1
|
Früh J, Strasen J, Held M. [Emergence of a multidrug-resistant tuberculosis through inadequate treatment of isoniazid monoresistance]. Dtsch Med Wochenschr 2024; 149:1222-1226. [PMID: 39312963 DOI: 10.1055/a-2369-3807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
HISTORY We admitted a 65-year-old patient with suspected reactivation of a pulmonary tuberculosis for further diagnosis. FINDINGS AND DIAGNOSIS 14 months after completing a standard treatment course against pulmonary tuberculosis, the patient presented with cough and night sweat. A CT-scan revealed signs of a bipulmonary progress. Microbiological results proved multi-drug resistant tuberculosis (resistances against isoniazid and rifampicin). Reviewing the patient's old records uncovered a previous isoniazid-resistance at the start of the first treatment course, which had not been appropriately addressed. THERAPY AND COURSE The patient was started on oral therapy with Bedaquiline, Linezolid, Terizidon and Levofloxacin. CONCLUSION Treating tuberculosis, considering drug resistances is crucial. To avoid ineffective therapy, molecular diagnostic methods are recommended, however, cultural testing remains essential. Diagnostic latency, rising rates of drug resistances and lengthy treatment courses contribute to the complexity of treatment. In Germany, specialized outpatient clinics are available since 2014 for diagnosis and treatment of patients with tuberculosis or non-tuberculous mycobacterial diseases, even in the event of mere suspicion.
Collapse
Affiliation(s)
- Jonas Früh
- Pneumologie, Klinikum Würzburg-Mitte gGmbH, Standort Missioklinik, Würzburg, Deutschland
| | - Jörn Strasen
- Pneumologie, Klinikum Würzburg-Mitte gGmbH, Standort Missioklinik, Würzburg, Deutschland
| | - Matthias Held
- Pneumologie, Klinikum Würzburg-Mitte gGmbH, Standort Missioklinik, Würzburg, Deutschland
| |
Collapse
|
2
|
Tafess K, Ng TTL, Tam KKG, Leung KSS, Leung JSL, Lee LK, Lao HY, Chan CTM, Yam WC, Wong SSY, Lau TCK, Siu GKH. Genetic mechanisms of co-emergence of INH-resistant Mycobacterium tuberculosis strains during the standard course of antituberculosis therapy. Microbiol Spectr 2024; 12:e0213323. [PMID: 38466098 PMCID: PMC10986572 DOI: 10.1128/spectrum.02133-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 01/30/2024] [Indexed: 03/12/2024] Open
Abstract
The incidence of isoniazid (INH) resistant Mycobacterium tuberculosis is increasing globally. This study aimed to identify the molecular mechanisms behind the development of INH resistance in M. tuberculosis strains collected from the same patients during the standard course of treatment. Three M. tuberculosis strains were collected from a patient before and during antituberculosis (anti-TB) therapy. The strains were characterized using phenotypic drug susceptibility tests, Mycobacterial Interspersed Repeated Unit-Variable-Number Tandem Repeats (MIRU-VNTR), and whole-genome sequencing (WGS) to identify mutations associated with INH resistance. To validate the role of the novel mutations in INH resistance, the mutated katG genes were electroporated into a KatG-deleted M. tuberculosis strain (GA03). Three-dimensional structures of mutated KatG were modeled to predict their impact on INH binding. The pre-treatment strain was susceptible to INH. However, two INH-resistant strains were isolated from the patient after anti-TB therapy. MIRU-VNTR and WGS revealed that the three strains were clonally identical. A missense mutation (P232L) and a nonsense mutation (Q461Stop) were identified in the katG of the two post-treatment strains, respectively. Transformation experiments showed that katG of the pre-treatment strain restored INH susceptibility in GA03, whereas the mutated katG genes from the post-treatment strains rendered negative catalase activity and INH resistance. The protein model indicated that P232L reduced INH-KatG binding affinity while Q461Stop truncated gene transcription. Our results showed that the two katG mutations, P232L and Q461Stop, accounted for the co-emergence of INH-resistant clones during anti-TB therapy. The inclusion of these mutations in the design of molecular assays could increase the diagnostic performance.IMPORTANCEThe evolution of drug-resistant strains of Mycobacterium tuberculosis within the lung lesions of a patient has a detrimental impact on treatment outcomes. This is particularly concerning for isoniazid (INH), which is the most potent first-line antimycobacterial drug. However, the precise genetic factors responsible for drug resistance in patients have not been fully elucidated, with approximately 15% of INH-resistant strains harboring unknown genetic factors. This raises concerns about the emergence of drug-resistant clones within patients, further contributing to the global epidemic of resistance. In this study, we revealed the presence of two novel katG mutations, which emerged independently due to the stress exerted by antituberculosis (anti-TB) treatment on a parental strain. Importantly, we experimentally demonstrated the functional significance of both mutations in conferring resistance to INH. Overall, this research sheds light on the genetic mechanisms underlying the evolution of INH resistance within patients and provides valuable insights for improving diagnostic performance by targeting specific mutations.
Collapse
Affiliation(s)
- Ketema Tafess
- Department of Applied Biology, School of Applied Natural Sciences, Adama Science and Technology University, Adama, Ethiopia
- Institute of Pharmaceutical Sciences, Adama Science and Technology University, Adama, Ethiopia
| | - Timothy Ting-Leung Ng
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Kingsley King-Gee Tam
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Kenneth Siu-Sing Leung
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Jake Siu-Lun Leung
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Lam-Kwong Lee
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Hiu Yin Lao
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Chloe Toi-Mei Chan
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Wing-Cheong Yam
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Samson Sai Yin Wong
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Terrence Chi-Kwong Lau
- Department of Biomedical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Gilman Kit-Hang Siu
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| |
Collapse
|
3
|
Resistance patterns among drug-resistant tuberculosis patients and trends-over-time analysis of national surveillance data in Gabon, Central Africa. Infection 2022; 51:697-704. [DOI: 10.1007/s15010-022-01941-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 10/08/2022] [Indexed: 11/05/2022]
Abstract
Abstract
Objective
Routinely generated surveillance data are important for monitoring the effectiveness of MDR-TB control strategies. Incidence of rifampicin-resistant tuberculosis (RR-TB) is a key indicator for monitoring MDR-TB.
Methods
In a longitudinal nationwide retrospective study, 8 years (2014–2021) of sputum samples from presumptively drug-resistant tuberculosis patients from all regions of Gabon were referred to the national tuberculosis reference laboratory. Samples were analysed using GeneXpert MTB/RIF and Genotype MTBDRsl version 2/Line Probe Assay.
