24:324-32. [PMID: 32429646 PMCID: PMC7392142 DOI: 10.29252/ibj.24.5.319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 10/01/2019] [Indexed: 12/11/2022]
Abstract
Background The Candida albicans is one of the most important global opportunistic pathogens, and the incidence of candidiasis has increased over the past few decades. Despite the established role of skin in defense against fungal invasion, little has been documented about the pathogenesis of Candida species when changing from normal flora to pathogens of vaginal and gastrointestinal epithelia. This study was carried out to determine the in vivo and in vitro pathogenesis of clinical C. albicans strains isolated from skin lesions. Methods In this study, association of in vivo and in vitro pathogenesis of C. albicans isolates with different evolutionary origins was investigated. Oral and systemic experimental candidiasis was established in BALB/C mice. The expression levels of secreted aspartyl proteinases (SAP1-3 genes), morphological transformation, and biofilm-forming ability of C. albicans were evaluated. Results All the strains showed in vitro and in vivo pathogenicity by various extents. The SAP1, SAP2, and SAP3 genes were expressed in 50%, 100%, and 75% of the strains, respectively. The biofilm formation ability was negative in 12% of the strains, while it was considerable in 38% of the strains. Fifty percent of the strains had no phospholipase activity, and no one demonstrated high level of this pathogenesis factor. Relatively all the strains had very low potency to form pseudohyphae. Conclusion Our findings demonstrated that Candida albicans strains isolated from cutaneous candidiasis were able to cause oral and systemic infections in mice, so they could be considered as the potential agents of life-threatening nosocomial candidiasis in susceptible populations.
Collapse
Affiliation(s)
- Golnar Sadeghi
- Department of Medical Mycology, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | | | - Mina Ebrahimi-Rad
- Department of Biochemistry, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | | | - Ali Eslamifar
- Department of Clinical Research, Pasteur Institute of Iran, Tehran 13164, Iran
| | - Masoomeh Shams-Ghahfarokhi
- Department of Medical Mycology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14115-331, Iran
| | - Zahra Jahanshiri
- Department of Medical Mycology, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | | |
Collapse
|
19
|
Candida albicans Genetic Background Influences Mean and Heterogeneity of Drug Responses and Genome Stability during Evolution in Fluconazole. mSphere 2020; 5:5/3/e00480-20. [PMID: 32581072 PMCID: PMC7316494 DOI: 10.1128/msphere.00480-20] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Antimicrobial resistance is an evolutionary phenomenon with clinical implications. We tested how replicates from diverse strains of Candida albicans, a prevalent human fungal pathogen, evolve in the commonly prescribed antifungal drug fluconazole. Replicates on average increased in fitness in the level of drug they were evolved to, with the least fit parental strains improving the most. Very few replicates increased resistance above the drug level they were evolved in. Notably, many replicates increased in genome size and changed in drug tolerance (a drug response where a subpopulation of cells grow slowly in high levels of drug), and variability among replicates in fitness, tolerance, and genome size was higher in strains that initially were more sensitive to the drug. Genetic background influenced the average degree of adaptation and the evolved variability of many phenotypes, highlighting that different strains from the same species may respond and adapt very differently during adaptation. The importance of within-species diversity in determining the evolutionary potential of a population to evolve drug resistance or tolerance is not well understood, including in eukaryotic pathogens. To examine the influence of genetic background, we evolved replicates of 20 different clinical isolates of Candida albicans, a human fungal pathogen, in fluconazole, the commonly used antifungal drug. The isolates hailed from the major C. albicans clades and had different initial levels of drug resistance and tolerance to the drug. The majority of replicates rapidly increased in fitness in the evolutionary environment, with the degree of improvement inversely correlated with parental strain fitness in the drug. Improvement was largely restricted to up to the evolutionary level of drug: only 4% of the evolved replicates increased resistance (MIC) above the evolutionary level of drug. Prevalent changes were altered levels of drug tolerance (slow growth of a subpopulation of cells at drug concentrations above the MIC) and increased diversity of genome size. The prevalence and predominant direction of these changes differed in a strain-specific manner, but neither correlated directly with parental fitness or improvement in fitness. Rather, low parental strain fitness was correlated with high levels of heterogeneity in fitness, tolerance, and genome size among evolved replicates. Thus, parental strain background is an important determinant in mean improvement to the evolutionary environment as well as the diversity of evolved phenotypes, and the range of possible responses of a pathogen to an antimicrobial drug cannot be captured by in-depth study of a single strain background. IMPORTANCE Antimicrobial resistance is an evolutionary phenomenon with clinical implications. We tested how replicates from diverse strains of Candida albicans, a prevalent human fungal pathogen, evolve in the commonly prescribed antifungal drug fluconazole. Replicates on average increased in fitness in the level of drug they were evolved to, with the least fit parental strains improving the most. Very few replicates increased resistance above the drug level they were evolved in. Notably, many replicates increased in genome size and changed in drug tolerance (a drug response where a subpopulation of cells grow slowly in high levels of drug), and variability among replicates in fitness, tolerance, and genome size was higher in strains that initially were more sensitive to the drug. Genetic background influenced the average degree of adaptation and the evolved variability of many phenotypes, highlighting that different strains from the same species may respond and adapt very differently during adaptation.
Collapse
|
20
|
Guinea J, Arendrup MC, Cantón R, Cantón E, García-Rodríguez J, Gómez A, de la Pedrosa EGG, Hare RK, Orden B, Sanguinetti M, Pemán J, Posteraro B, Ruiz-Gaitán A, Parisi G, Da Matta DA, Colombo AL, Sánchez-Carrillo C, Reigadas E, Muñoz P, Escribano P. Genotyping Reveals High Clonal Diversity and Widespread Genotypes of Candida Causing Candidemia at Distant Geographical Areas. Front Cell Infect Microbiol 2020; 10:166. [PMID: 32432048 PMCID: PMC7214738 DOI: 10.3389/fcimb.2020.00166] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/30/2020] [Indexed: 12/16/2022] Open
Abstract
The objectives of this study were to gain further insight on Candida genotype distribution and percentage of clustered isolates between hospitals and to identify potential clusters involving different hospitals and cities. We aim to genotype Candida spp. isolates causing candidemia in patients admitted to 16 hospitals in Spain, Italy, Denmark, and Brazil. Eight hundred and eighty-four isolates (Candida albicans, n = 534; C. parapsilosis, n = 282; and C. tropicalis, n = 68) were genotyped using species-specific microsatellite markers. CDC3, EF3, HIS3, CAI, CAIII, and CAVI were used for C. albicans, Ctrm1, Ctrm10, Ctrm12, Ctrm21, Ctrm24, and Ctrm28 for C. tropicalis, and CP1, CP4a, CP6, and B for C. parapsilosis. Genotypes were classified as singletons (genotype only found once) or clusters (same genotype infecting two or more patients). Clusters were defined as intra-hospital (involving patients admitted to a single hospital), intra-ward (involving patients admitted to the same hospital ward) or widespread (involving patients admitted to different hospitals). The percentage of clusters and the proportion of patients involved in clusters among species, genotypic diversity and distribution of genetic diversity were assessed. Seven hundred and twenty-three genotypes were detected, 78 (11%) being clusters, most of which (57.7%; n = 45/78) were intra-hospital clusters including intra-ward ones (42.2%; n = 19/45). The proportion of clusters was not statistically different between species, but the percentage of patients in clusters varied among hospitals. A number of genotypes (7.2%; 52/723) were widespread (found at different hospitals), comprising 66.7% (52/78) of clusters, and involved patients at hospitals in the same city (n = 21) or in different cities (n = 31). Only one C. parapsilosis cluster was a widespread genotype found in all four countries. Around 11% of C. albicans and C. parapsilosis isolates causing candidemia are clusters that may result from patient-to-patient transmission, widespread genotypes commonly found in unrelated patients, or insufficient microsatellite typing genetic discrimination.