Results
Of 3057 sputum samples from presumptive tuberculosis patients, both from local hospital and from referral patients, 334 were RR-TB. The median patient age was 33 years (interquartile range 26–43); one third was newly diagnosed drug-resistant tuberculosis patients; one-third was HIV-positive. The proportion of men with RR-TB was significantly higher than that of women (55% vs 45%; p < 0.0001). Patients aged 25–35 years were most affected (32%; 108/334). The cumulative incidence of RR-TB was 17 (95% CI 15–19)/100,000 population over 8 years. The highest incidences were observed in 2020 and 2021. A total of 281 samples were analysed for second-line drug resistance. The proportions of study participants with MDR-TB, pre-XDR-TB and XDR-TB were 90.7% (255/281), 9% (25/281) and 0.3% (1/281), respectively. The most-common mutations in fluoroquinolones resistance isolates was gyrA double mutation gyrA MUT3B and MUT3C (23%; 4/17). Most (64%; 6/8) second-line injectable drugs resistance isolates were characterised by missing both rrs WT2 and MUT2 banding.
Conclusion
The increasing incidence of MDR-TB infection in Gabon is alarming. It is highest in the 25–35 years age category. The incidence of MDR-TB infection in treatment-naïve patients calls for case finding and contact tracing strategy improvement.
Collapse
|
4
|
Hosseiniporgham S, Sechi LA. A Review on Mycobacteriophages: From Classification to Applications. Pathogens 2022; 11:777. [PMID: 35890022 PMCID: PMC9317374 DOI: 10.3390/pathogens11070777] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/24/2022] [Accepted: 07/05/2022] [Indexed: 02/04/2023] Open
Abstract
Mycobacterial infections are a group of life-threatening conditions triggered by fast- or slow-growing mycobacteria. Some mycobacteria, such as Mycobacterium tuberculosis, promote the deaths of millions of lives throughout the world annually. The control of mycobacterial infections is influenced by the challenges faced in the diagnosis of these bacteria and the capability of these pathogens to develop resistance against common antibiotics. Detection of mycobacterial infections is always demanding due to the intracellular nature of these pathogens that, along with the lipid-enriched structure of the cell wall, complicates the access to the internal contents of mycobacterial cells. Moreover, recent studies depicted that more than 20% of M. tuberculosis (Mtb) infections are multi-drug resistant (MDR), and only 50% of positive MDR-Mtb cases are responsive to standard treatments. Similarly, the susceptibility of nontuberculosis mycobacteria (NTM) to first-line tuberculosis antibiotics has also declined in recent years. Exploiting mycobacteriophages as viruses that infect mycobacteria has significantly accelerated the diagnosis and treatment of mycobacterial infections. This is because mycobacteriophages, regardless of their cycle type (temperate/lytic), can tackle barriers in the mycobacterial cell wall and make the infected bacteria replicate phage DNA along with their DNA. Although the infectivity of the majority of discovered mycobacteriophages has been evaluated in non-pathogenic M. smegmatis, more research is still ongoing to find mycobacteriophages specific to pathogenic mycobacteria, such as phage DS6A, which has been shown to be able to infect members of the M. tuberculosis complex. Accordingly, this review aimed to introduce some potential mycobacteriophages in the research, specifically those that are infective to the three troublesome mycobacteria, M. tuberculosis, M. avium subsp. paratuberculosis (MAP), and M. abscessus, highlighting their theranostic applications in medicine.
Collapse
Affiliation(s)
| | - Leonardo A. Sechi
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
- Microbiology and Virology, Azienda Ospedaliera Universitaria (AOU) Sassari, 07100 Sassari, Italy
| |
Collapse
|
5
|
Lee K, Chong MS. The Patterns of Acquiring Anti-Mycobacterial Drug Resistance by Susceptible Strains of Mycobacterium tuberculosis. KOREAN JOURNAL OF CLINICAL LABORATORY SCIENCE 2021. [DOI: 10.15324/kjcls.2021.53.2.137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Kyutaeg Lee
- Department of Laboratory Medicine, Green Cross Laboratories, Yongin, Korea
| | - Moo-Sang Chong
- Department of Clinical Laboratory Science, Cheju Halla University, Jeju, Korea
| |
Collapse
|
6
|
Wan L, Liu H, Li M, Jiang Y, Zhao X, Liu Z, Wan K, Li G, Guan CX. Genomic Analysis Identifies Mutations Concerning Drug-Resistance and Beijing Genotype in Multidrug-Resistant Mycobacterium tuberculosis Isolated From China. Front Microbiol 2020; 11:1444. [PMID: 32760357 PMCID: PMC7373740 DOI: 10.3389/fmicb.2020.01444] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 06/04/2020] [Indexed: 12/02/2022] Open
Abstract
Development of modern genomics provides us an effective method to understand the molecular mechanism of drug resistance and diagnose drug-resistant Mycobacterium tuberculosis. In this study, mutations in 18 genes or intergenic regions acquired by whole-genome sequencing (WGS) of 183 clinical M. tuberculosis strains, including 137 multidrug-resistant and 46 pan-susceptible isolates from China, were identified and used to analyze their associations with resistance of isoniazid, rifampin, ethambutol, and streptomycin. Using the proportional method as the gold standard method, the accuracy values of WGS to predict resistance were calculated. The association between synonymous or lineage definition mutations with different genotypes were also analyzed. The results show that, compared to the phenotypic proportional method, the sensitivity and specificity of WGS for resistance detection were 94.2 and 100.0% for rifampicin (based on mutations in rpoB), 90.5 and 97.8% for isoniazid (katG), 83.0 and 97.8% for streptomycin (rpsL combined with rrs 530 loop and 912 loop), and 90.9 and 65.1% for ethambutol (embB), respectively. WGS data also showed that mutations in the inhA promoter increased only 2.2% sensitivity for INH based on mutations in katG. Synonymous mutation rpoB A1075A was confirmed to be associated with the Beijing genotype. This study confirmed that mutations in rpoB, katG, rrs 530 loop and 912 loop, and rpsL were excellent biomarkers for predicting rifampicin, isoniazid, and streptomycin resistance, respectively, and provided clues in clarifying the drug-resistance mechanism of M. tuberculosis isolates from China.
Collapse
Affiliation(s)
- Li Wan
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, China.,State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Haican Liu
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Machao Li
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yi Jiang
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiuqin Zhao
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhiguang Liu
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Kanglin Wan
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Guilian Li
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Cha-Xiang Guan
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, China
| |
Collapse
|
7
|
Evolutionary causes and consequences of bacterial antibiotic persistence. Nat Rev Microbiol 2020; 18:479-490. [PMID: 32461608 DOI: 10.1038/s41579-020-0378-z] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2020] [Indexed: 12/12/2022]
Abstract
Antibiotic treatment failure is of growing concern. Genetically encoded resistance is key in driving this process. However, there is increasing evidence that bacterial antibiotic persistence, a non-genetically encoded and reversible loss of antibiotic susceptibility, contributes to treatment failure and emergence of resistant strains as well. In this Review, we discuss the evolutionary forces that may drive the selection for antibiotic persistence. We review how some aspects of antibiotic persistence have been directly selected for whereas others result from indirect selection in disparate ecological contexts. We then discuss the consequences of antibiotic persistence on pathogen evolution. Persisters can facilitate the evolution of antibiotic resistance and virulence. Finally, we propose practical means to prevent persister formation and how this may help to slow down the evolution of virulence and resistance in pathogens.