Collapse
Affiliation(s)
- Jesús Guinea
- Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense de Madrid, Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES CB06/06/0058), Madrid, Spain
- *Correspondence: Jesús Guinea
| | - Maiken C. Arendrup
- Unit of Mycology, Statens Serum Institut, Copenhagen, Denmark
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Rafael Cantón
- Servicio de Microbiología. Hospital Ramón y Cajal, Madrid and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, Spain
| | - Emilia Cantón
- Instituto de Investigación Sanitaria La Fe, Universidad de Valencia, Valencia, Spain
| | | | - Ana Gómez
- Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense de Madrid, Madrid, Spain
| | - Elia Gómez G. de la Pedrosa
- Servicio de Microbiología. Hospital Ramón y Cajal, Madrid and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Rasmus K. Hare
- Unit of Mycology, Statens Serum Institut, Copenhagen, Denmark
| | - Beatriz Orden
- Department of Clinical Microbiology, Hospital Puerta de Hierro-Majadahonda, Madrid, Spain
| | - Maurizio Sanguinetti
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Javier Pemán
- Instituto de Investigación Sanitaria La Fe, Universidad de Valencia, Valencia, Spain
- Department of Clinical Microbiology, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Brunella Posteraro
- Dipartimento di Scienze Gastroenterologiche, Endocrino-Metaboliche e Nefro-Urologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Alba Ruiz-Gaitán
- Instituto de Investigación Sanitaria La Fe, Universidad de Valencia, Valencia, Spain
| | - Gabriella Parisi
- Department of Clinical Microbiology, Azienda Ospedaliera San Camillo-Forlanini, Rome, Italy
| | | | - Arnaldo L. Colombo
- Special Mycology Laboratory, Universida de Federalde São Paulo, São Paulo, Brazil
| | - Carlos Sánchez-Carrillo
- Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense de Madrid, Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES CB06/06/0058), Madrid, Spain
| | - Elena Reigadas
- Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense de Madrid, Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES CB06/06/0058), Madrid, Spain
| | - Patricia Muñoz
- Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense de Madrid, Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES CB06/06/0058), Madrid, Spain
- Medicine Department, Faculty of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Pilar Escribano
- Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
21
|
The Impact of Gene Dosage and Heterozygosity on The Diploid Pathobiont Candida albicans. J Fungi (Basel) 2019; 6:jof6010010. [PMID: 31892130 PMCID: PMC7151161 DOI: 10.3390/jof6010010] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/14/2019] [Accepted: 12/18/2019] [Indexed: 12/29/2022] Open
Abstract
Candida albicans is a fungal species that can colonize multiple niches in the human host where it can grow either as a commensal or as an opportunistic pathogen. The genome of C. albicans has long been of considerable interest, given that it is highly plastic and can undergo a wide variety of alterations. These changes play a fundamental role in determining C. albicans traits and have been shown to enable adaptation both to the host and to antifungal drugs. C. albicans isolates contain a heterozygous diploid genome that displays variation from the level of single nucleotides to largescale rearrangements and aneuploidy. The heterozygous nature of the genome is now increasingly recognized as being central to C. albicans biology, as the relative fitness of isolates has been shown to correlate with higher levels of overall heterozygosity. Moreover, loss of heterozygosity (LOH) events can arise frequently, either at single polymorphisms or at a chromosomal level, and both can alter the behavior of C. albicans cells during infection or can modulate drug resistance. In this review, we examine genome plasticity in this pathobiont focusing on how gene dosage variation and loss of heterozygosity events can arise and how these modulate C. albicans behavior.
Collapse
|
22
|
Jahanshiri Z, Manifar S, Hatami F, Arastehnazar F, Shams-Ghahfarokhi M, Razzaghi-Abyaneh M. Genotyping of Candida albicans isolates from oropharyngeal candidiasis in head and neck cancer patients in Iran: Molecular epidemiology and SAP2 gene expression. J Mycol Med 2019; 29:310-316. [DOI: 10.1016/j.mycmed.2019.100896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 08/31/2019] [Accepted: 09/06/2019] [Indexed: 11/26/2022]
|
23
|
Felice MR, Giuffrè L, El Aamri L, Hafidi M, Criseo G, Romeo O, Scordino F. Looking for New Antifungal Drugs from Flavonoids: Impact of the Genetic Diversity of Candida albicans on the in-vitro Response. Curr Med Chem 2019; 26:5108-5123. [PMID: 29278204 DOI: 10.2174/0929867325666171226102700] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 09/15/2017] [Accepted: 11/06/2017] [Indexed: 01/11/2023]
Abstract
BACKGROUND In an era in which antimicrobial resistance is increasing at an alarming pace, it is very important to find new antimicrobial agents effective against pathogenic microrganisms resistant to traditional treatments. Among the notable breakthroughs in the past years of research in natural-drug discovery, there is the identification and testing of flavonoids, a group of plant-derived substances capable of promoting many beneficial effects on humans. These compounds show different biological activities such as inhibition of neuroinflammation and tumor growth as well as antimicrobial activity against many microbial pathogens. METHODS We undertook a review of protocols and standard strains used in studies reporting the inhibitory effects of flavonoids against Candida albicans by focusing our attention on genetic characterization of the strains examined. Moreover, using the C. albicans MLST-database, we performed a phylogenetic analysis showing the genetic variation occurring in this species. RESULTS Today, we have enough information to estimate genetic diversity within microbial species and recent data revealed that most of fungal pathogens show complex population structures in which not a single isolate can be designated as representative of the entire taxon. This is especially true for the highly divergent fungal pathogen C. albicans, in which the assumption that one or few "standard strains" can represent the whole species is overly unrealistic and should be laid to rest. CONCLUSION The goal of this article is to shed light on the extent of genetic variation in C. albicans and how this phenomenon can largely influence the activity of flavonoids against this species.
Collapse
Affiliation(s)
- Maria Rosa Felice
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Letterio Giuffrè
- Department of Veterinary Sciences, Division of Animal Production, University of Messina, Messina, Italy
| | - Lamya El Aamri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.,Department of Biology, Moulay Ismail University, Faculty of Sciences, Zitoune Meknes, Morocco
| | - Majida Hafidi
- Department of Biology, Moulay Ismail University, Faculty of Sciences, Zitoune Meknes, Morocco
| | - Giuseppe Criseo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Orazio Romeo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.,Scientific Institute for Research, Hospitalization and Health Care (IRCCS) - Centro Neurolesi "Bonino-Pulejo", Messina, Italy
| | - Fabio Scordino
- Scientific Institute for Research, Hospitalization and Health Care (IRCCS) - Centro Neurolesi "Bonino-Pulejo", Messina, Italy
| |
Collapse
|
24
|
Pham LTT, Pharkjaksu S, Chongtrakool P, Suwannakarn K, Ngamskulrungroj P. A Predominance of Clade 17 Candida albicans Isolated From Hemocultures in a Tertiary Care Hospital in Thailand. Front Microbiol 2019; 10:1194. [PMID: 31258518 PMCID: PMC6587676 DOI: 10.3389/fmicb.2019.01194] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 05/13/2019] [Indexed: 12/24/2022] Open
Abstract
Candida albicans is one of the most common human fungal pathogens. Candidemia has significant mortality globally. No epidemiological study of C. albicans based on multilocus sequence typing (MLST) has been conducted in Thailand. Therefore, MLST was used to study the molecular epidemiology of C. albicans blood strains in a large Thai teaching hospital. In vitro virulence phenotypes and antifungal susceptibility testing by broth microdilution were also conducted. Forty-six C. albicans blood strains from 37 patients were collected from the Department of Microbiology, Siriraj Hospital, in 2016 and 2017. Most patients (71.8%) were more than 60 years old, and the case fatality rate was 54.8%. The male-to-female ratio was 5:3. Thirty-four diploid sequence types (DSTs), including six new DSTs, were identified, with DST2514 (8.7%) and DST2876 (8.7%) as the most common DSTs. Strains were clustered into nine clades. Unlike other studies of C. albicans blood strains in Asia, clade 17 was the most common (13 strains, 28.3%). Sequential allelic changes were evident in sequential strains from one patient. All strains produced phospholipase and hemolysin, while none produced proteinase. The ability to form biofilm was found in 82.6% of the strains. Clade 17 strains showed significantly stronger hemolytic activity than non–clade 17 strains (69.2% versus 27.3%; p = 0.022). However, no significant association existed between clades and patient mortalities. All were susceptible or wild type to anidulafungin (MIC range = 0.015–0.12 and GM = 0.030), micafungin (MIC range = ≤ 0.008–0.015 and GM = 0.008), caspofungin (MIC range = 0.008–0.12 and GM = 0.036), and amphotericin B (MIC range = 0.25–0.5 and GM = 0.381). Only one strain was resistant to voriconazole (MIC range = ≤ 0.008 to ≥ 8 and GM = 0.010) and fluconazole (MIC range = 0.12–16 and GM = 0.398). In conclusion, a high prevalence of clade 17 C. albicans blood strains was found in Thailand, in contrast to other Asian countries. This unique finding might be explained by the strong hemolytic activity that is required for bloodstream infection of C. albicans.
Collapse
Affiliation(s)
- Linh Thi Truc Pham
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok Noi, Thailand
| | - Sujiraphong Pharkjaksu
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok Noi, Thailand
| | - Piriyaporn Chongtrakool
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok Noi, Thailand
| | - Kamol Suwannakarn
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok Noi, Thailand
| | - Popchai Ngamskulrungroj
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok Noi, Thailand
| |
Collapse
|
25
|
Ene IV, Bennett RJ, Anderson MZ. Mechanisms of genome evolution in Candida albicans. Curr Opin Microbiol 2019; 52:47-54. [PMID: 31176092 DOI: 10.1016/j.mib.2019.05.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/25/2019] [Accepted: 05/03/2019] [Indexed: 11/25/2022]
Abstract
The fungus Candida albicans exists as a prevalent commensal and an important opportunistic pathogen that can infect multiple niches of its human host. Recent studies have examined the diploid genome of C. albicans by performing both short-term microevolution studies and comparative genomics on collections of clinical isolates. Common mechanisms driving genome dynamics include accumulation of point mutations, loss of heterozygosity (LOH) events, large-scale chromosomal rearrangements, and even ploidy change, with important consequences for both drug resistance and host adaptation. Evidence for recombination between C. albicans lineages also highlights a role for (para)sex in shaping the species population structure. Ongoing work will continue to define the contributions of genome evolution to phenotypic variation and the role of host pressures in driving adaptive processes.