Collapse
|
8
|
Peretokina IV, Krylova LY, Antonova OV, Kholina MS, Kulagina EV, Nosova EY, Safonova SG, Borisov SE, Zimenkov DV. Reduced susceptibility and resistance to bedaquiline in clinical M. tuberculosis isolates. J Infect 2020; 80:527-535. [PMID: 31981638 DOI: 10.1016/j.jinf.2020.01.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 12/18/2019] [Accepted: 01/14/2020] [Indexed: 11/17/2022]
Abstract
OBJECTIVES Bedaquiline is an effective drug used to treat MDR and XDR tuberculosis, providing high cure rates in complex therapy. Mutations in the mmpR (rv0678) and atpE genes are associated with reduced susceptibility to bedaquiline and have been identified in both in vitro selected strains and clinical isolates. However, the phenotypic criteria used to detect bedaquiline resistance have yet to be established due to the collection of few clinical isolates from patients receiving bedaquiline-containing treatment regimens. METHODS One hundred eighty-two clinical isolates from 74 patients receiving bedaquiline and 163 isolates from 107 patients not exposed to bedaquiline were analysed. The bedaquiline MICs were tested using serial dilutions on 7H11 agar plates and the Bactec MGIT 960 system. The mmpR and atpE genes were sequenced by Sanger sequencing. RESULTS The 7H11 agar method allowed for rapid discrimination between mutated and wild-type isolates and between exposed and non-exposed isolates. Seventy-three percent of bedaquiline-exposed isolates, as well as 91% of isolates with mutations, had an elevated bedaquiline MIC (≥ 0.12 mg/L on 7H11 media) compared to the reference isolates (89% had an MIC ≤ 0.03 mg/L). Previously reported in vitro-selected mutants (E61D and A63P) and novel AtpE substitutions (G25S and D28G) were observed in the clinical isolates. Substitutions in codon 63 of AtpE were likely associated with a higher bedaquiline MIC. Five new cases of pre-existing reduced susceptibility to bedaquiline, accompanied by mmpR mutations in most isolates, without a history of bedaquiline treatment were identified. CONCLUSIONS Bedaquiline treatment leads to an elevated bedaquiline MIC and the acquisition of mmpR and atpE gene mutations in tuberculosis strains. The standardisation of bedaquiline phenotypic susceptibility testing is urgently needed based on observed discrepancies between our study and previous studies and differences in solid and liquid media MIC determinations.
Collapse
Affiliation(s)
- Irina V Peretokina
- The Moscow Research and Clinical Center for Tuberculosis Control of the Moscow Government Health Department, Moscow, Russia
| | - Ludmila Yu Krylova
- The Moscow Research and Clinical Center for Tuberculosis Control of the Moscow Government Health Department, Moscow, Russia
| | - Olga V Antonova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Margarita S Kholina
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Elena V Kulagina
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Elena Yu Nosova
- The Moscow Research and Clinical Center for Tuberculosis Control of the Moscow Government Health Department, Moscow, Russia
| | - Svetlana G Safonova
- The Moscow Research and Clinical Center for Tuberculosis Control of the Moscow Government Health Department, Moscow, Russia
| | - Sergey E Borisov
- The Moscow Research and Clinical Center for Tuberculosis Control of the Moscow Government Health Department, Moscow, Russia
| | - Danila V Zimenkov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
9
|
Nguyen QH, Contamin L, Nguyen TVA, Bañuls A. Insights into the processes that drive the evolution of drug resistance in Mycobacterium tuberculosis. Evol Appl 2018; 11:1498-1511. [PMID: 30344622 PMCID: PMC6183457 DOI: 10.1111/eva.12654] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 05/25/2018] [Accepted: 05/27/2018] [Indexed: 01/01/2023] Open
Abstract
At present, the successful transmission of drug-resistant Mycobacterium tuberculosis, including multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains, in human populations, threatens tuberculosis control worldwide. Differently from many other bacteria, M. tuberculosis drug resistance is acquired mainly through mutations in specific drug resistance-associated genes. The panel of mutations is highly diverse, but depends on the affected gene and M. tuberculosis genetic background. The variety of genetic profiles observed in drug-resistant clinical isolates underlines different evolutionary trajectories towards multiple drug resistance, although some mutation patterns are prominent. This review discusses the intrinsic processes that may influence drug resistance evolution in M. tuberculosis, such as mutation rate, drug resistance-associated mutations, fitness cost, compensatory mutations and epistasis. This knowledge should help to better predict the risk of emergence of highly resistant M. tuberculosis strains and to develop new tools and strategies to limit the development and spread of MDR and XDR strains.
Collapse
Affiliation(s)
- Quang Huy Nguyen
- Department of Pharmacological, Medical and Agronomical BiotechnologyUniversity of Science and Technology of HanoiVietnam Academy of Science and Technology (VAST)HanoiVietnam
- Institute of Research for DevelopmentUMR MIVEGEC (CNRS‐IRD‐University of Montpellier)MontpellierFrance
- LMI Drug Resistance in South East Asia (LMI DRISA)University of Science and Technology of HanoiVietnam Academy of Science and Technology (VAST)HanoiVietnam
| | - Lucie Contamin
- Institute of Research for DevelopmentUMR MIVEGEC (CNRS‐IRD‐University of Montpellier)MontpellierFrance
- LMI Drug Resistance in South East Asia (LMI DRISA)University of Science and Technology of HanoiVietnam Academy of Science and Technology (VAST)HanoiVietnam
- Department of BacteriologyNational Institute of Hygiene and Epidemiology (NIHE)HanoiVietnam
| | - Thi Van Anh Nguyen
- Department of BacteriologyNational Institute of Hygiene and Epidemiology (NIHE)HanoiVietnam
| | - Anne‐Laure Bañuls
- Institute of Research for DevelopmentUMR MIVEGEC (CNRS‐IRD‐University of Montpellier)MontpellierFrance
- LMI Drug Resistance in South East Asia (LMI DRISA)University of Science and Technology of HanoiVietnam Academy of Science and Technology (VAST)HanoiVietnam
- Department of BacteriologyNational Institute of Hygiene and Epidemiology (NIHE)HanoiVietnam
| |
Collapse
|
10
|
Dookie N, Rambaran S, Padayatchi N, Mahomed S, Naidoo K. Evolution of drug resistance in Mycobacterium tuberculosis: a review on the molecular determinants of resistance and implications for personalized care. J Antimicrob Chemother 2018; 73:1138-1151. [PMID: 29360989 PMCID: PMC5909630 DOI: 10.1093/jac/dkx506] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Drug-resistant TB (DR-TB) remains a significant challenge in TB treatment and control programmes worldwide. Advances in sequencing technology have significantly increased our understanding of the mechanisms of resistance to anti-TB drugs. This review provides an update on advances in our understanding of drug resistance mechanisms to new, existing drugs and repurposed agents. Recent advances in WGS technology hold promise as a tool for rapid diagnosis and clinical management of TB. Although the standard approach to WGS of Mycobacterium tuberculosis is slow due to the requirement for organism culture, recent attempts to sequence directly from clinical specimens have improved the potential to diagnose and detect resistance within days. The introduction of new databases may be helpful, such as the Relational Sequencing TB Data Platform, which contains a collection of whole-genome sequences highlighting key drug resistance mutations and clinical outcomes. Taken together, these advances will help devise better molecular diagnostics for more effective DR-TB management enabling personalized treatment, and will facilitate the development of new drugs aimed at improving outcomes of patients with this disease.