Collapse
Affiliation(s)
- Iuliana V Ene
- Molecular Microbiology and Immunology Department, Brown University, Providence, RI 02912, USA
| | - Richard J Bennett
- Molecular Microbiology and Immunology Department, Brown University, Providence, RI 02912, USA
| | - Matthew Z Anderson
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA; Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
26
|
Fillinger RJ, Anderson MZ. Seasons of change: Mechanisms of genome evolution in human fungal pathogens. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2019; 70:165-174. [PMID: 30826447 DOI: 10.1016/j.meegid.2019.02.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/23/2019] [Accepted: 02/26/2019] [Indexed: 06/09/2023]
Abstract
Fungi are a diverse kingdom of organisms capable of thriving in various niches across the world including those in close association with multicellular eukaryotes. Fungal pathogens that contribute to human disease reside both within the host as commensal organisms of the microbiota and the environment. Their niche of origin dictates how infection initiates but also places specific selective pressures on the fungal pathogen that contributes to its genome organization and genetic repertoire. Recent efforts to catalogue genomic variation among major human fungal pathogens have unveiled evolutionary themes that shape the fungal genome. Mechanisms ranging from large scale changes such as aneuploidy and ploidy cycling as well as more targeted mutations like base substitutions and gene copy number variations contribute to the evolution of these species, which are often under multiple competing selective pressures with their host, environment, and other microbes. Here, we provide an overview of the major selective pressures and mechanisms acting to evolve the genome of clinically important fungal pathogens of humans.
Collapse
Affiliation(s)
- Robert J Fillinger
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA
| | - Matthew Z Anderson
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA; Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
27
|
Muñoz M, Wintaco LM, Muñoz SA, Ramírez JD. Dissecting the Heterogeneous Population Genetic Structure of Candida albicans: Limitations and Constraints of the Multilocus Sequence Typing Scheme. Front Microbiol 2019; 10:1052. [PMID: 31134042 PMCID: PMC6524206 DOI: 10.3389/fmicb.2019.01052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 04/26/2019] [Indexed: 01/08/2023] Open
Abstract
Candida albicans is a fungal opportunistic pathogen of significant public health importance mainly due to the recent emergence of strains with increased aggressiveness and antifungal resistance. Here, we aimed to describe the epidemiological profiles and approximate the population structure of C. albicans by analyzing the C. albicans multilocus sequence typing (MLST) database (Calb-MLST-DB), which contains the largest publically available dataset for this species. Based on 4,318 database isolates, we confirmed the ubiquitous nature of C. albicans including a group of diploid sequence types (DSTs) obtained from Healthy individuals exclusively (taken as an indicator of lack of association with illnesses in its host), until isolates established from Non-Healthy individuals (potentially associated with pathogenic processes) and other DSTs reported in both types (Healthy and Non-Healthy). The highest number of reported DSTs was related to blood, oral and vaginal swabs (32.4, 20.5, and 13.8%, respectively). High genetic diversity was observed in the seven housekeeping genes included in the MLST scheme, with a diverse population structure (154 clonal complexes, CCs; and a high number of singletons, n = 1,074). Phylogenetic reconstruction on the concatenated alignment of these housekeeping genes for all the reported DSTs (n = 3,483) was partially concordant with the CC assignment, however, an absence of bootstrap threshold supported nodes or p-distance, and the lack of association with the other epidemiological variables, evidenced the limitations of the MLST scheme. Marked genetic admixture signals were identified by STRUCTURE, with the majority being attributable to recombination events according to the RDP program results, although another type of exchange event cannot be ruled out. Our results reaffirm the genetic diversity inherent in the genes used for the MLST scheme, which are associated with the chromosomal remodeling already proposed for C. albicans. This was also corroborated with an internal validation at a micro geographical scale. Despite these results are biased due to the unavailability of considering the broad global spectrum of C. albicans isolates around the world. This suggests that the strategy used to population type this pathogen should be reevaluated to improve epidemiological monitoring of its health impact.
Collapse
Affiliation(s)
- Marina Muñoz
- Grupo de Investigaciones Microbiológicas - UR (GIMUR), Programa de Biología, Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Bogotá, Colombia.,Centro de Tecnología en Salud (CETESA), Upqua SAS, Bogotá, Colombia
| | - Luz Maira Wintaco
- Programa de Doctorado en Ciencias Biomédicas y Biológicas, Universidad del Rosario, Bogotá, Colombia
| | - Shirly Alexandra Muñoz
- Grupo de Investigaciones Microbiológicas - UR (GIMUR), Programa de Biología, Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Bogotá, Colombia.,Centro de Tecnología en Salud (CETESA), Upqua SAS, Bogotá, Colombia.,Unidad de Salud de Ibagué (USI) E.S.E, Ibagué, Colombia
| | - Juan David Ramírez
- Grupo de Investigaciones Microbiológicas - UR (GIMUR), Programa de Biología, Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
28
|
Sitterlé E, Maufrais C, Sertour N, Palayret M, d'Enfert C, Bougnoux ME. Within-Host Genomic Diversity of Candida albicans in Healthy Carriers. Sci Rep 2019; 9:2563. [PMID: 30796326 PMCID: PMC6385308 DOI: 10.1038/s41598-019-38768-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 01/09/2019] [Indexed: 12/14/2022] Open
Abstract
Genomic variations in Candida albicans, a major fungal pathogen of humans, have been observed upon exposure of this yeast to different stresses and experimental infections, possibly contributing to subsequent adaptation to these stress conditions. Yet, little is known about the extent of genomic diversity that is associated with commensalism, the predominant lifestyle of C. albicans in humans. In this study, we investigated the genetic diversity of C. albicans oral isolates recovered from healthy individuals, using multilocus sequencing typing (MLST) and whole genome sequencing. While MLST revealed occasional differences between isolates collected from a single individual, genome sequencing showed that they differed by numerous single nucleotide polymorphisms, mostly resulting from short-range loss-of-heterozygosity events. These differences were shown to have occurred upon human carriage of C. albicans rather than subsequent in vitro manipulation of the isolates. Thus, C. albicans intra-sample diversity appears common in healthy individuals, higher than that observed using MLST. We propose that diversifying lineages coexist in a single human individual, and this diversity can enable rapid adaptation under stress exposure. These results are crucial for the interpretation of longitudinal studies evaluating the evolution of the C. albicans genome.
Collapse
Affiliation(s)
- Emilie Sitterlé
- Fungal Biology and Pathogenicity Unit, Department of Mycology, Institut Pasteur, INRA, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France
- Unité de Parasitologie-Mycologie, Service de Microbiologie clinique, Hôpital Necker-Enfants-Malades, Assistance Publique des Hôpitaux de Paris (APHP), Paris, France
| | - Corinne Maufrais
- Center for Bioinformatics, BioStatistics and Integrative Biology (C3BI), USR 3756 IP CNRS, Institut Pasteur, Paris, France
| | - Natacha Sertour
- Fungal Biology and Pathogenicity Unit, Department of Mycology, Institut Pasteur, INRA, Paris, France
| | | | - Christophe d'Enfert
- Fungal Biology and Pathogenicity Unit, Department of Mycology, Institut Pasteur, INRA, Paris, France
| | - Marie-Elisabeth Bougnoux
- Fungal Biology and Pathogenicity Unit, Department of Mycology, Institut Pasteur, INRA, Paris, France.
- Unité de Parasitologie-Mycologie, Service de Microbiologie clinique, Hôpital Necker-Enfants-Malades, Assistance Publique des Hôpitaux de Paris (APHP), Paris, France.
| |
Collapse
|
29
|
Amanloo S, Shams-Ghahfarokhi M, Ghahri M, Razzaghi-Abyaneh M. Genotyping of clinical isolates of Candida glabrata from Iran by multilocus sequence typing and determination of population structure and drug resistance profile. Med Mycol 2018; 56:207-215. [PMID: 28482076 DOI: 10.1093/mmy/myx030] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 04/03/2017] [Indexed: 12/14/2022] Open
Abstract
Candida glabrata is often the second most common causative agent for candidiasis following Candida albicans. Despite the importance of C. glabrata infections, few epidemiological studies have been conducted on this issue. The goal of this study was genotyping of clinical isolates of C. glabrata by multilocus sequence typing (MLST) technique for determination of the endemic prevalent genotypes and any association between isolation source and drug resistance. A total of 50 C. glabrata clinical isolates from Iran were analyzed by MLST and tested for in-vitro susceptibilities to amphotericin-B, caspofungin, fluconazole, and voriconazole according to the Clinical Laboratory Standards Institute (CLSI) M27-A4 document guidelines. Among these isolates, 16 distinct STs were identified, indicating a discriminatory power index of 0.9029. The three major sequence types (STs) were ST-59, ST-74, and ST-7 with 10, 8, and 7 isolates, respectively. Furthermore, a total of 11 new sequences were found, to which no allele numbers were assigned in the MLST database. All the isolates were susceptible to amphotericin B and caspofungin. Fluconazole resistance was shown in four isolates. Also, a sole isolate was voriconazole resistant. This study shows that the population structure of C. glabrata in Iran consists of groups closely related to the global database as well as to some new clonal clusters and STs. Regarding the high prevalence of 11 new sequences found in this study, it can be concluded that, these new alleles are among the endemic genotypes of Iran. The genotypes or STs were independent of drug susceptibility and anatomic sources.