Collapse
Affiliation(s)
- Navisha Dookie
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| | - Santhuri Rambaran
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| | - Nesri Padayatchi
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
- South African Medical Research Council (SAMRC) - CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, Durban, South Africa
| | - Sharana Mahomed
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| | - Kogieleum Naidoo
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
- South African Medical Research Council (SAMRC) - CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, Durban, South Africa
| |
Collapse
|
11
|
Abstract
Background: Several studies have shown that the Single Nucleotide Polymorphism (SNP) in the CACAN1C gene, rs1006737, is related to different mood disorder illnesses, such as bipolar disorder and schizophrenia. Current day molecular procedures for allele detection of this gene can be very expensive and time consuming. Hence, a sensitive and specific molecular procedure for detecting these mutations in a large number of subjects is desirable, especially for research groups who have no complex laboratory equipment. Objective: The possibility of using a Fluorescence Resonance Energy Transfer (FRET) probe was evaluated by means of bioinformatic tools, designed for forecasting the molecular behavior of DNA probes used in the research field or for laboratory analysis methods. Method: In this study we used the DINAMelt Web Server to predict the Tms of FRET oligo in the presence of the A and/or G allele in rs1006737. The PCR primers were designed by using oligo 4 and oligo 6 primer analysis software, Results: The molecular probe described in this study detected a Tm difference of 5-6°C between alleles A and G in rs1006737, which also showed good discrimination for a heterozygous profile for this genomic region. Conclusion: Although in silico studies represent a relatively new avenue of inquiry, they have now started to be used to predict how a molecular probe interacts with its biological target, reducing the time and costs of molecular test tuning. The results of this study seem promising for further laboratory tests on allele detection in rs1006737 region.
Collapse
Affiliation(s)
- Germano Orrù
- Department of Surgical Sciences, Molecular Biology Service (MBS), University of Cagliari, Cagliari, Italy.,National Research Council of Italy, ISPA, Sassari, Italy
| | - Mauro Giovanni Carta
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Alessia Bramanti
- Istituto di Scienze Applicate e Sistemi Intelligenti, ISASI, Messina, Italy
| |
Collapse
|
12
|
Khosravi AD, Meghdadi H, Ghadiri AA, Alami A, Sina AH, Mirsaeidi M. rpoB gene mutations among Mycobacterium tuberculosis isolates from extrapulmonary sites. APMIS 2018; 126:241-247. [PMID: 29484749 DOI: 10.1111/apm.12804] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 11/16/2017] [Indexed: 11/30/2022]
Abstract
The aim of this study was to analyze mutations occurring in the rpoB gene of Mycobacterium tuberculosis (MTB) isolates from clinical samples of extrapulmonary tuberculosis (EPTB). Seventy formalin-fixed, paraffin-embedded samples and fresh tissue samples from confirmed EPTB cases were analyzed. Nested PCR based on the rpoB gene was performed on the extracted DNAs, combined with cloning and subsequent sequencing. Sixty-seven (95.7%) samples were positive for nester PCR. Sequence analysis of the 81 bp region of the rpoB gene demonstrated mutations in 41 (61.2%) of 67 sequenced samples. Several point mutations including deletion mutations at codons 510, 512, 513 and 515, with 45% and 51% of the mutations in codons 512 and 513 respectively were seen, along with 26% replacement mutations at codons 509, 513, 514, 518, 520, 524 and 531. The most common alteration was Gln → His, at codon 513, presented in 30 (75.6%) isolates. This study demonstrated sequence alterations in codon 513 of the 81 bp region of the rpoB gene as the most common mutation occurred in 75.6% of molecularly confirmed rifampin-resistant strains. In addition, simultaneous mutation at codons 512 and 513 was demonstrated in 34.3% of the isolates.
Collapse
Affiliation(s)
- Azar Dokht Khosravi
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Microbiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hossein Meghdadi
- Department of Microbiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ata A Ghadiri
- Department of Immunology, School of Medicine, Ahvaz, Iran.,Cell and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ameneh Alami
- Department of Microbiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Mehdi Mirsaeidi
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
13
|
Khan S, Somvanshi P, Bhardwaj T, Mandal RK, Dar SA, Wahid M, Jawed A, Lohani M, Khan M, Areeshi MY, Haque S. Aspartate‐β‐semialdeyhyde dehydrogenase as a potential therapeutic target of
Mycobacterium tuberculosis
H37Rv: Evidence from in silico elementary mode analysis of biological network model. J Cell Biochem 2017; 119:2832-2842. [DOI: 10.1002/jcb.26458] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 10/24/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Saif Khan
- Department of Clinical NutritionCollege of Applied Medical Sciences University of Ha'ilHa'ilSaudi Arabia
| | | | | | - Raju K. Mandal
- Research and Scientific Studies UnitCollege of Nursing and Allied Health SciencesJazan UniversityJazanSaudi Arabia
| | - Sajad A. Dar
- Research and Scientific Studies UnitCollege of Nursing and Allied Health SciencesJazan UniversityJazanSaudi Arabia
| | - Mohd Wahid
- Research and Scientific Studies UnitCollege of Nursing and Allied Health SciencesJazan UniversityJazanSaudi Arabia
| | - Arshad Jawed
- Research and Scientific Studies UnitCollege of Nursing and Allied Health SciencesJazan UniversityJazanSaudi Arabia
| | - Mohtashim Lohani
- Research and Scientific Studies UnitCollege of Nursing and Allied Health SciencesJazan UniversityJazanSaudi Arabia
| | - Mahvish Khan
- Department of Clinical NutritionCollege of Applied Medical Sciences University of Ha'ilHa'ilSaudi Arabia
| | - Mohammed Y. Areeshi
- Research and Scientific Studies UnitCollege of Nursing and Allied Health SciencesJazan UniversityJazanSaudi Arabia
| | - Shafiul Haque
- Research and Scientific Studies UnitCollege of Nursing and Allied Health SciencesJazan UniversityJazanSaudi Arabia
| |
Collapse
|
14
|
Shea J, Halse TA, Lapierre P, Shudt M, Kohlerschmidt D, Van Roey P, Limberger R, Taylor J, Escuyer V, Musser KA. Comprehensive Whole-Genome Sequencing and Reporting of Drug Resistance Profiles on Clinical Cases of Mycobacterium tuberculosis in New York State. J Clin Microbiol 2017; 55:1871-1882. [PMID: 28381603 PMCID: PMC5442544 DOI: 10.1128/jcm.00298-17] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 03/28/2017] [Indexed: 12/19/2022] Open
Abstract
Whole-genome sequencing (WGS) is a newer alternative for tuberculosis (TB) diagnostics and is capable of providing rapid drug resistance profiles while performing species identification and capturing the data necessary for genotyping. Our laboratory developed and validated a comprehensive and sensitive WGS assay to characterize Mycobacterium tuberculosis and other M. tuberculosis complex (MTBC) strains, composed of a novel DNA extraction, optimized library preparation, paired-end WGS, and an in-house-developed bioinformatics pipeline. This new assay was assessed using 608 MTBC isolates, with 146 isolates during the validation portion of this study and 462 samples received prospectively. In February 2016, this assay was implemented to test all clinical cases of MTBC in New York State, including isolates and early positive Bactec mycobacterial growth indicator tube (MGIT) 960 cultures from primary specimens. Since the inception of the assay, we have assessed the accuracy of identification of MTBC strains to the species level, concordance with culture-based drug susceptibility testing (DST), and turnaround time. Species identification by WGS was determined to be 99% accurate. Concordance between drug resistance profiles generated by WGS and culture-based DST methods was 96% for eight drugs, with an average resistance-predictive value of 93% and susceptible-predictive value of 96%. This single comprehensive WGS assay has replaced seven molecular assays and has resulted in resistance profiles being reported to physicians an average of 9 days sooner than with culture-based DST for first-line drugs and 32 days sooner for second-line drugs.