Collapse
Affiliation(s)
- Saeid Amanloo
- Department of Mycology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14115-331, Iran
| | | | - Mohammad Ghahri
- Department of Biological Sciences, Faculty of Basic Sciences, Imam Hossein University, Tehran, Iran
| | | |
Collapse
|
30
|
Su JZ, Yang YL, Rong R, Wu BQ. Genotype and homology analysis of pathogenic and colonization strains of Candida albicans from hospitalized neonates. Pediatr Neonatol 2018; 59:488-493. [PMID: 29339049 DOI: 10.1016/j.pedneo.2017.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 10/31/2017] [Accepted: 12/19/2017] [Indexed: 10/18/2022] Open
Abstract
BACKGROUND To detect the genotypes of pathogenic and colonization Candida albicans strains and to reveal whether there was a homologous relationship between these strains. METHODS Pathogenic and colonization isolates were collected from infants in the NICU of Shenzhen People's Hospital (Shenzhen, People's Republic of China). rDNA identification, multilocus sequence typing (MLST), and multi-loci variable number tandem repeat analysis (MLVA) were used for species confirmation, strain identification, phylogenetic tree clustering, and assessment of homology among the pathogenic and colonization strains. RESULTS All 48 isolates belonged to C. albicans species; 12 were collected from premature infants with fungal sepsis. These isolates generated 5 sequence types (ST1867, ST2551, ST2552, ST2937, and ST2945) and were designated as pathogenic strains. The other 36 isolates were collected from the infants without fungal infection; 9 sequence types were detected and designated as the colonization strains. In the phylogenetic tree, the upper branch consisted of a 4° clade composed of 20 colonization isolates designated to 3 strains, and 4 pathogenic isolates designated to 1 strain; a 5° clade composed of 8 pathogenic isolates designated to 3 strains; and a 4° clade consisting 1 pathogenic isolate designated to 1 strain and 4 colonization isolates designated to 2 strains. The lower branch consisted of a 3° clade composed of 6 colonization isolates designated to 2 strains and a control pathogenic isolate, and a 3° clade composed of 5 colonization isolates designated to 2 strains. CONCLUSION Although there was no core ST detected to specify pathogenicity or colonization of C. albicans, the genotypes of the colonization strains were different from those of the pathogenic strains. Most of the colonization and pathogenic strains were highly homologous within their classifications while some pathogenic strains had genomes highly homologous with those of colonization strains and clustered in heterogeneous groups.
Collapse
Affiliation(s)
- Jin-Zhen Su
- Department of Neonatology, Shenzhen People's Hospital, The Second clinical medical college of JiNan University, Shenzhen City 518020, China.
| | - Yu-Lan Yang
- Department of Neonatology, Shenzhen People's Hospital, The Second clinical medical college of JiNan University, Shenzhen City 518020, China.
| | - Rong Rong
- Department of Neonatology, The Northwest Women and Children Hospital, Xi'an City, Shaanxi Province 710000, China.
| | - Ben-Qing Wu
- Department of Neonatology, Shenzhen People's Hospital, The Second clinical medical college of JiNan University, Shenzhen City 518020, China.
| |
Collapse
|
31
|
The Genome of the Human Pathogen Candida albicans Is Shaped by Mutation and Cryptic Sexual Recombination. mBio 2018; 9:mBio.01205-18. [PMID: 30228236 PMCID: PMC6143739 DOI: 10.1128/mbio.01205-18] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The opportunistic fungal pathogen Candida albicans lacks a conventional sexual program and is thought to evolve, at least primarily, through the clonal acquisition of genetic changes. Here, we performed an analysis of heterozygous diploid genomes from 21 clinical isolates to determine the natural evolutionary processes acting on the C. albicans genome. Mutation and recombination shaped the genomic landscape among the C. albicans isolates. Strain-specific single nucleotide polymorphisms (SNPs) and insertions/deletions (indels) clustered across the genome. Additionally, loss-of-heterozygosity (LOH) events contributed substantially to genotypic variation, with most long-tract LOH events extending to the ends of the chromosomes suggestive of repair via break-induced replication. Consistent with a model of inheritance by descent, most polymorphisms were shared between closely related strains. However, some isolates contained highly mosaic genomes consistent with strains having experienced interclade recombination during their evolutionary history. A detailed examination of mitochondrial genomes also revealed clear examples of interclade recombination among sequenced strains. These analyses therefore establish that both (para)sexual recombination and mitotic mutational processes drive evolution of this important pathogen. To further facilitate the study of C. albicans genomes, we also introduce an online platform, SNPMap, to examine SNP patterns in sequenced isolates.IMPORTANCE Mutations introduce variation into the genome upon which selection can act. Defining the nature of these changes is critical for determining species evolution, as well as for understanding the genetic changes driving important cellular processes. The heterozygous diploid fungus Candida albicans is both a frequent commensal organism and a prevalent opportunistic pathogen. A prevailing theory is that C. albicans evolves primarily through the gradual buildup of mitotic mutations, and a pressing issue is whether sexual or parasexual processes also operate within natural populations. Here, we establish that the C. albicans genome evolves by a combination of localized mutation and both short-tract and long-tract loss-of-heterozygosity (LOH) events within the sequenced isolates. Mutations are more prevalent within noncoding and heterozygous regions and LOH increases towards chromosome ends. Furthermore, we provide evidence for genetic exchange between isolates, establishing that sexual or parasexual processes have contributed to the diversity of both nuclear and mitochondrial genomes.
Collapse
|
32
|
Genomes shed light on the secret life of Candida glabrata: not so asexual, not so commensal. Curr Genet 2018; 65:93-98. [PMID: 30027485 PMCID: PMC6342864 DOI: 10.1007/s00294-018-0867-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 07/15/2018] [Accepted: 07/17/2018] [Indexed: 11/27/2022]
Abstract
Candida glabrata is an opportunistic yeast pathogen, whose incidence has increased over the last decades. Despite its genus name, this species is actually more closely related to the budding yeast Saccharomyces cerevisiae than to other Candida pathogens, such as Candida albicans. Hence, C. glabrata and C. albicans must have acquired the ability to infect humans independently, which is reflected in the use of different mechanism for virulence, and survival in the host. Yet, research on C. glabrata suffers from assumptions carried over from the more studied C. albicans. Regarding the adaptation of C. glabrata to the human host, the prejudice was that, just as C. albicans, C. glabrata is a natural human commensal that turns deadly when immune defenses weaken. It was also considered asexual, as no one has observed mating, diploids, or spores, despite great efforts. However, the recent analysis of whole genomes from globally distributed C. glabrata isolates have shaken these assumptions. C. glabrata seems to be only secondarily associated to humans, as indicated by a lack of co-evolution with its host, and genomic footprints of recombination shows compelling evidence that this yeast is able to have sex. Here, we discuss the implications of this and other recent findings and highlight the new questions opened by this change in paradigm.
Collapse
|
33
|
Biological Roles of Protein-Coding Tandem Repeats in the Yeast Candida Albicans. J Fungi (Basel) 2018; 4:jof4030078. [PMID: 29966250 PMCID: PMC6162428 DOI: 10.3390/jof4030078] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 06/16/2018] [Accepted: 06/27/2018] [Indexed: 01/07/2023] Open
Abstract
Tandem repeat (TR) DNA mutates faster than other DNA by insertion and deletion of repeats. Large parts of eukaryotic proteomes are encoded by ORFs containing protein-coding TRs (TR-ORFs, pcTRs) with largely unknown biological consequences. We explored these in the yeast Candida albicans, an opportunistic human pathogen. We found that almost half of C. albicans’ proteins are encoded by TR-ORFs. pcTR frequency differed only moderately between different gene (GO) categories. Bioinformatic predictions of genome-wide mutation rates and clade-specific differences in pcTR allele frequencies indicated that pcTRs (i) significantly increase the genome-wide mutation rate; (ii) significantly impact on fitness and (iii) allow the evolution of selectively advantageous clade-specific protein variants. Synonymous mutations reduced the repetitiveness of many amino acid repeat-encoding pcTRs. A survey, in 58 strains, revealed that in some pcTR regions in which repetitiveness was not significantly diminished by synonymous mutations the habitat predicted which alleles were present, suggesting roles of pcTR mutation in short-term adaptation and pathogenesis. In C. albicans pcTR mutation apparently is an important mechanism for mutational advance and possibly also rapid adaptation, with synonymous mutations providing a mechanism for adjusting mutation rates of individual pcTRs. Analyses of Arabidopsis and human pcTRs showed that the latter also occurs in other eukaryotes.
Collapse
|
34
|
Zhang N, Wheeler D, Truglio M, Lazzarini C, Upritchard J, McKinney W, Rogers K, Prigitano A, Tortorano AM, Cannon RD, Broadbent RS, Roberts S, Schmid J. Multi-Locus Next-Generation Sequence Typing of DNA Extracted From Pooled Colonies Detects Multiple Unrelated Candida albicans Strains in a Significant Proportion of Patient Samples. Front Microbiol 2018; 9:1179. [PMID: 29922262 PMCID: PMC5996278 DOI: 10.3389/fmicb.2018.01179] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 05/15/2018] [Indexed: 12/18/2022] Open
Abstract
The yeast Candida albicans is an important opportunistic human pathogen. For C. albicans strain typing or drug susceptibility testing, a single colony recovered from a patient sample is normally used. This is insufficient when multiple strains are present at the site sampled. How often this is the case is unclear. Previous studies, confined to oral, vaginal and vulvar samples, have yielded conflicting results and have assessed too small a number of colonies per sample to reliably detect the presence of multiple strains. We developed a next-generation sequencing (NGS) modification of the highly discriminatory C. albicans MLST (multilocus sequence typing) method, 100+1 NGS-MLST, for detection and typing of multiple strains in clinical samples. In 100+1 NGS-MLST, DNA is extracted from a pool of colonies from a patient sample and also from one of the colonies. MLST amplicons from both DNA preparations are analyzed by high-throughput sequencing. Using base call frequencies, our bespoke DALMATIONS software determines the MLST type of the single colony. If base call frequency differences between pool and single colony indicate the presence of an additional strain, the differences are used to computationally infer the second MLST type without the need for MLST of additional individual colonies. In mixes of previously typed pairs of strains, 100+1 NGS-MLST reliably detected a second strain. Inferred MLST types of second strains were always more similar to their real MLST types than to those of any of 59 other isolates (22 of 31 inferred types were identical to the real type). Using 100+1 NGS-MLST we found that 7/60 human samples, including three superficial candidiasis samples, contained two unrelated strains. In addition, at least one sample contained two highly similar variants of the same strain. The probability of samples containing unrelated strains appears to differ considerably between body sites. Our findings indicate the need for wider surveys to determine if, for some types of samples, routine testing for the presence of multiple strains is warranted. 100+1 NGS-MLST is effective for this purpose.