Collapse
Affiliation(s)
- Joseph Shea
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Tanya A Halse
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Pascal Lapierre
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Matthew Shudt
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Donna Kohlerschmidt
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Patrick Van Roey
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Ronald Limberger
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Jill Taylor
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Vincent Escuyer
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Kimberlee A Musser
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| |
Collapse
|
15
|
Dheda K, Gumbo T, Maartens G, Dooley KE, McNerney R, Murray M, Furin J, Nardell EA, London L, Lessem E, Theron G, van Helden P, Niemann S, Merker M, Dowdy D, Van Rie A, Siu GKH, Pasipanodya JG, Rodrigues C, Clark TG, Sirgel FA, Esmail A, Lin HH, Atre SR, Schaaf HS, Chang KC, Lange C, Nahid P, Udwadia ZF, Horsburgh CR, Churchyard GJ, Menzies D, Hesseling AC, Nuermberger E, McIlleron H, Fennelly KP, Goemaere E, Jaramillo E, Low M, Jara CM, Padayatchi N, Warren RM. The epidemiology, pathogenesis, transmission, diagnosis, and management of multidrug-resistant, extensively drug-resistant, and incurable tuberculosis. THE LANCET. RESPIRATORY MEDICINE 2017; 5:S2213-2600(17)30079-6. [PMID: 28344011 DOI: 10.1016/s2213-2600(17)30079-6] [Citation(s) in RCA: 382] [Impact Index Per Article: 54.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 10/24/2016] [Accepted: 12/08/2016] [Indexed: 12/25/2022]
Abstract
Global tuberculosis incidence has declined marginally over the past decade, and tuberculosis remains out of control in several parts of the world including Africa and Asia. Although tuberculosis control has been effective in some regions of the world, these gains are threatened by the increasing burden of multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis. XDR tuberculosis has evolved in several tuberculosis-endemic countries to drug-incurable or programmatically incurable tuberculosis (totally drug-resistant tuberculosis). This poses several challenges similar to those encountered in the pre-chemotherapy era, including the inability to cure tuberculosis, high mortality, and the need for alternative methods to prevent disease transmission. This phenomenon mirrors the worldwide increase in antimicrobial resistance and the emergence of other MDR pathogens, such as malaria, HIV, and Gram-negative bacteria. MDR and XDR tuberculosis are associated with high morbidity and substantial mortality, are a threat to health-care workers, prohibitively expensive to treat, and are therefore a serious public health problem. In this Commission, we examine several aspects of drug-resistant tuberculosis. The traditional view that acquired resistance to antituberculous drugs is driven by poor compliance and programmatic failure is now being questioned, and several lines of evidence suggest that alternative mechanisms-including pharmacokinetic variability, induction of efflux pumps that transport the drug out of cells, and suboptimal drug penetration into tuberculosis lesions-are likely crucial to the pathogenesis of drug-resistant tuberculosis. These factors have implications for the design of new interventions, drug delivery and dosing mechanisms, and public health policy. We discuss epidemiology and transmission dynamics, including new insights into the fundamental biology of transmission, and we review the utility of newer diagnostic tools, including molecular tests and next-generation whole-genome sequencing, and their potential for clinical effectiveness. Relevant research priorities are highlighted, including optimal medical and surgical management, the role of newer and repurposed drugs (including bedaquiline, delamanid, and linezolid), pharmacokinetic and pharmacodynamic considerations, preventive strategies (such as prophylaxis in MDR and XDR contacts), palliative and patient-orientated care aspects, and medicolegal and ethical issues.
Collapse
Affiliation(s)
- Keertan Dheda
- Lung Infection and Immunity Unit, Department of Medicine, Division of Pulmonology and UCT Lung Institute, University of Cape Town, Groote Schuur Hospital, Cape Town, South Africa.
| | - Tawanda Gumbo
- Center for Infectious Diseases Research and Experimental Therapeutics, Baylor Research Institute, Baylor University Medical Center, Dallas, TX, USA
| | - Gary Maartens
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Kelly E Dooley
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ruth McNerney
- Lung Infection and Immunity Unit, Department of Medicine, Division of Pulmonology and UCT Lung Institute, University of Cape Town, Groote Schuur Hospital, Cape Town, South Africa
| | - Megan Murray
- Department of Global Health and Social Medicine, Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Jennifer Furin
- Department of Global Health and Social Medicine, Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Edward A Nardell
- TH Chan School of Public Health, Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Leslie London
- School of Public Health and Medicine, University of Cape Town, Cape Town, South Africa
| | | | - Grant Theron
- SA MRC Centre for Tuberculosis Research/DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Stellenbosch University, Tygerberg, South Africa
| | - Paul van Helden
- SA MRC Centre for Tuberculosis Research/DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Stellenbosch University, Tygerberg, South Africa
| | - Stefan Niemann
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Schleswig-Holstein, Germany; German Centre for Infection Research (DZIF), Partner Site Borstel, Borstel, Schleswig-Holstein, Germany
| | - Matthias Merker
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Schleswig-Holstein, Germany
| | - David Dowdy
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Annelies Van Rie
- University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; International Health Unit, Epidemiology and Social Medicine, Faculty of Medicine, University of Antwerp, Antwerp, Belgium
| | - Gilman K H Siu
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Jotam G Pasipanodya
- Center for Infectious Diseases Research and Experimental Therapeutics, Baylor Research Institute, Baylor University Medical Center, Dallas, TX, USA
| | - Camilla Rodrigues
- Department of Microbiology, P.D. Hinduja National Hospital & Medical Research Centre, Mumbai, India
| | - Taane G Clark
- Faculty of Infectious and Tropical Diseases and Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Frik A Sirgel
- SA MRC Centre for Tuberculosis Research/DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Stellenbosch University, Tygerberg, South Africa
| | - Aliasgar Esmail
- Lung Infection and Immunity Unit, Department of Medicine, Division of Pulmonology and UCT Lung Institute, University of Cape Town, Groote Schuur Hospital, Cape Town, South Africa
| | - Hsien-Ho Lin
- Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, Taiwan
| | - Sachin R Atre
- Center for Clinical Global Health Education (CCGHE), Johns Hopkins University, Baltimore, MD, USA; Medical College, Hospital and Research Centre, Pimpri, Pune, India
| | - H Simon Schaaf
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Kwok Chiu Chang
- Tuberculosis and Chest Service, Centre for Health Protection, Department of Health, Hong Kong SAR, China
| | - Christoph Lange
- Division of Clinical Infectious Diseases, German Center for Infection Research, Research Center Borstel, Borstel, Schleswig-Holstein, Germany; International Health/Infectious Diseases, University of Lübeck, Lübeck, Germany; Department of Medicine, Karolinska Institute, Stockholm, Sweden; Department of Medicine, University of Namibia School of Medicine, Windhoek, Namibia
| | - Payam Nahid
- Division of Pulmonary and Critical Care, San Francisco General Hospital, University of California, San Francisco, CA, USA
| | - Zarir F Udwadia
- Pulmonary Department, Hinduja Hospital & Research Center, Mumbai, India
| | | | - Gavin J Churchyard
- Aurum Institute, Johannesburg, South Africa; School of Public Health, University of Witwatersrand, Johannesburg, South Africa; Advancing Treatment and Care for TB/HIV, South African Medical Research Council, Johannesburg, South Africa
| | - Dick Menzies
- Montreal Chest Institute, McGill University, Montreal, QC, Canada
| | - Anneke C Hesseling
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Eric Nuermberger
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Helen McIlleron
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Kevin P Fennelly
- Pulmonary Clinical Medicine Section, Division of Intramural Research, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Eric Goemaere
- MSF South Africa, Cape Town, South Africa; School of Public Health and Family Medicine, University of Cape Town, Cape Town, South Africa
| | | | - Marcus Low
- Treatment Action Campaign, Johannesburg, South Africa
| | | | - Nesri Padayatchi
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), MRC HIV-TB Pathogenesis and Treatment Research Unit, Durban, South Africa
| | - Robin M Warren
- SA MRC Centre for Tuberculosis Research/DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Stellenbosch University, Tygerberg, South Africa
| |
Collapse
|
16
|
Farhat MR, Sultana R, Iartchouk O, Bozeman S, Galagan J, Sisk P, Stolte C, Nebenzahl-Guimaraes H, Jacobson K, Sloutsky A, Kaur D, Posey J, Kreiswirth BN, Kurepina N, Rigouts L, Streicher EM, Victor TC, Warren RM, van Soolingen D, Murray M. Genetic Determinants of Drug Resistance in Mycobacterium tuberculosis and Their Diagnostic Value. Am J Respir Crit Care Med 2016; 194:621-30. [PMID: 26910495 PMCID: PMC5027209 DOI: 10.1164/rccm.201510-2091oc] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 02/22/2016] [Indexed: 11/16/2022] Open
Abstract
RATIONALE The development of molecular diagnostics that detect both the presence of Mycobacterium tuberculosis in clinical samples and drug resistance-conferring mutations promises to revolutionize patient care and interrupt transmission by ensuring early diagnosis. However, these tools require the identification of genetic determinants of resistance to the full range of antituberculosis drugs. OBJECTIVES To determine the optimal molecular approach needed, we sought to create a comprehensive catalog of resistance mutations and assess their sensitivity and specificity in diagnosing drug resistance. METHODS We developed and validated molecular inversion probes for DNA capture and deep sequencing of 28 drug-resistance loci in M. tuberculosis. We used the probes for targeted sequencing of a geographically diverse set of 1,397 clinical M. tuberculosis isolates with known drug resistance phenotypes. We identified a minimal set of mutations to predict resistance to first- and second-line antituberculosis drugs and validated our predictions in an independent dataset. We constructed and piloted a web-based database that provides public access to the sequence data and prediction tool. MEASUREMENTS AND MAIN RESULTS The predicted resistance to rifampicin and isoniazid exceeded 90% sensitivity and specificity but was lower for other drugs. The number of mutations needed to diagnose resistance is large, and for the 13 drugs studied it was 238 across 18 genetic loci. CONCLUSIONS These data suggest that a comprehensive M. tuberculosis drug resistance diagnostic will need to allow for a high dimension of mutation detection. They also support the hypothesis that currently unknown genetic determinants, potentially discoverable by whole-genome sequencing, encode resistance to second-line tuberculosis drugs.
Collapse
MESH Headings
- Antitubercular Agents/pharmacology
- Drug Resistance, Multiple, Bacterial/drug effects
- Drug Resistance, Multiple, Bacterial/genetics
- Genes, Bacterial/drug effects
- Genes, Bacterial/genetics
- Humans
- Molecular Diagnostic Techniques
- Mutation/drug effects
- Mutation/genetics
- Mycobacterium tuberculosis/drug effects
- Mycobacterium tuberculosis/genetics
- Mycobacterium tuberculosis/isolation & purification
- Sequence Analysis, DNA
- Tuberculosis, Multidrug-Resistant/drug therapy
- Tuberculosis, Multidrug-Resistant/genetics
- Tuberculosis, Multidrug-Resistant/microbiology
Collapse
Affiliation(s)
- Maha R. Farhat
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, Massachusetts
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, Massachusetts
| | - Razvan Sultana
- Genomics England, Queen Mary University, London, United Kingdom
| | - Oleg Iartchouk
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | | | - James Galagan
- Department of Biomedical Engineering
- Department of Microbiology, and
- Bioinformatics Program, Boston University, Boston, Massachusetts
| | | | | | - Hanna Nebenzahl-Guimaraes
- National Institute for Public Health and the Environment, Bilthoven, the Netherlands
- Department of Pulmonary Diseases and
- Department of Medical Microbiology, Radboud University Nijmegen Medical Center, Nijmegen, the Netherlands
- Life and Health Sciences Research Institute, School of Health Sciences, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute/3Bs, PT Government Associate Laboratory, Braga/Guimaraes, Portugal
| | - Karen Jacobson
- Section of Infectious Diseases, Boston University School of Medicine, Boston, Massachusetts
- DST/NRF Center of Excellence for Biomedical TB Research/SAMRC Center for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Alexander Sloutsky
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, Massachusetts
- University of Massachusetts Medical School, Worcester, Massachusetts
| | - Devinder Kaur
- University of Massachusetts Medical School, Worcester, Massachusetts
| | - James Posey
- Division of Tuberculosis Elimination, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Barry N. Kreiswirth
- Public Health Research Institute Tuberculosis Center, Rutgers University, Newark, New Jersey
| | - Natalia Kurepina
- Public Health Research Institute Tuberculosis Center, Rutgers University, Newark, New Jersey
| | - Leen Rigouts
- Mycobacteriology, Institute of Tropical Medicine, Antwerp, Belgium
- Biomedical Sciences, Antwerp University, Antwerp, Belgium; and
| | - Elizabeth M. Streicher
- DST/NRF Center of Excellence for Biomedical TB Research/SAMRC Center for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Tommie C. Victor
- DST/NRF Center of Excellence for Biomedical TB Research/SAMRC Center for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Robin M. Warren
- DST/NRF Center of Excellence for Biomedical TB Research/SAMRC Center for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Dick van Soolingen
- Department of Pulmonary Diseases and
- Department of Medical Microbiology, Radboud University Nijmegen Medical Center, Nijmegen, the Netherlands
- Life and Health Sciences Research Institute, School of Health Sciences, University of Minho, Braga, Portugal
| | - Megan Murray
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, Massachusetts
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts
| |
Collapse
|
17
|
Fonseca JD, Knight GM, McHugh TD. The complex evolution of antibiotic resistance in Mycobacterium tuberculosis. Int J Infect Dis 2016; 32:94-100. [PMID: 25809763 DOI: 10.1016/j.ijid.2015.01.014] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 01/12/2015] [Accepted: 01/14/2015] [Indexed: 12/23/2022] Open
Abstract
Multidrug-resistant and extensively drug-resistant tuberculosis (TB) represent a major threat to the control of the disease worldwide. The mechanisms and pathways that result in the emergence and subsequent fixation of resistant strains of Mycobacterium tuberculosis are not fully understood and recent studies suggest that they are much more complex than initially thought. In this review, we highlight the exciting new areas of research within TB resistance that are beginning to fill these gaps in our understanding, whilst also raising new questions and providing future directions.