Collapse
Affiliation(s)
- Ningxin Zhang
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - David Wheeler
- Nextgen Bioinformatic Services, Palmerston North, New Zealand
| | - Mauro Truglio
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Cristina Lazzarini
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| | - Jenine Upritchard
- Sir John Walsh Research Institute, University of Otago, Dunedin, New Zealand
| | - Wendy McKinney
- LabPlus, Auckland District Health Board, Auckland, New Zealand
| | - Karen Rogers
- LabPlus, Auckland District Health Board, Auckland, New Zealand
| | - Anna Prigitano
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| | - Anna M. Tortorano
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| | - Richard D. Cannon
- Sir John Walsh Research Institute, University of Otago, Dunedin, New Zealand
| | - Roland S. Broadbent
- Department of Women’s and Children’s Health, University of Otago, Dunedin, New Zealand
| | - Sally Roberts
- LabPlus, Auckland District Health Board, Auckland, New Zealand
| | - Jan Schmid
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| |
Collapse
|
35
|
Cavalieri D, Di Paola M, Rizzetto L, Tocci N, De Filippo C, Lionetti P, Ardizzoni A, Colombari B, Paulone S, Gut IG, Berná L, Gut M, Blanc J, Kapushesky M, Pericolini E, Blasi E, Peppoloni S. Genomic and Phenotypic Variation in Morphogenetic Networks of Two Candida albicans Isolates Subtends Their Different Pathogenic Potential. Front Immunol 2018; 8:1997. [PMID: 29403478 PMCID: PMC5780349 DOI: 10.3389/fimmu.2017.01997] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 12/22/2017] [Indexed: 01/29/2023] Open
Abstract
The transition from commensalism to pathogenicity of Candida albicans reflects both the host inability to mount specific immune responses and the microorganism’s dimorphic switch efficiency. In this study, we used whole genome sequencing and microarray analysis to investigate the genomic determinants of the phenotypic changes observed in two C. albicans clinical isolates (YL1 and YQ2). In vitro experiments employing epithelial, microglial, and peripheral blood mononuclear cells were thus used to evaluate C. albicans isolates interaction with first line host defenses, measuring adhesion, susceptibility to phagocytosis, and induction of secretory responses. Moreover, a murine model of peritoneal infection was used to compare the in vivo pathogenic potential of the two isolates. Genome sequence and gene expression analysis of C. albicans YL1 and YQ2 showed significant changes in cellular pathways involved in environmental stress response, adhesion, filamentous growth, invasiveness, and dimorphic transition. This was in accordance with the observed marked phenotypic differences in biofilm production, dimorphic switch efficiency, cell adhesion, invasion, and survival to phagocyte-mediated host defenses. The mutations in key regulators of the hyphal growth pathway in the more virulent strain corresponded to an overall greater number of budding yeast cells released. Compared to YQ2, YL1 consistently showed enhanced pathogenic potential, since in vitro, it was less susceptible to ingestion by phagocytic cells and more efficient in invading epithelial cells, while in vivo YL1 was more effective than YQ2 in recruiting inflammatory cells, eliciting IL-1β response and eluding phagocytic cells. Overall, these results indicate an unexpected isolate-specific variation in pathways important for host invasion and colonization, showing how the genetic background of C. albicans may greatly affect its behavior both in vitro and in vivo. Based on this approach, we propose that the co-occurrence of changes in sequence and expression in genes and pathways driving dimorphic transition and pathogenicity reflects a selective balance between traits favoring dissemination of the pathogen and traits involved in host defense evasion. This study highlights the importance of investigating strain-level, rather than species level, differences, when determining fungal–host interactions and defining commensal or pathogen behavior.
Collapse
Affiliation(s)
- Duccio Cavalieri
- Dipartimento di Biologia, Università di Firenze, Florence, Italy
| | - Monica Di Paola
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Università di Firenze, Florence, Italy
| | - Lisa Rizzetto
- Centro Ricerca e Innovazione, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Noemi Tocci
- Centro Ricerca e Innovazione, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Carlotta De Filippo
- Institute of Agricultural Biology and Biotechnology, National Research Council (CNR), Pisa, Italy
| | - Paolo Lionetti
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Università di Firenze, Florence, Italy
| | - Andrea Ardizzoni
- Dipartimento di Medicina Diagnostica, Clinica e di Sanità Pubblica, Università di Modena e Reggio Emilia, Modena, Italy
| | - Bruna Colombari
- Dipartimento di Medicina Diagnostica, Clinica e di Sanità Pubblica, Università di Modena e Reggio Emilia, Modena, Italy
| | - Simona Paulone
- Dipartimento di Medicina Diagnostica, Clinica e di Sanità Pubblica, Università di Modena e Reggio Emilia, Modena, Italy
| | - Ivo G Gut
- Centro Nacional de Anàlisi Genòmica, Barcelona, Spain
| | - Luisa Berná
- Unidad de Biologia Molecular, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Marta Gut
- Centro Nacional de Anàlisi Genòmica, Barcelona, Spain
| | - Julie Blanc
- Centro Nacional de Anàlisi Genòmica, Barcelona, Spain
| | - Misha Kapushesky
- European Bioinformatics Institute (EMBL-EBI), Cambridge, United Kingdom
| | - Eva Pericolini
- Dipartimento di Medicina Diagnostica, Clinica e di Sanità Pubblica, Università di Modena e Reggio Emilia, Modena, Italy
| | - Elisabetta Blasi
- Dipartimento di Medicina Diagnostica, Clinica e di Sanità Pubblica, Università di Modena e Reggio Emilia, Modena, Italy
| | - Samuele Peppoloni
- Dipartimento di Medicina Diagnostica, Clinica e di Sanità Pubblica, Università di Modena e Reggio Emilia, Modena, Italy
| |
Collapse
|
36
|
Carreté L, Ksiezopolska E, Pegueroles C, Gómez-Molero E, Saus E, Iraola-Guzmán S, Loska D, Bader O, Fairhead C, Gabaldón T. Patterns of Genomic Variation in the Opportunistic Pathogen Candida glabrata Suggest the Existence of Mating and a Secondary Association with Humans. Curr Biol 2017; 28:15-27.e7. [PMID: 29249661 PMCID: PMC5772174 DOI: 10.1016/j.cub.2017.11.027] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 10/13/2017] [Accepted: 11/09/2017] [Indexed: 12/30/2022]
Abstract
Candida glabrata is an opportunistic fungal pathogen that ranks as the second most common cause of systemic candidiasis. Despite its genus name, this yeast is more closely related to the model yeast Saccharomyces cerevisiae than to other Candida pathogens, and hence its ability to infect humans is thought to have emerged independently. Moreover, C. glabrata has all the necessary genes to undergo a sexual cycle but is considered an asexual organism due to the lack of direct evidence of sexual reproduction. To reconstruct the recent evolution of this pathogen and find footprints of sexual reproduction, we assessed genomic and phenotypic variation across 33 globally distributed C. glabrata isolates. We cataloged extensive copy-number variation, which particularly affects genes encoding cell-wall-associated proteins, including adhesins. The observed level of genetic variation in C. glabrata is significantly higher than that found in Candida albicans. This variation is structured into seven deeply divergent clades, which show recent geographical dispersion and large within-clade genomic and phenotypic differences. We show compelling evidence of recent admixture between differentiated lineages and of purifying selection on mating genes, which provides the first evidence for the existence of an active sexual cycle in this yeast. Altogether, our data point to a recent global spread of previously genetically isolated populations and suggest that humans are only a secondary niche for this yeast. Candida glabrata strains can be clustered into highly genetically divergent clades Genetic structure suggests a recent global spread of previously isolated populations The existence of sex in C. glabrata is supported by genomic footprints of selection Mating-type switching occurs in C. glabrata natural populations but is error prone
Collapse
Affiliation(s)
- Laia Carreté
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Ewa Ksiezopolska
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Cinta Pegueroles
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Emilia Gómez-Molero
- Institute for Medical Microbiology, University Medical Center Göttingen, Kreuzbergring 57, Göttingen 37075, Germany
| | - Ester Saus
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Susana Iraola-Guzmán
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Damian Loska
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Oliver Bader
- Institute for Medical Microbiology, University Medical Center Göttingen, Kreuzbergring 57, Göttingen 37075, Germany
| | - Cecile Fairhead
- GQE-Le Moulon, INRA-Université Paris-Sud-CNRS-AgroParisTech, 91400 Orsay, France
| | - Toni Gabaldón
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain.
| |
Collapse
|
37
|
Liu J, Liu H, Yan J, Liu N, Zhang H, Zhao C, Liu Y. Molecular typing and genetic relatedness of 72 clinical Candida albicans isolates from poultry. Vet Microbiol 2017; 214:36-43. [PMID: 29408030 DOI: 10.1016/j.vetmic.2017.11.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 11/19/2017] [Accepted: 11/20/2017] [Indexed: 12/15/2022]
Abstract
Candida albicans is the most prevalent opportunistic fungus of humans and animals. While most studies focus on human isolates, they rarely focus on poultry isolates. In this study, C. albicans strains were recovered from poultry in the southern Hebei Province (China) and identified. Molecular typing and analyses were performed to understand the molecular epidemiology and genetic relatedness of the strains. The fungi were isolated from live birds with presumed candidiasis or their corpses. The isolates were identified based on morphology, differential medium culture, and rDNA internal transcribed spacer sequencing. The identified C. albicans strains were analyzed by ABC genotyping and multilocus sequence typing. Clonal groups were identified using the eBURST (version 3.0) software, and an UPGMA phylogenetic tree was constructed using the MEGA (version 6.06) software. Overall, 72 isolates were divided into three genotypes (A, B, and C), 48 novel sequence types (STs), five groups with 10 singletons, and four clades. Results indicated that candidiasis is common in poultry in the southern Hebei Province, and that the genetic composition of the C. albicans poultry population from the area is relatively complicated. Based on the eBURST analysis for the STs in this study and others, we suggest that C. albicans poultry isolates were relatively independent but not completely separated from human isolates. The strains with the same or closely related genotypes but recovered from both birds and humans could have transferred and evolved between the two types of host.