Collapse
Affiliation(s)
- J D Fonseca
- Centre for Clinical Microbiology, University College London, London, NW3 2PF, UK.
| | - G M Knight
- TB Modelling Group, TB Centre, Centre for the Mathematical Modelling of Infectious Diseases, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK
| | - T D McHugh
- Centre for Clinical Microbiology, University College London, London, NW3 2PF, UK
| |
Collapse
|
18
|
Black PA, de Vos M, Louw GE, van der Merwe RG, Dippenaar A, Streicher EM, Abdallah AM, Sampson SL, Victor TC, Dolby T, Simpson JA, van Helden PD, Warren RM, Pain A. Whole genome sequencing reveals genomic heterogeneity and antibiotic purification in Mycobacterium tuberculosis isolates. BMC Genomics 2015; 16:857. [PMID: 26496891 PMCID: PMC4619333 DOI: 10.1186/s12864-015-2067-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 10/13/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Whole genome sequencing has revolutionised the interrogation of mycobacterial genomes. Recent studies have reported conflicting findings on the genomic stability of Mycobacterium tuberculosis during the evolution of drug resistance. In an age where whole genome sequencing is increasingly relied upon for defining the structure of bacterial genomes, it is important to investigate the reliability of next generation sequencing to identify clonal variants present in a minor percentage of the population. This study aimed to define a reliable cut-off for identification of low frequency sequence variants and to subsequently investigate genetic heterogeneity and the evolution of drug resistance in M. tuberculosis. METHODS Genomic DNA was isolated from single colonies from 14 rifampicin mono-resistant M. tuberculosis isolates, as well as the primary cultures and follow up MDR cultures from two of these patients. The whole genomes of the M. tuberculosis isolates were sequenced using either the Illumina MiSeq or Illumina HiSeq platforms. Sequences were analysed with an in-house pipeline. RESULTS Using next-generation sequencing in combination with Sanger sequencing and statistical analysis we defined a read frequency cut-off of 30% to identify low frequency M. tuberculosis variants with high confidence. Using this cut-off we demonstrated a high rate of genetic diversity between single colonies isolated from one population, showing that by using the current sequencing technology, single colonies are not a true reflection of the genetic diversity within a whole population and vice versa. We further showed that numerous heterogeneous variants emerge and then disappear during the evolution of isoniazid resistance within individual patients. Our findings allowed us to formulate a model for the selective bottleneck which occurs during the course of infection, acting as a genomic purification event. CONCLUSIONS Our study demonstrated true levels of genetic diversity within an M. tuberculosis population and showed that genetic diversity may be re-defined when a selective pressure, such as drug exposure, is imposed on M. tuberculosis populations during the course of infection. This suggests that the genome of M. tuberculosis is more dynamic than previously thought, suggesting preparedness to respond to a changing environment.
Collapse
Affiliation(s)
- P A Black
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research/SA MRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - M de Vos
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research/SA MRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - G E Louw
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research/SA MRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - R G van der Merwe
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research/SA MRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - A Dippenaar
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research/SA MRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - E M Streicher
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research/SA MRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - A M Abdallah
- Pathogen Genomics Laboratory, BESE Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - S L Sampson
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research/SA MRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - T C Victor
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research/SA MRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - T Dolby
- National Health Laboratory Services, Green Point, Cape Town, South Africa
| | - J A Simpson
- National Health Laboratory Services, Green Point, Cape Town, South Africa
| | - P D van Helden
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research/SA MRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - R M Warren
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research/SA MRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa.
| | - A Pain
- Pathogen Genomics Laboratory, BESE Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
19
|
Mekonnen D, Admassu A, Mulu W, Amor A, Benito A, Gelaye W, Biadglegne F, Abera B. Multidrug-resistant and heteroresistant Mycobacterium tuberculosis and associated gene mutations in Ethiopia. Int J Infect Dis 2015; 39:34-8. [DOI: 10.1016/j.ijid.2015.06.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 05/09/2015] [Accepted: 06/22/2015] [Indexed: 11/27/2022] Open
|
20
|
Russell JH, Ostermeier M. The thymidylate kinase genes from Mycobacterium tuberculosis and methicillin-resistant Staphylococcus aureus confer 3'-azido-3'-deoxythymidine resistance to Escherichia coli. FEMS Microbiol Lett 2014; 361:158-65. [PMID: 25310917 DOI: 10.1111/1574-6968.12627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 10/08/2014] [Accepted: 10/09/2014] [Indexed: 11/27/2022] Open
Abstract
The case number of invasive multidrug-resistant bacteria cultured from both hospital and community acquired infections is increasing at an alarming rate. Identifying the mechanisms bacteria use to escape the current antimicrobial treatments is essential to containing potential outbreaks and developing new antimicrobial therapies. Many bacteria naturally encode nonessential resistance genes on their chromosome enabling their survival and/or persistence in the presence of antibiotics using enzymes and efflux pumps. This study investigates the ability of an evolutionarily conserved essential gene to provide resistance against antimicrobial compounds. An Escherichia coli chromosomally encoded thymidylate kinase (tmk) conditional lethal strain was developed to investigate tmk alleles from relevant nosocomial pathogens. The thymidylate kinase conditional lethal strain harboring a plasmid with a tmk gene from Mycobacterium tuberculosis, methicillin-resistant Staphylococcus aureus (MRSA), or Pseudomonas aeruginosa downstream of an inducible promoter was examined for survival against increasing concentrations of 3'-azido-3'-deoxythymidine (AZT). The results indicate that M. tuberculosis and MRSA thymidylate kinases are deficient in cellular activity toward AZT monophosphate.