Collapse
Affiliation(s)
- Jianchai Liu
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan, China.
| | - Huanzhang Liu
- College of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| | - Jinkun Yan
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan, China
| | - Na Liu
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan, China
| | - Heping Zhang
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan, China
| | - Chengrui Zhao
- College of Medicine, Hebei University of Engineering, Handan, China
| | - Yanwei Liu
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan, China.
| |
Collapse
|
38
|
Boros E, Pfliegler WP, Kovács R, Jakab Á, Majoros L, Barta Z, Pócsi I. Candida albicans isolates from a single hospital show low phenotypical specialization. J Basic Microbiol 2017; 57:910-921. [PMID: 28891112 DOI: 10.1002/jobm.201700037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 07/12/2017] [Accepted: 08/17/2017] [Indexed: 11/05/2022]
Abstract
Candida albicans is the best-studied opportunistic human pathogenic yeast species, and its virulence factors, susceptibility to antimycotics, the diversity of its physiological properties and the determinative factors of these traits are interesting from a clinical as well as from an evolutionary perspective. By applying statistical modeling for the phenotypical differences observed among a collection of 63 C. albicans isolates originating from different clinical care units, from a diverse group of patients with or without mycosis, collected in a Hungarian clinic, we found that (i) host-related aspects like anatomical source, care unit of isolation, patients' age, sex, and disease severity, or ABC genotypes of the isolates had less effect on the phenotypic features of this opportunistic pathogen than host-independent aspects, for example, year or month of isolation; (ii) different phenotypic traits did not show any significant correlations with each other; and (iii) different genotypes displayed no anatomical specialization and rarely showed any significant correlation with parameters of isolation either. These results shed light on the dynamic nature and low specialization of the C. albicans populations observable in a narrow geographic range, namely in the patients hospitalized in the different care units of the clinic.
Collapse
Affiliation(s)
- Enikő Boros
- Faculty of Science and Technology, Department of Biotechnology and Microbiology, University of Debrecen, Debrecen, Hungary
| | - Walter P Pfliegler
- Faculty of Science and Technology, Department of Biotechnology and Microbiology, University of Debrecen, Debrecen, Hungary.,Postdoctoral Fellowship Programme of the Hungarian Academy of Sciences (MTA), Debrecen, Hungary
| | - Renátó Kovács
- Faculty of Medicine, Department of Medical Microbiology, University of Debrecen, Debrecen, Hungary
| | - Ágnes Jakab
- Faculty of Science and Technology, Department of Biotechnology and Microbiology, University of Debrecen, Debrecen, Hungary
| | - László Majoros
- Faculty of Medicine, Department of Medical Microbiology, University of Debrecen, Debrecen, Hungary
| | - Zoltán Barta
- MTA-DE Lendület Behavioural Ecology Research Group, Faculty of Science and Technology, Department of Evolutionary Zoology and Human Biology, University of Debrecen, Debrecen, Hungary
| | - István Pócsi
- Faculty of Science and Technology, Department of Biotechnology and Microbiology, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
39
|
Al-Obaid K, Asadzadeh M, Ahmad S, Khan Z. Population structure and molecular genetic characterization of clinical Candida tropicalis isolates from a tertiary-care hospital in Kuwait reveal infections with unique strains. PLoS One 2017; 12:e0182292. [PMID: 28854190 PMCID: PMC5576731 DOI: 10.1371/journal.pone.0182292] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 07/15/2017] [Indexed: 11/19/2022] Open
Abstract
Candida tropicalis is a frequently isolated yeast species causing bloodstream, urinary tract and other infections particularly in patients admitted to intensive care units (ICUs) and those requiring prolonged urinary catheterization (UC) or receiving broad-spectrum antibiotics (BSA). This study investigated clinical characteristics and genetic relatedness among C. tropicalis strains isolated from patients at Al-Amiri Hospital in Kuwait. C. tropicalis strains (n = 63) isolated from blood, genito-urinary, respiratory (RT) and digestive (GIT) tracts and wound sites from 54 patients were used. All isolates were phenotypically identified and tested against six antifungal drugs by using Vitek 2 system. Molecular identification was performed by PCR amplification of rDNA. Fingerprinting was achieved by 6-loci-based multilocus sequence typing (MLST) and data were analyzed by BioNumerics software for phylogenetic relationships. Patients mean age was >65 years and >20% patients were hospitalized in ICUs. Most patients had underlying conditions that included UC, BSA, diabetes and RT/GIT abnormalities. Most candiduria cases had UC, ureteric stent or suprapubic catheters. All isolates were identified as C. tropicalis by Vitek 2 and by species-specific PCR. Sixty-two isolates were susceptible to all tested antifungal drugs. MLST identified 59 diploid sequence types (DSTs) including 54 newly-identified DSTs. C. tropicalis isolates from multiple sites of same patient usually belonged to different DSTs. Interestingly, 56 of 57 isolates from 48 patients belonged to unique genotypes. Only six isolates from six patients belonged to three DSTs (clusters), however, C. tropicalis strains in each cluster were isolated >3 months apart. Our data show diverse origins of C. tropicalis infections in Kuwait as most isolates were unique strains. There was no obvious correlation between cluster isolates with time of isolation and/or hospital ward of their origin. This study presents the first MLST analysis of C. tropicalis isolates from Middle East and may be useful for studying genetic relationships among global C. tropicalis strains.
Collapse
Affiliation(s)
- Khaled Al-Obaid
- Microbiology, Department of Medical Laboratories, Al-Amiri Hospital, Sharq, Kuwait
| | - Mohammad Asadzadeh
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat, Kuwait
| | - Suhail Ahmad
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat, Kuwait
- * E-mail:
| | - Ziauddin Khan
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat, Kuwait
| |
Collapse
|
40
|
Highly mutable tandem DNA repeats generate a cell wall protein variant more frequent in disease-causing Candida albicans isolates than in commensal isolates. PLoS One 2017; 12:e0180246. [PMID: 28662107 PMCID: PMC5491155 DOI: 10.1371/journal.pone.0180246] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 06/12/2017] [Indexed: 11/19/2022] Open
Abstract
During adaptation to host environments, many microorganisms alter their cell surface. One mechanism for doing so is variation in the number of amino acid repeats in cell surface proteins encoded by hypermutable DNA tandem repeats. In the yeast Candida albicans, an opportunistic human pathogen, the gene SSR1 encodes a GPI-anchored cell wall protein with a structural role. It contains two regions consisting of tandem repeats, almost exclusively encoding the amino acid pair Ser-Ala. As expected, the repeat regions make SSR1 highly mutable. New SSR1 alleles arose with a frequency of 1.11×10−4 per cell division in serially propagated cells. We also observed a large number (25) of SSR1 alleles with different repeat lengths in a survey of 131 isolates from a global strain collection. C. albicans is diploid, and combinations of these allele generated 41 different SSR1 genotypes. In both repeat regions, nonsynonymous mutations were largely restricted to one particular repeat unit. Two very similar allele combinations were largely restricted to one clade, clade 1. Each combination was present in ~30% of 49 infection-causing clade 1 strains, but one was rare (2%), the other absent in 46 infection-causing strains representing the remainder of the species (P < 0.00018 and 0.00004; Fisher’s exact test). These results indicate that both repeat regions are under selection and that amino acid repeat length polymorphisms generate Ssr1 protein variants most suitable for specific genetic backgrounds. One of these two allele combinations was 5.51 times more frequent, the other 1.75 times less frequent in 49 clade 1 strains that caused disease than in 36 commensal clade 1 strains (P = 0.0105; Chi2 test). This indicates that insertion and deletion of repeats not only generates clade-optimized Ssr1p variants, but may also assist in short-term adaptation when C. albicans makes the transition from commensal to pathogen.
Collapse
|
41
|
Guillamón JM, Barrio E. Genetic Polymorphism in Wine Yeasts: Mechanisms and Methods for Its Detection. Front Microbiol 2017; 8:806. [PMID: 28522998 PMCID: PMC5415627 DOI: 10.3389/fmicb.2017.00806] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 04/19/2017] [Indexed: 01/09/2023] Open
Abstract
The processes of yeast selection for using as wine fermentation starters have revealed a great phenotypic diversity both at interspecific and intraspecific level, which is explained by a corresponding genetic variation among different yeast isolates. Thus, the mechanisms involved in promoting these genetic changes are the main engine generating yeast biodiversity. Currently, an important task to understand biodiversity, population structure and evolutionary history of wine yeasts is the study of the molecular mechanisms involved in yeast adaptation to wine fermentation, and on remodeling the genomic features of wine yeast, unconsciously selected since the advent of winemaking. Moreover, the availability of rapid and simple molecular techniques that show genetic polymorphisms at species and strain levels have enabled the study of yeast diversity during wine fermentation. This review will summarize the mechanisms involved in generating genetic polymorphisms in yeasts, the molecular methods used to unveil genetic variation, and the utility of these polymorphisms to differentiate strains, populations, and species in order to infer the evolutionary history and the adaptive evolution of wine yeasts, and to identify their influence on their biotechnological and sensorial properties.