Collapse
Affiliation(s)
- Jay H Russell
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | | |
Collapse
|
21
|
McGrath M, Gey van Pittius NC, van Helden PD, Warren RM, Warner DF. Mutation rate and the emergence of drug resistance in Mycobacterium tuberculosis. J Antimicrob Chemother 2013; 69:292-302. [DOI: 10.1093/jac/dkt364] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
22
|
Sun G, Luo T, Yang C, Dong X, Li J, Zhu Y, Zheng H, Tian W, Wang S, Barry CE, Mei J, Gao Q. Dynamic population changes in Mycobacterium tuberculosis during acquisition and fixation of drug resistance in patients. J Infect Dis 2012; 206:1724-33. [PMID: 22984115 DOI: 10.1093/infdis/jis601] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Drug-resistant tuberculosis poses a growing challenge to global public health. However, the diversity and dynamics of the bacterial population during acquisition of drug resistance have yet to be carefully examined. METHODS Whole-genome sequencing was performed on 7 serial Mycobacterium tuberculosis (M. tuberculosis) populations from 3 patients during different stages in the development of drug resistance. The population diversity was assessed by the number and frequencies of unfixed mutations in each sample. RESULTS For each bacterial population, 8-41 unfixed mutations were monitored by the fraction of single-nucleotide polymorphisms at specific loci. Among them, as many as 4 to 5 resistance-conferring mutations were transiently detected in the same single sputum, but ultimately only a single type of mutant was fixed. In addition, we identified 14 potential compensatory mutations that occurred during or after the emergence of resistance-conferring mutations. CONCLUSIONS M. tuberculosis population within patients exhibited considerable genetic diversity, which underwent selections for most fit resistant mutant. These findings have important implications and emphasize the need for early diagnosis of tuberculosis to decrease the chance of evolving highly fit drug-resistant strains.
Collapse
Affiliation(s)
- Gang Sun
- Key Laboratory of Medical Molecular Virology, Institutes of Biomedical Sciences and Institute of Medical Microbiology, Fudan University, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Mariam SH, Werngren J, Aronsson J, Hoffner S, Andersson DI. Dynamics of antibiotic resistant Mycobacterium tuberculosis during long-term infection and antibiotic treatment. PLoS One 2011; 6:e21147. [PMID: 21698208 PMCID: PMC3116863 DOI: 10.1371/journal.pone.0021147] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 05/20/2011] [Indexed: 11/19/2022] Open
Abstract
For an infecting bacterium the human body provides several potential ecological niches with both internally (e.g. host immunity) and externally (e.g. antibiotic use) imposed growth restrictions that are expected to drive adaptive evolution in the bacterium, including the development of antibiotic resistance. To determine the extent and pattern of heterogeneity generated in a bacterial population during long-term antibiotic treatment, we examined in a monoclonal Mycobacterium tuberculosis infection antibiotic resistant mutants isolated from one patient during a 9-years period. There was a progressive accumulation of resistance mutations in the infecting clone. Furthermore, apparent clonal sweeps as well as co-existence of different resistant mutants were observed during this time, demonstrating that during treatment there is a high degree of dynamics in the bacterial population. These findings have important implications for diagnostics and treatment of drug resistant tuberculosis infections.
Collapse
Affiliation(s)
- Solomon H. Mariam
- Swedish Institute for Infectious Disease Control, Solna, Sweden
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Jim Werngren
- Swedish Institute for Infectious Disease Control, Solna, Sweden
| | - Joakim Aronsson
- Department of Infectious Diseases, County Hospital Ryhov, Jönköping, Sweden
| | - Sven Hoffner
- Swedish Institute for Infectious Disease Control, Solna, Sweden
| | - Dan I. Andersson
- Department of Infectious Diseases, County Hospital Ryhov, Jönköping, Sweden
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
24
|
Alizon S, Luciani F, Regoes RR. Epidemiological and clinical consequences of within-host evolution. Trends Microbiol 2010; 19:24-32. [PMID: 21055948 DOI: 10.1016/j.tim.2010.09.005] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 09/14/2010] [Accepted: 09/28/2010] [Indexed: 11/18/2022]
Abstract
Many viruses and bacteria are known to evolve rapidly over the course of an infection. However, epidemiological studies generally assume that within-host evolution is an instantaneous process. We argue that the dynamics of within-host evolution has implications at the within-host and at the between-host levels. We first show that epidemiologists should consider within-host evolution, notably because it affects the genotype of the pathogen that is transmitted. We then present studies that investigate evolution at the within-host level and examine the extent to which these studies can help to understand infection traits involved in the epidemiology (e.g. transmission rate, virulence, recovery rate). Finally, we discuss how new techniques for data acquisition can open new perspectives for empirical and theoretical research.
Collapse
Affiliation(s)
- Samuel Alizon
- Laboratoire Génétique et Évolution des Maladies Infectieuses, Unité Mixte de Recherche du Centre national de la Recherche Scientifique et de l'Institut de Recherche pour le Développement 2724, 911 avenue Agropolis, BP 64501, 34394 Montpellier CEDEX 5, France.
| | | | | |
Collapse
|
25
|
MacLean RC, Hall AR, Perron GG, Buckling A. The population genetics of antibiotic resistance: integrating molecular mechanisms and treatment contexts. Nat Rev Genet 2010; 11:405-14. [PMID: 20479772 DOI: 10.1038/nrg2778] [Citation(s) in RCA: 149] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Despite efforts from a range of disciplines, our ability to predict and combat the evolution of antibiotic resistance in pathogenic bacteria is limited. This is because resistance evolution involves a complex interplay between the specific drug, bacterial genetics and both natural and treatment ecology. Incorporating details of the molecular mechanisms of drug resistance and ecology into evolutionary models has proved useful in predicting the dynamics of resistance evolution. However, putting these models to practical use will require extensive collaboration between mathematicians, molecular biologists, evolutionary ecologists and clinicians.
Collapse
Affiliation(s)
- R Craig MacLean
- Department of Zoology, University of Oxford, Oxford OX1 3PS, UK.
| | | | | | | |
Collapse
|
26
|
Yesilkaya H, Meacci F, Niemann S, Hillemann D, Rüsch-Gerdes S, Barer MR, Andrew PW, Oggioni MR. Evaluation of molecular-Beacon, TaqMan, and fluorescence resonance energy transfer probes for detection of antibiotic resistance-conferring single nucleotide polymorphisms in mixed Mycobacterium tuberculosis DNA extracts. J Clin Microbiol 2006; 44:3826-9. [PMID: 17021120 PMCID: PMC1594805 DOI: 10.1128/jcm.00225-06] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ability of fluorescence resonance energy transfer, molecular-beacon, and TaqMan probes to detect single nucleotide polymorphism (SNP) in the presence of a wild-type allele was evaluated using drug resistance-conferring SNPs in mixed Mycobacterium tuberculosis DNA. It was found that both the absolute quantity and the ratio of alleles determine the detection sensitivity of the probe systems.
Collapse
Affiliation(s)
- Hasan Yesilkaya
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester LE1 9HN, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|