Collapse
Affiliation(s)
- José M Guillamón
- Departamento de Biotecnología de los Alimentos, Instituto de Agroquímica y Tecnología de Alimentos - Consejo Superior de Investigaciones Científicas (CSIC)Valencia, Spain
| | - Eladio Barrio
- Departamento de Biotecnología de los Alimentos, Instituto de Agroquímica y Tecnología de Alimentos - Consejo Superior de Investigaciones Científicas (CSIC)Valencia, Spain.,Departamento de Genética, Universidad de ValenciaValencia, Spain
| |
Collapse
|
42
|
Asadzadeh M, Ahmad S, Al-Sweih N, Khan Z. Molecular Fingerprinting Studies Do Not Support Intrahospital Transmission of Candida albicans among Candidemia Patients in Kuwait. Front Microbiol 2017; 8:247. [PMID: 28270801 PMCID: PMC5318450 DOI: 10.3389/fmicb.2017.00247] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 02/06/2017] [Indexed: 12/20/2022] Open
Abstract
Candida albicans, a constituent of normal microbial flora of human mucosal surfaces, is a major cause of candidemia in immunocompromised individuals and hospitalized patients with other debilitating diseases. Molecular fingerprinting studies have suggested nosocomial transmission of C. albicans based on the presence of clusters or endemic genotypes in some hospitals. However, intrahospital strain transmission or a common source of infection has not been firmly established. We performed multilocus sequence typing (MLST) on 102 C. albicans bloodstream isolates (representing 92% of all culture-confirmed candidemia patients over a 31-month period at seven major hospitals) to identify patient-to-patient transmission or infection from a common source in Kuwait, a small country in the Middle East where consanguineous marriages are common. Repeat bloodstream isolates from six patients and nine surveillance cultures from other anatomic sites from six patients were also analyzed. Fifty-five isolates belonged to unique genotypes. Forty-seven isolates from 47 patients formed 16 clusters, with each cluster containing 2–9 isolates. Multiple isolates from the same patient from bloodstream or other anatomical sites yielded identical genotypes. We identified four cases of potential patient-to-patient transmission or infection from a common source based on association analysis between patients' clinical/epidemiological data and the corresponding MLST genotypes of eight C. albicans isolates. However, further fingerprinting by whole genome-based amplified fragment length polymorphism (AFLP) analysis yielded 8 different genotypes, ruling out intrahospital transmission of infection. The findings suggest that related strains of C. albicans exist in the community and fingerprinting by MLST alone may complicate hospital infection control measures during outbreak investigations.
Collapse
Affiliation(s)
- Mohammad Asadzadeh
- Department of Microbiology, Faculty of Medicine, Kuwait University Kuwait, Kuwait
| | - Suhail Ahmad
- Department of Microbiology, Faculty of Medicine, Kuwait University Kuwait, Kuwait
| | - Noura Al-Sweih
- Department of Microbiology, Faculty of Medicine, Kuwait University Kuwait, Kuwait
| | - Ziauddin Khan
- Department of Microbiology, Faculty of Medicine, Kuwait University Kuwait, Kuwait
| |
Collapse
|
43
|
Cerdeira CD, Brigagão MRPL, de Carli ML, de Souza Ferreira C, de Oliveira Isac Moraes G, Hadad H, Hanemann JAC, Hamblin MR, Sperandio FF. Low-level laser therapy stimulates the oxidative burst in human neutrophils and increases their fungicidal capacity. JOURNAL OF BIOPHOTONICS 2016; 9:1180-1188. [PMID: 27243910 PMCID: PMC5133186 DOI: 10.1002/jbio.201600035] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 05/05/2016] [Accepted: 05/06/2016] [Indexed: 06/05/2023]
Abstract
Low-level laser therapy (LLLT) is known to enhance mitochondrial electron transfer and ATP production; thus, this study asked whether LLLT could stimulate the oxidative burst in human neutrophils (PMN) and improve their ability to kill microorganisms. Blood from healthy human subjects was collected and PMN were isolated from the samples. PMN were treated in vitro with 660 nm or 780 nm CW laser light at 40 mW power and increasing energies up to 19.2 J and were subsequently incubated with Candida albicans cells. Generation of hydroxyl radicals, hypochlorite anions and superoxide anions by PMN were checked using fluorescent probes and chemiluminescence assays; a microbicidal activity assay against C. albicans was also performed. LLLT excited PMN to a higher functional profile, which was translated as superior production of reactive oxygen species (ROS) and increased fungicidal capacity. The most efficacious energy was 19.2 J and, interestingly, the 660 nm light was even more efficacious than 780 nm at increasing the respiratory burst of PMN and the fungicidal capacity. Human neutrophils (PMN) were stimulated in vitro with 660 nm or 780 nm CW laser light at 40 mW of power and a total energy of 19.2 J. Low-level laser therapy (LLLT) excited PMN to a higher functional profile, which was translated as a superior production of reactive oxygen species (ROS) such as hydroxyl radicals (HO• ) and hypochlorite anions (ClO- ) (Figure) and increased fungicidal capacity against Candida albicans cells.
Collapse
Affiliation(s)
- Cláudio Daniel Cerdeira
- Department of Biochemistry, Institute of Biomedical Sciences, Federal University of Alfenas (UNIFAL-MG), Alfenas, MG 37130-000, Brazil
| | | | - Marina Lara de Carli
- Department of Clinics and Surgery, School of Dentistry, Federal University of Alfenas (UNIFAL-MG), Alfenas, MG 37130-000, Brazil
| | - Cláudia de Souza Ferreira
- Department of Biochemistry, Institute of Biomedical Sciences, Federal University of Alfenas (UNIFAL-MG), Alfenas, MG 37130-000, Brazil
| | - Gabriel de Oliveira Isac Moraes
- Department of Biochemistry, Institute of Biomedical Sciences, Federal University of Alfenas (UNIFAL-MG), Alfenas, MG 37130-000, Brazil
| | - Henrique Hadad
- Department of Clinics and Surgery, School of Dentistry, Federal University of Alfenas (UNIFAL-MG), Alfenas, MG 37130-000, Brazil
| | - João Adolfo Costa Hanemann
- Department of Clinics and Surgery, School of Dentistry, Federal University of Alfenas (UNIFAL-MG), Alfenas, MG 37130-000, Brazil
| | - Michael R. Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| | - Felipe Fornias Sperandio
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA
- Department of Pathology and Parasitology, Institute of Biomedical Sciences, Federal University of Alfenas (UNIFAL-MG), Alfenas, MG 37130-000, Brazil
| |
Collapse
|
44
|
Johnson CM, O'Brien XM, Byrd AS, Parisi VE, Loosely AJ, Li W, Witt H, Faridi MH, LeFort CT, Gupta V, Kim M, Reichner JS. Integrin Cross-Talk Regulates the Human Neutrophil Response to Fungal β-Glucan in the Context of the Extracellular Matrix: A Prominent Role for VLA3 in the Antifungal Response. THE JOURNAL OF IMMUNOLOGY 2016; 198:318-334. [PMID: 27852744 DOI: 10.4049/jimmunol.1502381] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 10/20/2016] [Indexed: 11/19/2022]
Abstract
Candida albicans infection produces elongated hyphae resistant to phagocytic clearance compelling alternative neutrophil effector mechanisms to destroy these physically large microbial structures. Additionally, all tissue-based neutrophilic responses to fungal infections necessitate contact with the extracellular matrix (ECM). Neutrophils undergo a rapid, ECM-dependent mechanism of homotypic aggregation and NETosis in response to C. albicans mediated by the β2 integrin, complement receptor 3 (CR3, CD11b/CD18, αMβ2). Neither homotypic aggregation nor NETosis occurs when human neutrophils are exposed either to immobilized fungal β-glucan or to C. albicans hyphae without ECM. The current study provides a mechanistic basis to explain how matrix controls the antifungal effector functions of neutrophils under conditions that preclude phagocytosis. We show that CR3 ligation initiates a complex mechanism of integrin cross-talk resulting in differential regulation of the β1 integrins VLA3 (α3β1) and VLA5 (α5β1). These β1 integrins control distinct antifungal effector functions in response to either fungal β-glucan or C. albicans hyphae and fibronectin, with VLA3 inducing homotypic aggregation and VLA5 regulating NETosis. These integrin-dependent effector functions are controlled temporally whereby VLA5 and CR3 induce rapid, focal NETosis early after binding fibronectin and β-glucan. Within minutes, CR3 undergoes inside-out auto-activation that drives the downregulation of VLA5 and the upregulation of VLA3 to support neutrophil swarming and aggregation. Forcing VLA5 to remain in the activated state permits NETosis but prevents homotypic aggregation. Therefore, CR3 serves as a master regulator during the antifungal neutrophil response, controlling the affinity states of two different β1 integrins, which in turn elicit distinct effector functions.
Collapse
Affiliation(s)
- Courtney M Johnson
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital, Providence, RI 02903.,Warren Alpert Medical School, Brown University, Providence, RI 02912.,Graduate Program in Pathobiology, Brown University, Providence, RI 02912
| | - Xian M O'Brien
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital, Providence, RI 02903.,Warren Alpert Medical School, Brown University, Providence, RI 02912
| | - Angel S Byrd
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital, Providence, RI 02903.,Warren Alpert Medical School, Brown University, Providence, RI 02912.,Graduate Program in Pathobiology, Brown University, Providence, RI 02912
| | - Valentina E Parisi
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital, Providence, RI 02903.,Graduate Program in Pathobiology, Brown University, Providence, RI 02912
| | - Alex J Loosely
- Department of Physics, Brown University, Providence, RI 02912
| | - Wei Li
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital, Providence, RI 02903
| | - Hadley Witt
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital, Providence, RI 02903.,Warren Alpert Medical School, Brown University, Providence, RI 02912.,Graduate Program in Pathobiology, Brown University, Providence, RI 02912
| | - Mohd H Faridi
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612
| | - Craig T LeFort
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital, Providence, RI 02903.,Warren Alpert Medical School, Brown University, Providence, RI 02912
| | - Vineet Gupta
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612
| | - Minsoo Kim
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642
| | - Jonathan S Reichner
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital, Providence, RI 02903.,Warren Alpert Medical School, Brown University, Providence, RI 02912.,Graduate Program in Pathobiology, Brown University, Providence, RI 02912
| |
Collapse
|
45
|
Tibayrenc M, Ayala FJ. Is Predominant Clonal Evolution a Common Evolutionary Adaptation to Parasitism in Pathogenic Parasitic Protozoa, Fungi, Bacteria, and Viruses? ADVANCES IN PARASITOLOGY 2016; 97:243-325. [PMID: 28325372 DOI: 10.1016/bs.apar.2016.08.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We propose that predominant clonal evolution (PCE) in microbial pathogens be defined as restrained recombination on an evolutionary scale, with genetic exchange scarce enough to not break the prevalent pattern of clonal population structure. The main features of PCE are (1) strong linkage disequilibrium, (2) the widespread occurrence of stable genetic clusters blurred by occasional bouts of genetic exchange ('near-clades'), (3) the existence of a "clonality threshold", beyond which recombination is efficiently countered by PCE, and near-clades irreversibly diverge. We hypothesize that the PCE features are not mainly due to natural selection but also chiefly originate from in-built genetic properties of pathogens. We show that the PCE model obtains even in microbes that have been considered as 'highly recombining', such as Neisseria meningitidis, and that some clonality features are observed even in Plasmodium, which has been long described as panmictic. Lastly, we provide evidence that PCE features are also observed in viruses, taking into account their extremely fast genetic turnover. The PCE model provides a convenient population genetic framework for any kind of micropathogen. It makes it possible to describe convenient units of analysis (clones and near-clades) for all applied studies. Due to PCE features, these units of analysis are stable in space and time, and clearly delimited. The PCE model opens up the possibility of revisiting the problem of species definition in these organisms. We hypothesize that PCE constitutes a major evolutionary strategy for protozoa, fungi, bacteria, and viruses to adapt to parasitism.
Collapse
Affiliation(s)
- M Tibayrenc
- Institut de Recherche pour le Développement, Montpellier, France
| | - F J Ayala
- University of California at Irvine, United States
| |
Collapse
|
46
|
Abstract
Candida albicans, the most pervasive fungal pathogen that colonizes humans, forms biofilms that are architecturally complex. They consist of a basal yeast cell polylayer and an upper region of hyphae encapsulated in extracellular matrix. However, biofilms formed in vitro vary as a result of the different conditions employed in models, the methods used to assess biofilm formation, strain differences, and, in a most dramatic fashion, the configuration of the mating type locus (MTL). Therefore, integrating data from different studies can lead to problems of interpretation if such variability is not taken into account. Here we review the conditions and factors that cause biofilm variation, with the goal of engendering awareness that more attention must be paid to the strains employed, the methods used to assess biofilm development, every aspect of the model employed, and the configuration of the MTL locus. We end by posing a set of questions that may be asked in comparing the results of different studies and developing protocols for new ones. This review should engender the notion that not all biofilms are created equal.
Collapse
Affiliation(s)
- David R Soll
- Developmental Studies Hybridoma Bank, Department of Biology, The University of Iowa, Iowa City, Iowa, USA
| | - Karla J Daniels
- Developmental Studies Hybridoma Bank, Department of Biology, The University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
47
|
Qi H, Gong YB, Huang ZQ, Liu Y, Zheng JL, Zhang XY, Che Y, Zhao TX, Zhang R. Multilocus sequence typing of Candida albicans isolates from oral and gastric mucosa of dyspeptic patients. Shijie Huaren Xiaohua Zazhi 2015; 23:5443-5451. [DOI: 10.11569/wcjd.v23.i34.5443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To detect the genetic profiles of Candida albicans (C. albicans) strains in the digestive tract of dyspeptic patients by multilocus sequence typing (MLST), and to explore whether lesion of the gastric mucosa is closely related to the genotype of C. albicans.
METHODS: A total of 111 oral swab samples and 102 gastric mucosa samples were collected from patients with gastritis or gastric ulcer. In addition, 162 oral swab samples collected from healthy volunteers were used as a control group. Candida species isolates from separate samples were identified by amplifying the ITS1-5.8S-ITS2 region sequence. C. albicans isolates were characterized and analyzed by multilocus sequence typing, and submitted to the C. albicans MLST database. The phylogenetic tree was constructed by the method of unweighted-pair group method using average linkages (UPGMA) to analyze the relationship between the evolutionary clades and gastric mucosal inflammation lesion.
RESULTS: In the oral mucosa swab samples of the control group and patient group, the positive rates of Candida spp. were 29.6% vs 36.0%, and the constitute ratios of C. albicans were 64.6% vs 95%, respectively. In the gastric samples of the patient group, the positive rate of Candida spp. was 41.4%, and the constituent ratio of C. albicans was 97.8%. Both the positive rate and constituent ratio of C. albicans in the patient group were significantly higher than those in the control group (χ2 = 4.071, P < 0.01; χ2 = 7.650, P = 0.006). In C. albicans MLST detection, the positive rate of genotype ST1593 was significantly higher in the patient group than in the control group (60% vs 14.8%; χ2 = 12.815, P < 0.001). The different evolutionary clades of C. albicans strains were closely related to the inflammatory lesion of the gastric mucosa (Kendall's tau-b r = 0.591, P < 0.001).
CONCLUSION: C. albicans could be detected in the gastric mucosa of patients with dyspepsia, and its special genotype is closely related to the inflammatory lesion of the gastric mucosa.
Collapse
|
48
|
Molecular Characterization of Candida africana in Genital Specimens in Shanghai, China. BIOMED RESEARCH INTERNATIONAL 2015; 2015:185387. [PMID: 26665002 PMCID: PMC4668292 DOI: 10.1155/2015/185387] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 10/12/2015] [Indexed: 01/13/2023]
Abstract
Candida africana, an emerging yeast pathogen, is closely related to Candida albicans and most commonly involved in vulvovaginal candidiasis (VVC). However, its prevalence in candidal balanoposthitis is still unclear. In this study, the prevalence of C. africana in both candidal balanoposthitis and VVC in a sexually transmitted diseases (STD) clinic in Shanghai, China, was analyzed, and the molecular characterization and susceptible profiles of C. africana isolates were investigated. As results, C. africana was only isolated in 5 out of 79 (6.3%) cases of candidal balanoposthitis rather than cases with vulvovaginal candidiasis. Among them, 4 out of 5 isolates share the same genotype of DST 782 with an isolate from vaginal swab in Japan published previously. All C. africana isolates were susceptible to amphotericin B, flucytosine, fluconazole, itraconazole, voriconazole, posaconazole, caspofungin, and micafungin.
Collapse
|
49
|
Adjapong G, Hale M, Garrill A. Population Structure ofCandida albicansfrom Three Teaching Hospitals in Ghana. Med Mycol 2015; 54:197-206. [DOI: 10.1093/mmy/myv086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 08/18/2015] [Indexed: 11/15/2022] Open
|
50
|
Comparison of Switching and Biofilm Formation between MTL-Homozygous Strains of Candida albicans and Candida dubliniensis. EUKARYOTIC CELL 2015; 14:1186-202. [PMID: 26432632 DOI: 10.1128/ec.00146-15] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 09/23/2015] [Indexed: 11/20/2022]
Abstract
Candida albicans and Candida dubliniensis are highly related species that share the same main developmental programs. In C. albicans, it has been demonstrated that the biofilms formed by strains heterozygous and homozygous at the mating type locus (MTL) differ functionally, but studies rarely identify the MTL configuration. This becomes a particular problem in studies of C. dubliniensis, given that one-third of natural strains are MTL homozygous. For that reason, we have analyzed MTL-homozygous strains of C. dubliniensis for their capacity to switch from white to opaque, the stability of the opaque phenotype, CO2 induction of switching, pheromone induction of adhesion, the effects of minority opaque cells on biofilm thickness and dry weight, and biofilm architecture in comparison with C. albicans. Our results reveal that C. dubliniensis strains switch to opaque at lower average frequencies, exhibit a far lower level of opaque phase stability, are not stimulated to switch by high CO2, exhibit more variability in biofilm architecture, and most notably, form mature biofilms composed predominately of pseudohyphae rather than true hyphae. Therefore, while several traits of MTL-homozygous strains of C. dubliniensis appear to be degenerating or have been lost, others, most notably several related to biofilm formation, have been conserved. Within this context, the possibility is considered that C. dubliniensis is transitioning from a hypha-dominated to a pseudohypha-dominated biofilm and that aspects of C. dubliniensis colonization may provide insights into the selective pressures that are involved.
Collapse
|